EL PUNTO ES EL ENTE FUNDAMENTAL DE LA GEOMETRÍA. UNA SUCESIÓN INFINITA DE PUNTOS FORMA UNA LÍNEA. SEGÚN LAS DIRECCIÓN QUE TENGAN ESTOS PUNTOS LAS LÍNEAS PUEDEN SER RECTAS, COMO LAS DEL BORDE DE UNA PANTALLA DE CELULAR; O PUEDEN SER CURVAS, COMO EL BORDE UN GLOBO. CUANDO EL PUNTO DE INICIO Y FIN SON EL MISMO EN UNA LÍNEA, DECIMOS QUE LA LÍNEA ES CERRADA, PERO SI ESTOS PUNTOS NO COINCIDEN, LA LÍNEA ES ABIERTA.
FIGURAS PLANAS
LAS FIGURAS PLANAS SOLO TIENEN DOS DIMENSIONES: ALTO Y ANCHO. EXISTEN DOS TIPOS DE FIGURAS PLANAS, LAS POLIGONALES Y LOS CÍRCULOS. LAS PRIMERAS ESTÁN FORMADAS POR LÍNEAS POLIGONALES CERRADAS, COMO UN CUADRADO O RECTÁNGULO. LAS SEGUNDAS ESTÁN FORMADAS POR LÍNEAS CURVAS CERRADAS, COMO EL CÍRCULO. TODOS LOS PUNTOS QUE CORRESPONDEN A LA LÍNEA CURVA SE ENCUENTRAN A LA MISMA DISTANCIA DEL CENTRO DE FIGURA. ESTA LÍNEA QUE DELIMITA AL CÍRCULO SE LLAMA CIRCUNFERENCIA.
FIGURAS TRIDIMENSIONALES
LAS FIGURAS TRIDIMENSIONALES OCUPAN UN LUGAR EN EL ESPACIO Y TIENEN TRES DIMENSIONES: ALTO, LARGO Y ANCHO. LAS FIGURAS TRIDIMENSIONALES TAMBIÉN SON LLAMADAS CUERPOS GEOMÉTRICOS Y EXISTEN DOS TIPOS: LOS POLIEDROS Y LOS CUERPOS REDONDOS. LOS PRIMEROS ESTÁN CONFORMADOS POR CARAS PLANAS COMO EL PRISMA Y LA PIRÁMIDE; Y LOS SEGUNDOS TIENEN SUPERFICIES CURVAS, COMO EL CILINDRO, LA ESFERA Y EL CONO.
POSICIÓN Y DESPLAZAMIENTO
LOS CUERPOS GEOMÉTRICOS, LOS PUNTOS, LAS FIGURAS Y LOS OBJETOS TIENEN UNA DETERMINADA POSICIÓN EN EL ESPACIO, PERO LA POSICIÓN NO SIEMPRE ES LA MISMA. DOS DE LOS MOVIMIENTOS MÁS COMUNES SON LA TRASLACIÓN Y LA ROTACIÓN. POR OTRO LADO, ES POSIBLE UBICAR CADA PUNTO EN EL ESPACIO GRACIAS A LOS EJES CARTESIANOS, UN CONJUNTO DE LÍNEAS QUE SE CRUZAN PARA DARNOS LAS COORDENADAS O POSICIÓN DE UN PUNTO.
CASI TODOS LOS CUERPOS ESTÁN EN MOVIMIENTO Y POR LO TANTO, SU POSICIÓN EN EL ESPACIO CAMBIA. JUSTO AHORA PODEMOS ESTAR FRENTE A LA COMPUTADORA, PERO LUEGO PODEMOS ESTAR EN OTRA CASA O CIUDAD. LOS EJES CARTESIANOS AYUDAN A UBICAR PUNTOS EN UN PLANO Y SI LOS USAMOS EN UN MAPA, TAMBIÉN NOS SIRVEN PARA UBICAR PERSONAS Y LUGARES DEL MUNDO.
RELACIONES ESPACIALES
PARA UBICAR ELEMENTOS EN EL ESPACIO USAMOS LAS RELACIONES ESPACIALES. ESTAS NO INDICAN LA POSICIÓN DE ALGO O ALGUIEN RESPECTO A OTRA COSA. POR LO GENERAL SE UTILIZAN LAS SIGUIENTES EXPRESIONES:
ARRIBA
↑
ABAJO
↓
IZQUIERDA
←
DERECHA
→
¡ES TU TURNO!
OBSERVA DE NUEVO LA IMAGEN Y RESPONDE:
¿EN QUÉ POSICIÓN ESTÁ LA PANTALLA DE LA COMPUTADORA RESPECTO A LA MESA?
SOLUCIÓN
LA PANTALLA DE LA COMPUTADORA ESTÁ ARRIBA DE LA MESA.
¿EN QUÉ POSICIÓN ESTÁ LA LÁMPARA RESPECTO A LA REPISA?
SOLUCIÓN
LA LÁMPARA ESTÁ ABAJO DE LA REPISA.
¿EN QUÉ POSICIÓN ESTÁN LOS MARCADORES RESPECTO A LA LÁMPARA?
SOLUCIÓN
LOS MARCADORES ESTÁN A LA DERECHA DE LA LÁMPARA.
¿cómo GRAFICAR LA POSICIÓN DE ELEMENTOS?
PODEMOS GRAFICAR Y UBICAR LA POSICIÓN DE CUALQUIER PUNTO EN UN PLANO POR MEDIO DE EJES DE COORDENADAS EN UN DIAGRAMA CARTESIANO.
LOS EJES CARTESIANOS SON DOS LÍNEAS QUE SE CRUZAN, UNA TIENE UNA ORIENTACIÓN VERTICAL, LLAMADA “Y”, Y LA OTRA UNA ORIENTACIÓN HORIZONTAL, LLAMADA “X“. EN CONJUNTO, DAN A CONOCER LA POSICIÓN DE UN PUNTO EN EL PLANO.
– EJEMPLO:
ESTA ES UNA CUADRÍCULA CON EJES COORDENADOS. CUANDO UN DATO DEL EJE X SE CRUZA CON UNA DATO DEL EJE Y TENEMOS LAS COORDENADAS O UBICACIÓN DEL OBJETO.
¿CÓMO ESCRIBIR LAS COORDENADAS DE UN PUNTO?
PARA ESCRIBIR LAS COORDENADAS PRIMERO VEMOS LAS DEL EJE X Y LUEGO LAS DEL EJE Y. LOS DOS NÚMEROS SE SEPARAN CON UNA COMA Y SE ENCIERRA ENTRE PARÉNTESIS. ENTONCES, LAS COORDENADAS DE LAS FIGURAS EN EL DIAGRAMA CARTESIANO ANTERIOR SON LAS LAS SIGUIENTES:
FIGURA
COORDENADAS
ESTRELLA
(3, 5)
LUNA
(1, 3)
CORAZÓN
(6, 2)
– EJEMPLO 2:
CADA PUNTO TIENE UNA LETRA. UBIQUEMOS LAS COORDENADAS DE CADA PUNTO.
PUNTO
COORDENADAS
A
(4, 2)
B
(1, 1)
C
(2, 3)
D
(5, 6)
E
(1, 6)
F
(0, 4)
¿SABÍAS QUÉ?
CUANDO UN PUNTO ESTÁ UBICADO DIRECTAMENTE SOBRE UN EJE, QUIERE DECIR QUE EL VALOR DEL OTRO EJE ES CERO, POR EJEMPLO (0, 4) SIGNIFICA QUE EL DATO DEL EJE X ES 0 Y EL DEL EJE Y ES 4.
¡ES TU TURNO!
OBSERVA DE NUEVO LA CUADRÍCULA. COMPLETA LA TABLA CON LAS COORDENADAS DE LOS PUNTOS.
SOLUCIÓN
PUNTO
COORDENADAS
A
(4, 2)
B
(1, 1)
C
(2, 3)
D
(5, 6)
E
(1, 6)
F
(0, 4)
G
(0, 5)
H
(6, 4)
I
(3, 5)
TRASLACIÓN
LA TRASLACIÓN ES UN MOVIMIENTO EN EL QUE CADA PUNTO DE LA FIGURA SIGUE UNA MISMA DIRECCIÓN. LA FIGURA GEOMÉTRICA TRASLADADA NO GIRA NI CAMBIA DE TAMAÑO.
ROTACIÓN
LA ROTACIÓN ES UN MOVIMIENTO O GIRO ALREDEDOR DE UN CENTRO DE ROTACIÓN.
MOVIMIENTOS DE LA TIERRA
NUESTRO PLANETA REALIZA TANTO EL MOVIMIENTO DE ROTACIÓN COMO EL DE TRASLACIÓN. CUANDO ROTA O GIRA SOBRE SU PROPIO EJE SE PRODUCE EL DÍA Y LA NOCHE. CUANDO SE TRASLADA ALREDEDOR DEL SOL SE CUMPLE UN AÑO O 365 DÍAS.
LOS MAPAS Y SU IMPORTANCIA
LOS EJES DE COORDENADAS TAMBIÉN LOS VEMOS EN LOS MAPAS. GRACIAS A ELLAS PODEMOS LOCALIZAR CUALQUIER CIUDAD O PERSONA EN EL MUNDO. LOS EJES DE COORDENADAS PERMITEN QUE CADA UBICACIÓN EN NUESTRO PLANETA SEA ESPECIFICADA CON NÚMEROS, LETRAS Y SÍMBOLOS. POR EJEMPLO, LA LATITUD DE LOS MAPAS DETERMINA EL EJE X Y LA LONGITUD DETERMINA EL EJE Y.
¡A PRACTICAR!
1. OBSERVA LA CUADRÍCULA. EN ELLA SE VEN LOS RECORRIDOS QUE PUEDE HACER EL PERRO HASTA SU HUESO, HASTA SU DUEÑO O HASTA SU CASA. RESPONDE LAS PREGUNTAS.
¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU HUESO?
SOLUCIÓN
5 ESPACIOS HACIA ARRIBA Y UN ESPACIO A LA DERECHA.
¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU DUEÑO?
SOLUCIÓN
3 ESPACIOS HACIA ARRIBA Y 3 ESPACIOS A LA DERECHA.
¿CÓMO ES EL RECORRIDO DEL PERRO HASTA SU CASA?
SOLUCIÓN
5 ESPACIOS A LA DERECHA Y UN ESPACIO HACIA ARRIBA.
¿CÓMO ES EL RECORRIDO DEL DUEÑO HASTA EL PERRO?
SOLUCIÓN
3 ESPACIOS A LA IZQUIERDA Y 3 ESPACIOS HACIA ABAJO.
¿CUÁLES SON LAS COORDENADAS DEL PERRO?
SOLUCIÓN
(1, 1)
¿CUÁLES SON LAS COORDENADAS DEL HUESO?
SOLUCIÓN
(2, 6)
¿CUÁLES SON LAS COORDENADAS DEL DUEÑO?
SOLUCIÓN
(4, 4)
¿CUÁLES SON LAS COORDENADAS DE LA CASA DEL PERRO?
SOLUCIÓN
(6, 2)
RECURSOS PARA DOCENTES
Artículo “Simetrías”
Con este recurso se podrá ampliar la información sobre los movimientos en el plano
EL RELOJ NOS SIRVE PARA MEDIR LAS HORAS, LOS MINUTOS Y LOS SEGUNDOS DE UN DÍA, PERO SI QUEREMOS MEDIR UNIDADES DE TIEMPO MAYORES, COMO LOS DÍAS, LAS SEMANAS Y LOS MESES DE UN AÑO TENEMOS QUE USAR OTRA HERRAMIENTA VISUAL: EL CALENDARIO. GRACIAS AL CALENDARIO PODEMOS ORGANIZAR EVENTOS PASADOS Y FUTUROS.
¿QUÉ ES UN CALENDARIO?
EL CALENDARIO ES UN SISTEMA CREADO POR EL HOMBRE PARA CONTAR EL TRANSCURSO DEL TIEMPO. CUENTA CON UNA SUCESIÓN DE DÍAS Y MESES. EL TIPO DE CALENDARIO QUE USAMOS EN LA ACTUALIDAD ES EL CALENDARIO SOLAR YA QUE DETERMINA QUE LA TIERRA TARDA 365 DÍAS EN DAR LA VUELTA COMPLETA AL SOL.
EL CALENDARIO PERMITE QUE NOS SITUEMOS EN EL TIEMPO, ES DECIR, DETERMINA EN QUÉ DÍA, SEMANA Y MES DEL AÑO ESTAMOS.
¿SABÍAS QUÉ?
LA PALABRA CALENDARIO PROVIENE DEL LATÍN Y SIGNIFICA “LIBRO DE CUENTAS”.
PARTES DE UN CALENDARIO
LAS PARTES DE UN CALENDARIO ANUAL SON:
DÍA: ES LA UNIDAD PRINCIPAL DEL CALENDARIO GREGORIANO. UN DÍA ESTÁ CONFORMADO POR 24 HORAS.
SEMANA: ES UN PERÍODO DE 7 DÍAS.
MES: ES UNO DE LOS 12 PERÍODOS DE TIEMPO EN LOS QUE ESTÁ DIVIDIDO UN AÑO.
CALENDARIO ANUAL
LOS CALENDARIOS SE DIVIDEN POR LA CANTIDAD DE MESES QUE EXISTEN. DESDE ENERO A DICIEMBRE SON 12 MESES.
ESTE ES EL CALENDARIO DEL AÑO 2020.
EL AÑO 2020 ES UN AÑO BISIESTO PORQUE EL MES DE FEBRERO TIENE 29 DÍAS.
LAS SEMANAS COMIENZAN CON EL DÍA DOMINGO, LUEGO SIGUEN: LUNES, MARTES, MIÉRCOLES, JUEVES, VIERNES Y SÁBADO. LOS DÍAS DE LA SEMANA ESTÁN EXPUESTOS CON SUS PRIMERAS LETRAS. LOS DÍAS DOMINGO ESTÁN DE COLOR ROJO, YA QUE SE CONSIDERAN DÍAS DE DESCANSO LABORAL. LOS DÍAS FESTIVOS TAMBIÉN PUEDEN TENER SU IDENTIFICACIÓN CON OTRO COLOR.
VEAMOS EL SIGUIENTE CUADRO CON LOS DÍAS CORRESPONDIENTES A CADA MES:
MES
DÍAS
ENERO
31
FEBRERO
28 (29, AÑO BISIESTO)
MARZO
31
ABRIL
30
MAYO
31
JUNIO
30
JULIO
31
AGOSTO
31
SEPTIEMBRE
30
OCTUBRE
31
NOVIEMBRE
30
DICIEMBRE
31
UTILIDAD
LA UTILIDAD DEL CALENDARIO ES IMPORTANTE EN MUCHOS ASPECTOS DE NUESTRA VIDA. POR EJEMPLO, CON UN CALENDARIO PODEMOS SABER CUÁNTOS MESES FALTAN PARA NUESTRO CUMPLEAÑOS, CUÁNTAS SEMANAS FALTAN PARA QUE INICIE EL VERANO O CUÁNTOS DÍAS FALTAN PARA EMPEZAR LAS CLASES.
¿CÓMO LEER UN CALENDARIO?
LEEMOS EL DÍA.
LEEMOS EL MES.
LEEMOS EL AÑO.
– EJEMPLO:
5 DE AGOSTO DE 2020.
10 DE SEPTIEMBRE DE 2015.
8 DE JULIO DE 2000.
EXISTEN CALENDARIOS QUE EN VEZ DE MOSTRAR TODOS LOS MESES, SOLO MUESTRAN MES POR MES COMO EL SIGUIENTE:
PARA LEER LA FECHA MARCADA DE ESTE MES LEEMOS EL NOMBRE DEL DÍA, LUEGO LEEMOS EL DÍA, EL MES Y EL AÑO. EJEMPLO:
MIÉRCOLES, 15 DE ENERO DE 2020.
¡ES TU TURNO!
OBSERVA DE NUEVO EL CALENDARIO Y RESPONDE:
¿QUÉ FECHA ES EL SEGUNDO DÍA DEL MES?
SOLUCIÓN
JUEVES, 2 DE ENERO DE 2020.
¿QUÉ FECHA ES EL ÚLTIMO DÍA DEL MES?
SOLUCIÓN
VIERNES, 31 DE ENERO DE 2020.
CALENDARIOS EN LA HISTORIA
A LO LARGO DE LA HISTORIA DE LA HUMANIDAD HAN EXISTIDO CALENDARIOS DE DIFERENTES CIVILIZACIONES. LOS MÁS CONOCIDOS SON:
CALENDARIO GREGORIANO: UTILIZADO ACTUALMENTE POR TODO EL MUNDO.
CALENDARIO JULIANO: USADO EN LA ANTIGUA ROMA. EXISTIÓ ANTES QUE EL CALENDARIO GREGORIANO.
CALENDARIO BABILÓNICO: BASADO EN LAS FASES LUNARES, SE UTILIZÓ HACE MUCHOS AÑOS EN BABILONIA.
CALENDARIO CHINO: USADO ACTUALMENTE PARA FESTIVIDADES Y CREENCIAS EN ASIA ORIENTAL.
EL CALENDARIO MAYA
LA CIVILIZACIÓN MAYA FUE UNA DE LAS MÁS AVANZADAS DE NUESTRO CONTINENTE. SUS CONOCIMIENTOS SOBRE LOS MOVIMIENTOS DE LAS ESTRELLAS, LA LUNA Y EL PLANETA TIERRA, JUNTO A LAS MATEMÁTICAS HICIERON QUE CREARAN UN CALENDARIO MUY EXACTO. LOS MÁS CONOCIDOS CON EL HAAB, EQUIVALENTE A 365 DÍAS TERRESTRES; Y EL TZOLK’IN QUE EQUIVALE A 260 DÍA TERRESTRES.
¡A PRACTICAR!
1. ESCRIBE LA FECHA MARCADA EN CADA CALENDARIO:
SOLUCIÓN
DOMINGO, 16 DE FEBRERO DE 2020.
SOLUCIÓN
MARTES, 9 DE JUNIO DE 2020.
SOLUCIÓN
LUNES, 20 DE ABRIL DE 2020.
SOLUCIÓN
SÁBADO, 27 DE JUNIO DE 2020.
SOLUCIÓN
MIÉRCOLES, 23 DE SEPTIEMBRE DE 2020.
SOLUCIÓN
JUEVES, 5 DE NOVIEMBRE DE 2020.
RECURSOS PARA DOCENTES
Artículo “Los calendarios”
En el siguiente se presenta información histórica sobre los diferentes calendarios de antiguas civilizaciones.
LAS PERSONAS REALIZAN MUCHAS ACTIVIDADES A LO LARGO DEL DÍA. MIENTRAS REALIZAN ESAS ACTIVIDADES EL TIEMPO PASA O TRANSCURRE. PODEMOS SABER QUE EL TIEMPO PASA CUANDO AMANECE Y ES DE DÍA O CUANDO OSCURECE Y ES DE NOCHE. SI QUEREMOS MEDIR EL TIEMPO PODEMOS UTILIZAR INSTRUMENTOS COMO EL RELOJ O EL CRONÓMETRO.
¿QUÉ ES EL TIEMPO?
EL TIEMPO ES LA MAGNITUD QUE NOS INDICA LA DURACIÓN DE LAS COSAS O DE LO QUE PASA. DE ESTA MANERA, LOS ACONTECIMIENTOS PUEDEN SER ORGANIZADOS CON UN ORDEN O CON UN PRINCIPIO Y FIN.
– EJEMPLO:
OBSERVA ESTAS IMÁGENES, ¿A QUÉ HORA LUIS SALIÓ DE SU CASA?, ¿A QUÉ HORA LLEGÓ A LA ESCUELA?, ¿CUÁNTO TIEMPO TARDÓ?
LUIS SALIÓ DE SU CASA A LAS 7 EN PUNTO Y LLEGÓ A LA ESCUELA A LAS 7 Y 20 MINUTOS.
CONTEMOS LA MARCAS DE LOS MINUTOS QUE HAY DESDE LAS 7:00 A LAS 7:20.
VEMOS QUE PASARON 20 MINUTOS DESDE QUE SALIÓ DE SU CASA HASTA LLEGAR A LA ESCUELA.
UNIDADES DE TIEMPO
LA DURACIÓN DE CIERTOS FENÓMENOS, COMO LAS ESTACIONES DEL AÑO SUPERA AL DÍA O VARIOS DÍAS. ES POR ESO QUE SE NECESITAN UNIDADES MAYORES, COMO LA SEMANA, EL MES O EL AÑO.
HAY OTROS FENÓMENOS DE TIEMPO, COMO LA DURACIÓN DE UNA CARRERA, QUE SE PRODUCEN EN TIEMPOS MENORES QUE UN DÍA. ES POR ESO QUE PARA ORGANIZAR EL TIEMPO, EL HOMBRE DIVIDIÓ EL DÍA EN HORAS, MINUTOS Y SEGUNDOS.
SEGÚN EL SISTEMA INTERNACIONAL DE UNIDADES, LA UNIDAD PRINCIPAL DEL TIEMPO ES EL SEGUNDO.
VEAMOS LAS EQUIVALENCIAS DEL TIEMPO:
UNIDADES MENORES DE 1 DÍA
UNIDADES MAYORES DE 1 DÍA
1 DÍA = 24 HORAS
1 HORA = 60 MINUTOS
1 MINUTO = 60 SEGUNDOS
1 SEMANA = 7 DÍAS
1 MES = 30 DÍAS APROXIMADAMENTE
AÑO = 12 MESES = 365 DÍAS
¡HAY MÁS UNIDADES DE TIEMPO!
1 TRIMESTRE = 3 MESES
1 SEMESTRE = 6 MESES
1 LUSTRO = 5 AÑOS
1 DÉCADA = 10 AÑOS
1 SIGLO = 100 AÑOS
1 MILENIO = 1.000 AÑOS
¿SABÍAS QUÉ?
CADA 4 AÑOS SE SUMA 1 DÍA MÁS AL MES DE FEBRERO (29 DE FEBRERO). ESTE AÑO SE CONOCE COMO “AÑO BISIESTO”.
EL RELOJ
EL RELOJ ES EL INSTRUMENTO MÁS IMPORTANTE PARA DETERMINAR EL TIEMPO DEL DÍA QUE TRANSCURRE. EL RELOJ MIDE EL TIEMPO EN HORAS, MINUTOS Y SEGUNDOS, ES DECIR, MIDE CON LAS UNIDADES MENORES A UN DÍA.
¿CÓMO LEER LA HORA?
EN UN RELOJ ANALÓGICO
PRIMERO LEEMOS LA HORA SEGUIDO DE LA PALABRA “Y”. LA HORA LA SEÑALA LA AGUJA MÁS CORTA.
DESPUÉS LEEMOS LOS MINUTOS, PARA ESTO CONTAMOS LA CANTIDAD ENTRE 0 Y 60 QUE SEÑALA LA AGUJA MÁS LARGA. LUEGO DECIMOS LA PALABRA “MINUTOS”. CADA NÚMERO REPRESENTA 5 MINUTOS MÁS QUE EL ANTERIOR.
– EJEMPLO:
SON LAS NUEVE Y DIEZ MINUTOS.
SON LAS SEIS Y CUARENTA MINUTOS.
CUANDO LA AGUJA DE LOS MINUTOS ESTÁ EN EL 0 DECIMOS LA HORA SEGUIDA DE ” … EN PUNTO”.
CUANDO LA AGUJA DE LOS MINUTOS ESTÁ EN EL 15 DECIMOS LA HORA SEGUIDA DE ” … Y CUARTO”.
CUANDO LA AGUJA DE LOS MINUTOS ESTÁ EN EL 30 DECIMOS LA HORA SEGUIDA DE ” … Y MEDIA”.
CUANDO LA AGUJA DE LOS MINUTOS ESTÁ EN EL 45 DECIMOS “UN CUARTO PARA …” SEGUIDO DE LA HORA QUE LE SIGUE A LA MARCADA.
SON LAS ONCE Y CUARTO.
ES LA UNA Y MEDIA.
ES UN CUARTO PARA LAS CUATRO.
SON LAS SEIS EN PUNTO.
ABREVIATURAS DE TIEMPO
SI LA HORA LEÍDA CORRESPONDE A ANTES DEL MEDIODÍA USAMOS LA ABREVIATURA a. m.
SI LA HORA LEÍDA CORRESPONDE A DESPUÉS DEL MEDIODÍA USAMOS LA ABREVIATURA p. m.
EN UN RELOJ DIGITAL
PRIMERO LEEMOS LA HORA QUE ESTÁ ANTES DE LOS DOS PUNTOS (:). LUEGO LEEMOS LOS MINUTOS QUE ESTÁN DESPUÉS DE LOS DOS PUNTOS.
– EJEMPLO:
SON LAS DOS Y CUARENTA Y CINCO MINUTOS O UN CUARTO PARA LAS TRES.
SON LAS OCHO EN PUNTO.
SON LAS OCHO Y QUINCE MINUTOS O LAS OCHO Y CUARTO.
SON LAS OCHO Y TREINTA MINUTOS O LAS OCHO Y MEDIA.
SON LAS OCHO Y CUARENTA Y CINCO MINUTOS O UN CUARTO PARA LAS NUEVE.
LA HISTORIA DEL PRIMER RELOJ
LOS PRIMEROS INTENTOS DE MEDIR EL TIEMPO SURGIERON POR LA OBSERVACIÓN DE LOS MOVIMIENTOS DE LA TIERRA, LA LUNA, EL SOL Y LAS ESTRELLAS. UNO DE LO PRIMEROS RELOJES FUE EL SOLAR, INVENTADO POR LOS EGIPCIOS. ESTE CONSISTÍA EN UNA BARRA QUE PROYECTABA LA SOMBRA DEL SOL SOBRE UNA SUPERFICIE.
EL CRONÓMETRO
UN CRONÓMETRO ES UN RELOJ DE MANO QUE SE UTILIZA PARA MEDIR FRACCIONES DE TIEMPO PEQUEÑAS. AL INICIAR EL CONTEO DE SEGUNDOS SE PRESIONA UN BOTÓN Y PARA TERMINARLO SE VUELVE A PRESIONAR. POR EJEMPLO, PARA MEDIR LA DURACIÓN DE UNA COMPETENCIA DE VELOCIDAD SE UTILIZA ESTE INSTRUMENTO.
¿SABÍAS QUE?
EN EL SIGLO XIX, EL RELOJERO SUIZO LOUIS BERTHOUD DESARROLLÓ UN CRONÓMETRO MARINO.
¡A PRACTICAR!
1. RESPONDE:
SI MARTA SALIÓ DE SU CASA A LAS 7:15 DE SU CASA Y LLEGÓ A LAS 7:30 A LA CASA DE SU AMIGA, ¿CUÁNTO TIEMPO TARDÓ EN LLEGAR?
SOLUCIÓN
15 MINUTOS.
SI LUIS SALIÓ DE SU CASA A LAS 8:20 DE SU CASA Y LLEGÓ A LAS 8:35 A LA ESCUELA, ¿CUÁNTO TIEMPO TARDÓ EN LLEGAR?
SOLUCIÓN
15 MINUTOS.
SI ANDREA SALIÓ DE SU CASA A LAS 3:40 DE SU CASA Y LLEGÓ A LAS 4:00 A LA CASA DE SU ABUELA, ¿CUÁNTO TIEMPO TARDÓ EN LLEGAR?
SOLUCIÓN
20 MINUTOS.
2. ¿QUÉ HORA ES?
SOLUCIÓN
SON LAS SEIS Y CINCUENTA MINUTOS.
SOLUCIÓN
SON LAS DOS Y TREINTA Y CINCO MINUTOS.
SOLUCIÓN
SON LAS DIEZ Y VEINTE MINUTOS.
SOLUCIÓN
SON LAS CINCO EN PUNTO.
RECURSOS PARA DOCENTES
Artículo “Concepto Físico del tiempo”
En el siguiente artículo podrás encontrar más información acerca del concepto de tiempo desde la perspectiva de la física.
La ubicación espacial nos sirve para conocer dónde estamos con respecto a todo lo que nos rodea, de este modo podemos señalar con facilidad nuestra ubicación. Términos como arriba, abajo, derecha, izquierda, delante y detrás son de gran utilidad para el desarrollo del sentido de la orientación. Si deseamos ubicar puntos en un plano podemos usar los ejes de coordenadas: un conjunto de líneas verticales y horizontales que nos brindan los datos necesarios para saber la posición exacta de un objeto en una cuadrícula.
CUERPOS GEOMÉTRICOS
Los cuerpos geométricos poseen tres dimensiones: alto, largo y ancho. Estos cuerpos pueden ser poliedros, tales como el cubo, la pirámide y el prisma; también pueden ser cuerpos redondos, como la esfera, el cono y el cilindro. Los elementos que los componen son las caras, las aristas y los vértices. Las caras de los cuerpos geométricos son figuras planas.
ELEMENTOS GEOMÉTRICOS
El punto, la recta, el rayo y el segmento son elementos geométricos. El punto indica una posición, el rayo posee un origen y se extiende hacia el infinito, el segmento tiene un principio y un final, y la recta es una sucesión de puntos que siguen una misma dirección. Por otro lado, dos rectas pueden ser paralelas cuando no se cortan en ningún punto; perpendiculares cuando al cortarse forman cuatro ángulos rectos y oblicuas cuando al cortarse no forman ángulos rectos.
ángulos
El ángulo es una porción comprendida entre dos lados con un origen en común llamado vértice. Según sus medidas el ángulo puede ser convexo, nulo, agudo, recto, obtuso, cóncavo, llano y completo. Según su posición existen ángulos adyacentes, consecutivos y opuestos por el vértice. Para estimar la medida de un ángulo es preferible usar medidas de referencia que ya conocemos, como ángulos de 45° y 90°.
perímetro
El perímetro es el contorno de una figura. Para averiguar el perímetro de polígonos regulares multiplicamos la cantidad de lados por la longitud del lado. En cambio, para polígonos no regulares el perímetro lo calculamos al sumar todos los lados de la figura. Conocer cuánto mide el perímetro de una figura te ayudará a saber cuánto material se utilizó para alambrar una cancha de fútbol y en otros múltiples usos.
transformaciones isométricas
Una transformación isométrica es el cambio de posición que sufre una figura. Estas transformaciones pueden ser por rotación, por traslación o por reflexión. La rotación se refiere al giro alrededor de un punto fijo; la traslación consiste en mover todos los puntos de una figura en la misma dirección, sentido y distancia; y la reflexión no es más que el reflejo de la figura respecto de un eje de simetría. Estas transformaciones no cambian ni la forma ni el tamaño de las figuras.
Son convencionalismos adoptados por el ser humano para medir la posición y otras magnitudes físicas. Se usan para hallar cuerpos celestes en el espacio y son la base para determinar nuestra ubicación en el planeta. También permiten establecer comparaciones y transformaciones entre las figuras representadas.
Ejes de coordenadas
El sistema de coordenadas cartesianas es uno de los sistemas de referencias usados para ubicar puntos en el espacio. En este caso específicamente se explicarán estas coordenadas orientadas al plano, es decir, en dos dimensiones.
El plano donde ubicamos los puntos se denomina plano cartesiano y está formado por los siguientes elementos:
Eje X: es también denominado eje de las abscisas, y se encuentra ubicado dentro del plano en forma horizontal.
Eje Y: es conocido también como eje de las ordenadas y está ubicado en sentido vertical dentro del plano.
Origen: es el punto de intersección entre los ejes de coordenadas X e Y.
¿Sabías qué?
El nombre de las coordenadas cartesianas proviene de la persona que las empleó por primera vez: René Descartes.
Un punto está definido por un par de números que hacen referencia a su posición respecto al eje X y al eje Y. Estos puntos son denominados coordenadas cartesianas y permiten graficarlo.
Para hacerlo, dividimos los ejes en segmentos con la misma longitud y a cada uno le asignamos el valor de un número entero. A la derecha del origen, escribimos los números de menor a mayor, esos serán los valores del eje X. Arriba del origen escribimos los números que le siguen al cero de menor a mayor, esos serán los valores del eje Y:
¿Sabías qué?
Los números negativos se representan a la izquierda del origen (eje X) y debajo del origen (eje Y).
Para ubicar un punto en el plano necesitamos las coordenadas de cada eje, que de ahora en adelante llamaremos coordenada en X y coordenada en Y para hacer mención a cuál eje se refieren. La coordenada X determina cuán a la derecha del origen está ubicado el punto; mientras que la coordenada Y, cuán arriba del origen está el punto.
La manera más frecuente de representar un punto es a través de paréntesis, y dentro indicamos la coordenada X y la coordenada Y, separadas por una coma:
El punto desde dónde se empieza a contar es en el origen porque se encuentra en la coordenada (0,0) lo que quiere decir que está a 0 posiciones de la derecha y a 0 posiciones hacia arriba.
Por ejemplo:
El punto A (3,2) se encuentra a tres posiciones a la derecha y a dos posiciones hacia arriba. Si lo queremos graficar, cada coordenada debe estar representada en el respectivo eje y el punto de intersección de ambas sería el punto A:
Cuando algunas de las coordenadas del punto sea igual a cero, significa que el punto se encuentra sobre el eje al cual corresponde la coordenada diferente de cero. Por ejemplo, el punto B (0,3) indica que se movió cero posiciones a la derecha y tres posiciones hacia arriba, por lo tanto se ubica sobre el eje Y que es el que tiene la coordenada diferente de cero:
Ejes de simetrías
La simetría es una relación proporcionada entre las partes que componen un todo. Así, por ejemplo, decimos que una imagen es simétrica cuando su forma no cambia si es girada o volteada. Para que exista simetría entre dos objetos, ambos deben ser del mismo tamaño y de la misma forma y uno debe estar en una orientación diferente a la del primero.
El eje de simetría es una línea imaginaria que divide al dibujo en dos partes idénticas pero con diferente orientación. Los ejes de simetría pueden ser horizontales, verticales o inclinados.
De acuerdo a la figura geométrica, algunas pueden presentar uno o más ejes de simetría. Otras, en cambio, no presentan ninguno. Cuando una figura no es simétrica se denomina asimétrica.
Por ejemplo, no todos los triángulos tienen ejes de simetría, todo depende de su tipo. Si son equiláteros tienen tres ejes de simetría; si son isósceles tienen dos ejes de simetría, y si son escalenos no tienen ningún eje de simetría.
Transformaciones isométricas
Las transformaciones isométricas son los cambios de posición u orientación que experimenta una figura sin alterar su forma.
Traslación
Es un tipo de transformación isométrica donde se mueven todos los puntos de una figura en una misma dirección, sentido y longitud.
Rotación
También es conocida como giro. Es una transformación isométrica en la que la figura se mueve alrededor de un punto sin alterar su forma. El movimiento es determinado por un ángulo de rotación y puede ser en sentido de las agujas del reloj o en sentido contrario.
La simetría como transformación isométrica
La simetría entre dos objetos es un tipo de transformación isométrica porque a cada punto del objeto o figura se lo asocia a otro conocido como imagen. Cada punto está a una misma distancia del otro respecto al eje de simetría. Este tipo de transformación también se conoce como reflexión.
¡A practicar!
1. ¿Cuál es la posición de estos números?
a)
Solución
C (4,3)
b)
Solución
D (1,2)
c)
Solución
E (5,0)
d)
Solución
F (4,5)
e)
Solución
G (3,3)
2. ¿A cuál de los siguientes puntos corresponde la coordenada (6,3)?
Solución
Corresponde al punto K (6,3).
3. ¿Cuál de estas figuras no es simétrica?
a)
b)
c)
d)
Solución
d) No es simétrica porque no tiene ningún eje de simetría.
4. ¿A qué tipo de transformación isométrica corresponde la gráfica?
Solución
Traslación.
RECURSOS PARA DOCENTES
Artículo “Simetrías”
Este artículo explica qué es una simetría, sus tipos y su relación con los ejes. También incluye algunos ejemplos de simetría.
Este artículo explica qué es el plano cartesiano, sus características y divisiones por cuadrante. También incluye ejemplos sobre como ubicar puntos en este sistema.
Las figuras geométricas pueden sufrir diversas alteraciones y una de estas es la isométrica. Una transformación isométrica es el cambio de posición que puede sufrir una figura sin alterar su tamaño o forma. Existen tres tipos de transformaciones: la rotación, la traslación y la reflexión.
¿Qué es la isometría?
La palabra “isometría” significa “igual medida”, por esta razón cuando una figura recibe una transformación isométrica resulta que la figura original y la final son semejantes y congruentes, es decir no cambian ni de forma ni tamaño.
Las transformaciones isométricas que puede recibir una figura plana son la rotación, la traslación y la reflexión.
rOTACIÓN
Para rotar una figura se la gira en torno a un punto fijo llamado punto de rotación, alrededor de este punto la figura se moverá una cantidad de grados respecto de un ángulo. En este movimiento la figura mantiene la forma y el tamaño.
En la imagen, el triángulo azul giró 60° en sentido contrario a las agujas del reloj y se obtuvo otro triángulo de color rosa que no ha perdido sus dimensiones ni tamaño.
TRaslación
La traslación es un movimiento directo de una figura en la que todos sus puntos se mueven en la misma dirección y distancia. Al transformar una figura por traslación la misma no pierde la medida de sus lados ni ángulos como tampoco su orientación, no gira ni se refleja.
Podemos desplazar una figura de la siguiente manera:
En una dirección, ya sea horizontal, vertical u oblicua.
En un sentido, esto puede ser a la izquierda, a la derecha, arriba o abajo.
A una distancia, que es la longitud en la que se va a desplazar la figura inicial de la figura final.
En muchas situaciones de la vida cotidiana utilizamos el movimiento de traslación, por ejemplo, cuando movemos un mueble, subimos un ascensor o recorremos una ciudad en subterráneo (metro).
Movimientos de la Tierra
La Tierra se mueve constantemente en el espacio y posee dos movimientos principales: el movimiento de rotación y el movimiento de traslación. Cuando se produce el movimiento de rotación la Tierra da vueltas sobre su propio eje y tarda 24 horas en completarlo. Al mismo tiempo en el que la Tierra gira sobre su eje también se produce el movimiento de traslación alrededor del Sol que tarda 365 días.
REFLEXIÓN
La reflexión es un movimiento en la que dos figuras quedan reflejas respecto de un eje. Sobre una misma línea están todos los puntos que se asocian de una figura y la figura que se refleja. Los puntos también se encuentran a la misma distancia del eje pero en direcciones opuestas. Diferentes objetos que nos rodean se pueden reflejar en el agua, en un espejo y hasta en un vidrio de cristal.
¿Sabías qué?
El eje de simetría es una línea vertical que divide a dos figuras y funciona como “espejo” para mostrar que ambas son iguales pero invertidas.
Reflexión en el espejo
Cuando nos situamos frente a un espejo, la imagen que se refleja de nosotros mismos es una transformación isométrica: la reflexión. Para que esta reflexión ocurra la luz nos debe iluminar y rebotar hacia la superficie del espejo. Una vez que los rayos rebotan, cambian de dirección y son captados por nuestros ojos listos para observar nuestro reflejo.
Actividades
A las siguientes figuras se les aplicó un movimiento:
Observa esta imagen, ¿de qué forma se movió la figura verde?
Solución
La figura verde se movió hacia arriba y a la derecha.
¿La figura verde cambió de sentido respecto a la figura roja? ¿Cómo se llama el movimiento?
Solución
Sí, cambió de sentido. El movimiento se llama traslación.
Observa esta imagen, ¿la figura verde se movió de la misma manera que la anterior?
Solución
No.
¿Cuál es el movimiento que se le aplicó a esta figura?
Solución
Se le aplicó el movimiento de reflexión.
Observa esta imagen, ¿qué movimiento se le aplicó a la figura roja?
Solución
Se le aplicó el movimiento de rotación.
2. A la mariposa de la izquierda se le aplicaron distintas transformaciones isométricas que aparecen en las imágenes de la derecha. Responde las preguntas.
¿Qué transformación isométrica tuvo la mariposa A?
Solución
Una rotación.
¿Qué transformación isométrica tuvo la mariposa B?
Solución
Una traslación.
¿Qué transformación isométrica tuvo la mariposa C?
Solución
No hay transformación isométrica porque la figura cambia de tamaño.
¿Qué transformación isométrica tuvo la mariposa D?
Solución
Una rotación.
RECURSOS PARA DOCENTES
Artículo “Simetría”
Este artículo le permitirá reforzar el concepto de simetría y su aplicación el a vida cotidiana.