Ciclos biogeoquímicos

Los seis elementos más comunes asociados con las moléculas orgánicas como el carbono, el hidrógeno, el nitrógeno, el oxígeno, el fósforo y el azufre, toman una variedad de formas químicas y pueden existir durante largos períodos en la atmósfera, en tierra, en agua o debajo de la superficie terrestre.

Procesos geológicos como la erosión, el drenaje de agua, el movimiento de las placas continentales y la meteorización, están involucrados en el ciclo de elementos en la Tierra. El reciclaje de materia inorgánica entre los organismos vivos y su medio ambiente se denomina ciclo biogeoquímico.

El término biogeoquímico proviene de los procesos biológicos, geológicos y químicos que causan la transferencia de materia.

Los ciclos biogeoquímicos pueden clasificarse como gaseosos, en los que el reservorio es el aire o los océanos (por evaporación) y sedimentarios, en el que el yacimiento es la corteza terrestre. Los gaseosos tienden a moverse más rápidamente que los sedimentarios y se ajustan más fácilmente a los cambios en la biosfera debido al gran reservorio atmosférico.

Ciclo del agua

Una molécula muy significativa en nuestro planeta que recorre los ecosistemas es la molécula de agua (H2O). Si bien generalmente se trata del ciclo del agua como los diversos estados que presenta la misma, al menos algunas moléculas de agua son absorbidas por las plantas y se dividen en átomos de hidrógeno y oxígeno; este último se libera en la atmósfera como oxígeno molecular (O2). Así, en virtud de los organismos fotosintéticos, el ciclo del agua es una parte importante de los ciclos del oxígeno y del hidrógeno.

La mayor parte del agua se encuentra en los océanos y las capas polares, aunque el agua también está presente en lagos y ríos de agua dulce, el cuerpo de los organismos y en el suelo como agua subterránea.

El agua se mueve entre los depósitos de almacenamiento por medio de la evaporación, la precipitación y por escurrimiento de la tierra.

El ciclo de sedimentación es una extensión del ciclo hidrológico. El agua transporta material de la tierra al océano, donde se añaden como sedimentos. El ciclo de sedimentos incluye la erosión física y química, el transporte de nutrientes y la formación de sedimentos a partir de los flujos de agua.

El ciclo de sedimentos está ligado con el flujo de seis elementos importantes, que son el hidrógeno, el carbono, el oxígeno, el nitrógeno, el fósforo y el azufre. Estos elementos, también conocidos como macroelementos, constituyen el 95 % de todos los seres vivos. El equilibrio de estas moléculas es necesario para sostener la vida.

Ciclo del carbono

El carbono es uno de los elementos más importantes para los organismos vivos, como lo demuestra su abundancia y presencia en todas las moléculas orgánicas. El ciclo del carbono ejemplifica la conexión entre los organismos en varios ecosistemas. El carbono se intercambia entre los heterótrofos y los autótrofos dentro y entre los ecosistemas principalmente a través del CO2 atmosférico, una versión completamente oxidada del carbono que sirve como bloque básico para que los autótrofos puedan construir moléculas orgánicas de alta energía como la glucosa.

¿Sabías qué...?
La liberación mundial de carbono a través de las actividades humanas ha aumentado de 1 billón de toneladas al año en 1940 a 6,5 millones de toneladas en el año 2000.

Los fotoautótrofos y los quimioautótrofos aprovechan la energía del Sol y de los compuestos químicos inorgánicos para unir los átomos de carbono y transformarlos en compuestos orgánicos reducidos cuya energía se puede absorber posteriormente a través de los procesos de respiración y fermentación.

Ciclo del carbono

Ciclo del nitrógeno

En el suelo, así como en las raíces de ciertas plantas, el nitrógeno es fijado por bacterias, rayos y radiación ultravioleta.

Las bacterias fijan el nitrógeno elemental en una forma que puede ser usada por los organismos.

Ciertas bacterias toman las formas en las que se fijó el nitrógeno y posteriormente lo procesan. Este proceso que se conoce como oxidación proporciona energía para que el ciclo del nitrógeno tenga lugar. Las plantas absorben nitratos o iones de amonio del suelo y los convierten en compuestos orgánicos; por su parte, los animales obtienen nitrógeno mediante el consumo de plantas u otros animales.

Los residuos de los animales contienen nitrógeno; por lo tanto, independientemente de la forma de excreción del animal, algún nitrógeno se libera de nuevo en el ecosistema a través de este proceso.

Muchos problemas ambientales son causados por la interrupción del ciclo del nitrógeno gracias a la actividad humana, desde la producción de smog troposférico hasta la perturbación del ozono estratosférico y la contaminación del agua subterránea. Un ejemplo de uno de los problemas causados es la formación de gases de efecto invernadero.

Ciclo de Azufre

El azufre es un elemento esencial para las macromoléculas de los seres vivos. Varios grupos de microorganismos son responsables de llevar a cabo los procesos implicados en el ciclo del azufre.

El ciclo del azufre contiene tanto procesos atmosféricos como terrestres.

Dentro de la porción terrestre, el ciclo comienza con el desgaste de las rocas, lo que hace que el azufre almacenado se libere; luego entra en contacto con el aire donde se convierte en sulfato. El sulfato es absorbido por plantas y microorganismos y se convierte en formas orgánicas; los animales consumen estas formas orgánicas a través de los alimentos, de tal manera que es movido a través de la cadena alimentaria. A medida que los organismos mueren y se descomponen, se libera de nuevo como sulfato y algunos entran en los tejidos de los microorganismos. También hay una variedad de fuentes naturales que emiten azufre directamente en la atmósfera, donde se incluyen las erupciones volcánicas, la descomposición de materia orgánica en pantanos y la evaporación del agua.

El azufre eventualmente se instala en la Tierra. Una pérdida continua de este elemento ocurre a través del drenaje en lagos y arroyos, y ocasionalmente en océanos. Dentro del océano se realizan algunos ciclos de azufre a través de las comunidades marinas, que se mueven a través de la cadena alimentaria; una parte de este es emitida de nuevo a la atmósfera por la evaporación, el restante se pierde en las profundidades del océano, donde se combina con el hierro para formar el sulfuro ferroso que es el responsable del color negro de la mayoría de los sedimentos marinos.

Una tercera parte de todo el azufre que llega a la atmósfera proviene de las actividades humanas.

Ciclo del fósforo

El fósforo es un elemento importante para todas las formas de vida. Como fosfato, constituye una parte importante del marco estructural que mantiene el ADN y el ARN juntos. Al igual que el calcio, el fósforo es importante para los vertebrados; en el cuerpo humano, el 80 % del fósforo se encuentra en los dientes y huesos.

El ATP contiene tres moléculas de fosfato que requieren fósforo.

El ciclo de fósforo difiere de los otros ciclos biogeoquímicos en que no incluye una fase gaseosa; aunque pequeñas cantidades de ácido fosfórico pueden llegar a la atmósfera, lo que contribuye, en algunos casos, a la lluvia ácida. Muy poco fósforo circula en la atmósfera porque a las temperaturas y presiones normales de la Tierra, el fósforo y sus diversos compuestos no son gases. El fósforo se mueve en un ciclo a través del agua, el suelo, los sedimentos y los organismos, pero el mayor reservorio de fósforo está en la roca sedimentaria.

Los cambios en el ciclo del fósforo no tienen efectos directos sobre el clima, pero su disponibilidad condiciona la actividad vegetal y microbiana en los ecosistemas.

Con el tiempo, la lluvia y la intemperie causan que las rocas liberen iones de fosfato y otros minerales. Este fosfato inorgánico se distribuye entonces en el suelo y en el agua.

Las plantas absorben fosfato inorgánico del suelo y pueden ser consumidas por los animales; una vez en la planta o el animal, el fosfato se incorpora en moléculas orgánicas como el ADN. Cuando la planta o el animal mueren, se descomponen por la acción de bacterias, el fosfato orgánico se devuelve al suelo y puede estar disponible nuevamente para las plantas. Este proceso se conoce como mineralización.

El fósforo en el suelo puede terminar en los cursos de agua y eventualmente en los océanos. Una vez allí, se puede incorpora con el tiempo a los sedimentos.

El mismo proceso ocurre dentro del ecosistema acuático. El fósforo no es muy soluble, se une fuertemente a las moléculas en el suelo y alcanza principalmente las aguas donde viaja con las partículas de suciedad. Los fosfatos también entran en las vías fluviales a través de escurrimientos de fertilizantes, filtraciones de aguas residuales, depósitos minerales naturales y desechos de otros procesos industriales.

Aunque obviamente es beneficioso para muchos procesos biológicos, en aguas superficiales una concentración excesiva de fósforo se considera un contaminante. El fosfato estimula el crecimiento excesivo del plancton y las plantas, que tienden a consumir grandes cantidades de oxígeno disuelto, lo que potencialmente sofoca a los peces y otros animales marinos, al mismo tiempo que bloquea la luz solar disponible para las especies que habitan en el fondo. Esto se conoce como eutrofización.

Contaminación

Las actividades humanas han aumentado considerablemente los niveles de CO2 en la atmósfera y los niveles de nitrógeno en la biosfera. Los ciclos biogeoquímicos alterados combinados con el cambio climático aumentan la vulnerabilidad de la biodiversidad, la seguridad alimentaria, la salud humana y la calidad del agua.

Membrana plasmática: transporte sin gasto de energía

La membrana plasmática es una estructura semipermeable que permite el paso de ciertas sustancias a la célula y evita el paso de otras, a esto se le conoce como transporte a través de la membrana, puede ser de dos tipos, pasivo o activo de acuerdo a si hay o no gasto de energía.

Membrana plasmática

La membrana celular o membrana plasmática es una bicapa formada principalmente por fosfolípidos, rodea al citoplasma y tiene como característica distintiva su semi-permeabilidad, lo que permite proteger la integridad de la célula mediante el control de las sustancias que pueden entrar y salir de ella.

La membrana plasmática recubre el citoplasma de todas las células.

Las fases esenciales y continuas en la vida de cualquier célula son la absorción y la expulsión de sustancias dañinas, todas éstas deben pasar a través de la membrana plasmática mediante un mecanismo denominado transporte celular.

¿Sabías qué...?
Las acuaporinas son proteínas de membrana encargadas de transportar moléculas de agua sin permitir el paso de iones. Se encuentran a lo largo de toda la membrana celular y están implicadas en los cambios rápidos del volumen de las células.

Transporte celular

El transporte celular es el movimiento mediante el cual las sustancias entran o salen de la célula. Las membranas celulares son semipermeables, lo que significa que tiene control sobre lo que las células pueden o no dejar pasar.

Algunas sustancias pueden entrar y salir fácilmente, otras requieren de estructuras especiales para hacerlo, mientras que otras incluso necesitan un impulso de energía para atravesar la membrana.

Todas las células en su membrana plasmática contienen una mezcla adecuada de estructuras que ayudan a mantener el ambiente interno de la célula a través de su participación en el transporte de sustancias.

Son dos los mecanismos principales que permiten que las moléculas puedan moverse a través de la membrana celular, el transporte pasivo y el transporte activo, la diferencia principal entre ellos radica en el gasto de energía, mientras que en uno son necesarias moléculas de ATP, en el otro no.

Transporte pasivo

Es el mecanismo a través del cual las sustancias son transportadas dentro y fuera de la célula sin la necesidad de utilizar energía. Debido a esto, el paso sólo es posible cuando las partículas se mueven a favor de un gradiente de concentración, desde una zona de mayor concentración hasta una de menor concentración.

Un gradiente de concentración es una diferencia gradual en la concentración de soluto entre dos áreas, en este caso sería entre el medio extracelular y el intracelular.

Gradiente de concentración entre dos zonas.

De acuerdo a esto, existen tres tipos de transporte pasivo:

  • Difusión simple.
  • Difusión facilitada.
  • Osmosis.

Difusión simple

El medio extracelular y el intracelular están compuestos por agua, sin embargo, la membrana plasmática está formada por una bicapa de fosfolípidos, ésta tiene una región hidrofóbica (región que no se mezcla con el agua) que impide que cualquier molécula grande o hidrófila (que reacciona con el agua), la atraviese. Por otro lado, moléculas que son hidrofóbicas pueden pasar a través de la membrana por difusión simple.

Membrana plasmática

De manera que la difusión simple es un tipo de transporte pasivo que permite el paso de pequeñas moléculas hidrofóbicas desde una región de concentración más alta a una de concentración más baja. El proceso de difusión finaliza cuando en ambos medios se iguala las concentraciones.

Lado derecho: la concentración de solutos es mayor de un lado de la membrana. Lado izquierdo: se iguala la concentración de soluto en ambos lados, por difusión simple.

Difusión facilitada

Ciertas moléculas que se encuentran en el cuerpo pueden atravesar la membrana plasmática sin ningún problema, como por ejemplo, el oxígeno o el dióxido de carbono. Sin embargo, otras a pesar de haber un gradiente que las favorezca no pueden cruzar el núcleo hidrofóbico de la membrana plasmática, porque están cargadas o porque son polares, por lo tanto necesitan estructuras que las ayuden.

Dicho esto, se entiende por difusión facilitada al transporte pasivo de moléculas a través de la membrana plasmática, con la ayuda de proteínas o canales transportadores.

  • Proteínas transportadoras: son proteínas que llevan a cabo el transporte de una molécula de un lado a otro de la membrana, mediante el cambio en su estructura, es decir, las proteínas transportadoras cambian su forma cuando se unen a la molécula que transportarán y es este cambio el que permite que la molécula sea trasladada.
  • Canales transportadores: son canales de proteínas que forman túneles hidrofílicos a través de la membrana plasmática, lo que permite la entrada de moléculas hidrofílicas, cargadas y polares, que de otra manera serían frenadas por la zona hidrofóbica de la membrana.

Los canales transportadores son selectivos, es decir, eligen qué moléculas pueden cruzar y cuáles no. Adicionalmente, algunos de ellos pueden estar abiertos todo el tiempo, sin embargo, otros se cierran y se abren como respuesta a señales eléctricas o a la unión de una molécula.

Proteínas encargadas de la difusión facilitada.

Osmosis

La osmosis es un tipo especial de difusión, consiste en el transporte de agua a través de la membrana, desde la zona más diluida, es decir, con poca concentración de solutos, hasta la zona más concentrada, es decir, con alta concentración de solutos con el fin de tener el mismo grado de concentración en ambos lados.

Plasmólisis

Es un fenómeno íntimamente relacionado con la ósmosis, se produce cuando la célula se encuentra en un medio hipertónico y deja salir agua desde su interior para intentar igualarse al medio, lo que trae como consecuencia que la célula se deshidrate.

Proceso de osmosis.

La tonicidad, por otro lado, es la capacidad que tiene el medio extracelular de mover agua hacia el interior de la célula a través de la osmosis. Esto está relacionado con la osmolaridad, definida como la concentración total de solutos dentro de una solución. De acuerdo a esto, existen tres tipos de medios:

  • Medio hipotónico: cuando la concentración de solutos es mayor en el interior de la célula que en el medio extracelular, en este caso el agua fluye al interior de ella.
  • Medio hipertónico: cuando la concentración de solutos es mayor en el medio extracelular que en el interior de la célula, en este caso el agua fluye desde la célula hacia afuera.
  • Medio isotónico: cuando la concentración de solutos en el medio intracelular y extracelular es la misma. En este caso no hay flujo de agua a través de la membrana.
Osmosis en células sanguíneas.

 

Biomoléculas: lípidos

Los lípidos son un grupo diverso de compuestos orgánicos que incluye a las grasas, los aceites, las hormonas y ciertos componentes de las membranas, se agrupan porque tienen como característica común su insolubilidad en el agua.

¿Qué son los lípidos?

Los lípidos, llamados incorrectamente grasas, son un conjunto de biomoléculas orgánicas formadas por carbono e hidrógeno, aunque también es posible encontrar en porcentajes más bajos, oxígeno, fosforo nitrógeno o azufre.

Estructura química de un lípido

Son compuestos caracterizados por ser insolubles en agua y solubles en compuestos orgánicos como el alcohol o el éter. Además, tienen como funciones reservar energía y servir como componentes básicos de los sistemas estructurales de muchos seres vivos.

Alimentos ricos en lípidos.

Clasificación de los lípidos

Los lípidos se clasifican en dos grandes grupos de acuerdo a un criterio principal, la reacción de saponificación, que no es más que la formación de jabón a partir de la reacción química entre ciertos lípidos y el hidróxido de sodio o cualquier otro medio alcalino.

En base a esto los lípidos pueden ser saponificables y no saponificables o insaponificables.

Lípidos saponificables

Son aquellos que contienen largas cadenas de ácidos grasos unidos a un grupo alcohol a través de un enlace éster. En ellos los ácidos grasos pueden ser separados mediante reacciones de saponificación.

Dentro de los lípidos saponificables se pueden distinguir los siguientes:

  • Ácidos grasos: son moléculas formadas por un grupo carboxilo unido a largas cadenas de carbono e hidrógeno. No se encuentran en estado libre y provienen usualmente de los fosfolípidos y los triglicéridos. Son de vital importancia porque a partir de ellos se generan moléculas de ATP.

Pueden ser de tipo saturado o insaturado. Los ácidos grasos saturados se caracterizan por estar unidos entre sí mediante enlaces simples, se deben consumir con moderación porque su exceso produce hipercolesterolemia.

¿Sabías qué...?
La arteriosclerosis es una enfermedad que se produce cuando la grasa y el colesterol, junto con otras sustancias, se acumulan en las arterias y forman una especie de placa, esto trae como consecuencia que el espacio para que la sangre oxigenada circule sea mucho menor.
Los alimentos de origen animal, como lácteos, huevos o la carne roja son ricos en ácidos grasos saturados.

Por otro lado, los ácidos grasos insaturados poseen enlaces dobles en su estructura y se encargan de disminuir el colesterol malo de nuestro cuerpo.

Los frutos secos, como las almendras o las nueces son alimentos ricos en ácidos grasos insaturados.
  • Acilglicéridos: son moléculas orgánicas de tipo éster que poseen ácidos grasos y glicerol (glicerina). Son abundantes en el tejido adiposo de los animales, en las frutas y en las semillas. Tienen como función principal, reservar energía.

Existen de tres tipos, monoacilglicéridos, diacilglicéridos y triacilglicéridos, estos últimos, también llamados triglicéridos, son los más importantes, suministran energía al cuerpo y sirven como fuente de reserva a largo plazo, sin embargo, consumirlos en exceso puede provocar la enfermedad de las arterias coronarias.

  • Céridos: son esteres producidos por la reacción química entre ácidos grasos y alcoholes de alto peso molecular. Su función es de tipo estructural, protege ciertas partes del cuerpo de los animales y las plantas.
  • Fosfolípidos: son lípidos formados por ácidos grasos, una base nitrogenada, un grupo fosfato y glicerol o esfingosina. Juegan un papel muy importante porque forman la bicapa lipídica de la membrana plasmática e intervienen en la regulación de la entrada y salida de sustancias en la célula.
Bicapa lipídica formada por fosfolípidos.
  • Glucolípidos: son lípidos unidos a carbohidratos, forman parte de la bicapa lipídica de la membrana plasmática y tienen como función participar en el reconocimiento celular y actuar como receptores antigénicos.

Lípidos no saponificables o insaponificables

Son aquellos lípidos que carecen de enlaces de tipo éster, están formados por ácidos grasos que no pueden ser separados mediante reacciones de saponificación. Se distinguen los siguientes:

  • Terpenos: son compuestos orgánicos formados por la unión de varias unidades de un compuesto denominado isopreno.
Los terpenos abundan en las plantas, en ellas son los encargados de dar las características organolépticas de aroma y sabor.
  • Esteroides: son lípidos derivados de los terpenos, poseen en su estructura una molécula de estreano. Dentro de sus funciones están regular los niveles de sal, formar parte de la estructura de la membrana plasmática, participar en la secreción de la bilis y, en el caso de las hormonas esteroideas, estimular la función de otras células.
El estrógeno es la hormona esteroidea sexual femenina.
  • Prostaglandinas: son lípidos formados a partir del ácido araquidónico, reciben ese nombre porque fueron descubiertas en la glándula prostática.

Cumplen diversas funciones en el cuerpo, entre ellas están promover el sueño fisiológico y el estado de vigilia, intervenir en la producción de mucosa intestinal, participar en la contracción de la musculatura del útero y producir respuestas inmunes.

Colesterol

Es un tipo de lípido que se encuentra en todos los rincones de nuestro cuerpo, se fabrica en el hígado y se libera al torrente sanguíneo. Dentro de sus funciones están, ser parte estructural de las células y participar en la fabricación de hormonas y de la bilis. 

Lípidos en la dieta

El consumo de lípidos es necesario para llevar una vida sana, se recomienda un consumo diario de entre el 20-30 %; de los cuales, 10 % deben corresponder a grasas saturadas, 5 % a grasas insaturadas y 5 % a grasas poliinsaturadas.

El omega-3 y el omega-6 son ácidos grasos que no deben faltar en nuestra dieta, ya que el cuerpo no es capaz de sintetizarlos y su ausencia trae como consecuencia daños en la salud.

Sin embargo, su exceso, principalmente el de ácidos grasos saturados, está relacionado con el riesgo de padecer enfermedades como la hipercolesterolemia, los infartos, las embolias y la arteriosclerosis.

Cianobacterias: bacterias fotosintéticas

Las cianobacterias, aunque sean organismos capaces de realizar la fotosíntesis, no pertenecen al reino Plantae, pertenecen al reino Monera o reino de las bacterias, ya que poseen características que las acercan más a este grupo.

¿Qué son las cianobacterias?

Las cianobacterias, también conocidas como algas verde azules, son uno de los grupos de bacterias más grandes e importantes de nuestro planeta. Son capaces de realizar la fotosíntesis, se encuentran en lagos de agua dulce, arroyos, océanos, suelo húmedo y rocas humedecidas y tienen diversas características:

  • Son de tamaño microscópico.
  • Son unicelulares, aunque a menudo crecen en colonias lo suficientemente grandes como para verlas a simple vista.
  • Las cianobacterias son parientes de las bacterias, por lo tanto no son eucariotas ni son algas verdaderas, aunque su nombre común sea algas verdeazules.
  • Son autótrofas, es decir, tienen la capacidad de fabricar su propio alimento mediante la fotosíntesis.
  • Viven principalmente en medios acuáticos.
Cianobacterias unicelulares.
¿Sabías qué...?
Las cianobacterias tienen la distinción de ser los fósiles más antiguos conocidos, de hecho tienen más de 3.5 mil millones de años de edad.

Las cianobacterias han sido tremendamente importantes en la configuración del curso de la evolución y el cambio ecológico en la historia de la Tierra. La atmósfera de oxígeno de la que dependemos fue generada por numerosas cianobacterias durante las eras arcaicas y proterozoicas. Antes de ese momento, la atmósfera tenía una química muy diferente, inadecuada para la vida como la conocemos hoy en día.

Muchos depósitos de petróleo se atribuyen a la actividad de las cianobacterias, también son proveedores importantes de fertilizantes de nitrógeno en el cultivo de arroz y frijoles.

Las cianobacterias y el origen de las plantas

Otra de las grandes contribuciones de las cianobacterias en el planeta, es que dieron paso al origen de las plantas. El cloroplasto con el que las plantas producen alimentos para sí mismas es en realidad una cianobacteria que vive dentro de las células de la planta.

En algún momento a finales del Proterozoico, o del Cámbrico temprano, las cianobacterias comenzaron a establecerse dentro de ciertas células eucariotas, ellas le daban alimento al huésped eucarionte a cambio de un hogar, este evento se conoce como endosimbiosis

¿Cómo es la morfología de las cianobacterias?

De acuerdo a la especie, las cianobacterias pueden tener diversas morfologías celulares. Pueden variar en tamaño, de 0,1 micrómetros a 40 micrómetros, con respecto a su forma, son ampliamente diversas, algunas especies viven como células individuales, mientras que otras forman colonias de muchas células.

En su mayoría son filamentosas, es decir, están formadas por cadenas largas y rectas de células o muchas cadenas de ramificación. Algunas especies filamentosas tienen además células especiales llamadas heterocistos, las cuales capturan el nitrógeno de la atmósfera y lo transforman en formas químicas que pueden ser utilizadas por las cianobacterias.

Las cianobacterias tiene la capacidad de fijar nitrógeno atmosférico.

¿Dónde habitan las cianobacterias?

Se pueden encontrar en casi todos los ambientes, por lo general pueden sobrevivir en cualquier lugar donde haya suficiente luz para realizar la fotosíntesis. También se pueden encontrar en lugares húmedos donde haya líquenes, helechos y hepáticas, ya que algunas viven en simbiosis con ellos.

Con moderación, las cianobacterias proporcionan equilibrio para un ecosistema de agua saludable.

Las cianobacterias pueden sobrevivir en el suelo o en la superficie de las rocas y tienen la capacidad de permanecer latentes en sequía y despertarse en periodos de lluvia para poder dividirse y crecer. Otras especies pueden vivir en ambientes marinos cálidos y poco profundos o flotar libremente en cuerpos de agua dulce ricos en nutrientes.

Cianobacterias en superficie húmeda.

Florecimiento de las cianobacterias y sus consecuencias

Aunque las cianobacterias son necesarias en muchos cuerpos de agua debido a que proporcionan oxígeno y son una fuente de alimento para otras especies marinas. A causa de razones tales como el cambio climático y lo contaminación, pueden proliferar en exceso.

Cuerpo de agua cubierto de una capa de cianobacterias.

Cuando hay suficiente sol, el agua está caliente, estancada o se mueve lentamente y hay suficientes nutrientes como fósforo y nitrógeno, se crea un ambiente idóneo para su florecimiento o rápida división celular, lo que puede ser perjudicial para otros organismos ya que, como forman una capa en la superficie del agua, conducen a un agotamiento de oxígeno, poca entrada de luz y presencia de toxinas dañinas, así como problemas de mal olor y sabor del agua.

Toxicidad de las cianobacterias

Existen muchos géneros que liberan toxinas dañinas para los organismos, los géneros más comunes son Microcystis, Anabaena y Aphanizomenon. Dichas toxinas pueden atacar las células, el hígado o el sistema nervioso de los seres vivos.

Géneros comunes de cianobacterias

  • Spirulina: es un tipo de cianobacteria, perteneciente al orden Chroococcales, era conocida como el género en base al cual se hacia el suplemento alimenticio spirulina, sin embargo, en la actualidad, la cianobacteria con la que se hace este tratamiento es Arthrospira.
  • Athospira: es una cianobacteria perteneciente al orden Oscillatoriales, su importancia económica es que es un alimento muy saludable y se utiliza como suplemeto.
Suplemento alimenticio a base de Athospira.
  • Anabaena: es una cianobacteria filamentosa perteneciente al orden Nostocales, algunos de ellos presentan heterocistos, con los que tienen la capacidad de fijar nitrógeno.
  • Nostoc: es un género de cianobacterias pertenecientes al género Nostocales, pueden ser micro o macroscópicas y son de forman esférica, también presentan heterocistos.

Biomoléculas: los carbohidratos

Las biomoléculas son componentes orgánicos presentes en las estructuras básicas de todos los organismos vivos. Existen varios tipos: proteínas, lípidos, carbohidratos y ácidos nucleicos, cada uno de ellos con una estructura que los define y con funciones particulares dentro de nuestro cuerpo.

Carbohidratos

Se conocen también con el nombre de glúcidos o sacáridos, los carbohidratos son uno de los tres principales tipos de macronutrientes del cuerpo, junto con las proteínas y los lípidos. Además, son la fuente más importante de energía para las células.

Las harinas son alimentos ricos en carbohidratos.

Los carbohidratos son los azúcares, almidones y fibras que se encuentran en muchos alimentos como, las frutas, los granos, las verduras y los productos lácteos. Aunque muchas veces su importancia es puesta en duda, los hidratos de carbono son uno de los grupos alimenticios básicos necesarios para llevar una vida sana.

¿Sabías qué...?
El consumo excesivo de carbohidratos refinados puede producir enfermedades como la obesidad, la cual tiene severas consecuencias en nuestra salud, como la hipertensión arterial o la diabetes. Por lo que siempre deben ser consumidos con moderación.
Para llevar una vida saludable es importante incluir en nuestra dieta carbohidratos, sin embargo, debe ser con moderación, ya que su exceso produce obesidad.

Estructura de los carbohidratos

Los carbohidratos están compuestos por tres elementos principales: el carbono, el hidrógeno y el oxígeno, su fórmula general es (CH2O)n sin embargo, esta puede variar de acuerdo al tipo de clasificación de los carbohidratos, sean monosacáridos o polisacáridos.

Estructura básica de un carbohidrato.

Clasificación de los carbohidratos

Monosacáridos

Son los carbohidratos más simples, por lo que también se denominan azúcares simples, se caracterizan por la incapacidad que tienen en ser descompuestos en carbohidratos más pequeños y además, por ser los bloques de construcción de los carbohidratos más grandes.

La fórmula típica de los monosacáridos es (CH2O)n, donde n puede ser 3, 5 o 6 según el número de átomos de carbono presentes, en base a estos los monosacáridos se pueden clasificar de la siguiente manera:

Triosas Si n es igual a 3, es decir, si presentan 3 átomos de carbono. Por ejemplo, gliceraldehido.
Pentosas Si n es igual a 5, es decir, si presentan 5 átomos de carbono. Por ejemplo, la ribosa y la desoxirribosa.
Hexosas Si n es igual a 6, es decir, si están compuestas por 6 átomos de carbono. Por ejemplo, la glucosa, la fructuosa y la galactosa.

Los monosacáridos son el principal combustible del metabolismo y por lo tanto del cuerpo, son utilizados como fuente de energía y como biosíntesis para otros carbohidratos, a menudo polisacáridos.

La glucosa es una hexosa ampliamente distribuida en la naturaleza, se encuentra libre en la mayoría de las frutas y en la miel. Es la principal fuente de energía que obtenemos de los alimentos y se absorbe al torrente sanguíneo en el proceso de digestión.

Estructura química de la glucosa.

Por otro lado, la galactosa se encuentra en la leche y la fructuosa o azúcar de las frutas se encuentra en la mayoría de las plantas.

La ribosa y desoxirribosa son los azúcares del ARN y el ADN respectivamente

Disacáridos

Son carbohidratos formados por la combinación de dos o más monosacáridos, se caracterizan, al igual que sus precursores, por ser dulces y solubles en agua, sin embargo, a diferencia de los monosacáridos, éstos sí pueden ser descompuestos en moléculas más pequeñas.

Dentro de los más importantes se encuentran:

  • Sacarosa: es un disacárido formado por la unión de una fructuosa y una glucosa, se obtiene usualmente de la caña de azúcar, sin embargo, está presente en muchas frutas y en el néctar de las flores.
La combinación de una molécula de glucosa con una de fructosa forma la sacarosa.
  • Maltosa: es un disacárido formado por la combinación de dos moléculas de glucosa unidas entre sí, se produce cuando se descompone el almidón y el glucógeno.
Estructura básica de la maltosa.
Almidón

El almidón es un carbohidrato de origen vegetal que proporciona entre el 70 % y el 80 % de las calorías totales consumidas por las personas. Está presente en cereales como, el maíz, el trigo o el arroz, y en tubérculos como la papa.

Al igual que otros carbohidratos, es dulce, sin embargo, no tanto como la sacarosa, por lo que no es usado como endulzante, su utilidad está relacionada con el malteado de cebada durante la elaboración de la cerveza.

La maltosa es fundamental para la elaboración de cerveza.
  • Lactosa: es un disacárido compuesto por una molécula de galactosa y una de glucosa, se se encuentra en la leche de los mamíferos.
Estructura básica de la lactosa, el carbohidrato de la leche.

Función de los carbohidratos

  • Función estructural: ciertos carbohidratos, forman parte de las paredes celulares de muchos vegetales, hongos y bacterias, lo que permite que dichas células puedan soportar cambios del medio intracelular o extracelular.

Un ejemplo común de carbohidrato estructural es la celulosa, un compuesto formado por glucosa que le confiere rigidez a las células vegetales.

La pared celular de los vegetales está compuesta por celulosa.
  • Función energética: los carbohidratos son las moléculas de uso inmediato para la obtención de energía en la mayoría de los seres vivos. Las células cubren sus necesidades energéticas mediante la degradación de los carbohidratos, la descomposición de la glucosa y la respiración.
  • Función de desintoxicación: durante el metabolismo se pueden formar ciertos compuestos de desecho que son altamente tóxicos para el cuerpo, una manera de eliminarlos es mediante la combinación con ciertos carbohidratos, quienes los hacen más solubles al agua y permiten que sean expulsados a través de, por ejemplo, la orina.
  • Función informativa: los carbohidratos unidos a proteínas (glicoproteínas) que se encuentran en la superficie de las células, se encargan de reconocer agentes extraños como virus o bacterias.
Presencia de carbohidratos en la membrana plasmática.

Ejercicios de clasificación del sujeto

La oración se representa como unidad de expresión en la que se emite un juicio o pensamiento que posee sentido, independencia sintáctica y que finaliza con una pausa o un punto; ésta se caracteriza por presentar dos elementos principales: el sujeto y el predicado.

Sujeto

El sujeto es el elemento principal de la oración y se representa como la persona, animal o cosa que realiza la acción o sobre quien cae la acción del verbo. En él siempre hay un núcleo, que es la palabra más importante del sujeto; éste puede ser un sustantivo (propio o común) o un pronombre.

El sujeto se puede localizar fácilmente preguntándole al verbo ¿quién? o ¿quiénes?

En el sujeto se presentan unos elementos determinantes que pueden ser:

  • El artículo
  • El adjetivo
  • El complemento del sustantivo
  • La frase adjetiva
  • La frase sustantiva

Tipos de sujeto

De acuerdo con su estructura el sujeto se clasifica en:

  • Sujeto expreso, desinencial o tácito: para clasificarlo se debe observar si está escrito o no en la oración.

Expreso → está escrito.

Ejemplo: Pedro fue al taller mecánico.

Desinencial → no está escrito; en este caso, se puede reemplazar por un pronombre.

Ejemplo: Jugamos en la sala.

  • Sujeto simple o compuesto: se determina de acuerdo a si posee uno o más núcleos.

Simple → un núcleo.

Ejemplo: La flor blanca tiene muchos pétalos.

Compuesto → dos o más núcleos.

Ejemplo: Isabel y María trabajan en la misma empresa.

  • Sujeto complejo o incomplejo: se caracteriza por la presencia o ausencia de determinantes en la oración. Los determinantes son las palabras que acompañan al núcleo.

Complejo → el núcleo o palabra principal posee determinantes.

Ejemplo: El camarero trajo la carta.

Incomplejo → al sujeto no lo acompaña ninguna palabra, es decir, no hay determinantes.

Ejemplo: Martina salió al parque.

  • Sujeto agente o activo, paciente o pasivo: está determinado por la acción del verbo, hace referencia a si el sujeto es el que la realiza o si otro la realiza por él.

Agente o activo → ejecuta la acción del verbo.

Ejemplo: Santiago fue a la playa.

Paciente o pasivo → no realiza la acción, padece las consecuencias o es otro el que la realiza.

Ejemplo: Juana es perseguida por un lobo.

El sujeto y el predicado son los dos elementos principales de una oración.

ACTIVIDADES

  1. Subraya el sujeto en las siguientes oraciones:
  • La casa es de color blanco.
  • Luis se fue de viaje.
  • Ellos redactan un libro.
  • Mañana mi amiga vendrá a visitarme.
  • Comió mucho ayer.
  • Cargamos las mochilas.
  • Martín y Ana fueron al cine.
  • Caminábamos por la plaza.
  • La niña y su mamá fueron al parque.
  • Aquel gato se subió al tejado.
  1. Determina el tipo de sujeto en cada oración:
  • Ellos cantan. __________________
  • La lluvia cae por la ventana. _____________________
  • Mañana iré con Marta al centro comercial. __________________
  • Viajé a Ecuador. __________________
  • Es muy fiel. ____________________
  • La Luna y el Sol son parte del Universo. ___________________
  • José comió el pan. __________________
  • La torta fue comida por los niños. __________________
  • Un ciervo fue cazado por aquel señor. ________________
  • Tú sueñas. _________________
  • Esto no sirve. ___________________
  • Los hermosos ojos de Sofía son de color azul cielo. __________________
  • Juan compró repuestos. __________________
  • Pedro fue a casa de su madre. __________________
  • Mi vecina es una chismosa. __________________
  • Aquella niña baila excelente. __________________
  • En el zoológico hay elefantes y jirafas. ___________________
  • Los calamares y los camarones viven en el mar. ___________________
  • Roberto y Eduardo construyeron la casa. __________________
  • Ese libro y aquel periódico están hechos de papel. __________________
  1. Indica con una E si el sujeto es expreso o con una D si es desinencial.
  • Marina baila.
  • Viajamos a Orlando.
  • Esto no es correcto.
  • Ellas cantan.
  • Dormí por mucho tiempo.
  • Viajamos en autobús.
  • Ellos pasean.
  • Volvió a las tres de la mañana.
  • Ayer viajó mi tía en avión.
  • Sufrió un accidente.
  1. Indica si el sujeto es simple o compuesto.
  • El señor y su esposa salieron al jardín. _______________
  • Aquella niña es inquieta. ______________
  • La manzana roja tiene muchas vitaminas. ______________
  • Juan y Leticia salieron de paseo. ________________
  • El empleado y su jefe tuvieron una estricta conversación. _______________
  • Ella y él son una linda pareja. _________________
  • La Luna tiene un hermoso brillo. _______________
  • Aquel señor y esa señora son muy ancianos. ________________
  • Ese niño y su perro son grandes amigos. ________________
  • Mañana se van al paseo los alumnos y sus profesores. _______________
  1. ¿En cuál de estas oraciones hay sujeto complejo? Márcalo con una X.
  • Ella disfruta del evento.
  • Henrique se subió en la mesa.
  • La hermosa cola del gato es blanca como la nieve.
  • Marina se fue para la playa.
  • Ellos caminan por el sendero.
  1. Subraya el sujeto agente o activo e indica el por qué.
  • Aquellos niños se parecen a sus padres.
  • Las piñas fueron cortadas por Julia.
  • Los carros fueron movidos por sus dueños.
  • El niño se lanzó a la alberca.
  • Aquellas mariposas vuelan sin cesar.
  1. Identifica el sujeto, verbo y predicado de las siguientes oraciones:
  • La vecina y su hija fueron de compras.
  • Sebastián fue encontrado en la montaña.
  • Las tareas son colocadas por el profesor.
  • Pronto llegará el invierno.
  • El hermoso cabello de Alejandra es rubio.
  • Ese lápiz y aquellos libros son de la biblioteca.
  • Vendrás mañana a casa.

Movimientos independentistas en América Latina

Anteriormente la mayor parte de los países latinoamericanos eran colonias de la corona española. Con el paso del tiempo, una serie de factores políticos, sociales y culturales fueron responsables de la aparición de movimientos independentistas en épocas casi simultáneas. Dichos movimientos fueron la base para declarar la independencia del poder español.

Colonización de América

La llegada de Cristóbal Colón a tierras americanas en 1942 abrió las puertas al colonialismo de un nuevo continente: América. Inicialmente, dicha colonización fue inaugurada por varios imperios especialmente el español, sin embargo; también participaron muchos otros como el portugués, británico y francés, entre otros.

Alrededor de 400 años los europeos explotaron la riqueza mineral del continente americano. El oro y la plata fueron algunos de los minerales codiciados por ellos.

Gran parte de los pueblos originarios que habían poblado el continente americano miles de años antes que los europeos fueron desplazados y masacrados, tanto por armas como por enfermedades que no conocían como la viruela.

La colonización española estuvo caracterizada por la conquista de enormes territorios, tanto insulares como continentales. Grandes civilizaciones antiguas como los aztecas y los incas cayeron bajo su poderío bélico sofisticado. Desde ese momento las colonias españolas estuvieron divididas en dos grandes virreinatos: el de Nueva España y el del Perú, con sus capitales en Ciudad de México y Lima respectivamente. Posteriormente otros Virreinatos como el de Nueva Granada y el de Río de la Plata fueron creados.

Algunas regiones como la Patagonia, la Amazonía y la parte norte de los desiertos mesoamericanos no fueron completamente controlados por los españoles.

Creación de ciudades

Con la conquista de nuevos territorios por parte del Imperio español, se logró un aumento en de la actividad agrícola, minera y comercial de la zona. Esto conllevó a la creación de ciudades y puertos comerciales. La población americana creció en una sociedad marcada por el mestizaje y la diferencia entre clases sociales.

A la sombra de la esclavitud

Mano de obra barata y gran resistencia física, fueron las razones que llevaron a los europeos a emplear esclavos de origen africano en sus actividades agrícolas, mineras y domésticas. Millones de mujeres y hombres fueron arrancados de sus tierras y posesiones en África para trabaja bajo la fuerza como esclavos en América. Las condiciones en las que eran tratados eran infrahumanas y sus amos no los consideraban como seres humanos sino como objetos que podían comprar o vender. Por esta razón, los esclavos estaban en lo más bajo de la sociedad y su condición se trasmitía a sus descendientes.

El comercio de esclavo constituyó una actividad lucrativa durante la época colonial.

América en el siglo XIX

Cuatro siglos pasaron desde su conquista pero muchas cosas habían cambiado en la aún creciente América colonial. Una de sus características más resaltantes eran las diferencias sociales, por un lado se encontraban los blancos peninsulares y por otro los criollos. Los peninsulares se diferenciaban de estos últimos porque habían nacido en Europa mientras que los segundos lo hicieron en América.

Los peninsulares y criollos concentraban la mayoría de la riqueza y formaban parte de la aristocracia de ese entonces.

El grupo que seguía lo conformaban los blancos miembros de sectores medios de la sociedad como artesanos y comerciantes que aunque contaban con ciertos derechos no cumplían ningún papel en el gobierno.

Posteriormente, se ubicaban los indígenas y mestizos que aunque no eran considerados como esclavos eran confinados en tareas simples y vivían en condiciones de pobreza.

En la parte más baja de las clases sociales estaban los esclavos, un grupo altamente discriminado y sometido al maltrato por sus amos. No gozaban de ningún derecho y su trabajo no era remunerado económicamente.

Movimientos independentistas

Desde el siglo XVIII hasta principios del siglo XIX surgieron una serie de movimientos independentistas a lo largo las colonias españolas en América. Estos movimientos fueron consecuencia de un proceso que se había gestado desde hace mucho tiempo y se veía reflejado en las diferencias sociales que estaba sometido el pueblo.

En el ámbito económico, las colonias recibían los impuestos más altos y empobrecían a los más vulnerables mientras los privilegiados se enriquecían. De igual forma, el sistema político de los virreinatos era deficiente. Las autoridades de las capitanías generales y gobernaciones no se enfocaban en resolver los crecientes problemas de la sociedad.

El descontento popular fue un caldo de cultivo que sirvió de motivación al pueblo en luchas posteriores de las guerras de independencias llevadas a cabo en distintas regiones de América casi simultáneamente.

Causa de los movimientos independentistas

Fueron diversos factores que influyeron en la aparición de los movimientos independentistas en Latinoamérica que fueron tanto de origen externo como interno y que obedecieron a ámbitos políticos, económicos, culturales y educativos de cada región

Factor

Causas externas

Causas internas

Político La independencia de Estados Unidos y sus leyes que consideraban la igualdad y la libertad, la seguridad y la fraternidad, sirvieron de motivación para los movimientos independentistas en Latinoamérica. Aumento de las aspiraciones políticas de los criollos.
Social La invasión de la Península Ibérica por parte de Napoleón. En ese momento la autoridad del absolutismo español quedó debilitada para siempre. Desequilibrio en la distribución de poder político entre criollos y peninsulares. En la época el poder residía en estos últimos y fomento una rivalidad entre ambas clases sociales.
Económico La Revolución Industrial había triunfado en Inglaterra, de esta manera, el trabajo artesanal fue reemplazado por el sistema maquinista. Por esta razón las potencias industriales competían por los mercados de materias prima que en la mayoría de los casos eran colonias españolas. Esta es la causa por la que países como Inglaterra apoyaban la causa independentista. Sometimiento de los americanos españoles al monopolio comercial español que los obligaba a pagar altos impuestos y comercializar con quien la corona dispusiera.
Cultural Influencias filosóficas de las ideas independentistas de Montesquieu, Rousseau, Voltaire. La aplicación de las Reformas Borbónicas que marcaron una serie de estructuras políticas desiguales que causaron descontento popular.
Educativo El alto nivel educativo de los criollos se encontraba a la par del de los peninsulares.
La independencia de los Estados Unidos sirvió de ejemplo para la causa emancipadora.

Criollos vs. peninsulares

El descontento que sentían los criollos frente a los peninsulares era evidente. Por ejemplo, sólo estos últimos podían aspirar cargos políticos importantes y gozaban de mayores privilegios. Por esta razón, fueron los criollos quienes impulsaron una serie de movimientos donde se aliaron con indígenas, esclavos y mestizos para luchar en las posteriores guerras independentistas.

Los liberales eran el ejército que buscaba la emancipación del poder español y los reales eran quienes defendían la corona y sus intereses.

Tiro vertical

Los objetos lanzados verticalmente hacia arriba o hacia abajo, describen un movimiento denominado “tiro vertical” que se estudia en la cinemática y, al igual que los demás, se encuentra muy influenciado por la fuerza de gravedad. En este artículo abordaremos sus principales características.

Tiro vertical

Todos los cuerpos lanzados en el vacío sobre la Tierra en puntos próximos a su superficie caen con la misma aceleración, es la aceleración de la gravedad.

El valor aproximado de la gravedad es de 9,81 m/s².

Se denomina tiro vertical al movimiento hacia arriba o hacia abajo que describe una trayectoria vertical influenciada por la fuerza de gravedad. Los hay de dos tipos, de acuerdo a la orientación del móvil respecto a la gravedad.

Tiro vertical hacia abajo

Es aquel que se origina al lanzar un cuerpo hacia abajo con una velocidad inicial vdiferente de 0 y describe un movimiento uniformemente acelerado. Dicho movimiento se describe a continuación:

En la imagen se considera positiva a la dirección OA del eje del sistema de referencia usado y a partir de este las ecuaciones a utilizar en el tiro vertical hacia abajo son:

Dónde:

v= velocidad en cualquier punto de la trayectoria.

v0= velocidad inicial

g= gravedad

t= tiempo

y= altura

Las ecuaciones 1 y 2 permiten calcular la velocidad en cualquier punto, sin embargo, la primera depende del tiempo y la segunda de la altura.

Tiro vertical hacia arriba

Describe un movimiento uniformemente retardado porque la aceleración va en el sentido opuesto al movimiento. Por lo tanto, es un movimiento vertical donde la velocidad inicial del cuerpo tiene un valor mayor que cero y la única aceleración que interviene durante la trayectoria del cuerpo es la gravedad; es decir, se trata de un caso particular de caída libre donde v0 > 0. Siempre tiene una velocidad inicial y a continuación se describen sus elementos principales:

Si se considera la dirección OA como positiva en nuestro sistema de referencia, la gravedad será negativa por ir en sentido contrario. De manera que las ecuaciones en función a este sistema de referencia quedarán expresadas para el tiro vertical de la siguiente manera:

El doble signo de la quinta ecuación (5) se refiere a que el valor de la velocidad que tiene el cuerpo al subir (v>0) es el mismo que cuando el cuerpo baja (v>0) en el mismo punto su trayecto. Lo mismo se cumple para el tiempo, es decir, el tiempo que el móvil tarda en alcanzar un punto del trayecto, es igual al tiempo que emplea en bajar desde dicho punto.

En la parte del tiro vertical hacia arriba en donde se describe el movimiento de caída libre se cumplen las ecuaciones:

Dónde:

h = altura de caída por efecto de la gravedad

 

En el movimiento de caída libre se cumple que  V0 = 0.

Altura máxima

En el caso del tiro vertical hacia arriba, desde el momento en el que el cuerpo es lanzado con una velocidad inicial, su velocidad descenderá gradualmente hasta llegar a 0, como resultado de la fuerza de gravedad. En el punto donde el móvil alcanzará su altura máxima.

En sentido si se sustituye el valor de en la cuarta ecuación (4) se tiene que:

Si se despeja tiempo de la ecuación que se acaba de despejar se tiene:

Al sustituir la ecuación de tiempo despejada en la sexta ecuación (6) se obtiene:

Al resolver los términos semejantes se llega a la siguiente ecuación:

La ecuación obtenida corresponde a la ecuación de la altura máxima, para diferenciarla de otras alturas se expresa como hmax

De la ecuación anterior se obtiene la ecuación para calcular la velocidad inicial en función de la altura máxima del móvil:

Mientras mayor sea la velocidad inicial de un cuerpo lanzado verticalmente hacia arriba, mayor será su altura máxima.

Problemas resueltos

Una persona lanza una moneda verticalmente hacia abajo con una velocidad inicial de 8 m/s. Determinar:

  1. Su velocidad a los 3 segundos.
  2. La distancia que habrá descendido a esos 3 segundos.
  3. La velocidad después de haber descendido 13 metros.
  4. El tiempo en el que alcanzará el suelo, si la altura desde donde fue lanzada la moneda fue de 200 m.
  5. La velocidad con la que tocará el suelo.

Datos:

  1. Su velocidad a los 3 segundos.

Debido a que en el enunciado dicen que la moneda fue lanzada hacia abajo con una velocidad inicial mayor a cero, se trata de un problema de tiro vertical hacia abajo, por lo tanto se empleará la primera ecuación (1)v= v0+g.t para cuando t=3 s.

2. La distancia que habrá descendido a esos 3 segundos.

Se emplea la tercera ecuación (3) y=v0.t+ 1/2.g.t² donde se relaciona la distancia o altura del móvil respecto al punto desde donde es lanzado el móvil. En este caso v0 se calculó en el paso anterior y t es igual a 3 s.

3. La velocidad después de haber descendido 13 metros.

Se emplea la segunda ecuación de velocidad (2) v= v0²+ 2.g.y  porque es la que relaciona la altura con la velocidad.

4. El tiempo en el que alcanzará el suelo, si la altura desde donde fue lanzada la moneda fue de 200 m.

Se aplica la tercera ecuación (3), en este caso, el valor de y será de 200 m debido a que será la distancia total que recorrerá la moneda hasta caer al suelo, el tiempo que tarde en recorrer dicha distancia será el tiempo que empleará en alcanzar el suelo.

Para efectos de cálculos se omitirán las unidades, de manera que se obtiene la siguiente ecuación de segundo grado:

Al resolver la ecuación de segundo grado se obtienen dos raíces. Como el tiempo nunca es negativo, se toma la raíz positiva.

Por lo tanto el tiempo en el que la moneda alcanzará el suelo será a los 5,621 s.

Para saber más sobre cómo resolver una ecuación de segundo grado puedes visitar el siguiente enlace: http://elbibliote.com/resources/Temas/html/468.php

5. La velocidad con la que tocará el suelo.

Se aplica la primera ecuación (1) v = v0+g.t pero se debe considerar el tiempo igual al tiempo que tarda la moneda en alcanzar el suelo y que se calculó en el paso anterior.

Un beisbolista lanza la pelota verticalmente hacia arriba, si tardó 2,40 s en alcanzar su máxima altura. Determinar:

  1. La rapidez inicial.
  2. La altura máxima que alcanza en ese tiempo.
  3. La velocidad en el primer segundo.
  4. La velocidad en t=3 s

Datos:

  1. La rapidez inicial.

Para calcular la rapidez inicial o velocidad inicial se emplea las ecuaciones de tiro vertical hacia arriba, específicamente la cuarta ecuación (4). En este pudo se debe considerar que al encontrarse la pelota en su máxima altura su velocidad es 0, por lo tanto v = 0 m/s.

Al sustituir la ecuación se obtiene:

Se despeja de la ecuación:

2. La altura máxima que alcanza en ese tiempo.

Se aplica la ecuación de altura máxima (11)  Y se obtiene:

3. La velocidad en el primer segundo.

Como piden la velocidad al primer segundo, se debe aplicar la cuarta ecuación (4) v= v0-g.t para t=1 s

4. La velocidad en t=3 s

Como la pelota alcanza su altura máxima a los 2,40 s, para tiempo posterior a este la pelota describirá un movimiento de caída libre como se explicó anteriormente. Por lo tanto, para calcular la velocidad a los 3 s se emplea la novena ecuación v = g.t. Se debe considerar que el tiempo será medido a partir del punto en donde alcanza la altura máxima. Por tal motivo, el tiempo a usar será igual a los 3 s menos 2,40 s, es decir, 0,6 s

Estímulos y respuestas en plantas y animales

La capacidad de un organismo para detectar cambios y tener respuestas apropiadas se llama sensibilidad, y todo aquello a lo que responde y reacciona se llama estímulo. El comportamiento es la forma en que todos los seres vivos responden a estos estímulos en su entorno.

En los animales las respuestas son más rápidas y más obvias. Los animales unicelulares responden a los estímulos moviéndose hacia o lejos de ellos.

En animales multicelulares, el proceso de respuesta a los estímulos es diferente. Las respuestas se producen en cuestión de segundos a través de una compleja red de comunicación que involucra varios procesos vitales como el movimiento, la locomoción, el transporte y la respiración, entre otros.

La respuesta y la coordinación en animales implican los órganos de los sentidos, el sistema nervioso y los mensajeros químicos llamados hormonas.

Las plantas también reaccionan a condiciones ambientales específicas. Sin embargo, no tienen sistema nervioso y sus respuestas se basan en un lento crecimiento modificado o movimientos llamados movimientos de turgencia causados por la distensión de las células.

En los seres vivos los estímulos pueden ser químicos, por calor, por luz, por tacto y por gravedad.

Comportamiento de las plantas

El comportamiento instintivo de una planta depende principalmente de crecimiento o movimiento en una dirección dada debido a cambios en su entorno.

Nastias

Las nastias son ciertos movimientos que realizan algunos órganos de la planta y que pueden estar influenciados por algún agente externo. Se diferencian de los tropismos en el hecho de que no influyen en la dirección del estímulo y la deformación que ocurre en el proceso no es permanente, sino transitoria.

Tropismos

En las plantas, la respuesta a un estímulo se conoce como tropismo. Este movimiento de la planta hacia o lejos de un estímulo puede venir en muchas formas. Cuando el movimiento es hacia el estímulo, se llama tropismo positivo; del mismo modo, si el movimiento se aleja del estímulo, se llama tropismo negativo. Si bien hay varias formas de tropismo, los más conocidos y estudiados son:

  • Fototropismo

Conocemos que las plantas crecen hacia el sol, por lo que pueden producir alimentos a través de la fotosíntesis. Este movimiento en respuesta a la luz solar se llama fototropismo. El fototropismo positivo de los tallos resulta del rápido crecimiento de las células en el lado sombreado de un tallo que las del lado iluminado;como resultado, el tallo se curva hacia la luz.

El fototropismo es una respuesta de crecimiento de las plantas a la luz procedente de una dirección.

Mientras que la mayoría de las plantas apenas crecen hacia el sol, algunas de ellas lo siguen durante todo el día. Por ejemplo, los girasoles por la mañana apuntan al este hacia el sol naciente y poco a poco lo siguen durante todo el día, hasta que apuntan al oeste hacia el sol poniente.

El fototropismo es importante por dos razones principales, una es que aumenta la probabilidad de que los tallos y las hojas intercepten la luz para la fotosíntesis y la otra de que las raíces obtengan el agua y los minerales que necesitan.

  • Geotropismo

El crecimiento descendente de las raíces y el crecimiento ascendente de los brotes son ejemplos de geotropismo.

El geotropismo aumenta la probabilidad de dos resultados importantes, uno que las raíces tendrán más probabilidades de encontrar agua y minerales, y otro que los tallos y las hojas serán más capaces de interceptar la luz para la fotosíntesis.

  • Tigmotropismo

Es producto de la adaptación y se da como una respuesta de crecimiento de las plantas al tener contacto con un objeto sólido. El ejemplo más común de tigmotropismo es el enrollamiento exhibido por los órganos especializados, que en botánica son llamados “zarcillos”.

Existen zarcillos de tipo foliar, que provienen de las hojas y de tipo caulinar, procedentes de tallos delgados; éstos pueden no tener la capacidad de generar flores y hojas, pero pueden permitir a la planta trepar o arrastrarse.

Este tipo de crecimiento se llama circumnutación y aumenta las posibilidades del tallo de tocar un objeto al cual puede aferrarse.

El contacto con un objeto es percibido por células epidérmicas especializadas en el zarcillo.

Gracias al tigmotropismo, una planta puede adaptarse y crecer sobre un tronco, pared o cualquier objeto que se interponga en su camino. Para ello, desarrollan un órgano especial que les permite adherirse al soporte.

Comportamiento animal

La manera en que un animal responde a su ambiente externo puede diferir de acuerdo con su ambiente interno actual.

¿Sabías qué...?
Los actos de agresión de los animales entre sí pueden ser causados por razones que van desde la protección de sus jóvenes a disputas territoriales.

Hay dos tipos de comportamiento animal:

  • Comportamiento innato o instintivo

Es el comportamiento que no se aprende, sino que está determinado por la genética del individuo. Por ejemplo, las tortugas recién nacidas saben nadar directamente hacia el océano.

El comportamiento innato es muy similar en todos los individuos de una misma especie.
  • Comportamiento aprendido o adquirido

Este tipo de comportamiento no está genéticamente programado en el animal. Por ejemplo, los cachorros de león no saben automáticamente cómo cazar su presa, deben aprender esta habilidad, a menudo a través del juego. El comportamiento adquirido es capaz de cambiar y desarrollarse significativamente con el tiempo y mejora con la experiencia.

El comportamiento aprendido se clasifica como “flexible”.

 

Sistemas de ecuaciones

En matemáticas y en otras disciplinas, el empleo de ecuaciones para calcular variables es frecuente y de gran ayuda. El conjunto de dos o más ecuaciones se conoce como sistema de ecuaciones, y según sea el caso, puede tener o no solución.

¿Qué es una ecuación?

Una ecuación es una igualdad matemática entre dos expresiones que contienen una o más variables. Se encuentran formadas por dos miembros separados por el signo igual.

El símbolo igual “=” fue inventado por Robert Recorde en 1557. Su forma hace alusión a dos rectas paralelas del mismo tamaño que representan la igualdad.

Estas expresiones matemáticas presentan valores conocidos o datos, además de elementos desconocidos denominados incógnitas y que son usualmente representados por letras del alfabeto.

El conjunto de valores que satisfacen a una ecuación se denomina solución. De este modo, una ecuación puede también definirse como una igualdad condicionada en la que sólo algunos valores de las incógnitas la hacen cierta.

Un ejemplo es la siguiente ecuación:

2x-1=3

La solución de la ecuación es 2, ya que es el único valor que puede tomar la incógnita para hacer cumplir la igualdad:

Cuando una ecuación incluye únicamente sumas y restas con una variable elevada a la primera potencia (sin presentar productos entre éstas) se denomina ecuación lineal.
Desde la Antigüedad

Sorprendentemente, muchos fundamentos básicos del álgebra que hoy en día usamos ya eran conocidos en el Antiguo Egipto y eran empleados para calcular problemas matemáticos en los cuales existía un valor desconocido.

El conocimiento avanzado de los egipcios en las matemáticas les permitió realizar cálculos que otras culturas desconocían.

Ecuaciones lineales

Las ecuaciones matemáticas pueden ser tan diversas como los números mismos. Se clasifican de acuerdo al máximo exponente al cual se encuentre elevada la incógnita o variable en lo que se denomina grado de la ecuación. Por ejemplo, 2x-3=4-x es una ecuación de primer grado porque el máximo exponente al cual se encuentra elevada la es 1. Por otro lado, una ecuación del tipo: 5x²-3x+1=0 es de segundo grado, por ser 2 el máximo exponente de la incógnita.

Adicionalmente, existen ecuaciones que incluyen funciones matemáticas como las trigonométricas, logarítmicas y exponenciales, entre otras. En estos casos se utiliza una metodología diferente para su resolución de acuerdo a las características de las funciones involucradas.

Las ecuaciones de segundo grado presentan la forma ax2 + bx + c y pueden resolverse con la fórmula mostrada.

Sistema de ecuación

Es un conjunto formado por dos o más ecuaciones que contienen varias incógnitas. Un sistema puede tener o no solución, en caso de tenerla consistirá en el valor o conjunto de valores que al ser sustituidos en las ecuaciones del sistema cumplen con la igualdad del sistema.

Las ecuaciones con una sola incógnita se resuelven a través de despejes. Para ecuaciones con dos o más incógnitas se recurre a los sistemas de ecuaciones.

Clasificación de los sistemas de ecuaciones

Los sistemas de ecuaciones pueden ser clasificados en compatibles o incompatibles de acuerdo a si tienen o no solución.

  • Sistemas compatibles: son aquellos que admiten solución, se subdividen en sistemas compatibles determinados y sistemas compatibles indeterminados. Los primeros se caracterizan por presentar un conjunto finito de valores que satisfacen la igualdad del sistema, es decir, tienen una sola solución. Los segundos por su parte, presentan un número infinito de soluciones.
  • Sistemas incompatibles: son aquellos que no admiten ninguna solución posible.

Métodos para resolver sistemas de ecuaciones lineales

Como se explicó anteriormente, las ecuaciones pueden presentar varios tipos de grado e incluir muchas funciones matemáticas. En este caso, el artículo se centrará en explicar los métodos principales para resolver sistemas de ecuaciones de primer grado, específicamente en ecuaciones lineales.

Los tres métodos más conocidos para su resolución son:

  • Método de reducción
  • Método de sustitución
  • Método de igualación

Sin embargo, existen otros métodos que hacen uso de matrices para resolver sistemas de ecuaciones lineales.

Método de reducción

A través de este método se trata de cancelar una de las variables para calcular la otra por medio de despejes. Para lograrlo se multiplica una de las ecuaciones de manera que al sumar todos los términos semejantes de todas las ecuaciones se elimine una de las incógnitas.

Por ejemplo:

Calcule la solución del siguiente sistema de ecuaciones por el método de reducción.

En la primera ecuación el coeficiente de la variable es 2, mientras que en la segunda es 1. Una forma de eliminar a la variable es multiplicar la segunda ecuación por -2, de esta forma al sumar los términos semejantes que incluyen dicha variable darán como resultado al número cero y de esta forma se cancela la incógnita.

De esta forma el sistema de ecuaciones queda:

Se suman los términos semejantes

De esta forma, se tiene la ecuación:

Con el valor de conocido se sustituye en cualquiera de las dos ecuaciones del sistema y se despeja . Para este caso se seleccionará la primera ecuación del sistema:

De esta forma, el conjunto solución del sistema es x= -1 y y=2 .

En el caso de sistemas con una sola solución, si se sustituyen los valores solución en las ecuaciones se cumple la igualdad en todos los casos.

Método de sustitución

En este método se busca despejar una variable en una ecuación para luego sustituirla en otra de manera de reducir el número de incógnitas.

Por ejemplo:

Calcule la solución del siguiente sistema de ecuaciones por el método de sustitución.

Se despeja cualquiera de las variables de cualquiera de las dos ecuaciones. En este caso se despejará la variable de la primera ecuación:

Se sustituye la variable despejada en la otra ecuación. En este punto, se debe tener cuidado de no sustituir la ecuación despejada en la misma ecuación de la cual se obtuvo.

Se resuelven los cálculos hasta despejar la variable

Se sustituye la incógnita y en cualquiera de las ecuaciones iniciales y se calcula el valor de x. En este método como se despejó dicha incógnita en el primer paso, se puede sustituir directamente en dicha ecuación:

Método de igualación

Este método consiste en despejar una misma incógnita de dos ecuaciones y luego igualarlas para calcular el valor de otra incógnita.

Por ejemplo:

Calcule la solución del siguiente sistema de ecuaciones por el método de igualación.

Se despeja en ambas ecuaciones:

-Primera ecuación

-Segunda ecuación

Se igualan ambas ecuaciones despejadas:

Se despeja el valor de y:

Se sustituye el valor de en cualquiera de las ecuaciones, preferiblemente en cualquiera de las ecuaciones ya despejadas.