CAPÍTULO 7 / TEMA 5

FUNCIÓN LINEAL

Cuando dos magnitudes se relacionan de manera directamente proporcional pueden representarse como una función de expresión algebraica y = mx + b. Estas funciones pueden identificarse rápidamente por medio de su gráfica, pues en el plano cartesiano siempre estarán representadas con una línea recta ascendente o descendente.

GRÁFICA DE UNA FUNCIÓN

Si conocemos la función matemática que relaciona a dos variables, podemos construir su gráfica, o al menos una aproximación de ella. Para esta tarea solo calculamos, a partir de la función, una serie de puntos que cumplan con la solución. Debemos tener en cuenta que cuantos más puntos utilicemos para graficar una función, mayor precisión obtendremos.

Algunas funciones matemáticas tienen gráficas características en el plano cartesiano, por ejemplo:

Funciones lineales

f(x) = mx + b

Funciones potenciales

f(x) = x2

 

Funciones exponenciales

f(x) = 2x

 

 

Funciones irracionales

f(x) = √x

 

Funciones racionales

f(x) = 1/x

 

Funciones trigonométricas

f(x) = sen x

Las funciones lineales se denominan de esta manera ya que su gráfica característica en el plano cartesiano se representa como una recta. Para trazar de forma correcta esta línea, basta con que conozcamos dos puntos en el plano. Por lo general se determinan si calculamos los cortes con los ejes o por medio de la ecuación de la recta.

¿Qué es una función lineal?

Una función lineal es una función cuya gráfica es igual a una línea recta que pasa por el origen de coordenadas. Su expresión algebraica es la siguiente:

f(x) = mx

Donde:

m = constante de proporcionalidad o pendiente de la recta

¿Sabías qué?
Las funciones lineales también son llamadas “funciones de proporcionalidad directa”.

– Ejemplo:

Un tren tiene una velocidad media de 160 km/h. La relación entre la distancia y el tiempo se puede observa en la siguiente tabla:

Tiempo (h) = x 0 1 2 3 4
Distancia (km) = y 0 160 320 480 640

Por medio de esta tabla vemos que las dos magnitudes (tiempo y distancia) son directamente proporcionales porque a medida que una aumenta, la otra también lo hace. Si realizamos una gráfica entre estas dos magnitudes nos resulta una línea recta como esta:

Nota que la recta pasa por el origen (0, 0) y va en aumento, por lo tanto, la recta es continua y creciente. La constante de proporcionalidad es 160, así que la expresión algebraica de esta función es:

f(x) = 160x

Función afín

Una función afín es un tipo de función lineal que no pasa por el origen de coordenadas. Su expresión algebraica es:

f(x) = mx + b

Donde:

m = pendiente de la recta

b = ordenada en el origen: la recta corta al eje de ordenada en el punto (0, n)

– Ejemplo:

Se ha determinado el pago de agua en una casa. Cada recibo indica que por cada metro cúbico de agua consumida se pagan $ 5, mientras que por la distribución y depuración se pagan $ 10. Con estos datos elaboramos la siguiente tabla:

Agua consumida (m3) = x 0 1 2 3 4
Pago ($) = y 10 15 20 25 30

La expresión algebraica de esta función es f(x) = 5x + 10, cuya gráfica se muestra a continuación:

Observa que la línea recta no pasa por el origen, sino que corta en el punto (0, 10).

La función de costo lineal se usa frecuentemente en las operaciones de las pequeñas empresas. El costo es el total de dinero necesario para producir q unidades de un producto. La función se representa con la expresión C(q) que incluye tanto a los costos fijos (independientes) como a los costos variables (dependientes).

ecuación de la recta

La ecuación de la recta es una expresión algebraica que describe una línea recta y relaciona la variación de y con respecto a x, la cual se puede graficar en el plano cartesiano según los componentes en cada uno de los ejes. De manera general la ecuación de una recta se representa así:

y = mx + b

Donde:

y = eje de las ordenadas

x = eje de las abscisas

m = pendiente de la recta

b = punto de intersección de la recta con el eje y

 

Para determinar la pendiente de la recta usamos la fórmula:

m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}

– Ejemplo:

Hallemos la pendiente de la recta que pasa por los puntos A (−1, 1) y B (1, 7).

Primero identificamos los valores de los ejes. Como ya sabemos, los pares ordenados siempre tienen primero la coordenada del eje x y luego de la coma va la coordenada del eje y; entonces:

En el punto A (−1, 1), x1 = −1 y y1 = 1

En el punto B (1, 7), x2 = 1 y y2 = 7

Ahora solo sustituimos en la fórmula general:

m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-1}{1-(-1)}=\frac{6}{2}=\boldsymbol{3}

Sabemos que la ecuación de esta recta es y = mx + b porque no pasa por el origen, es decir, representa una función afín. También sabemos que la pendiente (m) es 3, por lo tanto, y = 3x + b; así que faltaría hallar el valor de b.

Para calcula b podemos tomar cualquiera de los puntos A o B. Planteamos la ecuación y luego despejamos.

A(-1, \: 1): y=3x+b\rightarrow 1=3(-1)+b\rightarrow \boldsymbol{b=4}

B(1,\: 7):y=3x+b\rightarrow 7=3(1)+b\rightarrow \boldsymbol{b=4}

De este modo sabemos que la recta que pasa por los puntos A y B tiene por ecuación:

y = 3x + 4

Pendiente de la recta y = mx

Para un función lineal f(x) = mx, el coeficiente m se llama pendiente y representa el aumento o disminución de la variable dependiente en relación a la variable independiente.

– Ejemplo:

  • En la función f(x) = −3x, la pendiente es −3.
  • En la función f(x) = 5x, la pendiente es 5.

En una gráfica, la pendiente de una recta representa la inclinación de la misma respecto del eje x. La podemos hallar al dividir el valor de la variable dependiente entre el valor de la variable independiente.

m =\frac{y}{x}

– Ejemplo:

Esta gráfica muestra tres líneas rectas que pasan por el origen, así que cada una representa a un función lineal de forma f(x) = mx.

Para saber la pendiente de la recta solo debemos fijarnos en cualquiera de sus puntos y hallar su cociente.

Recta a Recta b Recta c
m=\frac{6}{-6}=\boldsymbol{-1} m=\frac{-2}{-2}=\boldsymbol{1} m=\frac{4}{6}=\boldsymbol{\frac{2}{3}}
f(x)=-x f(x)=x f(x)=\frac{2}{3}x

Valor de la pendiente

  • Si m es positiva, significa que la recta es creciente de izquierda a derecha.
  • Si m es negativa, significa que la recta es decreciente de izquierda a derecha.
  • Si m es cero, significa que la recta no posee inclinación respecto al eje horizontal, es decir, se trataría de una recta paralela al eje horizontal.
Una función lineal es una función polinómica de primer grado, es decir, el mayor exponente de x es 1. Para expresar cualquier tipo de recta, pase o no por el origen, se utiliza la ecuación explícita de la recta: y = mx + b. Donde y es la variable dependiente, x es la variable independiente, m es la pendiente y b es la ordenada al origen.

¿cómo Graficar una función lineal?

Dada la ecuación de la recta y = 2x + 3. La pendiente es 2 y el punto de intersección de la recta con el eje y es igual a 3. Para determinar el valor de y es necesario darle valores a x y efectuar la operación correspondiente, de la siguiente manera:

Si x = 1
y = 2(1) + 3
y = 2 + 3
y = 5
Si x = 2
y = 2(2) + 3
y = 4 + 3
y = 7
Si x = 3
y = 2(3) + 3
y = 6 + 3
y = 9
Si x = −1
y = 2(−1) + 3
y = −2 + 3
y = 1
Si x = −2
y = 2(−2) + 3
y = −4 + 3
y = −1
Si x = −3
y = 2(−3) + 3
y = −6 + 3
y = −3

Para obtener una recta bien definida es recomendable utilizar al menos tres puntos. Será de gran ayuda realizar una tabla de valores en la que observes las coordenadas de cada punto como esta:

x y Punto
−3 −3 (−3, −3)
−2 −1 (−2, −1)
−1 1 (−1, 1)
1 5 (1, 5)
2 7 (2, 7)
3 9 (3, 9)

Si usamos esta tabla como guía es más sencillo realizar la gráfica de la función.

Nota que la recta se corta en el punto (0, 3), pues b = 3.

¡A practicar!

1. Dadas las siguientes funciones, determina:

a. Pendiente (m)

b. Ordenada al origen (b)

  • f(x) = 2x − 6
Solución

b = −6

m = 2

  • f(x) = −x + 4
Solución

b = 4

m = −1

  • f(x) = 13/5x − 2
Solución

b = −2

m = 13/5

 

2. Construye una tabla con los siguientes valores de x para cada función.

x = −2, −1, 0, 1, 2, 3

  • f(x) = −x + 2
Solución
x y
−2 4
−1 3
0 2
1 1
2 0
3 −1
  • f(x) = 5x − 3
Solución
x y
−2 −13
−1 −8
0 −3
1 2
2 7
3 12
  • f(x) = 3x
Solución
x y
−2 −6
−1 −3
0 0
1 3
2 6
3 9
  • f(x) = −2x + 1
Solución
x y
−2 5
−1 3
0 1
1 −1
2 −3
3 −5

 

3. Realiza la gráfica de las siguientes funciones:

  • f(x) = −x + 2
  • f(x) = −2x + 1
Solución

f(x) = −x + 2

f(x) = −2x + 1

 

4. Dada la siguiente gráfica, determina:

a. Pendiente de la recta.

b. Ecuación de la recta.

Solución

a. m = −1

b. y = −x + 9

RECURSOS PARA DOCENTES

Artículo “Función Lineal”

En este artículo podrás encontrar ejercicios relacionados con la construcción de gráficas de funciones lineales a partir de su ecuación explícita, además de problemas de enunciados.

VER

Artículo “Aplicaciones de la función lineal”

Este artículo explica los conceptos de proporción, así como detalla el análisis y las aplicaciones de las funciones lineales.

VER

Artículo “Función lineal”

Este contenido ofrece una breve descripción de las características de una función lineal a partir de la ecuación explícita de la recta.

VER

CAPÍTULO 3 / TEMA 6 (REVISIÓN)

Fracciones | ¿Qué aprendimos?

¿Qué son las fracciones?

Una fracción está formada por dos términos principales: el numerador y el denominador. Estos son números enteros que están separados por una línea horizontal denominada raya divisoria o raya fraccionaria. Una fracción es la división de un entero o una unidad en partes iguales. El numerador indica las partes a considerar de esa división y el denominador indica las partes en las que se dividió el entero o unidad. Estos números son más antiguos que lo que se piensa y están relacionados con la división.

Las fracciones están presentes en la vida cotidiana, sobre todo en las mediciones usadas en la cocina, pero también están presentes en algunas monedas.

Fracciones diversas

De acuerdo a la relación que exista entre el numerador y el denominador, las fracciones pueden ser propiasimpropias. Las fracciones propias son aquellas en las que el numerador es menor que el denominador, contrario a las fracciones impropias, en las que el numerador es mayor que el denominador. Por otro lado, si comparamos dos o más fracciones, estas pueden ser homogéneas o heterogéneas. Las fracciones homogéneas son las que poseen el mismo denominador, las heterogéneas, en cambio, presentan diferentes denominadores.

Las fracciones pueden expresarse en forma de gráfica o viceversa. Lo emocionante de ellas es que las usamos a diario para dividir cosas o cantidades.

Gráficas de fracciones

Las fracciones suelen expresarse en gráficos para interpretar de manera más sencilla los datos. La forma para representar estos gráficos dependen del tipo de fracción. Si la fracción es propia elegimos cualquier figura, la dividimos en partes iguales según el denominador y señalamos las partes que indique el numerador. Cuando se trata de una fracción impropia dividimos una figura geométrica en las partes que señale el denominador, pero debido a que en este tipo de fracción el numerador es mayor que el denominador, serán necesarias más de una figuras.

Los números mixtos son un tipo de número fraccionario que posee una parte entera y otra fraccionaria.

Orden de fracción

Las fracciones presentan un sentido de orden, es decir, hay fracciones que son mayores o menores que otras. Una herramienta muy útil para reconocer este orden es la recta numérica. Se trata de un gráfico en forma de línea horizontal en el que los números están ordenados de menor a mayor. Para ubicar fracciones propias en la recta numérica dividimos la unidad en segmentos iguales según indique el denominador y la fracción se ubicaría en el número de segmento indicado por el numerador. Las fracciones impropias, por su parte, deben ser transformadas en números mixtos.

En la recta numérica, si se toma un número como referencia, los números de su izquierda son menores a él y los de la derecha mayores.

Problemas con fracciones

Las fracciones, además de ayudarnos a resolver problemas que impliquen proporciones, nos permiten resolver las operaciones básicas matemáticas como la adición, la sustracción, la multiplicación y al división. En el caso de la adición y la sustracción de fracciones debemos tener en cuenta su tipo: si las fracciones son homogéneas sumamos o restamos los numeradores y colocamos el denominador, si son heterogéneas usamos el método de cruz para resolverlas. Las multiplicaciones se resuelven de forma lineal, al multiplicar los numeradores y los denominadores.

La adición y sustracción de fracciones heterogéneas suele realizarse por el método en cruz que permite calcular de manera directa fracciones equivalentes.

CAPÍTULO 4 / TEMA 2

CUERPOS GEOMÉTRICOS

Los cuerpos geométricos ocupan un lugar en el espacio y poseen tres dimensiones: alto, largo y ancho. Un ejemplo de esto son los dados, los cuales tienen forma de cubo; o una pelota de fútbol, que tiene forma de esfera. Si miras a tu alrededor, es posible que encuentres diferentes cuerpos geométricos con los que interactúas todos los días.

cuerpos geométricos y sus tipos

Existen dos tipos de cuerpos geométricos: los poliedros y los cuerpos redondos.

Los poliedros tienen todas sus caras planas y no pueden rodar. Entre los poliedros más conocidos encontramos:

VER INFOGRAFÍA

Pirámides de Egipto

Las pirámides de Egipto fueron construidas hace miles de años por el primer arquitecto reconocido en la historia: Imhotep. Estos increíbles monumentos servían como tumba para los faraones y fueron construidos en forma de pirámide cuadrangular porque simbolizan los rayos del Sol. Creían que, de esta manera, el alma de los faraones iría directo al cielo.

Los cuerpos redondos están formados por una cara en forma curva y pueden rodar. Encontramos los siguientes:

¿Sabías qué?

El Sol es la esfera más perfecta que se ha observado hasta el momento. Si esta esfera estuviese, vacía necesitaríamos un millón de planetas Tierra para llenarla.

elementos de los cuerpos geométricos

Los elementos de un cuerpo geométrico son: caras, aristas y vértices.

  • Caras: son figuras planas que rodean el cuerpo geométrico. Las caras de las bases sirven para apoyarse en el plano.
  • Aristas: son las uniones entre dos caras de un cuerpo.
  • Vértices: son los puntos de unión de tres o más aristas.

Atomium

Es una de las construcciones más impresionantes de Bruselas y fue construida para la exposición universal de 1958. Está construido por 9 esferas y su diseño completo tiene forma de cubo. En la esfera más alta los visitantes pueden conocer el restaurante circular y una de las vistas panorámicas más grandiosas de la ciudad. Una de las esferas tiene una exposición con los detalles de su construcción, mientras que otra está dedicada a juegos interactivos para niños.

¡Observa y responde!

  • ¿Qué elementos de la imagen son cuerpos redondos?
    Solución
    La lata de gaseosa, la Tierra y el cono de tránsito.
  • ¿Qué elementos son poliedros?
    Solución
    La caja de cereal, la pirámide y la caja marrón.
  • ¿Cómo se llama el cuerpo geométrico representado por la lata de gaseosa?
    Solución
    Cilindro.
  • ¿Cómo se llama el cuerpo geométrico representado por la caja marrón?
    Solución
    Cubo.
  • ¿Qué forma tiene la base de la pirámide?
    Solución
    Cuadrangular.
  • ¿Cuántas caras, vértices y aristas tiene esta pirámide?
    Solución
    5 caras, 5 vértices y 8 aristas.
  • ¿Qué cuerpo geométrico es la Tierra?
    Solución
    Una esfera.
  • ¿Cuántas caras, vértices y aristas tiene la caja de cereales?
    Solución
    6 caras, 8 vértice y 12 aristas.
  • ¿Qué cuerpo geométrico representa la caja de cereal?
    Solución
    Un prisma cuadrangular.

construcción de cuerpos geométricos

Podemos dibujar figuras planas como el triángulo en una hoja con las herramientas de geometría, pero para construir un cuerpo geométrico necesitamos dibujar con perspectiva, ya que estos cuerpos tienen profundidad. Veremos que los diagramas nos ayudarán a identificar las características que tiene cada cuerpo geométrico.

¿Qué podemos observar en este diagrama? ¿Qué cuerpo geométrico será? Como vemos, está formado por triángulos que son las caras del cuerpo. El triángulo que se encuentra en el medio es la base de la figura y el resto serán las caras laterales. El cuerpo geométrico que cumple con estas características es la pirámide triangular.

¡A practicar!

  1. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Un cono.
  2. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Una pirámide cuadrangular.
  3. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Un cubo.

Relación de los cuerpos geométricos y las figuras planas

Las caras de los cuerpos geométricos están formadas por figuras planas. Si observamos una caja de zapatos con la tapa al frente, notaremos que la figura plana es un rectángulo. ¿Qué pasará con la forma de las caras si la apoyamos en la mesa?

La forma de las caras también son rectángulos, entonces, la caja en forma de prisma con caras rectangulares está relacionada directamente con la figura plana llamada rectángulo.

Pirámide del Louvre

El museo de Louvre en París es uno de los museos más importantes de Francia y en su entrada se encuentra una pirámide de cristal, justo en el patio del palacio y en frente al jardín de las Tullerías. La diseñó Ieoh Ming Pei y tiene las mismas medidas que la pirámide de Keops ubicada en Egipto. Este monumento con forma de pirámide cuadrangular posee todas sus caras triangulares cubiertas por 673 placas de vidrio con formas de triángulos y rombos.

¡Cuenta caras, vértices y aristas!

  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    7 caras, 10 vértices y 15 aristas.
  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    7 caras, 8 vértices y 12 aristas.

  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    8 caras, 12 vértices y 18 aristas.

 

RECURSOS PARA DOCENTES

Artículo “Prismas”

Este recurso le permitirá obtener más información sobre los prismas y sus características.

VER

Artículo “Cuerpos redondos. Áreas y volúmenes.”

Este artículo le permitirá profundizar sobre la manera en que se generan los cuerpos de redondos y las características de los mismos.

VER

CAPÍTULO 3 / TEMA 3

Gráficas de fracciones

Las gráficas son recursos visuales que permiten representar datos numéricos, como las fracciones. En este tipo de problemas podemos usar gran variedad de figuras para expresar una fracción de manera más sencilla, y así facilitar su interpretación. Los pasos para poder graficar una fracción dependen de su tipo.

Graficar una fracción propia

Podemos expresar fracciones a través de diagramas, pero para comprender cómo realizar un gráfico es importante recordar que una fracción es la representación de una o varias partes iguales de la unidad, donde:

El denominador representa el número de partes que se dividen de la unidad.

El numerador es el número de partes que se toman o se consideran de la unidad.

Toda fracción propia cumple una condición: el numerador siempre es menor que el denominador.

Pasos para graficar una fracción propia

  1. Elige la figura en la que se va a representar la fracción. Puede ser un triángulo, círculo, cuadrado, rectángulo, etc.
  2. Divide la figura elegida en tantas partes como indique el denominador de la fracción. Todas las partes deben ser iguales.
  3. Señala el número de partes que indique el numerador de la fracción.

– Grafica la fracción \frac{3}{4}

La figura que seleccionaremos en este caso será un triángulo, pero recuerda que puede ser cualquier figura. Como el denominador de la fracción es cuatro (4), la figura debe estar dividida en cuatro partes iguales:

Luego señalamos el número de partes que indique el numerador, en este caso serían tres (3) partes:

De manera gráfica es más fácil entender la representación de la fracción “tres cuartos”.

Otros ejemplos:

¿Sabías qué?
Las fracciones no solo pueden representarse con figuras geométricas, también lo pueden hacer en la recta numérica.

¿Cómo graficar fracciones cuyo numerador es igual al denominador?

A este tipo de fracción se lo denomina fracción igual la unidad porque, al ser iguales el numerador y el denominador, el cociente de ambos siempre va a ser uno (1). Por esta razón la representamos como toda la figura geométrica:

VER INFOGRAFÍA

Graficar una fracción impropia

En las fracciones impropias el numerador siempre es mayor al denominador y, como su resultado es mayor a la unidad, se requiere más de una figura geométrica para representarlas.

Pasos para graficar una fracción impropia

  1. Elige la figura en la que se va a representar la fracción.
  2. Divide la figura elegida en tantas partes como indique el denominador de la fracción. Todas las partes deben ser iguales.
  3. Señala el número de partes que indique el numerador de la fracción. Como es una fracción impropia van a faltar partes para señalar.
  4. Realiza tantas figuras geométricas hasta que el número de partes del numerador pueda ser señalado.

– Grafica la fracción \frac{10}{6}

Primero se divide la figura en 6 partes iguales:

Como el numerador es igual a 10, nos hace falta otra figura idéntica para completar las 10 partes que se van a seleccionar. Recuerda que se pueden agregar tantas figuras como sean necesarias hasta poder representar el número de partes del numerador.

Como las fracciones impropias tienen el numerador mayor al denominador, siempre van a estar representadas con más de una figura, porque representan a “algo” mayor que la unidad. Por esta razón, las fracciones de este tipo también pueden representarse como números mixtos. Por ejemplo la fracción 10/6 en número mixto se representa como 1 4/6.

 

Problemas cotidianos

Expresiones como “un cuarto de hora”, “media taza de té”, “tres cuartas partes de la población”, son algunos ejemplos en los que se emplean las fracciones dentro del lenguaje cotidiano. Por eso es común encontrarnos con fracciones y resolver problemas habituales. Algunos ejemplos son los siguientes:

– En una escuela solo la cuarta parte de los estudiantes practica fútbol, ¿cuál sería la representación gráfica de esa proporción?

Las expresión “cuarta parte” hace referencia a la fracción un cuarto: \frac{1}{4}. Entonces, lo que debemos hacer es graficar dicha fracción y responder así la interrogante del problema:

– En una fiesta compraron 3 pizzas del mismo tamaño que estaban cortadas en 4 partes iguales cada una. Uno de los invitados se comió una de las porciones, ¿cómo se puede expresar en forma de fracción al número de porciones de pizza que quedaron?

Lo primero que tenemos que hacer es imaginarnos las pizzas con el número total de porciones:

De la imagen determinamos que originalmente habían 12 porciones. Luego tenemos que imaginar cuántas porciones quedaron después de que el invitado se comiera una de ellas:

La imagen anterior representaría la gráfica del problema, ahora lo que debemos hacer es determinar la fracción de ella. Recordemos que el denominador es el número en el que se divide la unidad, en este caso la unidad es cada pizza y cada una de ellas está cortada o dividida en cuatro porciones, por lo tanto, el denominador es 4.

Como el numerador es el número de partes que se considera de la unidad, en este caso serían las porciones que quedaron, por lo tanto, el numerador es 11.

De esta manera se concluye que quedaron \frac{11}{4} de porciones de pizza.

Observa que \frac{11}{4} es una fracción impropia y por eso la unidad (la pizza) fue graficada más de una vez.

¡A practicar!

1. ¿Qué fracción representan las siguientes gráficas?

a)

Solución
\frac{2}{6}
b) 
Solución
\frac{3}{4}
c) 
Solución
\frac{5}{7}
d) 
Solución
\frac{2}{4}
e) 
Solución
\frac{7}{3}
e) 
Solución
\frac{2}{2}

2. ¿Cuál de las siguientes expresiones representa al siguiente gráfico?


a) Un quinto de taza de café.
b) Cinco medios de cucharadas de azúcar.
c) Tres medios de harina.
d) Tres quintas partes de agua.
e) Dos terceras partes de vinagre.

Solución
d) Tres quintas partes de agua \left ( \frac{3}{5} \right ).

RECURSOS PARA DOCENTES

Artículo “Fracciones”

El presente artículo destacado explica los elementos de una fracción y la forma de graficarlas de acuerdo a sus tipos. También presenta una serie de ejemplos que facilitan su comprensión.

VER

Enciclopedia “Recursos para docentes”

La enciclopedia muestra algunas herramientas para ayudar el proceso de aprendizaje de los estudiantes en todas las áreas de estudio.

VER