SI OBSERVAMOS DETENIDAMENTE EL LUGAR EN DONDE ESTAMOS PODEMOS ENCONTRAR INFINIDAD DE FIGURAS. LA UNIÓN DE DIFERENTES LÍNEAS HA FORMADO LAS FIGURAS Y LAS HAY DE DIFERENTES TIPOS. ES IMPOSIBLE NO ENCONTRAR EN NUESTRO ENTORNO CUADRADOS, RECTÁNGULOS Y CÍRCULOS. TODOS SON PARTE DE LA FORMA QUE TIENEN LOS OBJETOS QUE UTILIZAMOS A DIARIO.
FIGURAS PLANAS Y SUS TIPOS
LAS FIGURAS PLANAS SON AQUELLAS QUE TIENEN DOS DIMENSIONES: ALTO Y ANCHO. ALGUNOS EJEMPLOS DE FIGURAS PLANAS SON LO CÍRCULOS, LOS TRIÁNGULOS Y LO CUADRILÁTEROS.
LA FIGURA VERDE ES UN CÍRCULO.
LA FIGURA AZUL ES UN TRIÁNGULO.
LA FIGURA ROJA ES UN CUADRILÁTERO.
¿QUÉ SON LOS TRIÁNGULOS?
SON LAS FIGURAS FORMADAS POR TRES SEGMENTOS.
ALGUNOS EJEMPLOS DE TRIÁNGULOS SON LOS SIGUIENTES:
¿QUÉ SON LOS CUADRILÁTEROS?
SON LAS FIGURAS FORMADAS POR CUATRO SEGMENTOS.
ALGUNOS EJEMPLOS DE CUADRILÁTEROS SON LOS SIGUIENTES:
¿QUÉ SON LOS CÍRCULOS?
SON FIGURAS CURVAS CON IGUAL DISTANCIA ENTRE UN PUNTO DE SU EXTREMO Y EL CENTRO.
ALGUNOS EJEMPLOS DE CÍRCULOS SON LOS SIGUIENTES:
ELEMENTOS DE Los triángulos y cuadriláteros
LADOS
CON CADA UNO DE LOS SEGMENTOS QUE FORMAN LA FIGURA.
TRIÁNGULOS
CUADRILÁTEROS
LOS TRIÁNGULOS TIENEN 3 LADOS.
LOS CUADRILÁTEROS TIENEN 4 LADOS.
VÉRTICES
SON LOS PUNTOS DONDE SE UNEN DOS LADOS.
TRIÁNGULOS
CUADRILÁTEROS
LOS TRIÁNGULOS TIENEN 3 VÉRTICES.
LOS CUADRILÁTEROS TIENEN 4 VÉRTICES.
ÁNGULOS
SON LAS ABERTURAS QUE SE FORMAN ENTRE DOS LADOS.
TRIÁNGULOS
CUADRILÁTEROS
LOS TRIÁNGULOS TIENEN 3 ÁNGULOS.
LO CUADRILÁTEROS TIENEN 4 ÁNGULOS.
ELEMENTOS DEL CÍRCULO
CIRCUNFERENCIA
ES EL LÍNEA CURVA CERRADA.
CENTRO
ES EL PUNTO CENTRAL QUE TIENE LA MISMA DISTANCIA A CUALQUIER PUNTO DE LA CIRCUNFERENCIA.
DIÁMETRO
ES LA DISTANCIA DE UN PUNTO DE LA CIRCUNFERENCIA A OTRO QUE PASA POR EL CENTRO.
RADIO
ES LA DISTANCIA DESDE EL CENTRO DE LA FIGURA HASTA CUALQUIER PUNTO DE LA CIRCUNFERENCIA. EL RADIO ES IGUAL A LA MITAD DEL DIÁMETRO.
AVISOS Y GEOMETRÍA
LA MAYORÍA DE LOS AVISOS COMERCIALES Y DE TRÁNSITO SON FIGURAS PLANAS. POR EJEMPLO, ESTA SEÑAL NOS INDICA QUE PRONTO SE ACERCA UNA CURVA. LA SEÑAL TIENE FORMA DE CUADRILÁTERO PORQUE TIENE 4 LADOS, 4 VÉRTICES Y 4 ÁNGULOS.
TIPOS DE ÁNGULOS
EXISTEN VARIOS TIPOS DE ÁNGULOS Y SU CLASIFICACIÓN DEPENDE DE SU ABERTURA.
ÁNGULO
ABERTURA
REPRESENTACIÓN
RECTO
90°
AGUDO
MENOS DE 90° Y MÁS DE 0°
OBTUSO
MENOS DE 180° Y MÁS DE 90°
LLANO
180°
¿SABÍAS QUÉ?
LOS ÁNGULOS SE MIDEN EN GRADOS. EL SÍMBOLO DE LOS GRADOS ES °.
EL ÁREA Y SUPERFICIE
SI QUEREMOS SABER LA MEDIDA DE LA PARTES EXTERNA DE UN OBJETOS O DE UN TERRENO, TENEMOS QUE CALCULAR SU ÁREA.
LA SUPERFICIE ES LA PARTE EXTERNA DE UN OBJETO Y EL ÁREA ES LA MEDIDA DE LA SUPERFICIE. LA UNIDAD DE MEDIDA ES EL CENTÍMETRO CUADRADO (cm2).
EN LOS RECTÁNGULOS SOLO TENEMOS QUE MULTIPLICAR LA MEDIDA DE LA ALTURA POR LA DEL ANCHO.
ÁREA DE RECTÁNGULO = ALTO × ANCHO
– EJEMPLO:
OBSERVA ESTE RECTÁNGULO. ESTÁ FORMADO POR CUADRADOS MÁS PEQUEÑOS. SI CADA CUADRADO MIDE 1 CENTÍMETRO DE ALTO Y 1 CENTÍMETRO DE ANCHO. RESPONDE:
¿CUÁNTOS CENTÍMETROS DE LARGO MIDE ESTE RECTÁNGULO?
¿CUÁNTOS CENTÍMETROS DE ANCHO MIDE ESTE RECTÁNGULO?
¿CUÁL ES EL ÁREA DEL RECTÁNGULO?
A. EL RECTÁNGULO TIENE 4 cm DE ALTO.
B. EL RECTÁNGULO TIENE 5 cm DE ANCHO.
C. EL ÁREA DEL RECTÁNGULO ES DE 20 cm2PORQUE 4 cm × 5 cm = 20 cm2.
– EJEMPLO 2:
¿CUÁL ES EL ÁREA DE ESTE RECTÁNGULO?
EL RECTÁNGULO TIENE 3 cm DE ALTO Y 4 cm DE ANCHO. POR LO TANTO:
ÁREA = 3 cm × 4 cm = 12 cm2
EL RECTÁNGULO TIENE UN ÁREA DE 12 cm2.
¡A PRACTICAR!
1. COLOCAR EL TIPO DE ÁNGULO SEGÚN SU MEDIDA:
160°
SOLUCIÓN
ÁNGULO OBTUSO.
45°
SOLUCIÓN
ÁNGULO AGUDO.
79°
SOLUCIÓN
ÁNGULO AGUDO.
92°
SOLUCIÓN
ÁNGULO OBTUSO.
180°
SOLUCIÓN
ÁNGULO LLANO.
90°
SOLUCIÓN
ÁNGULO RECTO.
2. CALCULAR EL ÁREA DE LOS SIGUIENTES RECTÁNGULOS. CADA CUADRO MIDE 1 cm DE ALTO Y 1 cm DE ANCHO.
A.
SOLUCIÓN
ÁREA = 9 cm x 5 cm
ÁREA = 45 cm2
B.
SOLUCIÓN
ÁREA = 8 cm x 5 cm
ÁREA = 40 cm2
C.
SOLUCIÓN
ÁREA = 5 cm × 2 cm
ÁREA = 10 cm2
RECURSOS PARA DOCENTES
Artículo “Área y perímetro de las figuras planas”
En el siguiente artículo se amplía la información sobre área con más tipos de figuras planas.
La ubicación espacial nos sirve para conocer dónde estamos con respecto a todo lo que nos rodea, de este modo podemos señalar con facilidad nuestra ubicación. Términos como arriba, abajo, derecha, izquierda, delante y detrás son de gran utilidad para el desarrollo del sentido de la orientación. Si deseamos ubicar puntos en un plano podemos usar los ejes de coordenadas: un conjunto de líneas verticales y horizontales que nos brindan los datos necesarios para saber la posición exacta de un objeto en una cuadrícula.
CUERPOS GEOMÉTRICOS
Los cuerpos geométricos poseen tres dimensiones: alto, largo y ancho. Estos cuerpos pueden ser poliedros, tales como el cubo, la pirámide y el prisma; también pueden ser cuerpos redondos, como la esfera, el cono y el cilindro. Los elementos que los componen son las caras, las aristas y los vértices. Las caras de los cuerpos geométricos son figuras planas.
ELEMENTOS GEOMÉTRICOS
El punto, la recta, el rayo y el segmento son elementos geométricos. El punto indica una posición, el rayo posee un origen y se extiende hacia el infinito, el segmento tiene un principio y un final, y la recta es una sucesión de puntos que siguen una misma dirección. Por otro lado, dos rectas pueden ser paralelas cuando no se cortan en ningún punto; perpendiculares cuando al cortarse forman cuatro ángulos rectos y oblicuas cuando al cortarse no forman ángulos rectos.
ángulos
El ángulo es una porción comprendida entre dos lados con un origen en común llamado vértice. Según sus medidas el ángulo puede ser convexo, nulo, agudo, recto, obtuso, cóncavo, llano y completo. Según su posición existen ángulos adyacentes, consecutivos y opuestos por el vértice. Para estimar la medida de un ángulo es preferible usar medidas de referencia que ya conocemos, como ángulos de 45° y 90°.
perímetro
El perímetro es el contorno de una figura. Para averiguar el perímetro de polígonos regulares multiplicamos la cantidad de lados por la longitud del lado. En cambio, para polígonos no regulares el perímetro lo calculamos al sumar todos los lados de la figura. Conocer cuánto mide el perímetro de una figura te ayudará a saber cuánto material se utilizó para alambrar una cancha de fútbol y en otros múltiples usos.
transformaciones isométricas
Una transformación isométrica es el cambio de posición que sufre una figura. Estas transformaciones pueden ser por rotación, por traslación o por reflexión. La rotación se refiere al giro alrededor de un punto fijo; la traslación consiste en mover todos los puntos de una figura en la misma dirección, sentido y distancia; y la reflexión no es más que el reflejo de la figura respecto de un eje de simetría. Estas transformaciones no cambian ni la forma ni el tamaño de las figuras.
Todas las sociedades, desde las prehistóricas hasta las modernas, han empleado técnicas para saber cantidades. Desde palos, piedras y marcas, hasta llegar a los símbolos actuales, todos los sistemas de numeración nos ayudan a una importarte y necesaria tarea diaria: contar.
Sistema decimal
Es un sistema de numeración posicional compuesto por diez símbolos o cifras llamados números arábigos: 1, 2, 3, 4, 5, 6, 7, 8, 9 y 0. Es el sistema que más se utiliza en la vida cotidiana.
Al ser posicional, cada cifra adquiere un valor relativo de acuerdo a la posición en que se encuentre: unidades, decenas y centenas. De este modo, cada dígito del número 333 tiene un valor distinto a pesar de ser el mismo.
Observa que 300 + 30 + 3 = 333
También puedes escribir el número 333 como 33310 por pertenecer a un sistema de base diez.
Orden y clase
El sistema de numeración decimal tiene órdenes y clases. La unidad, la decena y la centena son el primero, segundo y tercer orden, respectivamente. Cada orden superior equivale a 10 unidades del orden anterior, es decir, una decena equivale a diez unidades y una centena equivale a 10 decenas.
1 U = 1 U
1 D = 10 U
1 C = 10 D = 100 U
Donde:
U: unidad
D: decena
C: centena
Cada grupo de tres órdenes representa una clase. Así, el número 94.256.328.100.079 tienen dígitos en distintas clases. Observa la tabla:
Este número se lee: “noventa y cuatro billones doscientos cincuenta y seis mil trescientos veintiocho millones cien mil setenta y nueve”.
Equivalencias
1 unidad = 1 unidad
1 decena = 10 unidades
1 centena = 100 unidades
1 unidad de mil (millar) = 1.000 unidades
1 decena de mil (millar) = 10.000 unidades
1 centena de mil (millar) = 100.000 unidades
1 unidad de millón = 1.000.000 unidades
1 decena de millón = 10.000.000 unidades
1 centena de millón = 100.000.000 unidades
1 unidad de millar de millón = 1.000.000.000 unidades
1 decena de millar de millón = 10.000.000.000 unidades
1 centena de millar de millón = 100.000.000.000 unidades
1 unidad de billón = 1.000.000.000.000 unidades
1 decena de billón = 10.000.000.000.000 unidades
1 centena de billón = 100.000.000.000.000 unidades
¡A practicar!
¿Cuántas unidades equivalen a 15 centenas?
Solución
Si 1 centena = 100 unidades, entonces:
15 centenas equivalen a 1.500 unidades.
¿Cuántas unidades equivalen a 3 decenas de millón?
Solución
Si 1 decena de millón = 10.000.000 unidades, entonces:
También lo puedes representar así:
3 decenas de millón equivalen a 30.000.000 unidades.
Sistema binario
Es un sistema de numeración posicional que está constituido solo por dos dígitos: 1 y 0. Este sistema utiliza como base el número 2. Un ejemplo de número binario es:
1000100101002
¿Sabías qué?
El sistema de numeración binario se encuentra con frecuencia en los algoritmos usados en las computadoras y otros equipos electrónicos, pues resulta más sencillo operar solo con los dígitos 0 y 1.
¿Cómo convertir un número del sistema binario al sistema decimal?
Para transformar un número binario, como 1012, al sistema decimal debes seguir estos pasos:
1. Como el número tiene tres cifras, calcula las tres primeras potencias de 2. Inicia por 20 y escríbelas en orden decreciente.
22 = 4
21 = 2
20 = 1
2. Multiplica cada resultado por el dígito correspondiente al número binario. En este caso 1012.
4 x 1 = 4
2 x 0 = 0
1 x 1 = 1
3. Suma los productos. El resultado será el número en el sistema decimal.
4 + 0 + 1 = 5
Por lo tanto:
1012 = 510
¿Cómo convertir un número del sistema decimal al binario?
Para transformar un número del sistema decimal, como 2510, al sistema binario debes seguir estos pasos:
1. Divide el número sucesivamente entre 2 hasta que el cociente sea igual a 1.
2. Lee la cifra, de derecha a izquierda, de abajo hacia arriba. Ese es el número binario equivalente.
2510 = 110012
¡A practicar!
Transforma los siguiente números al sistema de numeración decimal o binario según sea el caso.
11001002
Solución
En el sistema decimal es 10010.
3610
Solución
En el sistema binario es 1001002.
1110102
Solución
En el sistema decimal es 5810.
Sistema sexagesimal
Es un sistema de numeración posicional conformado por los mismos símbolos del sistema decimal: 1, 2, 3, 4, 5, 6, 7, 8, 9 y 0, pero a diferencia de este último, 60 unidades de un orden forman una unidad de orden superior. Sirve para medir los ángulos y el tiempo.
En el sistema sexagesimal se divide un grado en 60 partes iguales. Cada una de estas partes se llama minuto, y este, a su vez, se divide en otras 60 partes iguales para obtener segundos. Observa la equivalencia:
1 grado = 60 minutos = 3.600 segundos
¿Cómo se miden los ángulos?
La unidad principal para medir los ángulos es el grado. Si queremos medirlos con mayor precisión utilizamos, además de los grados, los minutos y los segundos.
Un grado se escribe 1°.
Un minuto se escribe 1′.
Un segundo se escribe 1”.
De este modo, 35° 22′ 36” se lee: “35 grados, 22 minutos y 36 segundos”.
Equivalencias
1° = 60′
1′ = 60″
1° = 3.600″
Observa el esquema:
Por ejemplo, para convertir 17 grados a minutos solo debes multiplicar por 60.
17 x 60 = 1.020
17° = 1.020′
Entonces, 17 grados son iguales a 1.020 minutos.
Si quieres convertir esos 17 grados a segundos solo debes multiplicar por 3.600 (60 x 60).
17 x 3.600 = 61.200
17° = 61.200″
Así, 17 grados son iguales a 61.200 segundos.
Esta tabla muestra algunos ejemplos:
Grados (°)
Minutos (‘)
Segundos (“)
17
17 x 60 = 1.020
17 x 3.600 = 61.200
45
45 x 60 = 2.700
45 x 3.600 = 162.000
22
22 x 60 = 1.320
22 x 3.600 = 79.200
También puedes convertir todas las medidas de un ángulo si sumas sus partes. De esta manera, si quieres pasar a segundos la medida del ángulo 6° 9′ 52″, solo sigue estos pasos:
1. Convierte los grados a segundos. Para esto debes multiplicar por 3.600.
6° = 6 x 3.600 = 21.600″
2. Convierte los minutos a segundos. Para estos debes multiplicar por 60.
9′ = 9 x 60 = 540″
3. Como el resultado final debe ser en segundos, los segundos quedan iguales.
52″ = 52″
4. Suma todos los resultados, lo que es igual a:
6° 9′ 52″ = (6 x 3.600) + (9 x 60) + 52 = 22.192″
Pasa a segundos estas medidas de ángulos
4° 35′ 17″
Solución
4° 35′ 17″ = (4 x 3.600) + (35 x 60) + 17 = 16.517″
5° 8′ 45″
Solución
5° 8′ 45″ = (5 x 3.600) + (8 x 60) + 45 = 18.525″
¿Cómo se mide el tiempo?
Las unidades para medir el tiempo son diversas y van desde los milenios hasta los segundos. Para medir tiempos menores a un día usamos las horas, los minutos y los segundos.
1 hora se escribe 1 h.
1 minuto se escribe 1 min.
1 segundo se escribe 1 s.
Equivalencias
1 h = 60 min
1 min = 60 s
1 h = 3.600 s
Observa el esquema:
Por ejemplo, 3 horas, 20 minutos y 2 segundos se representan así: 3 h 20 min 2 s; y si deseas expresar todo en una sola unidad, como segundos, el procedimiento es similar al de los ángulos. Observa:
3 h = 3 x 3.600 = 10.800 s
20 min = 20 x 60 = 1.200 s
2 s = 2 s
Luego sumas todos los resultados, lo que es igual a:
3 h 20 min 2 s = (3 x 3.600) + (20 x 60) + 2 = 12.002 s
Pasa a segundos estas medidas de tiempo
2 h 31 min 23 s
Solución
2 h 31 min 23 s = (2 x 3.600) + (31 x 60) + 23 = 9.083 s
5 h 50 min 5 s
Solución
5 h 50 min 5 s = (5 x 3.600) + (50 x 60) + 5 = 21.005
Números romanos
Este sistema de numeración desarrollado en la Antigua Roma es no posicional y se caracteriza por usar siete letras mayúsculas del alfabeto latino.
Sin importar la posición que ocupe cada letra, esta siempre tendrá el mismo valor. No obstante, es de gran importancia seguir las reglas de escritura:
I, X, C y M no pueden escribirse más de tres veces consecutivas en un mismo número.
Un símbolo de menor valor ubicado a la derecha de otro de mayor valor, se suma.
Un símbolo de menor valor ubicado a la izquierda de otro de mayor valor, se resta.
V, L y D se permite escribirlos solamente una vez y no se pueden escribir a la izquierda de otro de mayor valor.
I solo puede colocarse a la izquierda de V o X.
X solo puede colocarse a la izquierda de L o C.
C únicamente se coloca a la izquierda de D o M.
Cuando el número supera el valor 3.999, se traza una línea horizontal sobre el número romano la cual multiplica su valor por mil.
Si se colocan dos rayas horizontales sobre un número romano, su valor se multiplica por un millón.
¿Cómo se convierte un número romano a número arábigo?
Para conocer qué cantidad corresponde a un número romano se deben aplicar las reglas antes mencionadas. Por ejemplo, si deseas saber el número arábigo correspondiente al número romano , sigue estos pasos:
1. Determina los valores de cada letra.
D = 500
C = 100
L = 50
X = 10
I = 1
2. Suma los valores de las letras a la derecha de otra de mayor valor.
DC = 500 + 100 = 600
LXX = 50 + 10 + 10 = 70
3. Resta los valores de las letras a la izquierda de otras de mayor valor.
IX = 10 − 1 = 9
4. Suma todos los resultados, y como el número tiene una barra, multiplica su valor por mil.
¿Existen estos números?
VL
Solución
No. V no puede estar delante de un número de valor mayor como L. Para escribir el número 45 lo correcto es XLV.
LXXXXV
Solución
No. X solo puede escribirse un máximo de tres veces consecutivas en un número. Para escribir el número 95 lo correcto es XCV.