Al adicionar una sustancia en un agua, ésta se puede disolver o no. Lo que determina que ocurra un hecho u otro es la solubilidad del soluto, la cual a su vez depende diferentes factores, entre ellos, la polaridad.
Solubilidad
La solubilidad es la capacidad que tiene una sustancia de disolverse en otra, por ejemplo: la sal se disuelve en el agua, por tanto la sal es soluble en agua.
Dicho de otra forma, la solubilidad es la máxima cantidad de soluto que se puede disolver en un determinado solvente y se expresa como:
Solubilidad = (g soluto ÷ g solvente) x 100
¡Recuerda!
Una sustancia tiene una solubilidad diferente para cada solvente.
¿Cuál es la solubilidad de una sustancia en 140 g de agua si sólo se disuelven 5 g de la misma?
Solubilidad = (5 g soluto ÷ 140 g) x 100 = 3,6
Polaridad
La polaridad es una propiedad de las moléculas que se manifiesta cuando existe una separación de cargas en las mismas que da lugar a la formación de un dipolo eléctrico.
En este sentido se distinguen dos tipos de moléculas: polares y apolares. Las primeras son aquellas que poseen dipolos eléctricos, es decir, tienen un extremo positivo y otro negativo. En tanto, las segundas no poseen dipolo eléctrico.
¿Polares o apolares?
Solubilidad y polaridad
La solubilidad de una sustancia en un determinado solvente dependerá de la polaridad de ambos componentes. En general, la solubilidad en función de la polaridad está determinada por la siguiente regla: “Lo semejante disuelve a lo semejante”.
La anterior premisa significa que una sustancia polar se disuelve en un solvente polar, en tanto, un soluto apolar se disuelve en un disolvente apolar.
Etanol en agua
El etanol y el agua son sustancias polares que forman enlaces o puentes de hidrógeno (fuerza intermolecular), de manera que cuando el etanol se añade al agua, inicia el proceso de solvatación, es decir, las moléculas de etanol y agua empiezan a interactuar entre sí y dan como resultado la formación de puentes de hidrogeno entre estas.
Hexano en agua
El agua es una sustancia polar capaz de formar puentes de hidrógeno, mientras que el hexano es una sustancia apolar cuyas fuerzas dispersión de London son más débiles. Entonces, considerando la regla de “lo semejante disuelve a lo semejante”, se puede deducir que el hexano no se disuelve en agua.
A nivel molecular, lo que ocurre es que la interacción agua-agua es más fuerte que la interacción agua-hexano y como resultado el hexano no se disuelve en el agua.
Miscible e inmiscible
Los términos miscibles e inmiscibles son utilizados frecuentemente para describir la solubilidad de un líquido en otro. Dos líquidos son miscibles cuando forman una solución o mezcla homogénea, en tanto, son inmiscibles cuando no forman una solución.
Ejercicios:
1) Resuelve los siguientes problemas.
a) En 150 g de agua se disolvieron 40 g de una sustancia. ¿Cuál es la solubilidad de la sustancia?
b) La solubilidad de una sustancia A en 120 g de agua es igual a 3. ¿Cuántos gramos de de A se disolvieron en el agua?
2) Una con flecha los elementos de las columnas A y B según corresponda.
A
B
Metanol
Cloroformo
Polar
Agua
No polar
Hexano
Glicerina
3) Predice la solubilidad de las siguientes sustancias en agua.
a) Tolueno
b) Ácido acético
d) Metanol
e) Acetona
4) Predice la solubilidad de las siguientes sustancias en tolueno.
La membrana celular o membrana plasmática es una delgada capa semipermeable que rodea el citoplasma celular. Su función es proteger la integridad del interior de la célula y regular el paso de las sustancias.
¿Qué es el transporte celular?
Se define como transporte celular al movimiento a través del cual las sustancias entran o salen de las células, este movimiento es regulado por la membrana plasmática. Al ser la membrana una estructura semipermeable, tiene un control sobre todo aquello que puede entrar o salir de las células.
La membrana plasmática de cualquier célula contiene una variedad de estructuras que le ayudan a mantener el equilibrio interno de las mismas, estas estructuras participan en alguno de los dos tipos de transporte celular, sean el pasivo o el activo.
El transporte celular es un mecanismo sumamente importante para la célula porque le permite expulsar de su interior todas las sustancias de desecho provenientes del metabolismo o incorporar aquellas que sean necesarias para la nutrición.
¿Cuáles son los tipos de transporte celular?
Son dos los mecanismos principales que le permiten a la célula mover sustancias a través de la membrana plasmática: el transporte pasivo y el transporte activo. La diferencia principal entre ambos procesos radica en el gasto de energía, mientras que en uno es necesario el gasto de moléculas de ATP, en el otro no hacen falta.
¿Qué es el transporte activo?
Definimos el transporte activo como aquel proceso de intercambio de sustancias a través de la membrana celular en el que es necesario el uso de energía en forma de adenosin trifosfato (ATP). El gasto de energía es necesario ya que, a diferencia del transporte pasivo, este se realiza en contra de un gradiente de concentración, es decir, la concentración de la sustancia dentro de la célula es mayor que en el medio extracelular o viceversa.
¿Sabías qué...?
Cuando las moléculas son muy grandes y de alto peso molecular, las células crean vesículas membranosas que les permiten englobar las sustancias nutritivas o de desecho, para incluirlas o eliminarlas, este mecanismo también requiere el uso de energía y se divide en dos: endocitosis y exocitosis.
A través de la membrana y en contra del gradiente de concentración, se pueden mover desde pequeños iones y moléculas, hasta grandes sustancias de desecho que necesitan ser eliminadas. Algunas células son incluso capaces de engullir microorganismos unicelulares enteros.
¿Qué es un gradiente electroquímico?
Un gradiente electroquímico es una diferencia eléctrica entre el medio intracelular y extracelular. Se produce a causa de que las células contienen proteínas, en su mayoría cargadas negativamente e iones que entran y salen, lo que provoca que haya una diferencia de carga entre ambas zonas.
Movimiento a través de un gradiente: tipos de transporte activo
Para mover sustancias en contra de un gradiente electroquímico, la célula debe usar energía en forma de ATP y complejos enzimáticos encargados de realizar dichos procesos, dentro de ellos se encuentran las bombas sodio potasio y las proteínas transportadoras.
Transporte activo primario
Bomba Na+/K+: es un conjunto de proteínas situadas en la membrana que se encargan de transportar iones en contra de un gradiente de concentración. En el interior de las células la concentración de sodio (Na+) es baja en comparación con el medio extracelular, y la concentración de potasio (K+) es más alta que en el medio extracelular.
Lo que hace la bomba de Na+/K+ es regular estos iones y permite el intercambio entre el medio extracelular e intracelular, es decir, bombea Na+ al medio extracelular y K+ al medio intracelular, el número de iones que bombea es tres iones de sodio por cada dos de potasio.
Bomba Ca+: es un conjunto de proteínas que se encarga de transportar los iones de Ca2+ hacia el exterior de la célula con el fin de mantener el medio intracelular con una concentración baja.
Transporte activo secundario
Se conoce también como cotransporte, para llevar a cabo el transporte las proteínas utilizan la energía proveniente del potencial electroquímico creado por las bombas de iones con el fin de intercambiar una molécula de un lado a otro, es decir, una molécula entra y arrastra consigo una molécula hacia afuera. Los cotransportadores son:
Antiporte: es una proteína de membrana integral que se encarga de mover un ión o molécula en una dirección mientras mueve otra en dirección contraria, es decir una hacia fuera y otra hacia adentro de la célula. El anti en antiporte significa “en contra”.
Simporte: es una proteína de membrana integral que mueve dos iones en la misma dirección. Sim de simporte significa “lo mismo”, es decir, dos sustancias que se mueven en la misma dirección.
ATPasa
Son un complejo multienzimático que se localiza en la membrana plasmática y que tiene como función principal la formación del ATP. Pueden ser muy diversas y se clasifican según su función, sea catabólica, anabólica o de ósmosis, un ejemplo común de estas enzimas es la bomba Na+/ K+.
Estudiar cómo se combinan los elementos químicos en la naturaleza es primordial para la química aplicada, es por ello que a lo largo de los años se han planteado diversas teorías y formas de representación que facilitan el entendimiento de los compuestos químicos.
Los átomos se combinan entre sí para formar diversos compuestos o sustancias químicas, esto implica la formación de enlaces químicos entre los átomos involucrados en las reacciones químicas. En función de la naturaleza química se conocen tres tipos de enlace:
Enlace iónico: se forma como resultado de las fuerzas electrostáticas existentes entre iones de carga opuesta. Este tipo de enlace implica la transferencia de electrones de un átomo a otro.
Enlace covalente: es aquel donde dos átomos comparten electrones, en función del número de electrones compartidos se distinguen tres tipos de enlaces covalente: simple (2 e–), doble (4 e–) y triple (6 e–).
Enlace metálico: en este tipo de enlaces los electrones se mueven dentro de la red tridimensional del metal, lo que le confiere al mismo su propiedad característica, la conductividad eléctrica.
Los electrones que participan en un enlace químico se denominan electrones de valencia y son aquellos que se encuentran en la capa más externa de los átomos.
Estructuras de Lewis
Lewis fue un químico estadounidense que propuso simbolizar los electrones de valencia mediante el uso de puntos que se ubican arriba, abajo y a los lados del símbolo químico de cada elemento, esta forma de representación se conoce como símbolos de Lewis.
Los símbolos punto-electrón para construir las denominadas estructuras de Lewis de diversas moléculas o compuestos son una herramienta útil al momento de estudiar los enlaces químicos, formación y tipos.
Regla del octeto
Cuando se forma un enlace químico los átomos pierden, ganan o comparten electrones con la finalidad de emular la configuración electrónica del gas noble más cercano a ellos, los cuales deben su estabilidad al número de electrones que contienen en su capa de valencia.
Con excepción del helio, todos los gases nobles poseen ocho electrones en la capa de valencia, hecho en el que se fundamenta la denominada regla del octeto: los átomos tienden a ganar, perder o compartir electrones hasta estar rodeados por ocho electrones de valencia.
A continuación se muestran algunos ejemplos de estructuras de Lewis:
Metano
Fórmula química: CH4
Tipo de enlace: covalente
Configuración electrónica:
Estructura de Lewis:
Dióxido de carbono
Fórmula química: CO2
Tipo de enlace: covalente
Configuración electrónica:
Estructura de Lewis:
Agua
Fórmula química: H2O
Tipo de enlace: covalente
Configuración electrónica:
Estructura de Lewis:
Estructura de Lewis en compuestos iónicos
Uno de los compuestos iónicos más utilizados es la sal de mesa, compuesta por cloruro de sodio dibujar su estructura de Lewis sigue el siguiente procedimiento:
Escribir la formula química: NaCl
Conocer el tipo de enlace: iónico.
Realizar la configuración electrónica, considerando el efecto de las cargas en el anión y catión.
Realizar la estructura de Lewis.
Excepciones de la regla del octeto
La regla del octeto no se cumple para todos los compuestos químicos, las excepciones se pueden resumir en tres casos:
Moléculas que tienen un número impar de electrones
La presencia de un número de electrones impar hace imposible que los mismos se apareen totalmente y por tanto al menos uno de los átomos involucrados no alcanza el octeto. Por ejemplo el monóxido de nitrógeno (NO).
Moléculas con menos de ocho electrones
Son aquellas moléculas donde un átomo o ion de la misma no puede alcanzar el octeto, un caso emblemático es el trifloruro de boro (BF3).
Moléculas con más de ocho electrones
Son compuestos químicos donde al menos uno de los átomos o iones sobrepasa los ocho electrones en la capa de valencia. Algunos ejemplos representativos son el pentacloruro de fosforo (PCl5).
¿Qué debes saber para dibujar estructuras de Lewis?
Para dibujar una estructura de Lewis es necesario dominar los conceptos básicos de la química y sus elementos. Algunas de las consideraciones a tener en cuenta son:
Determinar los electrones de valencia de los elementos involucrados, para ello se puede usar una tabla periódica. También es importante recordar que en el caso de los iones se deben sumar o restar electrones en la capa de valencia; para los aniones cada carga negativa significa que se debe sumar un electrón, en tanto, para los cationes una carga positiva implica que se debe restar un electrón.
Escribir los símbolos químicos e indicar que tipo de enlace los une. Por lo general, las fórmulas químicas indican el orden de unión de los átomos mientras que la naturaleza del enlace está determinada por la diferencia de electronegatividad que existe entre los mismos.
Completar primero los octetos de los elementos unidos al átomo central.
Colocar los electrones faltantes en el átomo central aun si no cumplen con la regla del octeto.
Cuando el átomo central no cumple con el octeto es recomendable probar con enlaces múltiples.
Todas las partículas tienen energía que varía de acuerdo a la temperatura de la muestra, lo que determina si la sustancia es un sólido, un líquido o un gas. Las partículas sólidas tienen la menor cantidad de energía, mientras que las partículas de gas poseen la mayor cantidad.
¿En qué consiste esta teoría?
La teoría cinética de la materia afirma que ésta se compone de un gran número de pequeñas partículas o moléculas individuales que están en constante movimiento. Ayuda a explicar el flujo o transferencia de calor y la relación entre la presión, la temperatura y las propiedades del volumen.
¿Sabías qué...?
La teoría cinética de la materia también es ilustrada por el proceso de difusión, donde se da el movimiento de partículas desde una alta concentración a una baja concentración.
Es un modelo utilizado para explicar el comportamiento de la materia y se basa en una serie de postulados:
La materia está hecha de partículas en constantemente movimiento.
La energía en movimiento se llama energía cinética y la cantidad en una sustancia está relacionada con su temperatura.
Hay espacio entre las partículas. El tamaño de este espacio está relacionado con el estado de la sustancia.
Los cambios de fase ocurren cuando la temperatura de la sustancia cambia lo suficiente.
Hay fuerzas de atracción entre las partículas llamadas fuerzas intermoleculares que aumentan a medida que dichas partículas se acercan.
Propiedades de los líquidos
Una de las propiedades más notables de los líquidos es que son fluidos, es decir, pueden fluir. Los líquidos tienen un volumen definido, pero no una forma definida. El movimiento de las partículas está restringido en gran medida por el volumen del líquido.
Hay menos espacio entre las partículas que en los gases, pero hay más que en los sólidos. Las partículas líquidas también tienen relativamente más energía que las partículas sólidas, es lo que permite que los líquidos fluyan.
La fuerza intermolecular se ve afectada por la cantidad de energía cinética en la sustancia; cuanta más energía cinética exista, más débil es la fuerza entre las moléculas. Los líquidos tienen más de esta energía que los sólidos, por lo que las fuerzas entre sus partículas tienden a ser más débiles.
Propiedades de los sólidos
Las sustancias sólidas tienen formas y volúmenes definidos. Las partículas sólidas tienen relativamente poca energía cinética y vibran en su lugar. Debido a esto, no pueden fluir como los líquidos. En los sólidos, el movimiento de partículas está completamente restringido dentro de un área pequeña, lo que ayuda al sólido a mantener su forma.
La mayoría de los sólidos están dispuestos en una estructura apretada, de manera ordenada y repetitiva de partículas llamada red cristalina. La forma del cristal muestra la disposición de éstas en el sólido.
Algunos sólidos no tienen forma cristalina y son llamados sólidos amorfos porque no tienen estructuras internas ordenadas. Ejemplos de sólidos amorfos son el caucho, el plástico, la cera y el vidrio.
Propiedades de los gases
La teoría cinética explica la temperatura, la presión y el volumen de un gas en términos del movimiento de moléculas.
Según esta teoría, los gases están formados por partículas diminutas que se encuentran en movimiento aleatorio y además experimentan colisiones entre sí y con las paredes del contenedor, pero de lo contrario no interactúan.
En la teoría cinética se hacen las siguientes suposiciones acerca de los gases ideales:
El gas contiene un gran número de moléculas idénticas.
Las colisiones entre moléculas son perfectamente elásticas, al igual que las moléculas y las paredes del contenedor.
El tiempo de colisión es insignificante en comparación con el tiempo transcurrido entre las colisiones.
Las moléculas no se atraen entre sí si no hay fuerzas intermoleculares.
Las moléculas están en constante movimiento al azar.
El volumen de las moléculas es despreciable en comparación con el volumen del gas o el recipiente.
Las leyes del movimiento de Newton pueden aplicarse a las moléculas
La energía cinética media de una colección de partículas de gas depende de la temperatura del gas y nada más.
Plasma
Los plasmas son gases ionizados que en su forma natural son poco comunes en la Tierra. Se pueden observar en cosas artificiales, como letreros de neón y bombillas fluorescentes. Pero en el resto del universo el plasma es la fase más común de la materia. La mayoría de las estrellas son de plasma, al igual que las luces del norte que se ven alrededor de las regiones polares.
La energía de un agregado de dos o más átomos puede ser menor que la suma de las energías de esos átomos aislados y de ahí que, siguiendo la tendencia de cualquier sistema a alcanzar su estado de mínima energía, los átomos se unan unos con otros de diversos modos para formar moléculas estables. Así, sólo los gases nobles y los metales en estado de vapor están constituidos por átomos aislados.
Todas las demás sustancias están constituidas por moléculas integradas por un número de átomos que puede ir desde dos hasta cientos de miles (polímeros). En la formación del enlace químico intervienen únicamente los electrones de la última capa, los llamados electrones de valencia, que pueden ser parcialmente compartidos entre dos átomos (enlace covalente) o bien cedidos por uno a otro (enlace electrovalente). Es importante destacar que desde el punto de vista de la teoría química actual el enlace químico tiene carácter unitario, basándose siempre en compartir electrones por pares.
Las moléculas están constituidas por la unión de cierto número de átomos iguales o distintos. Se plantea, pues, la cuestión de saber cuál es el nexo que mantiene a los átomos unidos entre sí para formar moléculas. En todos los casos, este nexo se establece únicamente a partir de los electrones que forman la última capa de los átomos, los llamados electrones de valencia.
Hablaremos de cinco tipos de enlace distintos: iónico o electrovalente, covalente, metálico, de hidrógeno y covalente coordinado.
El fundamento del enlace químico es la Ley Física Fundamental según la cual todo sistema evoluciona hacia su estado de energía más bajo. Esta ley explica, por ejemplo, el hecho de que una bola que se encuentra en un recipiente cóncavo se sitúe en el punto más bajo del mismo o bien que, si dos disoluciones de distinta concentración están separadas por un tabique poroso, la concentración de ambas tienda a igualarse por migración del soluto a través del tabique.
Para poder aclarar la naturaleza de cada uno de los distintos tipos de enlace listados, antes deberemos explicar algunos conceptos importantes, en particular el concepto de ion, y formular la teoría del octete (u octeto).
Con respecto a la mayor o menor facilidad con que permiten el paso de la corriente eléctrica, los cuerpos se clasifican en:
Aislantes
Conductores:
de primera clase
de segunda clase o electrólitos
Los conductores de primera clase son aquellos que, como los metales, no se alteran con el paso de la corriente eléctrica.
Por el contrario, los conductores de segunda clase o electrólitos se descomponen cuando son atravesados por una corriente eléctrica. Los electrólitos son exclusivamente ácidos, bases o sales fundidos o disueltos en agua u otros líquidos.
El primero que formuló una explicación científica coherente de la descomposición de los electrólitos por el paso de una corriente eléctrica (electrólisis) fue Arrhenius, quien, en 1883-1887, propuso su teoría de la disociación electrolítica. Aunque inicialmente fue recibida sin entusiasmo por los medios científicos, esta teoría ha sido una de las más fecundas de la química moderna, ya que sentó las bases para el desarrollo de la electroquímica, que hoy constituye una de las bases de la química industrial.
Teoría de Arrhenius de la disociación electrolítica
Se denomina ion a un átomo o una partícula formada por varios átomos que posee una carga eléctrica debida a un defecto o un exceso de electrones planetarios. Según sea su carga eléctrica, los iones se clasifican en positivos o cationes y negativos o aniones.
De acuerdo con la teoría formulada por Arrhenius:
Los electrólitos, en disolución o fundidos, se disocian parcialmente en iones dotados de carga eléctrica, siendo la carga total de los iones positivos igual a la carga total de los iones negativos; la disolución en su conjunto permanece neutra.
Las sustancias químicamente análogas se disocian en los mismos iones (por ejemplo, el grupo NO3 de los nitratos, PO4 de los fosfatos o Na de las sales sódicas). La carga eléctrica del ion es igual a su valencia y es negativa para los no metales y radicales no metálicos (aniones) y positiva para los metales (cationes).
Así, por ejemplo, al disociarse electrolíticamente el cloruro de hidrógeno (un ácido), el cloruro de calcio (una sal) y el hidróxido de sodio (una base) tendremos respectivamente:
HCl H+ (1 ion positivo) + Cl- (1 ion negativo)
CaCl2 Ca2+ (1 ion positivo) + 2Cl- (dos iones negativos)
NaOH Na+ (1 ion positivo) + (OH)- (1 ion negativo)
Los iones positivos son más pequeños que los átomos metálicos de los que proceden (por ejemplo, el radio del ion Na+ es sólo muy poco mayor que la mitad del radio del átomo de sodio), mientras que los iones negativos son siempre mayores que los átomos de los no metales a partir de los que se han formado (por ejemplo, el radio del ion Cl- es casi el doble que el radio del átomo de cloro).
Ionización
La formación de iones se explica por la cesión o admisión de electrones, generalmente en la capa más externa, por parte de un átomo. Es decir, si un átomo X acepta un electrón se rompe el equilibrio eléctrico en que se encontraba, al pasar a poseer una carga negativa más; tendremos así un ion negativo X-. Si el átomo X hubiera aceptado dos electrones estaríamos ante un ion X2-, etcétera.
Por el contrario, si un átomo X cede un electrón pasará a convertirse en un ion positivo, X+, puesto que su número de cargas negativas será entonces inferior en una unidad al número de cargas positivas del núcleo (protones); en el caso de que cediera dos electrones, se tendría el ion X2+, etcétera.
La ionización no es un fenómeno que pueda producirse únicamente a causa de la disociación de un electrólito en disolución. También por efecto del calor, las radiaciones ionizantes o el choque con otras partículas, un átomo puede perder uno o más electrones o bien absorber electrones extraños. Por ejemplo, en las capas altas de la atmósfera (ionosfera), los átomos del aire son constantemente bombardeados por radiaciones solares de alta energía, las cuales les arrancan electrones. Asimismo, los meteoritos, al atravesar la atmósfera a gran velocidad, producen un calentamiento local del aire, ionizándolo a lo largo de su trayectoria.
Los iones presentes en el aire atraen el polvo y las gotitas de agua, y por esta razón se emplean iones para que actúen como núcleos de condensación con el fin de provocar artificialmente la lluvia. En un proceso esencialmente análogo, en las cámaras de ionización la observación de las trayectorias de las partículas atómicas se basa en la condensación que provocan a su paso.
En determinadas condiciones, un gas puede hallarse completamente ionizado, es decir, con todos sus átomos en defecto de electrones; en ese caso se le denomina plasma. Sin embargo, el propio plasma se encuentra en estado neutro, ya que, al hallarse íntimamente mezclados en todo el espacio ocupado, sus electrones y sus iones positivos compensan sus cargas entre sí.
Teoría del octete
Los gases nobles constituyen el grupo 0 de la Tabla Periódica. Las moléculas de estos gases son monoatómicas, ya que la característica más destacada de estos elementos es que sus átomos carecen prácticamente de capacidad para unirse con otros átomos de su misma o de otra especie.
Todos los gases nobles, a excepción del primer elemento del grupo, el helio, poseen ocho electrones en la última órbita. Este hecho llevó a considerar que ésta era la configuración electrónica más estable. Por ello, Lewis introdujo en 1916 la teoría del octete u octeto: “Cuando los átomos reaccionan entre sí tienden a adquirir la estructura electrónica del gas noble de número atómico más próximo.” Sorprendentemente, esta ingeniosa teoría se ajusta muy bien a la realidad, aunque en el momento en que fue propuesta carecía por completo de verdadera justificación teórica.
Peso molecular de un compuesto químico es la suma de los pesos atómicos de los elementos que constituyen la molécula de ese compuesto.
Mediante un ejemplo precisaremos el concepto y mostraremos cómo se calcula el peso molecular de un compuesto (cuando se conoce con certeza su fórmula) a partir de los pesos atómicos de sus elementos constituyentes.
Ejemplo:
1) Hallar el peso molecular del carbonato de calcio, CaCO3.
Escribiremos PM (CaCO3) o simplemente PM para representar el peso molecular del carbonato de calcio y PA(Ca), PA(C) y PA(O) para representar, respectivamente, los pesos atómicos del calcio, el carbono y el oxígeno. Será:
PM= PA(Ca) + PA(C) + 3 PA(O)
Esto es porque la molécula de CaCO3 contiene un átomo de Ca, uno de C y tres de O.
Consultando la tabla de pesos atómicos encontramos que:
PA(Ca) = 40,08
PA (C) = 12,011
PA (O) = 15,999
Por lo tanto,
PM= 40,08 +12,011 +3·15,999 = 100,088
Determinación experimental de los pesos moleculares
Del concepto de peso atómico se deduce que al considerar las reacciones entre todos los elementos podían encontrase relaciones similares a la relación PC = 3/7 . PSi, con lo que resultaría posible expresar todos los pesos atómicos en función del peso atómico de un elemento cualquiera, que podríamos escoger a voluntad.
Sin embargo, para los químicos de principios del s. XIX el problema era que en general no conocían las fórmulas de los compuestos y por lo tanto no podían estar seguros de si los elementos reaccionaban átomo a átomo o no, con lo cual se hacía imposible establecer con certeza relaciones entre los pesos de sus átomos.
Dalton supuso erróneamente que cuando dos elementos se combinan para dar un compuesto siempre lo hacen átomo a átomo. Así, en el caso del agua pensó que su fórmula era HO y, como había hallado experimentalmente que el hidrógeno y el oxígeno se combinan para formar agua en una proporción ponderal de 1:7 (la verdadera proporción es 1:7,9365, pero este error experimental es comprensible para la época), concluyó que el peso atómico del oxígeno expresado en la escala del hidrógeno es 7 (hoy sabemos que la fórmula del agua es H2O, por lo que el peso atómico del oxígeno, expresado en función del peso atómico del hidrógeno, es realmente 2·7,9365 = 15,873).
El problema de establecer los pesos atómicos de los elementos no pudo así resolverse hasta que se hallaron métodos prácticos para determinar por vía experimental los pesos moleculares de sus compuestos. Los métodos experimentales para la determinación de pesos moleculares son aplicables a sustancias en estado gaseoso y a solutos en disolución. La determinación del peso molecular de un gas se basa en la ecuación de estado de los gases ideales, por lo que es preciso conocer la masa de sustancia gaseosa contenida en un determinado volumen, así como ese mismo volumen y la presión y la temperatura a que se encuentra el gas. Como estas dos últimas variables son directamente medibles, lo que se determina realmente es la masa de la sustancia contenida en un volumen que se puede conocer.
Para conocer el peso molecular de sustancias sólidas se recurre a su disolución en agua o en otro líquido. Toda una serie de propiedades de las disoluciones dependen del número de moléculas que contienen disueltas en un peso dado de disolvente (propiedades coligativas), de manera que es posible calcular el peso molecular del soluto a partir, por ejemplo, del descenso del punto de congelación (crioscopia) o bien del aumento del punto de ebullición (ebulloscopia) de la disolución en relación al punto respectivo del disolvente puro.
Los alcanos son compuestos que están formados solo por enlaces entre átomos de carbono e hidrógeno. Comúnmente se los suele llamar también hidrocarburos.
El alcano más simple es el metano, cuya fórmula molecular es CH4. Admitiendo la tetravalencia del carbono y la monovalencia del hidrógeno, solamente es posible una estructura para el metano:
El alcano con dos átomos de carbono, el etano, tiene por fórmula molecular C2H6. Su fórmula estructural es:
Cuando el número de átomos de carbono es n, su fórmula molecular es CnH2n+2. Los alcanos pueden suponerse derivados del metano por sustitución sucesiva de un hidrógeno por un grupo metilo, CH3.
Los alcanos pueden ser de cadena lineal o de cadena ramificada. En la cadena normal cada átomo de carbono está unido directamente a lo sumo a otros dos, es decir, los carbonos son primarios o secundarios; en las cadenas ramificadas existen también átomos de carbono terciarios o cuaternarios:
Una cadena ramificada se puede considerar como una cadena normal en la que la parte de sus átomos de hidrógeno han sido sustituidos por grupos CnH2n+1, que se denominan cadenas laterales.
Dado que la fórmula estructural desarrollada ocupa mucho espacio, para los alcanos de cadena larga se acostumbra usar la fórmula estructural abreviada, que se escribe poniendo entre paréntesis las cadenas laterales (y los sustituyentes) para indicar que esos átomos o grupos están directamente unidos al átomo de carbono precedente no escrito entre paréntesis. Por ejemplo, la última fórmula que hemos escrito en forma desarrollada, en forma abreviada se escribiría:
CH3 CH(CH3)CH2 C(CH3)3
Nomenclatura de los alcanos
Los primeros químicos nombraban en general los compuestos haciendo referencia a su origen. Esto dio lugar a una nomenclatura vulgar que, en muchos casos, aún se emplea. A medida que fue aumentando el número de compuestos orgánicos conocidos se fue haciendo evidente la necesidad de sistematizar la nomenclatura, de manera que el nombre de un compuesto reflejara su estructura. La nomenclatura actual se basa en la establecida en el Congreso de Química de Ginebra de 1892 (nomenclatura de Ginebra), que ha sido revisada repetidas veces, siendo las últimas reglas las que recomendó en 1957 la Comisión de Nomenclatura de la Unión Internacional de Química Pura y Aplicada (IUPAC). En esta obra seguiremos el sistema de la IUPAC, aunque usaremos nombres vulgares cuando éstos estén muy arraigados.
Los cuatro primeros alcanos tienen nombres especiales (relacionados con su historia); a partir del quinto término se nombran según el prefijo griego o latino correspondiente al número de átomos seguido de la terminación -ano.
Los alcanos de cadena normal se indican colocando una n delante del nombre (n-butano) cuando se los quiere diferenciar de los que tienen el mismo número de átomos de carbono pero cadena ramificada en el primer enlace, a los que se antepone el prefijo iso- (iso-butano).
Los radicales monovalentes que se forman eliminando un átomo de hidrógeno de un carbono extremo de un alcano se denominan radicales alquilo. El nombre de cada radical se obtiene cambiando el sufijo -ano del nombre del alcano por -ilo, o bien por -il si el nombre del radical antecede en el nombre del compuesto (por ejemplo, el radical metilo o metil es CH3).
Para nombrar a los hidrocarburos ramificados se elige la cadena más larga y el compuesto se nombra como derivado de ese alcano de cadena normal. La cadena de carbonos se numera de un extremo a otro, eligiendo empezar por el extremo que permita que los números usados para ubicar las cadenas laterales sean lo más bajos posible. Por ejemplo, el 2-etil-3-metil-pentano sería:
Al examinar las fórmulas de los alcanos se observa que dos cualesquiera de ellos se diferencian en uno o más CH2. Una serie de compuestos en la que, como en las parafinas, los sucesivos términos se diferencian en un CH2 se denomina serie homóloga, denominándose homólogos los términos de la misma.
Los constantes físicas (densidad, solubilidad, punto de fusión, índice de refracción, etc.) de los términos de una misma serie homóloga suelen variar de un modo continuo con el aumento del peso molecular, sobre todo los puntos de fusión y de ebullición.
Propiedades generales de los alcanos
Las propiedades físicas de los alcanos siguen la gradación propia de los términos de una serie homóloga. Los cuatro primeros términos de los alcanos normales son gaseosos, del 5 al 16 son líquidos y los términos superiores, sólidos. Son incoloros e inodoros, insolubles en agua, miscibles entre sí y fácilmente solubles en disolventes orgánicos, tales como éter, sulfuro de carbono, benceno, etc. Fácilmente combustibles, arden con llama tanto más luminosa cuanto mayor es el número de carbonos de su molécula. Son estables y químicamente inertes puesto que a temperatura ambiente no son atacados por los ácidos ni las bases fuertes; ésta es la razón por la que se les denomina también parafinas (poca afinidad). Los halógenos se combinan con ellos por sustitución, formándose el derivado halogenado y el hidrácido correspondiente. Así, el metano reacciona con gas cloro dando cloruro de metilo y cloruro de hidrógeno:
CH4 + Cl2 → CH3Cl + HCl
El proceso puede proseguir hasta la sustitución de todos los hidrógenos por átomos de Cl, formándose tetracloruro de carbono.
El alcano más importante es el metano, que es muy estable, ya que sólo empieza a descomponerse por encima de los 600 °C.
Estado natural de los alcanos
Los alcanos son compuestos muy abundantes en la naturaleza. El primer término de la serie, el metano, se desprende en los pantanos como producto de la descomposición de sustancias orgánicas por acción de bacterias anaerobias (es decir, en ausencia de aire); de ahí su antiguo nombre de gas de los pantanos. También se desprende en las minas de carbón (grisú), donde puede provocar peligrosas explosiones. Es el principal componente del gas natural, cada día más utilizado por ser un combustible limpio y de elevado poder calorífico. Los demás alcanos se hallan contenidos en el gas natural y en el petróleo, del que pueden obtenerse muchos hidrocarburos saturados por destilación fraccionada. El propano y el butano son constituyentes del gas natural y del gas de los pozos petrolíferos, de los cuales se pueden separar por fraccionamiento. Se utilizan como combustibles, comercializándose licuados bajo presión en bombonas, a diferencia del gas natural, que se suministra por cañerías.
Un conjunto de átomos enlazados de un modo especifico que genera un conjunto de propiedades químicas que caracterizan a una familia de compuestos. Los compuestos que poseen el mismo grupo funcional se concentran en una misma familia y en química orgánica existen decenas de familias. En este artículo analizaremos cada una de las familias de compuestos orgánicos.
Alcanos
Grupo de compuestos formados únicamente por carbonos e hidrógenos unidos mediante enlaces simples, de modo que todos los carbonos de un alcano poseen hibridación sp3. Los representantes más simples de esta familia son el metano, el etano, el propano, y el butano, que son gases empleados como combustibles domésticos e industriales. En la forma general, los alcanos se representan como R-H.
Alquenos
Familia de compuestos que contienen un doble enlace entre carbonos, el resto son enlaces simples a otros carbonos e hidrógenos. El eteno, propeno y buteno son ejemplos de alquenos. En forma general, los alquenos se representan como: CnH2n
Cabe señalar que en la formula general, los carbonos con doble enlace pueden estar unidos a un grupo R y a un, o también a dos grupos R o incluso a dos hidrogenos; en este último caso se tratará de la molécula del eteno, un gas que se utiliza para hacer madurar frutos, como anestésicos y también como precursor del polietileno.
Alquinos
Son moléculas que contienen triple enlace de carbonos el resto de los enlaces son simples ya sea entre carbonos o de estos con hidrógenos. Su representación general es: CnH2n-2
Aldehídos
En el extremo de la molécula contiene un carbonilo unido a un hidrogeno. El grupo
carbonilo es un carbón unido a oxigeno mediante un doble enlace (C=O).
Cetonas
También poseen un grupo carbonilo pero éste se encuentra en su interior de la cadena de modo que está directamente unido a dos átomos de carbono a diferencia de los aldehídos en las cetonas el carbono carboxílico no cuenta con uniones a átomos de hidrogeno.
Alcoholes
Se caracterizan por tener un grupo OH hidroxilo unido mediante un enlace simple a un carbono. Se representan en forma general como R-OH.
Seguramente es familiar la palabra alcohol, ya que uno de ellos, el etanol, es el famoso alcohol de farmacia y también el que contienen las bebidas alcohólicas y algunos otros alimentos y medicamentos.
Éteres
Molécula que contiene oxígeno en su estructura, unido mediante enlace simple a dos carbonos de modo que forma parte de una cadena carbonatada. Dicho de otra forma, el oxígeno se encuentra en medio interrumpiendo la cadena de carbonos. Su fórmula general es R-O-R.
Ácidos carboxílicos
Estas moléculas también contienen un grupo carbonilo en el extremo de la molécula que está unido a un grupo hidroxilo. A la combinación entre el grupo carbonilo y el hidroxilo se le conoce como grupo carboxilo y es propio de esta familia de compuestos.
Seguramente has escuchado a alguien decir “somos química”, pues no hay nada más cierto que esta afirmación. Ya que a nivel molecular, el ser humano está constituido por diversos compuestos orgánicos, como: proteínas, carbohidratos, aminas y azúcares.
En la química orgánica existe una gran variedad de compuestos, formados en su mayoría por combinaciones de átomos de carbono. El carbono es un elemento químico capaz de formar enlaces fuertes con otros átomos de carbono, oxígeno, hidrógeno, nitrógeno, entre otros.
La química orgánica es la rama de la química que estudia los compuestos de carbono.
Los compuestos de carbono hidrógeno, también conocidos como hidrocarburos están formados por átomos de carbono e hidrógeno unidos mediante enlaces covalentes simples o múltiples, estos últimos tienen gran influencia en el comportamiento químico de los hidrocarburos.Compuestos carbono hidrógeno
¿Qué es la cadena carbonada?
La cadena carbonada es la unión de varios átomos de carbono a través de enlaces sigma (σ) y pi (π), también se le denomina esqueleto carbonado.
De acuerdo a la estructura de su cadena carbonada, los hidrocarburos se clasifican de la siguiente manera:
Alifáticos acíclico: son aquellos compuestos formados por cadenas de carbono abiertas, las cuales pueden ser lineales o ramificadas.
Tipos de carbono
En el esqueleto carbonado de una molécula se distinguen varios tipos de carbono:
Carbono primario: enlazado a 1 átomo de carbono y 3 hidrógenos.
Carbono secundario: enlazado a 2 átomos de carbono y 2 hidrógenos.
Carbono terciario: enlazado a 3 átomos de carbono y 1 hidrógeno.
Carbono cuaternario: enlazado a 4 átomos de carbono.
Inténtalo en casa, ¿cuál de las siguientes opciones es la correcta?
El 2,2,5-trimetilhexano tiene 5C 1rio, 2C 2rio, 2C 3rio y 1C 4rio
El 2,2,5-trimetilhexano tiene 6C 1rio, 2C 2rio, 1C 3rio y 1C 4rio
El 2,2,5-trimetilhexano tiene 5C 1rio, 3C 2rio, 1C 3rio y 1C 4rio
El 2,2,5-trimetilhexano tiene 5C 1rio, 2C 2rio, 1C 3rio y 1C 4rio
Insaturados: compuestos de carbono hidrógeno que tienen enlaces simples y múltiples, se dividen en:
Alquenos: son aquellos que contienen un doble enlace (uno σ y otro π) en su cadena carbonada.
Alquinos: poseen un triple enlace (uno σ y dos π) en su cadena carbonada.
Alicíclicos: son los compuestos formados por cadenas de carbono cerradas, estas pueden tener ramificaciones.
Saturados: cadenas carbonadas cerradas formadas únicamente por enlaces simples (σ), se conocen como cicloalcanos.
Insaturados: cadenas carbonadas cerradas que tienen enlaces simples y múltiples, se clasifican en:
Cicloalquenos: son los que poseen dobles enlaces (uno σ y otro π) no alternados.
Cicloalquinos: constituidos por al menos un triple enlaces (uno σ y dos π).
Aromáticos: son los hidrocarburos que poseen enlaces π conjugados, cuya deslocalización de electrones π disminuye la energía electrónica de la molécula. Existen moléculas donde la deslocalización de electrones π aumenta la energía electrónica de la misma, estos compuestos se conocen como antiaromáticos.
Los hidrocarburos aromáticos se clasifican en:
– Benceno y derivados, algunos ejemplos de este tipo de compuestos son:
¿Cómo saber si es aromático o antiaromático?
Para saber si un hidrocarburo con enlaces π conjugados es aromático o antiaromático se utiliza la Regla de Hückel, la cual nos indica que para que un compuesto sea considerado aromático el número de electrones π deslocalizados debe ser igual a 4N+2, en caso de ser igual a 4N se dice que la estructura es antiaromática.
3 enlace π
4 enlace π
Cada enlace tiene 2 electrones (e–), entonces hay 6 e– π
Cada enlace tiene 2 electrones (e–), entonces hay 8 e– π
4N + 2 = 6 e– π
4N = 8 e– π
Se cumple para N igual 1, por lo cual es aromático.
Se cumple para N igual 2, por lo cual es antiaromático.
– Polinucleares, las cuales están constituidas por dos o más ciclos unidos entre sí, algunos de los compuestos más representativos de este grupo son:
Compuestos carbono halógenos
Son aquellos compuestos que poseen al menos un enlace simple (σ) entre un átomo de carbono y un halógeno (-C-X, donde X = Cl, F, I, Br), se les denomina haluros. Entre los más representativos están:
Compuestos carbono oxígeno
Son los compuestos que tienen enlaces simples o múltiples entre un átomo de carbono y uno oxígeno. Entre los compuestos carbono oxígeno se encuentran:
Alcoholes: son lo compuestos que contienen en su estructura al menos un enlace C-OH.
Alcohol ≠ Fenol
Los fenoles son compuestos carbono oxígeno que poseen enlaces entre un átomo de carbono aromático y el oxígeno del grupo -OH. Las propiedades químicas de los fenoles son distintas a la de los alcoholes, por lo cual se les considera un tipo de compuesto o familia diferente.
Algunas sustancias como el vino contienen polifenoles, los cuales tienen una gran capacidad antioxidante.
Éteres: tienen un átomo de oxígeno enlazado a través de enlaces simples a dos átomos de carbono (R-O-R´).
Ácidos carboxílicos: poseen en su esqueleto carbonado la función –COOH.
Cetonas: tienen la siguiente forma R-CO-R, donde R puede ser un radical alifático, alicíclico o aromático.
Aldehídos: son los que contienen el grupo funcional –CHO.
Ésteres: son derivados de los ácidos carboxílicos, su grupo funcional es –COOR, donde R puede ser un radical alifático, alicíclico o aromático.
Compuestos carbono nitrógeno
Como su nombre lo indica, son los compuestos que contienen enlaces simples o múltiples entre un átomo de carbono y uno de nitrógeno. Entre los tipos de moléculas orgánicas con enlace C-N se encuentran:
Aminas: contienen enlaces simples carbono nitrógeno, pueden ser primarias (-NH2), secundarias (-NRH) o terciarias (-NR2)
Nitrilos: en su esqueleto carbonado tienen un enlace triple carbono nitrógeno (-C≡N).
A continuación un resumen de los grupos funcionales característicos de algunos compuestos carbono oxígeno:
Normas generales de nomenclatura orgánica
Para poder identificar los diferentes compuestos orgánicos que existen se aplican una serie de normas establecidas por la Unión Internacional para la Química Pura y Aplicada (IUPAC por sus siglas en inglés), dichas normas consisten en lo siguiente:
Identificar según el orden de prioridad de los grupos funcionales el tipo de compuesto, para ello se emplea la siguiente tabla:
Orden de prioridad
Grupo funcional
presente
Sufijo
1
Ácidos carboxílicos
ico
2
Ésteres (y otros derivados de ácidos carboxílicos)
ato
3
Nitrilos
nitrilo
4
Aldehídos
al
5
Cetonas
ona
6
Alcoholes y fenoles
ol
7
Aminas
amina
8
Alquenos
eno
9
Alquinos
ino
10
Alcanos
ano
Seleccionar la cadena principal, la cual siempre es la más larga y la que contiene el grupo funcional de mayor prioridad.
Enumerar la cadena principal, para ello se debe asigna la numeración más baja posible al grupo funcional de mayor prioridad y a los radicales e insaturaciones presentes.
Identificar los radicales o sustituyentes presentes, se entiende por radicales todas aquellas ramificaciones que quedan unidas a la cadena.
Se nombran los radicales por orden alfabético, en casos donde los sustituyentes se encuentran repetidos se utilizan prefijos de cantidad, por ejemplo: di = 2, tri = 3, tetra = 4, penta = 5, hexa = 6 y así sucesivamente.
Por último se indica el nombre del compuesto en base al grupo funcional principal y al número de carbonos que forman la cadena principal, cada tipo de compuesto tiene una terminación o sufijo particular.
Reconociendo grupos funcionales
El anís estrellado debe su sabor a un compuesto químico denominado anetol, indica los grupos funcionales presentes en su estructura química:
¡Inténtalo en casa! , indica los grupos funcionales presentes en la estructura química del GABA y la aspirina.
Los compuestos de tipo orgánico se encuentran en diversos productos de nuestra vida cotidiana, algunos ejemplos se describen a continuación:
Compuestos orgánicos en la vida cotidiana
Uso cotidiano
Estructura química
Grupo funcional
El gas natural se emplea en las cocinas domésticas.
Propano
Alcano lineal
Las bolas de naftalina se emplean como insecticida.
Naftaleno
Aromático polinuclear
El ibuprofeno es un medicamento antiinflamatorio no esteroideo.
Ácido 2-(4-isobutilfenil)propanoico
Ácido carboxílico
Las bebidas alcohólicas como el vino contienen etanol.
Etanol
Alcohol
La canela debe su olor característico al cinamaldehído.