CAPÍTULO 4 / TEMA 2

FIGURAS PLANAS

SI OBSERVAMOS DETENIDAMENTE EL LUGAR EN DONDE ESTAMOS PODEMOS ENCONTRAR INFINIDAD DE FIGURAS. LA UNIÓN DE DIFERENTES LÍNEAS HA FORMADO LAS FIGURAS Y LAS HAY DE DIFERENTES TIPOS. ES IMPOSIBLE NO ENCONTRAR EN NUESTRO ENTORNO CUADRADOS, RECTÁNGULOS Y CÍRCULOS. TODOS SON PARTE DE LA FORMA QUE TIENEN LOS OBJETOS QUE UTILIZAMOS A DIARIO.

FIGURAS PLANAS Y SUS TIPOS

LAS FIGURAS PLANAS SON AQUELLAS QUE TIENEN DOS DIMENSIONES: ALTO Y ANCHO. ALGUNOS EJEMPLOS DE FIGURAS PLANAS SON LO CÍRCULOS, LOS TRIÁNGULOS Y LO CUADRILÁTEROS.

  • LA FIGURA VERDE ES UN CÍRCULO.
  • LA FIGURA AZUL ES UN TRIÁNGULO.
  • LA FIGURA ROJA ES UN CUADRILÁTERO.

¿QUÉ SON LOS TRIÁNGULOS?

SON LAS FIGURAS FORMADAS POR TRES SEGMENTOS.

ALGUNOS EJEMPLOS DE TRIÁNGULOS SON LOS SIGUIENTES:

¿QUÉ SON LOS CUADRILÁTEROS?

SON LAS FIGURAS FORMADAS POR CUATRO SEGMENTOS.

ALGUNOS EJEMPLOS DE CUADRILÁTEROS SON LOS SIGUIENTES:

¿QUÉ SON LOS CÍRCULOS?

SON FIGURAS CURVAS CON IGUAL DISTANCIA ENTRE UN PUNTO DE SU EXTREMO Y EL CENTRO.

ALGUNOS EJEMPLOS DE CÍRCULOS SON LOS SIGUIENTES:

LAS FIGURAS CIRCULARES ESTÁN FORMADAS POR UNA LÍNEA CURVA CERRADA Y TIENEN UNA CARACTERÍSTICA FUNDAMENTAL: TODOS LOS PUNTOS DE LA LÍNEA CURVA ESTÁN A LA MISMA DISTANCIA DEL CENTRO DE LA FIGURA. LA LÍNEA QUE BORDEA AL CÍRCULO SE LLAMA CIRCUNFERENCIA. EN LA IMAGEN VEMOS EL TRAZO DE UNA CIRCUNFERENCIA. PARA DIBUJAR CIRCUNFERENCIAS USAMOS UN COMPÁS.

ELEMENTOS DE Los triángulos y cuadriláteros

LADOS

CON CADA UNO DE LOS SEGMENTOS QUE FORMAN LA FIGURA.

TRIÁNGULOS CUADRILÁTEROS

LOS TRIÁNGULOS TIENEN 3 LADOS.

LOS CUADRILÁTEROS TIENEN 4 LADOS.

VÉRTICES

SON LOS PUNTOS DONDE SE UNEN DOS LADOS.

TRIÁNGULOS CUADRILÁTEROS

LOS TRIÁNGULOS TIENEN 3 VÉRTICES.

LOS CUADRILÁTEROS TIENEN 4 VÉRTICES.

ÁNGULOS

SON LAS ABERTURAS QUE SE FORMAN ENTRE DOS LADOS.

TRIÁNGULOS CUADRILÁTEROS

LOS TRIÁNGULOS TIENEN 3 ÁNGULOS.

LO CUADRILÁTEROS TIENEN 4 ÁNGULOS.

ELEMENTOS DEL CÍRCULO

CIRCUNFERENCIA

ES EL LÍNEA CURVA CERRADA.

CENTRO

ES EL PUNTO CENTRAL QUE TIENE LA MISMA DISTANCIA A CUALQUIER PUNTO DE LA CIRCUNFERENCIA.

DIÁMETRO

ES LA DISTANCIA DE UN PUNTO DE LA CIRCUNFERENCIA A OTRO QUE PASA POR EL CENTRO.

RADIO

ES LA DISTANCIA DESDE EL CENTRO DE LA FIGURA HASTA CUALQUIER PUNTO DE LA CIRCUNFERENCIA. EL RADIO ES IGUAL A LA MITAD DEL DIÁMETRO.

AVISOS Y GEOMETRÍA

LA MAYORÍA DE LOS AVISOS COMERCIALES Y DE TRÁNSITO SON FIGURAS PLANAS. POR EJEMPLO, ESTA SEÑAL NOS INDICA QUE PRONTO SE ACERCA UNA CURVA. LA SEÑAL TIENE FORMA DE CUADRILÁTERO PORQUE TIENE 4 LADOS, 4 VÉRTICES Y 4 ÁNGULOS.

TIPOS DE ÁNGULOS

EXISTEN VARIOS TIPOS DE ÁNGULOS Y SU CLASIFICACIÓN DEPENDE DE SU ABERTURA.

ÁNGULO ABERTURA REPRESENTACIÓN
RECTO 90°
AGUDO MENOS DE 90° Y MÁS DE 0°
OBTUSO MENOS DE 180° Y MÁS DE 90°
LLANO 180°

¿SABÍAS QUÉ?
LOS ÁNGULOS SE MIDEN EN GRADOS. EL SÍMBOLO DE LOS GRADOS ES °. 

EL ÁREA Y SUPERFICIE

SI QUEREMOS SABER LA MEDIDA DE LA PARTES EXTERNA DE UN OBJETOS O DE UN TERRENO, TENEMOS QUE CALCULAR SU ÁREA.

LA SUPERFICIE ES LA PARTE EXTERNA DE UN OBJETO Y EL ÁREA ES LA MEDIDA DE LA SUPERFICIE. LA UNIDAD DE MEDIDA ES EL CENTÍMETRO CUADRADO (cm2).

EN LOS RECTÁNGULOS SOLO TENEMOS QUE MULTIPLICAR LA MEDIDA DE LA ALTURA POR LA DEL ANCHO.

ÁREA DE RECTÁNGULO = ALTO × ANCHO

– EJEMPLO:

OBSERVA ESTE RECTÁNGULO. ESTÁ FORMADO POR CUADRADOS MÁS PEQUEÑOS. SI CADA CUADRADO MIDE 1 CENTÍMETRO DE ALTO Y 1 CENTÍMETRO DE ANCHO. RESPONDE:

  1. ¿CUÁNTOS CENTÍMETROS DE LARGO MIDE ESTE RECTÁNGULO?
  2. ¿CUÁNTOS CENTÍMETROS DE ANCHO MIDE ESTE RECTÁNGULO?
  3. ¿CUÁL ES EL ÁREA DEL RECTÁNGULO?

A. EL RECTÁNGULO TIENE 4 cm DE ALTO.

B. EL RECTÁNGULO TIENE 5 cm DE ANCHO.

C. EL ÁREA DEL RECTÁNGULO ES DE 20 cm2 PORQUE 4 cm × 5 cm = 20 cm2.


– EJEMPLO 2:

¿CUÁL ES EL ÁREA DE ESTE RECTÁNGULO?

EL RECTÁNGULO TIENE 3 cm DE ALTO Y 4 cm DE ANCHO. POR LO TANTO:

ÁREA = 3 cm × 4 cm = 12 cm2

EL RECTÁNGULO TIENE UN ÁREA DE 12 cm2.

¡A PRACTICAR!

1. COLOCAR EL TIPO DE ÁNGULO SEGÚN SU MEDIDA:

  • 160°
SOLUCIÓN
ÁNGULO OBTUSO.
  • 45°
SOLUCIÓN
ÁNGULO AGUDO.
  • 79°
SOLUCIÓN
ÁNGULO AGUDO.
  • 92°
SOLUCIÓN
ÁNGULO OBTUSO.
  • 180°
SOLUCIÓN
ÁNGULO LLANO.
  • 90°
SOLUCIÓN
ÁNGULO RECTO.

 

2. CALCULAR EL ÁREA DE LOS SIGUIENTES RECTÁNGULOS. CADA CUADRO MIDE 1 cm DE ALTO Y 1 cm DE ANCHO.

A. 

SOLUCIÓN

ÁREA = 9 cm x 5 cm

ÁREA = 45 cm2

B. 

SOLUCIÓN

ÁREA = 8 cm x 5 cm

ÁREA = 40 cm2

C. 

SOLUCIÓN

ÁREA = 5 cm × 2 cm

ÁREA = 10 cm2

RECURSOS PARA DOCENTES

Artículo “Área y perímetro de las figuras planas”

En el siguiente artículo se amplía la información sobre área con más tipos de figuras planas.

VER

CAPÍTULO 4 / TEMA 7 (REVISIÓN)

GEOMETRÍA | ¿QUÉ APRENDIMOS?

UBICACIÓN ESPACIAL

La ubicación espacial nos sirve para conocer dónde estamos con respecto a todo lo que nos rodea, de este modo podemos señalar con facilidad nuestra ubicación. Términos como arriba, abajo, derecha, izquierda, delante y detrás son de gran utilidad para el desarrollo del sentido de la orientación. Si deseamos ubicar puntos en un plano podemos usar los ejes de coordenadas: un conjunto de líneas verticales y horizontales que nos brindan los datos necesarios para saber la posición exacta de un objeto en una cuadrícula.

En esta imagen, los crayones están dentro de un recipiente, el cuaderno está sobre la mesa y los bolígrafos están al lado del cuaderno.

CUERPOS GEOMÉTRICOS

Los cuerpos geométricos poseen tres dimensiones: alto, largo y ancho. Estos cuerpos pueden ser poliedros, tales como el cubo, la pirámide y el prisma; también pueden ser cuerpos redondos, como la esfera, el cono y el cilindro. Los elementos que los componen son las caras, las aristas y los vértices. Las caras de los cuerpos geométricos son figuras planas.

Las pirámides de Egipto fueron construidas con forma de pirámide cuadrangular porque simbolizaban los rayos del Sol.

ELEMENTOS GEOMÉTRICOS

El punto, la recta, el rayo y el segmento son elementos geométricos. El punto indica una posición, el rayo posee un origen y se extiende hacia el infinito, el segmento tiene un principio y un final, y la recta es una sucesión de puntos que siguen una misma dirección. Por otro lado, dos rectas pueden ser paralelas cuando no se cortan en ningún punto; perpendiculares cuando al cortarse forman cuatro ángulos rectos y oblicuas cuando al cortarse no forman ángulos rectos.

Los cables de electricidad representan rectas paralelas. Al verlos dan la ilusión de tres rectas que no se tocan entre sí.

ángulos

El ángulo es una porción comprendida entre dos lados con un origen en común llamado vértice. Según sus medidas el ángulo puede ser convexo, nulo, agudo, recto, obtuso, cóncavo, llano y completo. Según su posición existen ángulos adyacentes, consecutivos y opuestos por el vértice. Para estimar la medida de un ángulo es preferible usar medidas de referencia que ya conocemos, como ángulos de 45° y 90°.

Las escuadras son instrumentas de medidas que también nos ayudan a estimar ángulos, por ejemplo, esta escuadra tiene un ángulo recto (90 grados) y dos ángulos de 45 grados.

perímetro

El perímetro es el contorno de una figura. Para averiguar el perímetro de polígonos regulares multiplicamos la cantidad de lados por la longitud del lado. En cambio, para polígonos no regulares el perímetro lo calculamos al sumar todos los lados de la figura. Conocer cuánto mide el perímetro de una figura te ayudará a saber cuánto material se utilizó para alambrar una cancha de fútbol y en otros múltiples usos.

A lo largo de la historia los perímetros de muchos castillos fueron amurallados para defender el territorio.

transformaciones isométricas

Una transformación isométrica es el cambio de posición que sufre una figura. Estas transformaciones pueden ser por rotación, por traslación o por reflexión. La rotación se refiere al giro alrededor de un punto fijo; la traslación consiste en mover todos los puntos de una figura en la misma dirección, sentido y distancia; y la reflexión no es más que el reflejo de la figura respecto de un eje de simetría. Estas transformaciones no cambian ni la forma ni el tamaño de las figuras.

El planeta Tierra presenta varios movimientos, dos de ellos son la traslación y la rotación.

CAPÍTULO 1 / TEMA 1

Algunos sistemas de numeración

Todas las sociedades, desde las prehistóricas hasta las modernas, han empleado técnicas para saber cantidades. Desde palos, piedras y marcas, hasta llegar a los símbolos actuales, todos los sistemas de numeración nos ayudan a una importarte y necesaria tarea diaria: contar.

Sistema decimal

Es un sistema de numeración posicional compuesto por diez símbolos o cifras llamados números arábigos: 1, 2, 3, 4, 5, 6, 7, 8, 9 y 0. Es el sistema que más se utiliza en la vida cotidiana.

Al ser posicional, cada cifra adquiere un valor relativo de acuerdo a la posición en que se encuentre: unidades, decenas y centenas. De este modo, cada dígito del número 333 tiene un valor distinto a pesar de ser el mismo.

Observa que 300 + 30 + 3 = 333

También puedes escribir el número 333 como 33310 por pertenecer a un sistema de base diez.

Hallar la respuesta a la pregunta ¿cuántos hay? ha sido la razón principal por la que el hombre desarrolló distintos métodos de recuento y dio origen al concepto de “número”. Nuestro sistema de numeración decimal permite no solo escribir de manera efectiva cantidades muy grandes, sino también cantidades muy pequeñas por medio de un posicionamiento visible.

Orden y clase

El sistema de numeración decimal tiene órdenes y clases. La unidad, la decena y la centena son el primero, segundo y tercer orden, respectivamente. Cada orden superior equivale a 10 unidades del orden anterior, es decir, una decena equivale a diez unidades y una centena equivale a 10 decenas.

1 U = 1 U

1 D = 10 U

1 C = 10 D = 100 U

Donde:

U: unidad

D: decena

C: centena

Cada grupo de tres órdenes representa una clase. Así, el número 94.256.328.100.079 tienen dígitos en distintas clases. Observa la tabla:

Este número se lee: “noventa y cuatro billones doscientos cincuenta y seis mil trescientos veintiocho millones cien mil setenta y nueve”.

Equivalencias

 

1 unidad = 1 unidad

1 decena = 10 unidades

1 centena = 100 unidades

1 unidad de mil (millar) = 1.000 unidades

1 decena de mil (millar) = 10.000 unidades

1 centena de mil (millar) = 100.000 unidades

1 unidad de millón = 1.000.000 unidades

1 decena de millón = 10.000.000 unidades

1 centena de millón = 100.000.000 unidades

1 unidad de millar de millón = 1.000.000.000 unidades

1 decena de millar de millón = 10.000.000.000 unidades

1 centena de millar de millón = 100.000.000.000 unidades

1 unidad de billón = 1.000.000.000.000 unidades

1 decena de billón = 10.000.000.000.000 unidades

1 centena de billón = 100.000.000.000.000 unidades

¡A practicar!

  • ¿Cuántas unidades equivalen a 15 centenas?
Solución

Si 1 centena = 100 unidades, entonces:

15\: C \times \frac{100\: U}{1\: C} = 1.500\: U

15 centenas equivalen a 1.500 unidades.

  • ¿Cuántas unidades equivalen a 3 decenas de millón?
Solución

Si 1 decena de millón = 10.000.000 unidades, entonces:

3\: DM \times \frac{10.000.000 \: U}{1\: DM}= 30.000.000\: U

También lo puedes representar así:

3\: DM \times \frac{10^{7} \: U}{1\: DM}= 3 \times 10^{7}\: U

3 decenas de millón equivalen a 30.000.000 unidades.

Sistema binario

Es un sistema de numeración posicional que está constituido solo por dos dígitos: 1 y 0. Este sistema utiliza como base el número 2. Un ejemplo de número binario es:

1000100101002

¿Sabías qué?
El sistema de numeración binario se encuentra con frecuencia en los algoritmos usados en las computadoras y otros equipos electrónicos, pues resulta más sencillo operar solo con los dígitos 0 y 1.
Los sistemas electrónicos emplean una lógica binaria, es decir, manejan la información en base a 0 y 1, donde cero (0) significa que no circula corriente y uno (1) significa que circula corriente. Las computadoras procesan y almacenan en cuestión de segundos gran cantidad de información escrita mediante este sistema.

¿Cómo convertir un número del sistema binario al sistema decimal?

Para transformar un número binario, como 1012, al sistema decimal debes seguir estos pasos:

1. Como el número tiene tres cifras, calcula las tres primeras potencias de 2. Inicia por 20 y escríbelas en orden decreciente.

22 = 4

21 = 2

20 = 1

2. Multiplica cada resultado por el dígito correspondiente al número binario. En este caso 1012.

4 x 1 = 4

2 x 0 = 0

1 x 1 = 1

3. Suma los productos. El resultado será el número en el sistema decimal.

4 + 0 + 1 = 5

Por lo tanto:

1012 = 510

¿Cómo convertir un número del sistema decimal al binario?

Para transformar un número del sistema decimal, como 2510, al sistema binario debes seguir estos pasos:

1. Divide el número sucesivamente entre 2 hasta que el cociente sea igual a 1.

2. Lee la cifra, de derecha a izquierda, de abajo hacia arriba. Ese es el número binario equivalente.

2510 = 110012

 

¡A practicar!

Transforma los siguiente números al sistema de numeración decimal o binario según sea el caso.

  • 11001002

Solución
En el sistema decimal es 10010.
  • 3610

Solución
En el sistema binario es 1001002.
  • 1110102

Solución
En el sistema decimal es 5810.

Sistema sexagesimal

Es un sistema de numeración posicional conformado por los mismos símbolos del sistema decimal: 1, 2, 3, 4, 5, 6, 7, 8, 9 y 0, pero a diferencia de este último, 60 unidades de un orden forman una unidad de orden superior. Sirve para medir los ángulos y el tiempo.

En el sistema sexagesimal se divide un grado en 60 partes iguales. Cada una de estas partes se llama minuto, y este, a su vez, se divide en otras 60 partes iguales para obtener segundos. Observa la equivalencia:

1 grado = 60 minutos = 3.600 segundos

La unidad de medida de los ángulos es el grado. Esta unidad es el resultado de dividir un ángulo llano (ángulo de 180°) en 180 partes iguales. Por lo general, se utiliza el transportador para medir la amplitud de ángulos. Cada línea en el transportador representa un grado, o lo que es igual, la 1 / 180 parte de un ángulo llano.

¿Cómo se miden los ángulos?

La unidad principal para medir los ángulos es el grado. Si queremos medirlos con mayor precisión utilizamos, además de los grados, los minutos y los segundos.

  • Un grado se escribe .
  • Un minuto se escribe 1′.
  • Un segundo se escribe 1”.

De este modo, 35° 22′ 36” se lee: “35 grados, 22 minutos y 36 segundos”.

Equivalencias

  • 1° = 60′
  • 1′ = 60″
  • 1° = 3.600″

Observa el esquema:

Por ejemplo, para convertir 17 grados a minutos solo debes multiplicar por 60.

17 x 60 = 1.020

17° = 1.020′

Entonces, 17 grados son iguales a 1.020 minutos.

Si quieres convertir esos 17 grados a segundos solo debes multiplicar por 3.600 (60 x 60).

17 x 3.600 = 61.200

17° = 61.200″

Así, 17 grados son iguales a 61.200 segundos.

Esta tabla muestra algunos ejemplos:

Grados (°) Minutos (‘) Segundos (“)
17 17 x 60 = 1.020 17 x 3.600 = 61.200
45 45 x 60 = 2.700 45 x 3.600 = 162.000
22 22 x 60 = 1.320 22 x 3.600 = 79.200

También puedes convertir todas las medidas de un ángulo si sumas sus partes. De esta manera, si quieres pasar a segundos la medida del ángulo 6° 9′ 52″, solo sigue estos pasos:

1. Convierte los grados a segundos. Para esto debes multiplicar por 3.600.

6° = 6 x 3.600 = 21.600″

2. Convierte los minutos a segundos. Para estos debes multiplicar por 60.

9′ = 9 x 60 = 540″

3. Como el resultado final debe ser en segundos, los segundos quedan iguales.

52″ = 52″

4. Suma todos los resultados, lo que es igual a:

6° 9′ 52″ = (6 x 3.600) + (9 x 60) + 52 = 22.192″

Pasa a segundos estas medidas de ángulos

  • 4° 35′ 17″
Solución
4° 35′ 17″ = (4 x 3.600) + (35 x 60) + 17 = 16.517″
  • 5° 8′ 45″
Solución
5° 8′ 45″ = (5 x 3.600) + (8 x 60) + 45 = 18.525″

¿Cómo se mide el tiempo?

Las unidades para medir el tiempo son diversas y van desde los milenios hasta los segundos. Para medir tiempos menores a un día usamos las horas, los minutos y los segundos.

  • 1 hora se escribe 1 h.
  • 1 minuto se escribe 1 min.
  • 1 segundo se escribe 1 s.
Equivalencias

  • 1 h = 60 min
  • 1 min = 60 s
  • 1 h = 3.600 s

Observa el esquema:

Por ejemplo, 3 horas, 20 minutos y 2 segundos se representan así: 3 h 20 min 2 s; y si deseas expresar todo en una sola unidad, como segundos, el procedimiento es similar al de los ángulos. Observa:

  1. 3 h = 3 x 3.600 = 10.800 s
  2. 20 min = 20 x 60 = 1.200 s
  3. 2 s = 2 s

Luego sumas todos los resultados, lo que es igual a:

3 h 20 min 2 s = (3 x 3.600) + (20 x 60) + 2 = 12.002 s

Pasa a segundos estas medidas de tiempo

  • 2 h 31 min 23 s

Solución
2 h 31 min 23 s = (2 x 3.600) + (31 x 60) + 23 = 9.083 s
  • 5 h 50 min 5 s

Solución
5 h 50 min 5 s = (5 x 3.600) + (50 x 60) + 5 = 21.005

Números romanos

Este sistema de numeración desarrollado en la Antigua Roma es no posicional y se caracteriza por usar siete letras mayúsculas del alfabeto latino.

En la actualidad, el sistema decimal es el más utilizado para realizar operaciones, aunque, los números romanos también puedes verlos en la vida cotidiana. Este sistema de numeración romano se utiliza para dar la hora en algunos relojes, nombrar siglos, papas y reyes; también se usa en la enumeración de tomos de libros, sagas de películas, leyes, reformas y lápidas conmemorativas.

Sin importar la posición que ocupe cada letra, esta siempre tendrá el mismo valor. No obstante, es de gran importancia seguir las reglas de escritura:

  • I, X, C y M no pueden escribirse más de tres veces consecutivas en un mismo número.
  • Un símbolo de menor valor ubicado a la derecha de otro de mayor valor, se suma.
  • Un símbolo de menor valor ubicado a la izquierda de otro de mayor valor, se resta.
  • V, L y D se permite escribirlos solamente una vez y no se pueden escribir a la izquierda de otro de mayor valor.
  • I solo puede colocarse a la izquierda de V o X.
  • X solo puede colocarse a la izquierda de L o C.
  • C únicamente se coloca a la izquierda de D o M.
  • Cuando el número supera el valor 3.999, se traza una línea horizontal sobre el número romano la cual multiplica su valor por mil.
  • Si se colocan dos rayas horizontales sobre un número romano, su valor se multiplica por un millón.

¿Cómo se convierte un número romano a número arábigo?

Para conocer qué cantidad corresponde a un número romano se deben aplicar las reglas antes mencionadas. Por ejemplo, si deseas saber el número arábigo correspondiente al número romano \overline{DCLXXIX}, sigue estos pasos:

1. Determina los valores de cada letra.

D = 500

C = 100

L = 50

X = 10

I = 1

2. Suma los valores de las letras a la derecha de otra de mayor valor.

DC = 500 + 100 = 600

LXX = 50 + 10 + 10 = 70

3. Resta los valores de las letras a la izquierda de otras de mayor valor.

IX = 10 − 1 = 9

4. Suma todos los resultados, y como el número tiene una barra, multiplica su valor por mil.

\overline{DCLXXIX} = (600 + 70 + 9) \times 1.000 = 679.000

¿Existen estos números?

  • VL

Solución
No. V no puede estar delante de un número de valor mayor como L. Para escribir el número 45 lo correcto es XLV.
  • LXXXXV

Solución
No. X solo puede escribirse un máximo de tres veces consecutivas en un número. Para escribir el número 95 lo correcto es XCV.

VER INFOGRAFÍA

¿Sabías qué?
El número cero (0) fue posterior al sistema de numeración romana, se originó con la creación de los números arábigos.
Ejercicios

1. ¿A cuántas unidades equivalen?

  • 2 unidades de millón.
Solución
2.000.000 unidades.
  • 5 centenas de mil.
Solución
500.000 unidades.
  • 4 decenas de billón.
Solución
40.000.000.000.000 unidades.

2) Indica orden y clase del número 3 en las siguientes cifras.

  • 32.512.874
Solución
Decena de millón.
  • 35.294
Solución
Decena de mil.
  • 953.812.549.798.400
Solución
Unidad de billón.

3) Transforma los siguientes números al sistema de numeración decimal o binario según sea el caso.

  • 11012
Solución
1310
  • 110002
Solución
2410 
  • 2310
Solución
101112

4) Convierte a segundos.

  • 1° 22′ 15”
Solución
4.935”
  • 2° 1′ 30”
Solución
7.290”
  • 35 min 3 s
Solución
2.103 s

5) Completa la siguiente tabla.

Solución

RECURSOS PARA DOCENTES

Enciclopedia “Matemáticas primaria”

El siguiente recurso le brindará nociones sobre los sistemas de numeración y una variedad de ejercicios prácticos para desarrollar el tema.

VER

Tarjetas educativas “Números romanos”

Estas tarjetas le brindarán una herramienta pedagógica mediante imágenes para la enseñanza del tema.

VER