La ubicación espacial nos sirve para conocer dónde estamos con respecto a todo lo que nos rodea, de este modo podemos señalar con facilidad nuestra ubicación. Términos como arriba, abajo, derecha, izquierda, delante y detrás son de gran utilidad para el desarrollo del sentido de la orientación. Si deseamos ubicar puntos en un plano podemos usar los ejes de coordenadas: un conjunto de líneas verticales y horizontales que nos brindan los datos necesarios para saber la posición exacta de un objeto en una cuadrícula.
CUERPOS GEOMÉTRICOS
Los cuerpos geométricos poseen tres dimensiones: alto, largo y ancho. Estos cuerpos pueden ser poliedros, tales como el cubo, la pirámide y el prisma; también pueden ser cuerpos redondos, como la esfera, el cono y el cilindro. Los elementos que los componen son las caras, las aristas y los vértices. Las caras de los cuerpos geométricos son figuras planas.
ELEMENTOS GEOMÉTRICOS
El punto, la recta, el rayo y el segmento son elementos geométricos. El punto indica una posición, el rayo posee un origen y se extiende hacia el infinito, el segmento tiene un principio y un final, y la recta es una sucesión de puntos que siguen una misma dirección. Por otro lado, dos rectas pueden ser paralelas cuando no se cortan en ningún punto; perpendiculares cuando al cortarse forman cuatro ángulos rectos y oblicuas cuando al cortarse no forman ángulos rectos.
ángulos
El ángulo es una porción comprendida entre dos lados con un origen en común llamado vértice. Según sus medidas el ángulo puede ser convexo, nulo, agudo, recto, obtuso, cóncavo, llano y completo. Según su posición existen ángulos adyacentes, consecutivos y opuestos por el vértice. Para estimar la medida de un ángulo es preferible usar medidas de referencia que ya conocemos, como ángulos de 45° y 90°.
perímetro
El perímetro es el contorno de una figura. Para averiguar el perímetro de polígonos regulares multiplicamos la cantidad de lados por la longitud del lado. En cambio, para polígonos no regulares el perímetro lo calculamos al sumar todos los lados de la figura. Conocer cuánto mide el perímetro de una figura te ayudará a saber cuánto material se utilizó para alambrar una cancha de fútbol y en otros múltiples usos.
transformaciones isométricas
Una transformación isométrica es el cambio de posición que sufre una figura. Estas transformaciones pueden ser por rotación, por traslación o por reflexión. La rotación se refiere al giro alrededor de un punto fijo; la traslación consiste en mover todos los puntos de una figura en la misma dirección, sentido y distancia; y la reflexión no es más que el reflejo de la figura respecto de un eje de simetría. Estas transformaciones no cambian ni la forma ni el tamaño de las figuras.
Son convencionalismos adoptados por el ser humano para medir la posición y otras magnitudes físicas. Se usan para hallar cuerpos celestes en el espacio y son la base para determinar nuestra ubicación en el planeta. También permiten establecer comparaciones y transformaciones entre las figuras representadas.
Ejes de coordenadas
El sistema de coordenadas cartesianas es uno de los sistemas de referencias usados para ubicar puntos en el espacio. En este caso específicamente se explicarán estas coordenadas orientadas al plano, es decir, en dos dimensiones.
El plano donde ubicamos los puntos se denomina plano cartesiano y está formado por los siguientes elementos:
Eje X: es también denominado eje de las abscisas, y se encuentra ubicado dentro del plano en forma horizontal.
Eje Y: es conocido también como eje de las ordenadas y está ubicado en sentido vertical dentro del plano.
Origen: es el punto de intersección entre los ejes de coordenadas X e Y.
¿Sabías qué?
El nombre de las coordenadas cartesianas proviene de la persona que las empleó por primera vez: René Descartes.
Un punto está definido por un par de números que hacen referencia a su posición respecto al eje X y al eje Y. Estos puntos son denominados coordenadas cartesianas y permiten graficarlo.
Para hacerlo, dividimos los ejes en segmentos con la misma longitud y a cada uno le asignamos el valor de un número entero. A la derecha del origen, escribimos los números de menor a mayor, esos serán los valores del eje X. Arriba del origen escribimos los números que le siguen al cero de menor a mayor, esos serán los valores del eje Y:
¿Sabías qué?
Los números negativos se representan a la izquierda del origen (eje X) y debajo del origen (eje Y).
Para ubicar un punto en el plano necesitamos las coordenadas de cada eje, que de ahora en adelante llamaremos coordenada en X y coordenada en Y para hacer mención a cuál eje se refieren. La coordenada X determina cuán a la derecha del origen está ubicado el punto; mientras que la coordenada Y, cuán arriba del origen está el punto.
La manera más frecuente de representar un punto es a través de paréntesis, y dentro indicamos la coordenada X y la coordenada Y, separadas por una coma:
El punto desde dónde se empieza a contar es en el origen porque se encuentra en la coordenada (0,0) lo que quiere decir que está a 0 posiciones de la derecha y a 0 posiciones hacia arriba.
Por ejemplo:
El punto A (3,2) se encuentra a tres posiciones a la derecha y a dos posiciones hacia arriba. Si lo queremos graficar, cada coordenada debe estar representada en el respectivo eje y el punto de intersección de ambas sería el punto A:
Cuando algunas de las coordenadas del punto sea igual a cero, significa que el punto se encuentra sobre el eje al cual corresponde la coordenada diferente de cero. Por ejemplo, el punto B (0,3) indica que se movió cero posiciones a la derecha y tres posiciones hacia arriba, por lo tanto se ubica sobre el eje Y que es el que tiene la coordenada diferente de cero:
Ejes de simetrías
La simetría es una relación proporcionada entre las partes que componen un todo. Así, por ejemplo, decimos que una imagen es simétrica cuando su forma no cambia si es girada o volteada. Para que exista simetría entre dos objetos, ambos deben ser del mismo tamaño y de la misma forma y uno debe estar en una orientación diferente a la del primero.
El eje de simetría es una línea imaginaria que divide al dibujo en dos partes idénticas pero con diferente orientación. Los ejes de simetría pueden ser horizontales, verticales o inclinados.
De acuerdo a la figura geométrica, algunas pueden presentar uno o más ejes de simetría. Otras, en cambio, no presentan ninguno. Cuando una figura no es simétrica se denomina asimétrica.
Por ejemplo, no todos los triángulos tienen ejes de simetría, todo depende de su tipo. Si son equiláteros tienen tres ejes de simetría; si son isósceles tienen dos ejes de simetría, y si son escalenos no tienen ningún eje de simetría.
Transformaciones isométricas
Las transformaciones isométricas son los cambios de posición u orientación que experimenta una figura sin alterar su forma.
Traslación
Es un tipo de transformación isométrica donde se mueven todos los puntos de una figura en una misma dirección, sentido y longitud.
Rotación
También es conocida como giro. Es una transformación isométrica en la que la figura se mueve alrededor de un punto sin alterar su forma. El movimiento es determinado por un ángulo de rotación y puede ser en sentido de las agujas del reloj o en sentido contrario.
La simetría como transformación isométrica
La simetría entre dos objetos es un tipo de transformación isométrica porque a cada punto del objeto o figura se lo asocia a otro conocido como imagen. Cada punto está a una misma distancia del otro respecto al eje de simetría. Este tipo de transformación también se conoce como reflexión.
¡A practicar!
1. ¿Cuál es la posición de estos números?
a)
Solución
C (4,3)
b)
Solución
D (1,2)
c)
Solución
E (5,0)
d)
Solución
F (4,5)
e)
Solución
G (3,3)
2. ¿A cuál de los siguientes puntos corresponde la coordenada (6,3)?
Solución
Corresponde al punto K (6,3).
3. ¿Cuál de estas figuras no es simétrica?
a)
b)
c)
d)
Solución
d) No es simétrica porque no tiene ningún eje de simetría.
4. ¿A qué tipo de transformación isométrica corresponde la gráfica?
Solución
Traslación.
RECURSOS PARA DOCENTES
Artículo “Simetrías”
Este artículo explica qué es una simetría, sus tipos y su relación con los ejes. También incluye algunos ejemplos de simetría.
Este artículo explica qué es el plano cartesiano, sus características y divisiones por cuadrante. También incluye ejemplos sobre como ubicar puntos en este sistema.
Las figuras geométricas pueden sufrir diversas alteraciones y una de estas es la isométrica. Una transformación isométrica es el cambio de posición que puede sufrir una figura sin alterar su tamaño o forma. Existen tres tipos de transformaciones: la rotación, la traslación y la reflexión.
¿Qué es la isometría?
La palabra “isometría” significa “igual medida”, por esta razón cuando una figura recibe una transformación isométrica resulta que la figura original y la final son semejantes y congruentes, es decir no cambian ni de forma ni tamaño.
Las transformaciones isométricas que puede recibir una figura plana son la rotación, la traslación y la reflexión.
rOTACIÓN
Para rotar una figura se la gira en torno a un punto fijo llamado punto de rotación, alrededor de este punto la figura se moverá una cantidad de grados respecto de un ángulo. En este movimiento la figura mantiene la forma y el tamaño.
En la imagen, el triángulo azul giró 60° en sentido contrario a las agujas del reloj y se obtuvo otro triángulo de color rosa que no ha perdido sus dimensiones ni tamaño.
TRaslación
La traslación es un movimiento directo de una figura en la que todos sus puntos se mueven en la misma dirección y distancia. Al transformar una figura por traslación la misma no pierde la medida de sus lados ni ángulos como tampoco su orientación, no gira ni se refleja.
Podemos desplazar una figura de la siguiente manera:
En una dirección, ya sea horizontal, vertical u oblicua.
En un sentido, esto puede ser a la izquierda, a la derecha, arriba o abajo.
A una distancia, que es la longitud en la que se va a desplazar la figura inicial de la figura final.
En muchas situaciones de la vida cotidiana utilizamos el movimiento de traslación, por ejemplo, cuando movemos un mueble, subimos un ascensor o recorremos una ciudad en subterráneo (metro).
Movimientos de la Tierra
La Tierra se mueve constantemente en el espacio y posee dos movimientos principales: el movimiento de rotación y el movimiento de traslación. Cuando se produce el movimiento de rotación la Tierra da vueltas sobre su propio eje y tarda 24 horas en completarlo. Al mismo tiempo en el que la Tierra gira sobre su eje también se produce el movimiento de traslación alrededor del Sol que tarda 365 días.
REFLEXIÓN
La reflexión es un movimiento en la que dos figuras quedan reflejas respecto de un eje. Sobre una misma línea están todos los puntos que se asocian de una figura y la figura que se refleja. Los puntos también se encuentran a la misma distancia del eje pero en direcciones opuestas. Diferentes objetos que nos rodean se pueden reflejar en el agua, en un espejo y hasta en un vidrio de cristal.
¿Sabías qué?
El eje de simetría es una línea vertical que divide a dos figuras y funciona como “espejo” para mostrar que ambas son iguales pero invertidas.
Reflexión en el espejo
Cuando nos situamos frente a un espejo, la imagen que se refleja de nosotros mismos es una transformación isométrica: la reflexión. Para que esta reflexión ocurra la luz nos debe iluminar y rebotar hacia la superficie del espejo. Una vez que los rayos rebotan, cambian de dirección y son captados por nuestros ojos listos para observar nuestro reflejo.
Actividades
A las siguientes figuras se les aplicó un movimiento:
Observa esta imagen, ¿de qué forma se movió la figura verde?
Solución
La figura verde se movió hacia arriba y a la derecha.
¿La figura verde cambió de sentido respecto a la figura roja? ¿Cómo se llama el movimiento?
Solución
Sí, cambió de sentido. El movimiento se llama traslación.
Observa esta imagen, ¿la figura verde se movió de la misma manera que la anterior?
Solución
No.
¿Cuál es el movimiento que se le aplicó a esta figura?
Solución
Se le aplicó el movimiento de reflexión.
Observa esta imagen, ¿qué movimiento se le aplicó a la figura roja?
Solución
Se le aplicó el movimiento de rotación.
2. A la mariposa de la izquierda se le aplicaron distintas transformaciones isométricas que aparecen en las imágenes de la derecha. Responde las preguntas.
¿Qué transformación isométrica tuvo la mariposa A?
Solución
Una rotación.
¿Qué transformación isométrica tuvo la mariposa B?
Solución
Una traslación.
¿Qué transformación isométrica tuvo la mariposa C?
Solución
No hay transformación isométrica porque la figura cambia de tamaño.
¿Qué transformación isométrica tuvo la mariposa D?
Solución
Una rotación.
RECURSOS PARA DOCENTES
Artículo “Simetría”
Este artículo le permitirá reforzar el concepto de simetría y su aplicación el a vida cotidiana.