CAPÍTULO 5 / REVISIÓN

geometría

áreas y perímetros

El cálculo de áreas y perímetros de figuras geométricas se hace a partir de la longitud de sus lados. El área de los rectángulos se calcula como la multiplicación de la base por la altura, y la de los triángulos se define como la multiplicación de la base por la altura dividido por dos. Cuando se calculan los perímetros se recurre a la sumatoria de la longitud de los lados, independientemente de la figura que sea.

Las figuras pueden ser simples o compuestas. Sin embargo, el cálculo del perímetro se realiza de la misma manera a través de la suma de las longitudes del contorno de la figura.

triángulos

Los triángulos son clasificados respecto a sus lados como equiláteros, isósceles y escalenos; y respecto a sus ángulos como acutángulos, rectángulos y obtusángulos. La suma de los ángulos internos de un triángulo es siempre igual a 180º. Los triángulos congruentes son aquellos que son isométricos entre sí, es decir, poseen las mismas dimensiones.

Para la construcción de los triángulos se puede usar el compás. En primer lugar, se traza un segmento con la longitud de los lados, luego se trazan dos arcos y desde el punto de intersección se trazan dos rectas hasta los extremos del segmento inicial.

plano, punto y segmento

Un plano es un conjunto infinito de puntos y segmentos dispuestos de manera bidimensional. Para formar un plano se precisan tres puntos, una recta y un punto o dos rectas no coincidentes. Para ubicar un punto se utiliza un sistema de coordenadas denominado eje cartesiano, en el cual se deben considerar los valores de X e Y. En el sistema de coordenadas, se pueden distinguir cuatro cuadrantes delimitados por los ejes.

Para ubicar un punto se intersecta un eje vertical en el valor de X y un eje horizontal en el valor de Y del punto.

Circunferencia

La circunferencia es una figura geométrica que mantiene todos sus puntos equidistantes de su centro.  Para calcular el área de una circunferencia se recurre a la siguiente fórmula \inline A = \pi \times r^{2}. Donde r es el radio, y π corresponde al número pi. Para la construcción de circunferencias se utiliza un compás: se realiza un segmento con la longitud del radio y a partir de allí se genera el arco completo.

El número pi es un número irracional que se obtiene al dividir la longitud de la circunferencia por su diámetro.

Transformaciones isométricas

La ampliación y la reducción son transformaciones en las dimensiones de las figuras geométricas sin alterar las propiedades de la figura original. Las transformaciones isométricas como la rotación y la traslación permiten variar la posición de la figura en el plano sin alterar sus dimensiones. Hay figuras geométricas que poseen uno o más ejes de simetría en donde cada uno de sus puntos opuestos se encuentran a una misma distancia entre sí.

Las reducciones son usadas generalmente en los planos para expresar longitudes a una menor escala.

PRISMAS Y PIRÁMIDES

Los prismas son figuras geométricas tridimensionales formadas por dos caras o bases iguales y paralelas que se encuentran unidas por paralelogramos. Las pirámides presentan una base en la que todas sus caras son triángulos que se encuentran unidos en un vértice. Para su construcción se realiza primero la base y luego la base paralela (en el caso de un prisma) o el vértice (en el caso de una pirámide) a una determinada altura. Por último, se unen las bases por paralelogramos o triángulos según corresponda al tipo de figura.

La Gran Pirámide de Guiza es una pirámide rectangular y fue construida hace 4.600 años.

CAPÍTULO 5 / TEMA 5

TRANSFORMACIONES ISOMÉTRICAS

La ampliación y la reducción son transformaciones que permiten cambiar el alto y ancho de una figura sin alterar sus propiedades originales como ángulos, ejes de simetría, etc. Las transformaciones isométricas, en cambio, se refieren al cambio de posición de la figura en el plano sin variar sus dimensiones. La rotación y traslación son ejemplos de este tipo de transformaciones.

AMPLIACIONES DE FIGURAS

La ampliación de figuras es una proyección geométrica que produce una imagen de mayor tamaño. Esta transformación varía las dimensiones de la figura sin alterar su forma. Por lo tanto, las propiedades de cada una de las figuras ampliadas no variarán. El nivel de ampliación de las figuras está afectado por un factor de multiplicación.

Para su cálculo se deben multiplicar cada una de las medidas de la figura por su factor de multiplicación.

Factor de multiplicación

El factor de multiplicación es un factor de escala que se utiliza para ampliar la imagen en cada uno de sus lados en una determinada proporción. La transformación será ampliación cuando el factor sea mayor que 1 ya que este es una medida de cuánto se amplía la figura original.

REDUCCIÓN DE FIGURAS

De forma similar a la ampliación vista anteriormente, existe la reducción de figuras. Esta transformación consta de afectar una figura por un factor de reducción para disminuir las dimensiones de la imagen proporcionalmente de manera que se puedan mantener la forma y las propiedades de la imagen original.

Para su cálculo se deben dividir cada una de las medidas de la figura entre su factor de reducción.

Factor de reducción

El factor de reducción es un factor de escala que se utiliza para reducir la imagen en cada uno de sus lados en una determinada proporción. Muchas veces en los planos se emplean reducciones para expresar magnitudes como el tamaño de un edificio o el de un campo de fútbol, en estos casos se emplean escalas que indican a que proporción del tamaño real equivale cada una de las medidas del plano.

ROTACIÓN DE FIGURAS

La rotación de figuras es una transformación geométrica que consta de un giro de la figura sobre un determinado punto. El resultado de la transformación será una figura en el mismo lugar pero en diferente posición. El movimiento de la figura se da sobre un arco, y como todos los puntos lo hacen en igual proporción, la figura final no tendrá ningún cambio en la forma o en las propiedades.

Como puede observarse, la rotación de una figura no afectará su área o su forma. Simplemente es un cambio en la posición y orientación de la figura geométrica.

FIGURAS GEOMÉTRICAS Y EJES DE SIMETRÍA

Hay muchas figuras geométricas que tienen ejes de simetría. Estos ejes son líneas que dividen las figuras de tal forma que cualquiera de los puntos opuestos de las partes son equidistantes entre sí, lo que significa que son simétricos. Existen figuras que tienen incluso más de un eje de simetría. A continuación se observan algunos ejemplos:

¿Sabías qué?
El círculo es una figura geométrica con infinitos ejes de simetría.
Aplicaciones de la rotación

La rotación de figuras sobre ejes se utiliza para generar figuras en tres dimensiones. Por ejemplo, la rotación del triángulo isósceles sobre su propio eje genera un cono tridimensional. La rotación de un rectángulo da origen a un cilindro. A este tipo de cuerpos se los denomina sólidos de revolución.

¡A practicar!

1. Ampliar con un factor de multiplicación de 2 una circunferencia de 5 cm de radio. Calcular su área.

RESPUESTAS

El área será: A = π x r= 314 cm2

2. Reducir con un factor de 3 un triángulo rectángulo si sus catetos son de 6 cm cada uno. Calcular su área.

RESPUESTAS

El área será: A = C1 x C2 / 2 = 2 cm2

3. ¿Cuántos ejes de simetría tiene un rombo?

RESPUESTAS
Un rombo tiene dos ejes de simetría.

4. ¿Cuántos ejes de simetría tiene la figura?

RESPUESTAS
La figura no tiene ejes de simetría.

 

RECURSOS PARA DOCENTES

Artículo “Simetrías”

En este artículo se explican los diferentes tipos simetrías, como la axial, y las diferentes transformaciones isométricas.

VER

CAPÍTULO 4 / TEMA 7 (REVISIÓN)

GEOMETRÍA | ¿QUÉ APRENDIMOS?

UBICACIÓN ESPACIAL

La ubicación espacial nos sirve para conocer dónde estamos con respecto a todo lo que nos rodea, de este modo podemos señalar con facilidad nuestra ubicación. Términos como arriba, abajo, derecha, izquierda, delante y detrás son de gran utilidad para el desarrollo del sentido de la orientación. Si deseamos ubicar puntos en un plano podemos usar los ejes de coordenadas: un conjunto de líneas verticales y horizontales que nos brindan los datos necesarios para saber la posición exacta de un objeto en una cuadrícula.

En esta imagen, los crayones están dentro de un recipiente, el cuaderno está sobre la mesa y los bolígrafos están al lado del cuaderno.

CUERPOS GEOMÉTRICOS

Los cuerpos geométricos poseen tres dimensiones: alto, largo y ancho. Estos cuerpos pueden ser poliedros, tales como el cubo, la pirámide y el prisma; también pueden ser cuerpos redondos, como la esfera, el cono y el cilindro. Los elementos que los componen son las caras, las aristas y los vértices. Las caras de los cuerpos geométricos son figuras planas.

Las pirámides de Egipto fueron construidas con forma de pirámide cuadrangular porque simbolizaban los rayos del Sol.

ELEMENTOS GEOMÉTRICOS

El punto, la recta, el rayo y el segmento son elementos geométricos. El punto indica una posición, el rayo posee un origen y se extiende hacia el infinito, el segmento tiene un principio y un final, y la recta es una sucesión de puntos que siguen una misma dirección. Por otro lado, dos rectas pueden ser paralelas cuando no se cortan en ningún punto; perpendiculares cuando al cortarse forman cuatro ángulos rectos y oblicuas cuando al cortarse no forman ángulos rectos.

Los cables de electricidad representan rectas paralelas. Al verlos dan la ilusión de tres rectas que no se tocan entre sí.

ángulos

El ángulo es una porción comprendida entre dos lados con un origen en común llamado vértice. Según sus medidas el ángulo puede ser convexo, nulo, agudo, recto, obtuso, cóncavo, llano y completo. Según su posición existen ángulos adyacentes, consecutivos y opuestos por el vértice. Para estimar la medida de un ángulo es preferible usar medidas de referencia que ya conocemos, como ángulos de 45° y 90°.

Las escuadras son instrumentas de medidas que también nos ayudan a estimar ángulos, por ejemplo, esta escuadra tiene un ángulo recto (90 grados) y dos ángulos de 45 grados.

perímetro

El perímetro es el contorno de una figura. Para averiguar el perímetro de polígonos regulares multiplicamos la cantidad de lados por la longitud del lado. En cambio, para polígonos no regulares el perímetro lo calculamos al sumar todos los lados de la figura. Conocer cuánto mide el perímetro de una figura te ayudará a saber cuánto material se utilizó para alambrar una cancha de fútbol y en otros múltiples usos.

A lo largo de la historia los perímetros de muchos castillos fueron amurallados para defender el territorio.

transformaciones isométricas

Una transformación isométrica es el cambio de posición que sufre una figura. Estas transformaciones pueden ser por rotación, por traslación o por reflexión. La rotación se refiere al giro alrededor de un punto fijo; la traslación consiste en mover todos los puntos de una figura en la misma dirección, sentido y distancia; y la reflexión no es más que el reflejo de la figura respecto de un eje de simetría. Estas transformaciones no cambian ni la forma ni el tamaño de las figuras.

El planeta Tierra presenta varios movimientos, dos de ellos son la traslación y la rotación.

CAPÍTULO 4 / TEMA 6

TRANSFORMACIONES ISOMÉTRICAS

Las figuras geométricas pueden sufrir diversas alteraciones y una de estas es la isométrica. Una transformación isométrica es el cambio de posición que puede sufrir una figura sin alterar su tamaño o forma. Existen tres tipos de transformaciones: la rotación, la traslación y la reflexión.

¿Qué es la isometría?

La palabra “isometría” significa “igual medida”, por esta razón cuando una figura recibe una transformación isométrica resulta que la figura original y la final son semejantes y congruentes, es decir no cambian ni de forma ni tamaño.

Las transformaciones isométricas que puede recibir una figura plana son la rotación, la traslación y la reflexión.

rOTACIÓN

Para rotar una figura se la gira en torno a un punto fijo llamado punto de rotación, alrededor de este punto la figura se moverá una cantidad de grados respecto de un ángulo. En este movimiento la figura mantiene la forma y el tamaño.

En la imagen, el triángulo azul giró 60° en sentido contrario a las agujas del reloj y se obtuvo otro triángulo de color rosa que no ha perdido sus dimensiones ni tamaño.

TRaslación

La traslación es un movimiento directo de una figura en la que todos sus puntos se mueven en la misma dirección y distancia. Al transformar una figura por traslación la misma no pierde la medida de sus lados ni ángulos como tampoco su orientación, no gira ni se refleja.

Podemos desplazar una figura de la siguiente manera:

  • En una dirección, ya sea horizontal, vertical u oblicua.
  • En un sentido, esto puede ser a la izquierda, a la derecha, arriba o abajo.
  • A una distancia, que es la longitud en la que se va a desplazar la figura inicial de la figura final.

En muchas situaciones de la vida cotidiana utilizamos el movimiento de traslación, por ejemplo, cuando movemos un mueble, subimos un ascensor o recorremos una ciudad en subterráneo (metro).

Movimientos de la Tierra

La Tierra se mueve constantemente en el espacio y posee dos movimientos principales: el movimiento de rotación y el movimiento de traslación. Cuando se produce el movimiento de rotación la Tierra da vueltas sobre su propio eje y tarda 24 horas en completarlo. Al mismo tiempo en el que la Tierra gira sobre su eje también se produce el movimiento de traslación alrededor del Sol que tarda 365 días.

REFLEXIÓN

La reflexión es un movimiento en la que dos figuras quedan reflejas respecto de un eje. Sobre una misma línea están todos los puntos que se asocian de una figura y la figura que se refleja. Los puntos también se encuentran a la misma distancia del eje pero en direcciones opuestas. Diferentes objetos que nos rodean se pueden reflejar en el agua, en un espejo y hasta en un vidrio de cristal.

 

¿Sabías qué?

El eje de simetría es una línea vertical que divide a dos figuras y funciona como “espejo” para mostrar que ambas son iguales pero invertidas.

Reflexión en el espejo

Cuando nos situamos frente a un espejo, la imagen que se refleja de nosotros mismos es una transformación isométrica: la reflexión. Para que esta reflexión ocurra la luz nos debe iluminar y rebotar hacia la superficie del espejo. Una vez que los rayos rebotan, cambian de dirección y son captados por nuestros ojos listos para observar nuestro reflejo.

Actividades

  1. A las siguientes figuras se les aplicó un movimiento:
  • Observa esta imagen, ¿de qué forma se movió la figura verde?

Solución
La figura verde se movió hacia arriba y a la derecha.
  • ¿La figura verde cambió de sentido respecto a la figura roja? ¿Cómo se llama el movimiento?
Solución
Sí, cambió de sentido. El movimiento se llama traslación.
  • Observa esta imagen, ¿la figura verde se movió de la misma manera que la anterior?

Solución
No.
  • ¿Cuál es el movimiento que se le aplicó a esta figura?
Solución
Se le aplicó el movimiento de reflexión.
  • Observa esta imagen, ¿qué movimiento se le aplicó a la figura roja?

Solución
Se le aplicó el movimiento de rotación.

2. A la mariposa de la izquierda se le aplicaron distintas transformaciones isométricas que aparecen en las imágenes de la derecha. Responde las preguntas.

  • ¿Qué transformación isométrica tuvo la mariposa A?
    Solución
    Una rotación.
  • ¿Qué transformación isométrica tuvo la mariposa B?
    Solución
    Una traslación.
  • ¿Qué transformación isométrica tuvo la mariposa C?
    Solución
    No hay transformación isométrica porque la figura cambia de tamaño.
  • ¿Qué transformación isométrica tuvo la mariposa D?
    Solución
    Una rotación.

 

RECURSOS PARA DOCENTES

Artículo “Simetría”

Este artículo le permitirá reforzar el concepto de simetría y su aplicación el a vida cotidiana.

VER