CAPÍTULO 4 / TEMA 4

POSICIÓN Y DESPLAZAMIENTO

CASI TODOS LOS CUERPOS ESTÁN EN MOVIMIENTO Y POR LO TANTO, SU POSICIÓN EN EL ESPACIO CAMBIA. JUSTO AHORA PODEMOS ESTAR FRENTE A LA COMPUTADORA, PERO LUEGO PODEMOS ESTAR EN OTRA CASA O CIUDAD. LOS EJES CARTESIANOS AYUDAN A UBICAR PUNTOS EN UN PLANO Y SI LOS USAMOS EN UN MAPA, TAMBIÉN NOS SIRVEN PARA UBICAR PERSONAS Y LUGARES DEL MUNDO.

RELACIONES ESPACIALES

PARA UBICAR ELEMENTOS EN EL ESPACIO USAMOS LAS RELACIONES ESPACIALES. ESTAS NO INDICAN LA POSICIÓN DE ALGO O ALGUIEN RESPECTO A OTRA COSA. POR LO GENERAL SE UTILIZAN LAS SIGUIENTES EXPRESIONES:

ARRIBA

ABAJO

IZQUIERDA

DERECHA

OBSERVA ESTA IMAGEN. ¿QUÉ POSICIÓN TIENEN LOS OBJETOS RESPECTO A OTROS? EJEMPLO:  – LOS LIBROS ESTÁN ARRIBA DE LA REPISA.                                 – LA PANTALLA DE LA COMPUTADORA ESTÁ DEBAJO DE LOS LIBROS.                               – EL RELOJ ESTÁ A LA DERECHA DE LA PANTALLA DE LA COMPUTADORA.                         – LA LÁMPARA ESTÁ A LA IZQUIERDA DE LOS MARCADORES. HAY MÁS RELACIONES ESPACIALES, ¡DESCÚBRELAS!

¡ES TU TURNO!

OBSERVA DE NUEVO LA IMAGEN Y RESPONDE:

  • ¿EN QUÉ POSICIÓN ESTÁ LA PANTALLA DE LA COMPUTADORA RESPECTO A LA MESA?
    SOLUCIÓN
    LA PANTALLA DE LA COMPUTADORA ESTÁ ARRIBA DE LA MESA.
  • ¿EN QUÉ POSICIÓN ESTÁ LA LÁMPARA RESPECTO A LA REPISA?
    SOLUCIÓN
    LA LÁMPARA ESTÁ ABAJO DE LA REPISA.
  • ¿EN QUÉ POSICIÓN ESTÁN LOS MARCADORES RESPECTO A LA LÁMPARA?
    SOLUCIÓN
    LOS MARCADORES ESTÁN A LA DERECHA DE LA LÁMPARA.

¿cómo GRAFICAR LA POSICIÓN DE ELEMENTOS?

PODEMOS GRAFICAR Y UBICAR LA POSICIÓN DE CUALQUIER PUNTO EN UN PLANO POR MEDIO DE EJES DE COORDENADAS EN UN DIAGRAMA CARTESIANO.

LOS EJES CARTESIANOS SON DOS LÍNEAS QUE SE CRUZAN, UNA TIENE UNA ORIENTACIÓN VERTICAL, LLAMADA “Y”, Y LA OTRA UNA ORIENTACIÓN HORIZONTAL, LLAMADA “X“. EN CONJUNTO, DAN A CONOCER LA POSICIÓN DE UN PUNTO EN EL PLANO.

– EJEMPLO:

ESTA ES UNA CUADRÍCULA CON EJES COORDENADOS. CUANDO UN DATO DEL EJE X SE CRUZA CON UNA DATO DEL EJE Y TENEMOS LAS COORDENADAS O UBICACIÓN DEL OBJETO.

¿CÓMO ESCRIBIR LAS COORDENADAS DE UN PUNTO?

PARA ESCRIBIR LAS COORDENADAS PRIMERO VEMOS LAS DEL EJE X Y LUEGO LAS DEL EJE Y. LOS DOS NÚMEROS SE SEPARAN CON UNA COMA Y SE ENCIERRA ENTRE PARÉNTESIS. ENTONCES, LAS COORDENADAS DE LAS FIGURAS EN EL DIAGRAMA CARTESIANO ANTERIOR SON LAS LAS SIGUIENTES:

FIGURA COORDENADAS
ESTRELLA (3, 5)
LUNA (1, 3)
CORAZÓN (6, 2)

– EJEMPLO 2:

CADA PUNTO TIENE UNA LETRA. UBIQUEMOS LAS COORDENADAS DE CADA PUNTO.

PUNTO COORDENADAS
A (4, 2)
B (1, 1)
C (2, 3)
D (5, 6)
E (1, 6)
F (0, 4)

¿SABÍAS QUÉ?
CUANDO UN PUNTO ESTÁ UBICADO DIRECTAMENTE SOBRE UN EJE, QUIERE DECIR QUE EL VALOR DEL OTRO EJE ES CERO, POR EJEMPLO (0, 4) SIGNIFICA QUE EL DATO DEL EJE X ES 0 Y EL DEL EJE Y ES 4.

¡ES TU TURNO!

OBSERVA DE NUEVO LA CUADRÍCULA. COMPLETA LA TABLA CON LAS COORDENADAS DE LOS PUNTOS.

SOLUCIÓN
PUNTO COORDENADAS
A (4, 2)
B (1, 1)
C (2, 3)
D (5, 6)
E (1, 6)
F (0, 4)
G (0, 5)
H (6, 4)
I (3, 5)

TRASLACIÓN

LA TRASLACIÓN ES UN MOVIMIENTO EN EL QUE CADA PUNTO DE LA FIGURA SIGUE UNA MISMA DIRECCIÓN. LA FIGURA GEOMÉTRICA TRASLADADA NO GIRA NI CAMBIA DE TAMAÑO.

ROTACIÓN

LA ROTACIÓN ES UN MOVIMIENTO O GIRO ALREDEDOR DE UN CENTRO DE ROTACIÓN.

MOVIMIENTOS DE LA TIERRA

NUESTRO PLANETA REALIZA TANTO EL MOVIMIENTO DE ROTACIÓN COMO EL DE TRASLACIÓN. CUANDO ROTA O GIRA SOBRE SU PROPIO EJE SE PRODUCE EL DÍA Y LA NOCHE. CUANDO SE TRASLADA ALREDEDOR DEL SOL SE CUMPLE UN AÑO O 365 DÍAS.

LOS MAPAS Y SU IMPORTANCIA

LOS EJES DE COORDENADAS TAMBIÉN LOS VEMOS EN LOS MAPAS. GRACIAS A ELLAS PODEMOS LOCALIZAR CUALQUIER CIUDAD O PERSONA EN EL MUNDO. LOS EJES DE COORDENADAS PERMITEN QUE CADA UBICACIÓN EN NUESTRO PLANETA SEA ESPECIFICADA CON NÚMEROS, LETRAS Y SÍMBOLOS. POR EJEMPLO, LA LATITUD DE LOS MAPAS DETERMINA EL EJE X Y LA LONGITUD DETERMINA EL EJE Y.

ESTE ES UN MAPAMUNDI, TAMBIÉN CONOCIDO COMO PLANISFERIO. EN ÉL VEMOS TODA LA SUPERFICIE DE NUESTRO PLANETA COMO UN PLANO. ESTE MAPA MUESTRA DOS TIPOS DE LÍNEAS: UNAS HORIZONTALES QUE REPRESENTAN LA LATITUD; Y UNAS VERTICALES QUE REPRESENTAN LA LONGITUD. ASÍ COMO EN UNA CUADRÍCULA, LA UNIÓN DE LOS DATOS NOS INFORMA LAS COORDENADAS DE UN PUNTO.

¡A PRACTICAR!

1. OBSERVA LA CUADRÍCULA. EN ELLA SE VEN LOS RECORRIDOS QUE PUEDE HACER EL PERRO HASTA SU HUESO, HASTA SU DUEÑO O HASTA SU CASA. RESPONDE LAS PREGUNTAS.

  • ¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU HUESO?
    SOLUCIÓN
    5 ESPACIOS HACIA ARRIBA Y UN ESPACIO A LA DERECHA.
  • ¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU DUEÑO?
    SOLUCIÓN
    3 ESPACIOS HACIA ARRIBA Y 3 ESPACIOS A LA DERECHA.
  • ¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU CASA?
    SOLUCIÓN
    5 ESPACIOS A LA DERECHA Y UN ESPACIO HACIA ARRIBA.
  • ¿CÓMO ES EL RECORRIDO DEL DUEÑO HASTA EL PERRO?
    SOLUCIÓN
    3 ESPACIOS A LA IZQUIERDA Y 3 ESPACIOS HACIA ABAJO.
  • ¿CUÁLES SON LAS COORDENADAS DEL PERRO?
    SOLUCIÓN
    (1, 1)
  • ¿CUÁLES SON LAS COORDENADAS DEL HUESO?
    SOLUCIÓN
    (2, 6)
  • ¿CUÁLES SON LAS COORDENADAS DEL DUEÑO?
    SOLUCIÓN
    (4, 4)
  • ¿CUÁLES SON LAS COORDENADAS DE LA CASA DEL PERRO?
    SOLUCIÓN
    (6, 2)
RECURSOS PARA DOCENTES

Artículo “Simetrías”

Con este recurso se podrá ampliar la información sobre los movimientos en el plano

VER

CAPÍTULO 4 / TEMA 7 (REVISIÓN)

GEOMETRÍA | ¿QUÉ APRENDIMOS?

UBICACIÓN ESPACIAL

La ubicación espacial nos sirve para conocer dónde estamos con respecto a todo lo que nos rodea, de este modo podemos señalar con facilidad nuestra ubicación. Términos como arriba, abajo, derecha, izquierda, delante y detrás son de gran utilidad para el desarrollo del sentido de la orientación. Si deseamos ubicar puntos en un plano podemos usar los ejes de coordenadas: un conjunto de líneas verticales y horizontales que nos brindan los datos necesarios para saber la posición exacta de un objeto en una cuadrícula.

En esta imagen, los crayones están dentro de un recipiente, el cuaderno está sobre la mesa y los bolígrafos están al lado del cuaderno.

CUERPOS GEOMÉTRICOS

Los cuerpos geométricos poseen tres dimensiones: alto, largo y ancho. Estos cuerpos pueden ser poliedros, tales como el cubo, la pirámide y el prisma; también pueden ser cuerpos redondos, como la esfera, el cono y el cilindro. Los elementos que los componen son las caras, las aristas y los vértices. Las caras de los cuerpos geométricos son figuras planas.

Las pirámides de Egipto fueron construidas con forma de pirámide cuadrangular porque simbolizaban los rayos del Sol.

ELEMENTOS GEOMÉTRICOS

El punto, la recta, el rayo y el segmento son elementos geométricos. El punto indica una posición, el rayo posee un origen y se extiende hacia el infinito, el segmento tiene un principio y un final, y la recta es una sucesión de puntos que siguen una misma dirección. Por otro lado, dos rectas pueden ser paralelas cuando no se cortan en ningún punto; perpendiculares cuando al cortarse forman cuatro ángulos rectos y oblicuas cuando al cortarse no forman ángulos rectos.

Los cables de electricidad representan rectas paralelas. Al verlos dan la ilusión de tres rectas que no se tocan entre sí.

ángulos

El ángulo es una porción comprendida entre dos lados con un origen en común llamado vértice. Según sus medidas el ángulo puede ser convexo, nulo, agudo, recto, obtuso, cóncavo, llano y completo. Según su posición existen ángulos adyacentes, consecutivos y opuestos por el vértice. Para estimar la medida de un ángulo es preferible usar medidas de referencia que ya conocemos, como ángulos de 45° y 90°.

Las escuadras son instrumentas de medidas que también nos ayudan a estimar ángulos, por ejemplo, esta escuadra tiene un ángulo recto (90 grados) y dos ángulos de 45 grados.

perímetro

El perímetro es el contorno de una figura. Para averiguar el perímetro de polígonos regulares multiplicamos la cantidad de lados por la longitud del lado. En cambio, para polígonos no regulares el perímetro lo calculamos al sumar todos los lados de la figura. Conocer cuánto mide el perímetro de una figura te ayudará a saber cuánto material se utilizó para alambrar una cancha de fútbol y en otros múltiples usos.

A lo largo de la historia los perímetros de muchos castillos fueron amurallados para defender el territorio.

transformaciones isométricas

Una transformación isométrica es el cambio de posición que sufre una figura. Estas transformaciones pueden ser por rotación, por traslación o por reflexión. La rotación se refiere al giro alrededor de un punto fijo; la traslación consiste en mover todos los puntos de una figura en la misma dirección, sentido y distancia; y la reflexión no es más que el reflejo de la figura respecto de un eje de simetría. Estas transformaciones no cambian ni la forma ni el tamaño de las figuras.

El planeta Tierra presenta varios movimientos, dos de ellos son la traslación y la rotación.