CAPÍTULO 4 / TEMA 1

Unidades de medición

Podemos medir muchas cosas como la altura de un edificio, el tiempo que tardamos en llegar a un lugar o el volumen de una pelota. Todo esto es posible gracias a las unidades de medición, que son referencias convencionales de una magnitud física. Las magnitudes más comunes son la longitud, el área, el volumen y el tiempo.

Longitud

Es una magnitud física que permite medir la distancia entre dos puntos, como la distancia que hay entre la casa y la escuela. Una de las unidades de longitud más aceptada es el metro (m). El metro puede multiplicarse varias veces sobre sí mismo para formar unidades mayores o múltiplos y también puede dividirse varias veces en partes iguales para formar unidades más pequeñas de referencia denominadas submúltiplos. Por ejemplo:

  • El kilómetro (km) es un múltiplo del metro porque equivale a 1.000 veces su tamaño.
  • El centímetro (cm) es un submúltiplo porque equivale a la centésima parte de un metro.
No es tan reciente

El metro como unidad de medida de longitud se empezó a utilizar durante la Revolución francesa, a finales del siglo XVIII, sin embargo, se oficializó 100 años después cuando la Comisión Internacional de Pesos y Medidas lo definió como la distancia que existía entre dos marcas ubicadas en una barra de platino e iridio. Hoy día, el metro es definido como la distancia recorrida por la luz en el vacío durante 1/299792458 de segundo.

Área o superficie

Es una magnitud que mide la extensión o superficie de una figura, por ejemplo, la superficie total del piso de una casa o de un campo de fútbol. Mientras mayor sea la región encerrada por una figura mayor será su área. Las unidades de medida comúnmente se expresan elevadas al cuadrado como el metro cuadrado (m2), el kilómetro cuadrado (km2) o el centímetro cuadrado (cm2).

Volumen

Es un tipo de magnitud que mide el espacio que ocupa un cuerpo: a mayor volumen, mayor será el espacio que ocupe. Las unidades de medidas más usadas son las elevadas al cubo como el metro cúbico (m3) y el centímetro cúbico (cm3).

VER INFOGRAFÍA

¿Sabías qué?
Se estima que el volumen total del agua en la Tierra es de 1.386 millones de kilómetros cúbicos (km3).

Tiempo

Es una magnitud física que permite medir la duración o separación de acontecimientos. Gracias al tiempo podemos medir cuánto dura un partido de fútbol o conocer qué pasó al comienzo o al final de una película.

Las medidas de tiempo más usadas son el segundo, el minuto y la hora.

Aunque no se sabe con exactitud cuándo se inventó el reloj mecánico, existen datos históricos que permiten estimar su invención en el siglo XIII. Los relojes de este tipo empleaban un sistema de ruedas giratorias que, por medio de un conjunto de pesas, ponían en movimiento a las manecillas. Este tipo de relojes anticipó a los modelos actuales.

Sistema Internacional de unidades (SI)

Es un sistema que busca la unificación de las unidades de medida usadas en diferentes países. A pesar de que la mayoría de ellos lo han adoptado como sistema de medida oficial, existen algunos que manejan sus propias unidades. Fue creado en 1960, en la XI Conferencia General de Pesas y Medidas celebrada en Francia.

Algunas unidades aceptadas por el Sistema Internacional de Medidas

Magnitud física Unidad Símbolo
Longitud Metro m
Volumen Metro cúbico m3
Área Metro cuadrado m2
Tiempo Segundo s
Masa Kilogramo kg
Temperatura Kelvin K

Unidades de medida extranjera

Muy pocos países no han adoptado al Sistema Internacional de Unidades como sistema de medida. De hecho, solo tres naciones no lo han declarado oficial en sus legislaciones: Estados Unidos, Liberia y Myammar.

Las unidades de medidas del Sistema Internacional no han sido las únicas empleadas en la medición. En la actualidad podemos usar otras, como las pulgadas, empleadas particularmente para identificar tornillos y medir pantallas de monitores y celulares.

El petróleo, por ejemplo, se suele medir en barriles y la mayoría de los biberones vienen graduados en onzas. Hay otras unidades de medidas usadas para fines específicos como la hectárea y el acre, empleadas para medir áreas de superficies.

Equivalencias de interés

  • 1 pulgada = 2,54 centímetro
  • 1 barril = 159 litros aproximadamente
  • 1 onza = 28,35 gramos
  • 1 hectárea = 10.000 metros cuadrados
  • 1 acre = 4.046,86 metros cuadrados

Unidades de medidas usadas por los pueblos originarios

Nuestros pueblos originarios no eran la excepción si de medir las cosas se trataba. De hecho, cada una de las grandes civilizaciones precolombinas utilizaban unidades de medidas propias.

Los mayas tenían conocimientos avanzados en el campo de la astronomía, lo que les permitió elaborar su calendario por medio de medidas de tiempo propias. Gracias a esto, ellos podían calcular las estaciones y planificar el tiempo de las cosechas.

En el otro extremo del continente, los incas ya tenían un sistema de numeración propio: los quipus, que les permitieron realizar diversos cálculos matemáticos. En el campo de la medición, esta civilización también empleaba sus propias unidades: por ejemplo, para medir longitudes usaban partes del cuerpo como referencia, como la rikra, que consistía en la distancia de los dos dedos pulgares con los brazos extendidos en sentido horizontal.

Las antiguas civilizaciones emplearon sus propios sistemas de medición de unidades de tiempo, de longitud y de volumen. Había sistemas más precisos que otros pero todos servían para realizar diversas tareas, desde las más simples  (como contabilizar o medir volúmenes de agua) hasta las más complejas (como la construcción de grandes edificaciones, templos y acueductos).

VER INFOGRAFÍA

¡A practicar!

1. ¿Cuál es la medida usada por el Sistema Internacional de Medidas para medir la longitud?

a) Kilómetro.

b) Centímetro.

c) Metro cúbico.

d) Metro.

Solución
d) Metro.

2. ¿Qué magnitud permite medir la duración de un acontecimiento?

a) El tiempo.

b) El volumen.

c) El área.

d) La longitud.

Solución
a) El tiempo.

3. ¿A qué unidad de medida representa el símbolo m3?

a) Segundo.

b) Milímetro cuadrado.

c) Metro cúbico.

d) Superficie cúbica.

Solución
c) Metro cúbico.

4. ¿En qué año se creó el Sistema Internacional de Medidas?

a) 1960.

b) 1540.

c) 2001.

d) 1998.

Solución
a) 1960.

5. ¿Cuál de estos países no emplea de manera oficial el Sistema Internacional de Medidas?

a) Argentina.

b) Rusia.

c) Italia.

d) Estados Unidos.

Solución
d) Estados Unidos.

6. ¿Cuál de las siguientes opciones se considera una unidad extranjera?

a) Metro.

b) Kilogramo.

c) Acre.

d) Centímetro cuadrado.

Solución
c) Acre.

7. Una hectárea mide __________.

a) 10 metros.

b) 5 centímetros cúbicos.

c) 10.000 metros cuadrados.

d) 20 segundos.

Solución
c) 10.000 metros cuadrados.

8. ¿Qué civilización americana usaba la rikra como medida de longitud?

a) Inca

b) Maya

c) Azteca

d) Olmeca

Solución
a) Inca

 

RECURSOS PARA DOCENTES

Artículo “Sistemas de medición”

Este artículo explica qué es un sistema de medición ,así como también algunas unidades de medida y sus instrumentos de medición.

VER

Artículo “Sistema Internacional de Unidades”

Este artículo destacado explica por qué se formó el Sistema Internacional de Unidades y describe las principales unidades que lo componen.

VER

Artículo “Volumen y capacidad: aplicaciones”

Este artículo explica qué es el volumen y la capacidad, así como sus unidades de medidas y transformaciones básicas en problemas cotidianos.

VER

CAPÍTULO 5 / TEMA 3

Área

El área mide la extensión de una superficie, por eso permite saber información importante de las cosas, como el tamaño de un país o la cantidad de baldosas que se necesitan en el piso de una casa. De acuerdo al tipo de figura, el área puede calcularse a través de fórmulas o mediante la descomposición de las figuras en otras más sencillas.

Cálculo de áreas en figuras planas

El área es la superficie o extensión comprendida en una figura. En el caso de las figuras planas, para calcular su área es necesario reconocer cada figura, porque su cálculo es diferente en cada caso.

Triángulos

En los triángulos se cumple que su área es igual a la base por la altura y el resultado se divide entre dos:

A=\frac{b\times h}{2}

– Calcula el área del siguiente triángulo:

A=\frac{3 \, cm \times 4\, cm}{2} = \frac{12 \, cm^{2}}{2}=\mathbf{6\, cm^{2}}

Es importante tener en cuenta que al multiplicar dos unidades de longitud (en este caso centímetros) escribimos el producto al cuadrado; es decir, colocamos el exponente “2” arriba de la unidad de medida, por eso se escribe cm2, y se lee “centímetros cuadrados”.

El área y las unidades al cuadrado

En el Sistema Internacional de Unidades el área siempre se expresa en unidades de longitud elevadas al cuadrado, esto se debe a que el área es la medida de una superficie. Un área de 15 cm2 quiere decir que esa superficie está cubierta por 15 cuadrados que miden 1 cm en cada uno de sus lados. Otras unidades de área comunes son: mm2 (milímetros cuadrados), m2 (metro cuadrado) y km2 (kilómetro cuadrado).

VER INFOGRAFÍA

Cuadrados

El área de un cuadrado es igual a la multiplicación de dos de sus lados. Como los lados de un cuadrado son todos iguales, la fórmula también se puede expresar como la medida de un lado al cuadrado.

A = l\times l =l^{2}

– Calcula el área del siguiente cuadrado

A= 3\, m\times 3\,m = \mathbf{9\, m^{2}}

Es un cuadrado de nueve metros cuadrados de área.

Rectángulos y romboides

El área de los rectángulos y romboides es igual al producto de su base por su altura.

A=b\times h

 

 

– Calcula el área del siguiente rectángulo:

A=10\, mm\times 5\, mm =\mathbf{50\, mm^{2}}

Rombos

El área de un rombo es igual al producto de su diagonal mayor (D) y su diagonal menor (d) dividido entre 2.

A=\frac{D\times d}{2}

– Calcula el área del siguiente rombo:

A = \frac{9\, cm\times 5\, cm}{2}=\frac{45\, cm^{2}}{2}=\mathbf{22,5\, cm^{2}}

El área del rombo es de 22,5 centímetros cuadrados.

Trapecios

En el caso de los trapecios el área es igual a la suma de su base mayor y su base menor, el resultado se divide entre 2 y luego se multiplica por la altura.

A = \frac{B+ b}{2}\times h

– Calcula el área del siguiente trapecio:

\small A= \frac{9\, mm+ 15\, mm}{2}\times 4\, mm=\frac{24\, mm}{2}\times 4\, mm=12\, mm\times 4\, mm = \mathbf{48\, mm^{2}}

El trapecio tiene un área de 48 milímetros cuadrados.

Polígonos regulares

Los polígonos regulares son figuras geométricas donde todos sus lados miden lo mismo. En todos los polígonos regulares se cumple que:

A= \frac{N\times L\times ap}{2}

Donde:

N = número de lados del polígono regular.

L = longitud de uno de los lados.

ap = longitud de la apotema.

¿Sabías qué?
La apotema es la menor distancia que existe entre el centro de un polígono y cualquiera de sus lados.

– Calcula el área del siguiente polígono regular:

A=\frac{6\times 4\, cm\times 3,4\, cm}{2}=\frac{24\, cm\times 3,4\, cm}{2}= \frac{81,6\, cm^{2}}{2}=\mathbf{40,8\, \mathbf{cm^{2}}}

Observa que en este caso como el polígono regular tiene seis lados (hexágono) se coloca el número 6. El área de este hexágono es de 40,8 centímetros cuadrados.

¿Cómo calcular el área de un círculo?

Para determinar el área de un círculo se debe multiplicar el número pi (que aunque es un número infinito se redondea a 3,14) por el radio de la circunferencia elevado al cuadrado, es decir;  \bg_white A = \pi \times r^{2}. El área para un círculo con un radio igual a 2 cm, por ejemplo; se calcularía como A = 3,14\times (2\, cm)^{2}=3,14\times4\, cm^{2} =\mathbf{12,56\, cm^{2}}.

 

Cálculo de áreas en figuras compuestas

Las figuras compuestas se llaman así porque están formadas por dos o más figuras geométricas. Para calcular el área en estas figuras debemos “separar” las figuras geométricas presentes y calcular por separado el área de cada una. El área total de la figura compuesta será igual a la sumatoria de las áreas de las figuras geométricas que la conformen.

– Calcula el área de la siguiente figura compuesta:

Lo primero para resolver es identificar las figuras geométricas presentes, en este caso es un triángulo (figura 1) y un rectángulo (figura 2).

Calculamos las áreas de las figuras por separado.

– Área del triángulo:

La altura es un dato del problema y es 2 cm, la base del triángulo tiene la misma longitud que la base mayor del rectángulo, por lo tanto tiene el mismo valor que es 5 cm. Calculamos el área según la fórmula de área para el triángulo:

A_{1} = \frac{b\times h}{2}=\frac{5\, cm\times 2\, cm}{2}=\frac{10\, cm^{2}}{2} = \mathbf{5\, cm^{2}}

– Área del rectángulo:

Calculamos con la fórmula de área para rectángulos.

A_{2} = b\times h=5\, cm\times 4\, cm = \mathbf{20\, }\mathbf{cm^{2}}

 

El área total es igual a la sumatoria de las áreas de las figuras geométricas calculadas:

A = A_{1}+A_{2}= 5\, cm^{2}+20\, cm^{2} =\mathbf{25\, cm^{2}}

Quiere decir que el área de la figura compuesta es de 25 centímetros cuadrados.

¿Por qué es útil conocer el área?

Conocer la superficie del área tiene múltiples usos desde los cotidianos hasta lo científico. Por ejemplo, gracias al área podemos saber cuánta tela necesita un vestido, o cuántas baldosas son necesarias en la construcción de un piso. También se usa para realizar comparaciones, por ejemplo, con el área podemos comparar países de acuerdo a su tamaño. O, también, podemos estimar la superficie de un planeta de acuerdo a su forma.

Además, el área es un parámetro usado en otras fórmulas más avanzadas como los cálculos de presiones. Por otra parte, las diferentes medidas permiten cuantificar desde áreas de tamaños microscópicos hasta áreas del tamaño de una estrella.

Aunque el Sistema Internacional de Unidades es el más extendido en el mundo, no todos los países emplean el metro cuadrado y sus múltiplos o submúltiplos para hablar de área. Hay países, como Estados Unidos, que emplea la yarda cuadrada (equivalente a 0,863 metros cuadrados), otras unidades usadas son la pulgada cuadrada, el pie cuadrado, la hectárea y el acre.
¡A practicar!

1. Calcular el área de las siguientes figuras:

a)

Solución
A = 6 cm2
b) 
Solución
A = 20 m2
c) 
Solución
A = 18 cm2
d) 
Solución
A = 61,5 mm2
e) 
Solución
A = 79 cm2

2. ¿A cuál de estas figuras corresponde la fórmula de área A = b\times h?

a) 

b) 

c) 

d) 

e) 

Solución
d) Es un romboide.

RECURSOS PARA DOCENTES

Video “Resolución del área”

En este video se explica cómo resolver cálculos de áreas en figuras compuestas y se muestran dos de las fórmulas de área más usadas.

VER

Artículo “Perímetro y área”

Este artículo explica ejercicios de perímetro y áreas. Toma como referencia diferentes unidades de medida y conversiones.

VER

Artículo “Cuerpos redondos. Áreas y volúmenes”

En el presente artículo se explica como realizar cálculos de área en cuerpos redondos, sí como las características de este tipo de figuras.

VER