CAPÍTULO 1 / TEMA 2

CONJUNTO DE LOS NÚMEROS ENTEROS

El conjunto de los números enteros surge por la necesidad de expresar cantidades negativas. Aunque los números negativos se usan desde el siglo XV, fue en 1770 cuando Leonardo Euler justificó su uso. Luego fueron legalmente aceptados para crear un conjunto, más completo que los números naturales, denominados números enteros.

Cada región del mundo registra un clima distinto, por ejemplo, la Antártida suele tener temperaturas cercanas a los −10 °C en la costa, mientras que en Sudamérica la temperatura se acerca a los 20 °C. Estas situaciones se pueden describir gracias a los números enteros, un conjunto numérico amplio que incluye números positivos y negativos.

¿QUÉ SON LOS NÚMEROS ENTEROS?

Son un conjunto de número que sirven para representar valores positivos y negativos. El conjunto se denota por \mathbb{Z} y es:

\mathbb{Z} = \left \{ ...,-4, -3, -2, -1, 0, +1, +2, +3, +4, ... \right \}

El conjunto de los números enteros contiene otros conjuntos numéricos:

  • Enteros positivos (\mathbb{Z}^{+})

\mathbb{Z}^{+} = \left \{+1, +2, +3, +4, ...\right \} = \left \{ 1,\, 2,\, 3,\, 4, ... \right \}

  • Enteros negativos (\mathbb{Z}^{-})

\mathbb{Z}^{-} = \left \{..., -4, -3, -2, -1\right \}

  • Números naturales (\mathbb{N})

\mathbb{N} = \left \{0,\, 1,\, 2,\, 3,\, 4, ... \right \}

¿Sabías qué?
El conjunto de los números enteros se denota con la letra Z por la palabra Zahlen, que en alemán significa “número”.

¡Es tu turno!

¿Cuáles de estos números son enteros?

+4      −1,5       0       1/3      −3      −8,79       15       +0,5       7/4      −1/8       2       10,8      −9

Solución

Los números de color rojo son los números enteros.

+4      −1,5       0       1/3       −3       −8,79       15       +0,5       7/4      −1/8       2       10,8      −9

Valor absoluto de un número entero

El valor absoluto de un número es igual a la distancia que existe desde cero (0) hasta ese número. Para un número x, el valor absoluto se denota como \left | x \right |.

– Ejemplo:

Un buzo se encuentra a −7 metros de profundidad. ¿Qué distancia hay desde donde está hasta el nivel del mar?

Para hallar el valor absoluto de −7, debes medir los espacios entre −7 y 0. Por lo tanto, la distancia que hay desde donde está el buzo hasta el nivel del mar es de 7 metros. Matemáticamente se expresa así:

\left |-7 \right | = 7

En conclusión, podemos definir el valor absoluto de un número x así:

\left | x \right |= x, si x> 0

\left | x \right |=-x, si x< 0

\left | x \right |=0, si x=0

– Ejemplo:

\left | 9 \right |=9

\left | -5 \right |=-(-5)=5

\left | 0 \right |=0

¿Cómo aparecieron los números enteros?

Desde la Antigüedad, hace unos 400 años a. C., el hombre ha buscado la manera de realizar cálculos para sus actividades cotidianas. En un principio, los números naturales \mathbb{N} eran suficientes para contar. Sin embargo, con el paso de los años, se necesitó un conjunto que incluyera valores negativos para expresar el déficit de una cantidad. Esta necesidad dio origen a los números enteros \mathbb{Z}, que incluye a los números naturales sin el cero, al cero y a los negativos de los números naturales.

REGLA DE LOS SIGNOS

Cuando realizamos operaciones con números enteros es probable que nos cueste identificar el signo que tendrá el resultado. Para esto existe la regla de los signos, la cual se aplica a todas las operaciones básicas: suma, resta, multiplicación y división.

En la suma y la resta

  • Si sumamos dos números negativos, el resultado será un número negativo.

\left ( -a \right )+\left ( -b \right ) = - \left ( a+b \right )

– Ejemplo:

(−3) + (−9) = −(3 + 9) = −12

(−5) + (−10) = −(5 + 10) = −15

  • Si sumamos dos números positivos, el resultado será un número positivo.

\left ( +a \right )+ \left ( +b \right ) = +\left ( a+b \right )

– Ejemplo:

(+8) + (+6) = +(8 + 6) = +14

(+43) + (+7) = +(43 + 7) = +50

  • Si sumamos un número positivo y un número negativo, ambos se restan y se mantiene el signo del número mayor.

Si \left | a \right |> \left | -b \right |, entonces \left ( +a \right ) + \left ( -b \right )= + \left ( a-b \right )

Si \left | -a \right |> \left | b \right |, entonces \left ( -a \right )+\left (+b \right )= - \left ( a-b \right )

– Ejemplo:

(+18) + (−4) = +(18 − 4) = +14

(−54) + (+20) = −(54 − 20) = −34

En el buceo es importante conocer hasta qué profundidad puede sumergirse un buzo. La superficie del mar se denota con el 0 y con números negativos hacia el fondo. A medida que el buzo baja, la presión sobre él aumenta y si realiza muy rápido el descenso puede ser dañino. A partir de los −50 metros hay que realizar el descenso lentamente para no correr riesgos.

En la multiplicación

  • Si multiplicamos dos números con signos iguales, el resultado será siempre positivo.

(+a)\times (+b) = + (a\times b)

(-a)\times (-b)=+(a\times b)

– Ejemplo:

(+26) × (+3) = +78

(−10) × (−5) = +50

  • Si multiplicamos dos números con signos diferentes, el resultado siempre será negativo.

(-a)\times (+b)=-(a\times b)

(+a)\times (-b)=-(a\times b)

– Ejemplo:

(−8) × (+15) = −120

(+12) × (−9) = −108

En la división

  • Si dividimos dos números con signos iguales, el resultado será positivo.

(+a)\div (+b)=+(a\div b)

(-a)\div (-b)=+(a \div b)

– Ejemplo:

(+81) ÷ (+9) = +9

(−322) ÷ (−23) = +14

  • Si dividimos dos números con signos diferentes, el resultado será negativo.

(+a)\div (-b)=-(a\div b)

(-a)\div (+b)=-(a\div b)

– Ejemplo:

(+180) ÷ (−5) = −36

(−250) ÷ (+50) = −5

APLICACIÓN DE LOS NÚMEROS ENTEROS

Los números enteros tienen múltiples aplicaciones, algunas de las más comunes son las siguientes:

  • Expresar temperaturas en diferentes épocas del año, por ejemplo, en algunas ciudades de Argentina, durante el verano la temperatura es de 22 ºC, mientras que durante el invierno llega a −3 ºC.
  • Indicar la altura a la que se encuentran ciertas regiones respecto al nivel del mar. Las regiones que se encuentran por encima del nivel del mar tienen altura positiva, mientras que las que se localizan por debajo tienen altura negativa, por ejemplo, la ciudad de Lagunillas en Venezuela se ubica a −12 msnm.
  • Especificar el tiempo antes y después de Cristo. Consideramos negativos los años antes de Cristo (a. C.) y positivos los años después de Cristo (d. C.).
  • Indicar el saldo en una cuenta bancaria, donde los números positivos representan un saldo a nuestro favor y los negativos representan deudas.
Si el lunes tienes disponible $ 155, el martes retiras $ 32 y te depositan $ 13, y el miércoles el banco te descuenta $ 10 por comisión, ¿cuánto dinero tienes para el jueves? Este es un problema en el que las entradas son números positivos y las salidas o descuentos son números negativos. Lo puedes plantear así: 155 − 32 + 13 −10 = 126. ¡Te quedan $ 126!

¡A practicar!

1. Resuelve estas operaciones:

  • 5 − 12
    Solución
    5 − 12 = −7
  • −13 − 15
    Solución
    −13 − 15 = −28
  • 2 − 7
    Solución
    2 − 7 = −5
  • 3 × (−37)
    Solución
    3 × (−37) = −111
  • (−2) × (−15)
    Solución
    (−2) × (−15) = 30
  • −17 × 18
    Solución
    −17 × 18 = −306
  • 10 ÷ (−5)
    Solución
    10 ÷ (−5) = −2
RECURSOS PARA DOCENTES

Artículo “La clasificación de los números”

En este artículo encontrará una descripción general sobre la clasificación de los números, desde los naturales hasta los complejos.

VER

Artículo “Regla de los signos”

Este artículo explica cómo utilizar la regla de los signos, tanto para la suma y la resta, como para la multiplicación y la división.

VER

CAPÍTULO 2 / TEMA 5 (REVISIÓN)

OPERACIONES CON NATURALES | ¿QUÉ APRENDIMOS?

CÁLCULOS MATEMÁTICOS

LOS CÁLCULOS MATEMÁTICOS SON OPERACIONES QUE REALIZAMOS PARA CONOCER EL RESULTADO DE ALGO EXPRESADO EN NÚMEROS. LAS OPERACIONES QUE UTILIZAMOS CON MAYOR FRECUENCIA SON LA SUMA Y LA RESTA. PARA REGISTRARLAS EN FORMA ESCRITA UTILIZAMOS EL SÍMBOLO + (QUE SE LEE “MÁS”) Y EL SÍMBOLO − (QUE SE LEE “MENOS”). REALIZAMOS CÁLCULOS MATEMÁTICOS EN NUESTRA VIDA DIARIA: CUANDO PAGAMOS ALGO, AL MEDIR EL TIEMPO, PARA CONOCER UNA DISTANCIA Y HASTA PARA HACER MÚSICA.

LA MATEMÁTICA NO SOLO NOS SIRVE PARA LA ESCUELA, SINO QUE LA UTILIZAMOS A DIARIO EN NUESTRA VIDA COTIDIANA.

ADICIÓN O SUMA

LA ADICIÓN O SUMA ES LA OPERACIÓN DE AGREGAR O AGRUPAR CANTIDADES PARA OBTENER UN RESULTADO. ESAS CANTIDADES LLEVAN EL NOMBRE DE SUMANDOS, EL RESULTADO SE DENOMINA SUMA. AL SUMAR NÚMEROS DE DOS DÍGITOS A VECES ES CONVENIENTE ESCRIBIR LA OPERACIÓN EN FORMA VERTICAL. EN ESE CASO ES IMPORTANTE UBICAR EN LA COLUMNA DE LA DERECHA LAS UNIDADES Y EN LA DE LA IZQUIERDA LAS DECENAS.

CUANDO LOS NÚMEROS SON PEQUEÑOS PODEMOS USAR PALITOS O LOS DEDOS PARA HACER LA SUMA.

SUSTRACCIÓN O RESTA

LA SUSTRACCIÓN O RESTA ES LA OPERACIÓN CONTRARIA A LA SUMA. CONSISTE EN EXTRAER O QUITAR A UNA CANTIDAD MAYOR A UNA MENOR. AL NÚMERO MAYOR LO LLAMAMOS MINUENDO Y AL MENOR LO LLAMAMOS SUSTRAENDO, EL RESULTADO DE LA RESTA SE CONOCE COMO DIFERENCIA O RESTA.

EN LA RESTA USAMOS EL SIGNO − QUE SE LEE “MENOS”. POR EJEMPLO, 4 − 3 = 1 SE LEE “CUATRO MENOS TRES ES IGUAL A UNO”.

SITUACIONES PROBLEMÁTICAS

LAS SUMAS Y RESTAS SON LAS OPERACIONES MATEMÁTICAS MÁS USADAS POR TODOS DÍA A DÍA, ASÍ QUE ES POSIBLE QUE MUCHAS SITUACIONES LAS TENGAS QUE RESOLVER CON CÁLCULOS. CUANDO ESTO SUCEDE, ES IMPORTANTE QUE SIGAMOS UNA SERIE DE PASOS QUE NOS AYUDEN A RAZONAR Y ORGANIZAR LA INFORMACIÓN PARA RESOLVER EL PROBLEMA. ALGUNOS DE ESTOS PASOS SON IDENTIFICAR LOS DATOS, PENSAR EN EL PROCEDIMIENTO PARA LA RESOLUCIÓN, HACER LA OPERACIÓN Y DAR LA RESPUESTA. 

AUNQUE NO LO CREAS, LAS OPERACIONES MATEMÁTICAS LAS USAS SIEMPRE, ASÍ QUE DE TANTO PRACTICAR PODRÁS HACER TODOS ESTOS CÁLCULOS MENTALMENTE, ES DECIR, SIN NECESIDAD DE LÁPIZ Y PAPEL.

 

CAPÍTULO 2 / TEMA 4

INECUACIÓN

No todas las situaciones que se plantean en matemática tienen una solución puntual o exacta. Existen casos donde la respuesta a un planteamiento viene representada por un intervalo de valores que satisfacen la condición. Esto podemos verlo en las inecuaciones: expresiones matemáticas con un intervalo de números como solución.

la INECUACIÓN y sus elementos

Una inecuación es una expresión matemática que contiene al menos una variable y está caracterizada por incluir símbolos de desigualdad entre los miembros, de manera que su resultado es un conjunto de valores que la variable puede tomar para que se cumpla la desigualdad planteada.

Los elementos de las inecuaciones son los siguientes:

  • Miembros: son las partes de una inecuación que están separadas por el signo de la desigualdad.
  • Términos: son las expresiones literales o numéricas separadas por los signos más (+) o menos (−).
  • Variable: es la letra que representa al conjunto de valores que satisfacen la desigualdad.
  • Símbolo de desigualdad: es el que indica la relación entre los miembros, pueden ser <, >, ≤ o ≥.

Grado de una inecuación

El grado de una inecuación se encuentra indicado por el mayor exponente que tenga la variable. Si el mayor exponente de una inecuación es 3, esta es de tercer grado; si es 2, es de segundo grado; y si no tiene exponente, se entiende que está elevado a la unidad y, por lo tanto, la inecuación es de primer grado.

¿qué son los intervalos?

Los intervalos son los rangos de valores que definen la solución de la inecuación. Estos pueden ser abiertos, cerrados o semiabiertos.

  • Intervalos abiertos: no incluyen los límites del intervalo. Se denotan con paréntesis, por ejemplo (a, b) y en la gráfica se representan con el símbolo ○.
  • Intervalos cerrados: incluyen los límites del intervalo. Se representa con corchetes, por ejemplo [a, b] y en la gráfica se representan con el símbolo ●.
  • Intervalos semiabiertos: incluye uno de los extremos del intervalo. Así que un extremo es abierto y el otro es cerrado, por ejemplo [a, b).

¿Sabías qué?
Los límites de intervalos que incluyen a + o − siempre son abiertos.

– Ejemplo:

Este dibujo muestra todos los números comprendidos entre el 1 y el 7 pero no incluye ni al 1 ni al 7 porque están representados con ○. Cuando los extremos de un intervalo no están incluidos se usan paréntesis y el intervalo se denota como (1,7).

– Otros ejemplos:

  • (−5,1]

  • [1,7]

  • [−5,1)

símbolos de desigualdad

Símbolo Significado Ejemplo Representación en la recta numérica Notación del intervalo
> Mayor que x > 5 (5,+)
< Menor que x < 5 (−,5)
Mayor o igual que x ≥ 5 [5,+)
Menor o igual que x ≤ 5 (−,5]
Las soluciones de las inecuaciones pueden ser intervalos cuyos límites estén completamente definidos y conocidos, por ejemplo, [−2, 19) o bien, por rangos donde alguno o ambos límites incluyen el ∞ (ya sea hacia el valor positivo o negativo). Cuando la solución es (−∞, +∞) en notación de conjunto se dice que pertenece a los reales.

¿CÓMO resolver UNA INECUACIÓN?

El procedimiento es muy similar al que empleamos cuando despejamos ecuaciones. Las reglas son las siguientes:

  1. Todo número que sume en un miembro de la desigualdad, pasa al otro miembro como resta.
  2. Todo número que reste en un miembro de la desigualdad, pasa al otro miembro como suma.
  3. Si en un miembro de la desigualdad hay un número negativo que multiplica a otro, este pasa al otro lado a dividir (con su signo) y el signo de desigualdad se debe invertir.
  4. Si en un miembro de la desigualdad hay un número negativo que divide, pasa al otro lado a multiplicar (con su signo) y el signo de desigualdad se debe invertir.
En la imagen podemos ver cómo se comparan por medio de símbolos de desigualdad dos segmentos de rectas. En este caso, la expresión indica que el segmento que va de A’C tiene una mayor longitud que el segmento AB. No todas las expresiones que contengan desigualdades son inecuaciones, ya que además, se requiere de por lo menos una variable.

– Ejemplo 1:

x-3> 1

Como el número 3 está acompañado del signo negativo, pasa al otro lado del símbolo “mayor que” con el signo positivo.

x> 1+3

Luego resolvemos la suma.

x> 4

La solución de esta inecuación incluye a todos lo números mayores a 4, más no al 4.

Solución: (4,+∞)

En una recta numérica lo representamos así:

Si deseamos comprobar la solución, basta con sustituir la variable con valores mayores a 4. Si satisface la desigualdad, el resultado será correcto.

Recuerda que el intervalo es abierto y por lo tanto no debes tomar en cuenta al número 4. Observa:

x-3> 1

\boldsymbol{4}-3> {\color{Red} \boldsymbol{1> 1}}     No satisface la desigualdad porque 1 = 1.

Si sustituimos por valores mayores a 4, como 5, 6 o 7, la desigualdad sí se cumple. Observa:

\boldsymbol{5}-3> 1\Rightarrow {\color{Blue} \boldsymbol{2> 1}}

\boldsymbol{6}-3> 1\Rightarrow \boldsymbol{{\color{Blue} 3> 1}}

\boldsymbol{7}-3> 1\Rightarrow \boldsymbol{{\color{Blue} 4> 1}}


– Ejemplo 2:

-4x-8\geq -2

Primero unimos los términos semejantes en cada miembro. Los que están como resta pasan al otro lado de la igualdad a sumar.

-4x\geq -2+8

Después resolvemos las operaciones.

-4x\geq 6

Como −4 multiplica a la variable, esta pasa al otro miembro de la inecuación a dividir. Mantenemos el signo negativo e invertimos el signo de la desigualdad.

x\leq -\frac{6}{4}

La solución de esta inecuaçión incluye a todos los números menores o iguales a −6/4.

Solución: (−∞,−6/4]

En la recta numérica lo representamos así:

Comprobamos el resultado con números iguales y menores a −6/4.

-4\left ( \boldsymbol{-\frac{6}{4}} \right )-8\geq -2\Rightarrow 6-8\geq -2\Rightarrow {\color{Blue} \boldsymbol{-2\geq -2}}

-4\left ( \boldsymbol{-\frac{7}{4}} \right )-8\geq -2\Rightarrow 7-8\geq -2\Rightarrow {\color{Blue} \boldsymbol{-1\geq -2}}

-4\left ( \boldsymbol{-\frac{8}{4}} \right )-8\geq -2\Rightarrow 8-8\geq -2\Rightarrow {\color{Blue} \boldsymbol{0\geq -2}}


– Ejemplo 3:

-3x+5> 15+2x

Unimos términos semejantes en cada miembro. Los que están como suma pasan al otro lado de la igualdad a restar.

-3x-2x> 15-5

Resolvemos las operaciones.

-5x> 10

Como −5 multiplica a la variable, este número pasa al otro miembro de la inecuación a dividir. Mantenemos el signo negativo e invertimos el signo de la desigualdad.

x< -\frac{10}{5}

x< -2

La solución incluye a todos los números menores a −2.

Solución: (−∞,−2)

En la recta numérica lo representamos así:

Comprobamos el resultado al sustituir la variable con números menores a −2.

-3(\boldsymbol{-3})+5> 15+2(\boldsymbol{-3})\Rightarrow 9+5> 15-6\Rightarrow {\color{Blue} \boldsymbol{14> 9}}

-3(\boldsymbol{-4})+5> 15+2(\boldsymbol{-4})\Rightarrow 12+5> 15-8\Rightarrow {\color{Blue} \boldsymbol{17>7}}

-3(\boldsymbol{-5})+5> 15+2(\boldsymbol{-5})\Rightarrow 15+5> 15-10\Rightarrow {\color{Blue} \boldsymbol{20>5}}

DIFERENCIA ENTRE ECUACIÓN E INECUACIÓN

Una de las principales diferencias entre las ecuaciones y las inecuaciones se debe a que la primera emplea igualdad entre sus miembros, mientras que la segunda utiliza la desigualdad. Esto quiere decir que la solución de una ecuación representa un valor puntual en la recta real, mientras que en las inecuaciones, las soluciones se expresan mediante intervalos, lo que significa que entre los dos extremos del intervalo hay infinitos números que satisfacen la inecuación.

Las operaciones para despejar las variables en las inecuaciones obedecen las mismas reglas que con las ecuaciones, pero adicionalmente, debemos tener especial atención cuando multiplicamos o dividimos ambos miembros por un número negativo, ya que al hacerlo, debemos cambiar el sentido de la desigualdad.

USOS DE LAS INECUACIONES

Las inecuaciones tienen infinidades de usos, que van desde situaciones cotidianas hasta aplicaciones más avanzadas a nivel universitario como la programación lineal. Casi cualquier situación que implique un valor o intervalo límite dentro de los cuales pueda tomar valor una variable, puede ser formulado a partir de una inecuación. Por ejemplo:

  • Para expresar el tiempo máximo que disponemos para llegar a un lugar.
  • Para representar el saldo disponible en nuestro teléfono celular para realizar llamadas.
  • Para indicar el peso máximo que puede registrar una balanza.
  • Para expresar el límite máximo de velocidad en una autopista.
  • Para expresar costos totales máximos o utilidades mínimas en una empresa.

¡A practicar!

Resuelve las siguientes inecuaciones.

  • 2x-5\leq 5x
Solución

2x-5\leq 5x

2x-5x\leq 5

-3x\leq 5

x\geq -\frac{5}{3}

  • 5x< 3x-5
Solución

5x< 3x-5

5x-3x< -5

2x< -5

x< -\frac{5}{2}

  • 4x+6> 2x-8
Solución

4x+6> 2x-8

4x-2x> -8-6

2x> -14

x> -\frac{14}{2}

x> -7

  • 13x-3x+2-5x\geq -10+2x+6
Solución

13x-3x+2-5x\geq -10+2x+6

13x-3x-5x-2x\geq -10+6-2

3x\geq -6

x\geq -\frac{6}{3}

x\geq -2

  • 5x+6-3x> 34+8x-10
Solución

5x+6-3x> 34+8x-10

5x-3x-8x> 34-10-6

-6x> 18

x< -\frac{18}{6}

x< -3

  • 2\left ( x-3 \right )\leq 4x+2
Solución

2\left ( x-3 \right )\leq 4x+2

2x-6\leq 4x+2

2x-4x\leq 2+6

-2x\leq 8

x\geq -\frac{8}{2}

x\geq -4

RECURSOS PARA DOCENTES

Artículo “Inecuaciones”

En este artículo encontrará información acerca de las inecuaciones, sus elementos y algunos ejemplos.

VER 

Artículo “Inecuaciones con valor absoluto”

Con este recurso podrá ampliar la información sobre las inecuaciones y aplicarla para resolver estos cálculos con valor absoluto.

VER

Artículo “Inecuación de primer grado”

El artículo describe cómo resolver problemas que involucren inecuaciones con variables elevadas a la unidad, es decir, de primer grado.

VER

CAPÍTULO 2 / TEMA 3

Operaciones combinadas

Hay ocasiones en las que pueden aparecer varias operaciones matemáticas en un mismo problema: estas expresiones se conocen como operaciones combinadas. Para resolverlas, es importante que tengas buenas bases en las propiedades de la suma, la resta, la multiplicación y la división, así como también que sepas priorizar entre ellas.

¿Qué es una operación combinada?

Es una expresión que contiene dos o más operaciones matemáticas, como la suma, la resta, la división y la multiplicación. Algunas veces puede aparecer con paréntesis para separar términos dentro de la expresión.

Para estos problemas se deben tener en cuenta dos cosas:

  1. La regla de los signos.
  2. La prioridad de operaciones, lo que significa que hay operaciones que deben resolverse antes que otras.

Ley de los signos en suma y resta

Para resolver operaciones combinadas es indispensable comprender ciertos criterios que cumplen los números en relación a su signo, a estos criterios se los conoce como “ley de los signos”. A continuación, te mostramos aquellos orientados únicamente a operaciones de suma y resta.

  1. Cuando se suman números positivos, el resultado es otro número con signo positivo:
    10 + 13 = 23
  2. Cuando se suman números negativos, se mantiene el signo negativo y suman los números:
    (−3) + (−2) = −5
  3. Cuando se tienen números con diferente signo, se restan y se coloca el signo que corresponda al número mayor:
    15 − 3 = 12 → El número mayor es 15 y como no tiene signo se entiende que es positivo, ya que por convención los números que no presentan signo se asumen como números positivos, así que al resultado no se le coloca signo.

    3 − 7 = −4 → El número mayor es el 7 y, por tener el signo menos, el resultado debe ser negativo.

¿Sabías qué?
El símbolo “÷” algunas veces es reemplazado por dos puntos “:” para indicar una división.

Ejercicios combinados de sumas y restas

Las operaciones combinadas de sumas y restas con números naturales son fáciles de reconocer porque no llevan paréntesis. En los ejercicios de este tipo, la resolución se hace de izquierda a derecha en el orden en que aparecen los números.

– Por ejemplo:

458 − 352 + 157 − 235 + 784 − 568

Primero debes resolver los dos primeros términos: 458 − 352 = 106, y colocar el resultado como reemplazo de esos números. Luego escribe los números siguientes con sus signos:

106 + 157 − 235 + 784 − 568

Suma el resultado anterior con el siguiente término:

106 + 157 − 235 + 784 − 568

Como el resultado de 106 + 157 es igual a 263, sustituye esos números y anota los números siguientes:

263 − 235 + 784 − 568

Debido a que el número que le sigue a 263 está precedido por un signo menos, la operación a realizar es una resta, es decir, 263 − 235, cuyo resultado es 28. Anota este resultado y resuelve con el número siguiente:

28 + 784 − 568

De 28 + 784 resulta 812, entonces, escribe este resultado junto con el último número que queda y resuelve:

812 − 568 = 244

Con esta última operación obtendrás el resultado del ejercicio. También puedes escribir la solución de esta forma:

458 − 352 + 157 − 235 + 784 − 568 = 244

En los ejercicios combinados de sumas y restas es importante conocer el valor posicional de los números y dominar correctamente estas operaciones. Aunque no es necesario mantener estrictamente el orden de resolución de izquierda a derecha (se pueden resolver los números positivos primero y los negativos después), se sugiere hacerlo para evitar errores.

Ejercicios combinados de multiplicación y división

Los ejercicios combinados que involucran multiplicación y división sin paréntesis se resuelven en este orden:

  1. Realiza las multiplicaciones y las divisiones primero.
  2. Realiza las sumas y restas de la manera en la que fue explicado en el punto anterior.

– Por ejemplo:

112 + 3 x 15 − 85

Resuelve primero la multiplicación 3 x 15:

112 + 3 x 15 − 85

Como 3 x 15 = 45, coloca el 45 como reemplazo de la expresión y respeta el orden de los demás números:

112 + 45 − 85

Ahora tenemos una operación combinada de suma y resta que puedes solucionar de izquierda a derecha como se explicó anteriormente:

112 + 45 − 85

157 − 85 = 72

El resultado es el siguiente:

112 + 3 x 15 − 85 = 72

 

– Otro ejemplo:

21 + 25 ÷ 5 − 12 + 8 x 6

Primero debes identificar los números que multiplican y dividen:

21 + 25 ÷ 5 − 12 + 8 x 6

Resuelve las operaciones de multiplicación y división y reemplaza por sus respectivos resultados. El orden y los signos del resto de los números se mantiene. Recuerda que 25 ÷ 5 = 5 y que 8 x 6 = 48. Al sustituir estos números queda:

21 + 5 − 12 + 48

Ya puedes resolver la operación combinada de suma y resta de la manera explicada anteriormente:

21 + 5 − 12 + 48

26 − 12 + 48

14 + 48 = 62

Expresa el resultado de la siguiente manera:

21 + 25 ÷ 5 − 12 + 8 x 6 = 62

 

Al momento de resolver ejercicios combinados, se debe prestar atención a los signos. Un signo que no sea correcto se traduce, en la mayoría de los casos, en un resultado erróneo. De igual forma se debe tener presente el orden de las operaciones a resolver, es decir, primero resolver multiplicaciones y divisiones, después resolver sumas y restas.
¡A practicar!

1. Resuelve las siguientes operaciones combinadas de sumas y restas sin paréntesis:

a) 115 − 94 + 525 − 32 =

Solución
514
b) 350 − 257 − 50 + 117 =
Solución
160
c) 450 − 358 + 15 + 452 − 527 + 13 =
Solución
45
d) 1.975 − 1.875 + 252 =
Solución
352
e) 759 − 651 + 875 − 532=
Solución
451

2. Resuelve las siguientes operaciones combinadas con multiplicaciones y divisiones sin paréntesis:

a) 14 − 6 x 3 − 11 =

Solución
−15
b) 28 − 12 ÷ 3 + 10 =
Solución
34
c) 42 + 5 x 5 − 48 + 42 ÷ 6 =
Solución
26
d) 272 − 105 + 6 x 6 − 15 + 2 x 2 =
Solución
192
e) 3.615 ÷ 15 + 9 − 90 + 5 x 2 =
Solución
170

RECURSOS PARA DOCENTES

Artículo “Ley de los signos: suma y resta”

Este artículo explica la ley de los signos para la suma y la resta. También muestra ejemplos de ejercicios para cada caso.

VER

Artículo “Números negativos”

Este artículo ayuda a ampliar el conocimiento sobre los números negativos y algunas de sus aplicaciones. También incluye una serie de ejercicios para resolver.

VER

Artículo “Cálculos combinados”

Este artículo destacado profundiza en explicaciones sobre los cálculos combinados y su metodología para resolverlos.

VER