CAPÍTULO 8 / TEMA 5 (REVISIÓN)

estadística y probabilidad │ ¿QUÉ APRENDIMOS?

recolección y conteo de datos

La recolección y conteo de datos es el procedimiento que se lleva a cabo para la obtención de información o respuesta de diferentes variables. Los datos pueden clasificarse como cualitativos cuando expresan cualidades o cuantitativos cuando expresan cantidades. Los datos cuantitativos se diferencian en continuos si tienen cualquier valor dentro de un intervalo; y discretos si solo ciertos valores están en un intervalo.

Los términos “niño” y “adulto” son datos cualitativos sobre una persona, mientras que la estatura, como “1,65 metros” o “1,2 metros” son datos cuantitativos.

gráficos estadísticos

Los gráficos estadísticos son una herramienta fundamental para lograr la correcta interpretación de los datos recolectados, ya que ofrecen un gran recurso visual. Existen diversos tipos de estos como el gráfico de barras, el poligonal o el circular. Los elementos principales de cada uno de estos son el título, el cuerpo y la escala.

Los gráficos de barras representan variables cualitativas o cuantitativas discretas, los poligonales representan magnitudes y frecuencias de diferentes variables y los circulares expresan porcentajes y proporciones de una variable en particular.

medidas de tendencia central

Las medidas de tendencia central se utilizan para poder representar una distribución de datos en un solo valor característico. Para esto puede calcularse la moda (Mo), la mediana (Md) o la media (\fn_phv \small \overline{x}). Estas estimaciones pueden hacerse a partir de la organización de todos los datos.

La moda es el valor de más frecuencia, la mediana es el valor central de la distribución de todos los datos y la media se calcula como la sumatoria de todos los valores dividido entre la cantidad total.

eventos y probabilidad

Los eventos aleatorios pueden ser seguros o imposibles, por ejemplo, al lanzar un moneda es seguro que saldrá cara o sello, pero es imposible que salga una tercera opción. La probabilidad de que ocurra un evento se mide al dividir la cantidad de casos favorables entre la cantidad de casos posibles, así, la probabilidad de que salga cara al lanzar una moneda es de 1/2. La probabilidad también se puede expresar como porcentaje. Por otro lado, los diagramas de Venn también nos ayudan a determinar visualmente probabilidades.

En los juegos de azar la suerte tiene un papel importante, no siempre el que tiene mejor habilidad gana.

CAPÍTULO 8 / TEMA 3

medidas de tendencia central

Son también denominadas medidas de posición o de centralización. Como su nombre lo indica, hacen referencia a los valores centrales de una determinada distribución de datos. La media aritmética, la mediana y la moda comprenden este grupo de medidas. Estas medidas cumplen la función de resumir en un solo número las características de un conjunto de datos.

la media ARITMÉTICA

La media aritmética (\fn_cm \small \overline{x}), también conocida como promedio, es el cálculo del valor característico de una distribución de datos. Se calcula al sumar todos los valores y luego dividir el resultado entre la cantidad total de datos. Si el cálculo se realiza con una muestra aleatoria, esta debe ser representativa de la muestra total.

Así que, dado un conjunto de números (n): x1, x2, x3, …xn. La media aritmética se determina por la siguiente fórmula:

\overline{x}=\frac{x_{1},\: x_{2},\: x_{3}...x_{n}}{n}

– Ejemplo:

Un grupo de 12 estudiantes obtuvo las siguientes calificaciones en una asignatura: 4, 6, 6, 10, 12, 12, 13, 15, 16, 17, 17 y 19. ¿Cuál es la media?

Aplicamos la fórmula de media aritmética:

\overline{x}=\frac{4+ 6+ 6+ 10+ 12+ 12+ 13+ 15+ 16+ 17+ 17 + 19}{12}

\overline{x}=\frac{147}{12}=\boldsymbol{12,25}

En Estadística podemos clasificar a las medidas en dos grandes grupos: medidas de posición y medidas de dispersión. Las medidas de posición nos permiten obtener un valor único (central) que representa las características del conjunto de datos. En cambio, las medidas de dispersión cuantifican las variaciones con respecto a la tendencia central.

Media aritmética para datos agrupados

Cuando los datos ya están agrupados en una tabla de frecuencia tenemos que:

  • Multiplicar cada dato (x) por su frecuencia (f).
  • Sumar el total de · x.
  • Sumar el total de f.
  • Dividir el total de · x. entre la suma total de f.

– Ejemplo:

La siguiente tabla muestra la frecuencia de notas obtenidas en una clase:

Notas (x) Frecuencia (f)
4 3
10 8
15 6
18 2

Multiplicamos cada dato (x) por su frecuencia, luego sumamos los productos y los dividimos entre las frecuencias totales:

Notas (x) Frecuencia (f) f · x
4 3 12
10 8 80
15 6 90
18 2 36
Total 19 218

\overline{x}=\frac{218}{19}\approx \boldsymbol{24,22}

¿Sabías qué?
La media aritmética presenta una desventaja: es sensible a datos atípicos, lo que arroja un valor promedio alejado de la realidad.

la moda

La moda (Mo) es el valor que tiene mayor frecuencia, es decir, es valor que más se repite. Para hallar la moda siempre es conveniente ordenar los datos que se obtienen para verificar la cantidad de veces que aparece cada uno.

– Ejemplo:

Las calificaciones obtenidas en un examen fueron: 10, 15, 4, 10, 10, 8, 10, 4, 15, 4, 10, 10, 15, 10, 10, 15, 15, 15 y 18. ¿Cuál es la moda?

Primero organizamos los datos:

4, 4, 4, 8, 10, 10, 10, 10, 10, 10, 10, 10, 15, 15, 15, 15, 15, 15 y 18.

Luego contamos la repetición o frecuencia de cada dato y elegimos el que más se repita:

4 3 veces
8 1 vez
10 8 veces
15 6 veces
18 1 veces

Por lo tanto,

Mo=\boldsymbol{8}

Distribución bimodal

La moda es el valor con mayor frecuencia en las distribuciones de los datos. Sin embargo, puede suceder que se encuentren dos modas, que reciben el nombre de “distribución bimodal”.

la mediana

La mediana (Md) corresponde al valor para el cual la cantidad de datos menores y mayores a él es igual. Cuando los elementos del conjunto de datos son un número impar, la mediana queda definida. Si la cantidad de datos es par, la mediana es el promedio entre los dos datos centrales.

– Ejemplo 1:

En un equipo de fútbol hay 11 jugadores, las edades de los mismos son: 20, 23, 19, 16, 18, 22, 19, 20, 21, 19 y 17. ¿Cuál es la mediana?

Primero organizamos los datos y ubicamos el valor que esté en el medio:

16, 17, 18, 19, 19, 20, 20, 20, 21, 22, 23

Nota que hay cinco valores a la izquierda y cinco valores a la derecha.

Entonces, Md=\boldsymbol{20}

 

– Ejemplo 2:

En un grupo de teatro hay 10 alumnos, halla la mediana correspondiente a las edades de los mismos: 15, 12,14, 10, 14, 13, 16, 12, 13 y 16.

Como la cantidad de datos es par, los organizamos y calculamos el promedio de los valores medios:

10, 12, 12, 13, 13, 14, 14, 15, 16, 16

\overline{x}=\frac{13+14}{2}=13,5

Por lo tanto, Md=\boldsymbol{13,5}

gráficas de medida de tendencia central

En distribuciones simétricas la media aritmética, mediana y moda coinciden.

Las distribuciones asimétricas pueden ser:

  • Asimétrica hacia la izquierda.

  • Asimétrica hacia la derecha.

Uno de los usos más frecuentes que le damos a las medidas de tendencia central es cuando calculamos nuestro promedio de calificaciones. Este nos indica cómo nos fue en una asignatura en particular o en todo un año escolar. Tener un buen promedio de calificaciones nos ayuda no solo a pasar al nivel superior, sino también a obtener becas académicas.

¡A practicar!

Calcula la media aritmética, la moda y la mediana de los siguientes conjuntos numéricos.

  • 1, 3, 6, 5, 6, 7, 4, 3, 4, 8, 3, 2, 7, 6, 3, 1, 5, 8, 9
Solución

1, 1, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9

\overline{x}=\frac{91}{19}\approx \boldsymbol{4,79}

Mo=\boldsymbol{3}

Md=\boldsymbol{5}

  • 17, 25, 14, 26, 30, 15, 25, 16, 11, 13, 17, 18, 16, 22, 23, 25, 14
Solución

11, 13, 14, 14, 15, 16,16, 17, 17, 18, 22, 23, 25, 25, 25, 26, 30

\overline{x}=\frac{327}{17}\approx \boldsymbol{19,24}

Mo=\boldsymbol{25}

Md=\boldsymbol{17}

  • 18, 20, 22, 28, 28, 18, 27, 30, 32, 26, 27, 28, 26, 28
Solución

18,18, 20, 22, 26, 26, 27, 27, 28, 28, 28, 28, 30, 32

\overline{x}=\frac{358}{14}\approx \boldsymbol{25,57}

Mo=\boldsymbol{28}

Md=\boldsymbol{27}

  • 120, 100, 115, 100, 150, 110, 120, 130, 110, 140, 160, 120
Solución

100, 100, 110, 110, 115, 120, 120, 120, 130, 140, 150, 160,

\overline{x}=\frac{1.475}{12}\approx \boldsymbol{122,92}

Mo=\boldsymbol{120}

Md=\boldsymbol{120}

RECURSOS PARA DOCENTES

Artículo “Las medidas de tendencia central”

En el artículo se complementan ejemplos de medidas de tendencia central y se ilustran su gráficas representativas.

VER

CAPÍTULO 3 / TEMA 4

LA CAPACIDAD

¿CUÁNTO LÍQUIDO CABE EN UNA JARRA? ¿Y EN UNA TAZA DE TÉ? ¿Y EN UNA PISCINA? LOS OBJETOS QUE PUEDEN CONTENER A OTROS TIENEN CAPACIDAD. ESTA ES UNA PROPIEDAD QUE PUEDE MEDIRSE CON DISTINTAS UNIDADES Y UNA DE LAS MÁS COMUNES ES EL LITRO. MUCHOS DE LOS PRODUCTOS QUE CONSUMES VIENEN EN UN RECIPIENTE CON UNA ETIQUETA QUE INDICA SU CAPACIDAD.

LA CAPACIDAD

OBSERVA ESTAS IMÁGENES, ¿EN QUÉ OBJETOS CABEN OTROS OBJETOS?

EN UN VASO CABEN OTROS OBJETOS O LÍQUIDOS. EL VASO TIENE CAPACIDAD.

EN LAS LLAVES NO CABEN OTROS OBJETOS O LÍQUIDOS. LAS LLAVES NO TIENEN CAPACIDAD.

¿CUÁLES OBJETOS TIENEN CAPACIDAD?

LA CAPACIDAD ES UNA PROPIEDAD DE LOS RECIPIENTES PORQUE PUEDEN CONTENER DENTRO DE ELLOS OTRAS SUSTANCIAS LÍQUIDAS. POR EJEMPLO, UNA BOTELLA, UN CUBO, UNA TAZA DE TÉ, UNA PISCINA, UNA JARRA Y UN VASO SON OBJETOS CON CAPACIDAD.

UNIDADES DE CAPACIDAD

LA UNIDAD PRINCIPAL PARA MEDIR UNA CAPACIDAD ES EL LITRO. ES FÁCIL RECONOCER UN LITRO COMO LA CANTIDAD QUE ENTRA EN UNA BOTELLA O UN CARTÓN DE LECHE.

CUANDO QUEREMOS MEDIR CANTIDADES MÁS PEQUEÑAS DE LÍQUIDOS, COMO EL JARABE QUE DEBEMOS TOMAR CUANDO NOS SENTIMOS ENFERMOS, USAMOS OTRA UNIDAD DE CAPACIDAD LLAMADA MILILITRO.

– EJEMPLOS:

  • UN CUCHARA SUELE TENER UNA CAPACIDAD MENOR A UN LITRO.
  • UNA JARRA DE LECHE SUELE TENER UNA CAPACIDAD IGUAL A UN LITRO.
  • UNA REGADERA SUELE TENER UNA CAPACIDAD MAYOR A UN LITRO.

LOS JARABES PARA NIÑOS

SE INVENTARON HACE MUCHO TIEMPO. SU SABOR DULCE Y SU CONSISTENCIA LÍQUIDA HACEN QUE INGERIRLOS SEA MÁS AGRADABLE Y EVITA LAS MOLESTIAS DE TRAGAR PASTILLAS Y EL SABOR AMARGO DE LAS MEDICINAS. SE MIDEN EN MILILITROS YA QUE SE ADMINISTRAN EN CANTIDADES MUY PEQUEÑAS, POR ESO LO TOMAS CON CUCHARA O CON GOTERO.

VER INFOGRAFÍA

¡COMPARemos CAPACIDADES!

OBSERVA ESTOS OBJETOS, ¿EN CUÁL CABE MÁS?, ¿CUÁL TIENE MAYOR CAPACIDAD?

EN LA TETERA CABE MÁS TÉ QUE EN LA TAZA DE TÉ. LA TETERA TIENE MAYOR CAPACIDAD.

 

EN LA BOTELLA CABE MÁS VINO QUE EN LA COPA. LA BOTELLA TIENE MAYOR CAPACIDAD.

¡ES TU TURNO!

¿CUÁL DE ESTOS OBJETOS TIENE MENOR CAPACIDAD?

SOLUCIÓN
LA CUCHARA TIENE MENOR CAPACIDAD.

RELACIÓN ENTRE CAPACIDAD Y VOLUMEN

LA CAPACIDAD Y EL VOLUMEN ESTÁN RELACIONADAS ENTRE SÍ PERO NO SIGNIFICAN LO MISMO. LA CAPACIDAD ES EL ESPACIO VACÍO QUE TIENE UN RECIPIENTE, PERO EL VOLUMEN ES EL ESPACIO QUE UN CUERPO OCUPA. EN EL CASO DE LOS LÍQUIDOS, COMO NO TIENEN UNA FORMA DEFINIDA, PODEMOS DETERMINAR SU VOLUMEN AL INTRODUCIRLOS EN UN RECIPIENTE.

EL VOLUMEN DE AGUA QUE CONSUMIMOS ES MUY IMPORTANTE PARA MANTENERNOS SALUDABLES. UNA PERSONA ADULTA DEBE INGERIR ENTRE 2 Y 3 LITROS DE AGUA DIARIOS PARA MANTENERSE HIDRATADA, ESO ES ALREDEDOR DE OCHO VASOS POR DÍA. SI REALIZAS EJERCICIO FÍSICO O TE ENCUENTRAS EN UN AMBIENTE MUY CÁLIDO ESTA CANTIDAD DEBERÍA INCREMENTARSE.
¿SABÍAS QUÉ?
EL CUERPO DE UN HUMANO ADULTO TIENE ALREDEDOR DE 37 LITROS DE AGUA EN SU INTERIOR.

¡A PRACTICAR!

1. ENCIERRA EN UN CÍRCULO LOS OBJETOS QUE TIENEN UNA CAPACIDAD MAYOR A UN LITRO.

SOLUCIÓN

2. OBSERVA LOS OBJETOS DE LA IMAGEN ANTERIOR. ¿CUÁL TIENE MAYOR CAPACIDAD?, ¿CUÁL TIENE MENOR CAPACIDAD?

SOLUCIÓN
LA PISCINA TIENE MAYOR CAPACIDAD.

LA CUCHARA TIENE MENOR CAPACIDAD.

RECURSOS PARA DOCENTES

Artículo “Volumen y capacidad: aplicaciones”

Este artículo te permitirá profundizar sobre qué es la capacidad, sus diferencias con el concepto de volumen y las unidades de medida.

VER

CAPÍTULO 4 / TEMA 5 (REVISIÓN)

Unidades y medidas | ¿Qué aprendimos?

Unidades de medición

Existen diferentes magnitudes físicas como la longitud, el área, el volumen y el tiempo que emplean unidades de medidas particulares. En el caso de la longitud, mide la distancia entre dos puntos; el área mide la superficie; el volumen mide el espacio y el tiempo mide la duración de un suceso. Desde 1960 se creó el Sistema Internacional de Unidades que busca que todos los países usen las mismas unidades de medición: el metro, el kilogramo, el metro cuadrado, el metro cúbico, el segundo, etc.

Los mayas usaban su propio calendario para medir el tiempo y planificar sus cosechas.

Instrumentos de medición

Medir es comparar con base en un patrón, de manera que para poder medir usamos instrumentos que se encuentran calibrados y presentan ciertas características como el rango de medición que soportan y que se indica en su cota superior e inferior. Algunos ejemplos de instrumentos que se usan en la escuela son la regla, la escuadra y el transportador. Los dos primeros miden longitudes y el último mide tamaños de ángulos.

Las reglas que usamos en la escuela generalmente vienen graduadas en centímetros y milímetros.

El tiempo

Para medir el tiempo usamos los relojes y cronómetros. Los relojes pueden ser análogos cuando emplean manecillas o digitales cuando no las emplean. La lectura del tiempo en estos casos se realiza de diferente manera. En un reloj analógico, la esfera se encuentra dividida en 12 horas que a su vez también presenta su división en minutos. Por otro lado, el formato de 24 horas es un sistema de medición que divide el día en 24 horas y comienza a partir de la medianoche hasta la medianoche siguiente.

Existen otras unidades de tiempo, como el día, la semana, el año, el lustro, la década, el siglo y el milenio.

Conversión de unidades

En el mundo existen diferentes unidades de medidas que pueden estar o no relacionados. Esto sucede con el metro, unidad usada para medir longitudes. El metro presenta submúltiplos como el decímetro, el centímetro y el milímetro; y múltiplos como el kilómetro, el hectómetro y el decámetro. Por medio de diagramas podemos transformar unidades de acuerdo a la relación que existan entre ellas, por ejemplo, las unidades de longitud y de capacidad aumentan de 10 en 10 y las de tiempo (segundo, minuto y hora) aumentan de 60 en 60.

El sistema para medir el tiempo es sexagesimal porque cada unidad es 60 veces menor que la anterior.

CAPÍTULO 4 / TEMA 1

Unidades de medición

Podemos medir muchas cosas como la altura de un edificio, el tiempo que tardamos en llegar a un lugar o el volumen de una pelota. Todo esto es posible gracias a las unidades de medición, que son referencias convencionales de una magnitud física. Las magnitudes más comunes son la longitud, el área, el volumen y el tiempo.

Longitud

Es una magnitud física que permite medir la distancia entre dos puntos, como la distancia que hay entre la casa y la escuela. Una de las unidades de longitud más aceptada es el metro (m). El metro puede multiplicarse varias veces sobre sí mismo para formar unidades mayores o múltiplos y también puede dividirse varias veces en partes iguales para formar unidades más pequeñas de referencia denominadas submúltiplos. Por ejemplo:

  • El kilómetro (km) es un múltiplo del metro porque equivale a 1.000 veces su tamaño.
  • El centímetro (cm) es un submúltiplo porque equivale a la centésima parte de un metro.
No es tan reciente

El metro como unidad de medida de longitud se empezó a utilizar durante la Revolución francesa, a finales del siglo XVIII, sin embargo, se oficializó 100 años después cuando la Comisión Internacional de Pesos y Medidas lo definió como la distancia que existía entre dos marcas ubicadas en una barra de platino e iridio. Hoy día, el metro es definido como la distancia recorrida por la luz en el vacío durante 1/299792458 de segundo.

Área o superficie

Es una magnitud que mide la extensión o superficie de una figura, por ejemplo, la superficie total del piso de una casa o de un campo de fútbol. Mientras mayor sea la región encerrada por una figura mayor será su área. Las unidades de medida comúnmente se expresan elevadas al cuadrado como el metro cuadrado (m2), el kilómetro cuadrado (km2) o el centímetro cuadrado (cm2).

Volumen

Es un tipo de magnitud que mide el espacio que ocupa un cuerpo: a mayor volumen, mayor será el espacio que ocupe. Las unidades de medidas más usadas son las elevadas al cubo como el metro cúbico (m3) y el centímetro cúbico (cm3).

VER INFOGRAFÍA

¿Sabías qué?
Se estima que el volumen total del agua en la Tierra es de 1.386 millones de kilómetros cúbicos (km3).

Tiempo

Es una magnitud física que permite medir la duración o separación de acontecimientos. Gracias al tiempo podemos medir cuánto dura un partido de fútbol o conocer qué pasó al comienzo o al final de una película.

Las medidas de tiempo más usadas son el segundo, el minuto y la hora.

Aunque no se sabe con exactitud cuándo se inventó el reloj mecánico, existen datos históricos que permiten estimar su invención en el siglo XIII. Los relojes de este tipo empleaban un sistema de ruedas giratorias que, por medio de un conjunto de pesas, ponían en movimiento a las manecillas. Este tipo de relojes anticipó a los modelos actuales.

Sistema Internacional de unidades (SI)

Es un sistema que busca la unificación de las unidades de medida usadas en diferentes países. A pesar de que la mayoría de ellos lo han adoptado como sistema de medida oficial, existen algunos que manejan sus propias unidades. Fue creado en 1960, en la XI Conferencia General de Pesas y Medidas celebrada en Francia.

Algunas unidades aceptadas por el Sistema Internacional de Medidas

Magnitud física Unidad Símbolo
Longitud Metro m
Volumen Metro cúbico m3
Área Metro cuadrado m2
Tiempo Segundo s
Masa Kilogramo kg
Temperatura Kelvin K

Unidades de medida extranjera

Muy pocos países no han adoptado al Sistema Internacional de Unidades como sistema de medida. De hecho, solo tres naciones no lo han declarado oficial en sus legislaciones: Estados Unidos, Liberia y Myammar.

Las unidades de medidas del Sistema Internacional no han sido las únicas empleadas en la medición. En la actualidad podemos usar otras, como las pulgadas, empleadas particularmente para identificar tornillos y medir pantallas de monitores y celulares.

El petróleo, por ejemplo, se suele medir en barriles y la mayoría de los biberones vienen graduados en onzas. Hay otras unidades de medidas usadas para fines específicos como la hectárea y el acre, empleadas para medir áreas de superficies.

Equivalencias de interés

  • 1 pulgada = 2,54 centímetro
  • 1 barril = 159 litros aproximadamente
  • 1 onza = 28,35 gramos
  • 1 hectárea = 10.000 metros cuadrados
  • 1 acre = 4.046,86 metros cuadrados

Unidades de medidas usadas por los pueblos originarios

Nuestros pueblos originarios no eran la excepción si de medir las cosas se trataba. De hecho, cada una de las grandes civilizaciones precolombinas utilizaban unidades de medidas propias.

Los mayas tenían conocimientos avanzados en el campo de la astronomía, lo que les permitió elaborar su calendario por medio de medidas de tiempo propias. Gracias a esto, ellos podían calcular las estaciones y planificar el tiempo de las cosechas.

En el otro extremo del continente, los incas ya tenían un sistema de numeración propio: los quipus, que les permitieron realizar diversos cálculos matemáticos. En el campo de la medición, esta civilización también empleaba sus propias unidades: por ejemplo, para medir longitudes usaban partes del cuerpo como referencia, como la rikra, que consistía en la distancia de los dos dedos pulgares con los brazos extendidos en sentido horizontal.

Las antiguas civilizaciones emplearon sus propios sistemas de medición de unidades de tiempo, de longitud y de volumen. Había sistemas más precisos que otros pero todos servían para realizar diversas tareas, desde las más simples  (como contabilizar o medir volúmenes de agua) hasta las más complejas (como la construcción de grandes edificaciones, templos y acueductos).

VER INFOGRAFÍA

¡A practicar!

1. ¿Cuál es la medida usada por el Sistema Internacional de Medidas para medir la longitud?

a) Kilómetro.

b) Centímetro.

c) Metro cúbico.

d) Metro.

Solución
d) Metro.

2. ¿Qué magnitud permite medir la duración de un acontecimiento?

a) El tiempo.

b) El volumen.

c) El área.

d) La longitud.

Solución
a) El tiempo.

3. ¿A qué unidad de medida representa el símbolo m3?

a) Segundo.

b) Milímetro cuadrado.

c) Metro cúbico.

d) Superficie cúbica.

Solución
c) Metro cúbico.

4. ¿En qué año se creó el Sistema Internacional de Medidas?

a) 1960.

b) 1540.

c) 2001.

d) 1998.

Solución
a) 1960.

5. ¿Cuál de estos países no emplea de manera oficial el Sistema Internacional de Medidas?

a) Argentina.

b) Rusia.

c) Italia.

d) Estados Unidos.

Solución
d) Estados Unidos.

6. ¿Cuál de las siguientes opciones se considera una unidad extranjera?

a) Metro.

b) Kilogramo.

c) Acre.

d) Centímetro cuadrado.

Solución
c) Acre.

7. Una hectárea mide __________.

a) 10 metros.

b) 5 centímetros cúbicos.

c) 10.000 metros cuadrados.

d) 20 segundos.

Solución
c) 10.000 metros cuadrados.

8. ¿Qué civilización americana usaba la rikra como medida de longitud?

a) Inca

b) Maya

c) Azteca

d) Olmeca

Solución
a) Inca

 

RECURSOS PARA DOCENTES

Artículo “Sistemas de medición”

Este artículo explica qué es un sistema de medición ,así como también algunas unidades de medida y sus instrumentos de medición.

VER

Artículo “Sistema Internacional de Unidades”

Este artículo destacado explica por qué se formó el Sistema Internacional de Unidades y describe las principales unidades que lo componen.

VER

Artículo “Volumen y capacidad: aplicaciones”

Este artículo explica qué es el volumen y la capacidad, así como sus unidades de medidas y transformaciones básicas en problemas cotidianos.

VER

CAPÍTULO 4 / TEMA 3

El tiempo

El tiempo es una magnitud física que permite llevar un orden de los sucesos. En otras palabras, gracias al tiempo podemos distinguir lo que pasó la semana pasada, ayer u hoy. En la actualidad, para determinar el tiempo usamos sistemas que dividen los días en 24 horas. Por medio de los relojes podemos conocer en qué hora del día estamos.

Lectura del tiempo

El ser humano siempre ha sentido la necesidad de medir el tiempo, ya sea para la duración de acontecimientos o para establecer separaciones de sucesos. Por eso, a lo largo de la historia han existido una serie de calendarios basados principalmente en ciclos lunares o solares.

Algunos calendarios son más precisos que otros, pero todos buscan una sola cosa: tener noción del tiempo.

VER INFOGRAFÍA

Unidades de tiempo

Las unidades de tiempo más comunes son la hora, el minuto y el segundo, donde se cumple que:

  • 1 hora = 60 minutos
  • 1 minuto = 60 segundos

Sin embargo, existen otras unidades para medir el tiempo:

  • 1 día = 24 horas
  • 1 semana = 7 días
  • 1 año común = 365 días
  • 1 año bisiesto = 366 días
  • 1 lustro = 5 años
  • 1 década = 10 años
  • 1 siglo = 100 años
  • 1 milenio = 1.000 años

Los relojes

Son instrumentos usados para medir el tiempo. A lo largo de la historia han pasado de ser relojes solares y de arena, a relojes cada vez más sofisticados como los relojes inteligentes de hoy en día. Los más usados en la actualidad son los relojes analógicos y los digitales.

¿Cómo leer la hora en relojes analógicos?

Una reloj analógico se caracteriza por tener agujas o manecillas que indican las horas, los minutos y los segundos a través de ciertos marcadores y números. Los elementos de un reloj analógico son los siguientes:

  • Las manecillas: son las agujas que marcan las horas, minutos y segundos. La más chica de ellas indica la hora y se denomina horario; la aguja grande más larga indica los minutos y se denomina minutero; la aguja más fina y que va más rápido indica los segundos y se denomina segundero.
  • Marcadores: son las doce partes en las que está dividida la circunferencia del reloj. Estas partes están rotuladas con los números del 1 al 12 y cada una, a su vez, está dividida en cinco subdivisiones más pequeñas marcadas con segmentos de rectas.

¿Sabías qué?
Existen relojes digitales que imitan a los relojes analógicos por contener agujas en pantallas LCD. Debido a su formato también son considerados relojes analógicos.

El horario tarda 12 horas en dar la vuelta completa, de manera que en un día tiene que realizar dos vueltas completas. El minutero tarda 60 minutos que equivalen a 1 hora en dar la vuelta completa, y el segundero tarda 60 segundos en dar una vuelta completa que equivalen a 1 minuto.

Cuando el minutero se encuentra en el número 12 significa que han transcurrido 0 minutos de la hora que marca el horario, por lo tanto, al leer la hora indicada y agregamos la expresión “en punto“. Por ejemplo:

El reloj muestra las ocho en punto.

El reloj muestra las dos en punto.

Como ya vimos, el reloj está dividido en 12 secciones y cada una de ellas está subdivide en cinco, es decir, el reloj está dividido en 60 partes iguales que equivalen a cada minuto contenido en una hora. Quiere decir que si partimos del número 12 y miramos solamente los segmentos donde aparecen marcados los números, notaremos como los minutos se incrementan de cinco en cinco.

En este sentido, si el minutero se encuentra sobre el número 1, significa que han pasado 5 minutos; si se encuentra en el número 2 indica que pasaron 10 minutos y así sucesivamente hasta el número 12 que indica que no ha pasado ningún minuto aún. Para leer la hora en estos casos, decimos la hora marcada por el horario y luego leemos los minutos.

El reloj muestra las ocho y cinco minutos.

El reloj muestra las diez y veinticinco minutos.

¿Sabías qué?
Cuando el horario se encuentra entre dos números, la hora que indica corresponde al número menor de los dos.

Cuando el minutero está en el número 3, 6 y 9, la hora se suele mencionar de manera particular.

– Cuando el minutero está en el 3 indica que han transcurrido 15 minutos, es decir una cuarta parte de lo que dura una hora. Por eso, después de decir la hora agregamos la expresión “…y cuarto”.

El reloj muestra las once y cuarto.

– Cuando el minutero está en el 6 significa que han pasado 30 minutos, es decir, la mitad de una hora, por eso decimos “…y media”.

El reloj muestra las nueve y media.

– Cuando el minutero está en el 9 han pasado 45 minutos lo significa que falta un cuarto de hora (quince minutos) para la hora siguiente. Por eso decimos “un cuarto para…” y luego la hora próxima.

El reloj muestra un cuarto para las siete.

En algunos países en lugar de decir “un cuarto para” se lee la hora próxima y se agrega la expresión “menos cuarto”. En este sentido, el ejemplo anterior se leería como “las siete menos cuarto”.

Para otros casos, se lee la hora mostrada por el horario y luego los minutos indicados por el minutero.

 

¿Cómo leer la hora en relojes digitales?

En el reloj digital no se observan manecillas sino que expresa la hora y los minutos separados por dos puntos. Las primeras dos cifras corresponden a las horas y las dos cifras que se encuentran a la derecha de los dos puntos indican los minutos.

La lectura es similar a la de los relojes analógicos, la diferencia es que la hora y los minutos se observan de manera más directa. Primero leemos la hora y después los minutos

En los casos a los cuales aplique se agregan las expresiones “…en punto”, “…y cuarto”, “…y media” y “un cuarto para…”.

 Son las ocho en punto.

 Son las ocho y cuarto.

 Son las ocho y media.

 Son un cuarto para las nueve.

 Son las ocho y treinta y cinco minutos.

VER INFOGRAFÍA

Las abreviaturas a. m. y p. m.

Son abreviaturas que suelen aparecer en los relojes digitales. La abreviatura a. m. significa que la hora leída corresponde a antes del mediodía, mientras que p. m. se usa para indicar las horas después del mediodía.

Sistema horario de 24 horas

El sistema usado por los relojes analógicos es de 12 horas. Por lo tanto tiene que completar dos ciclos para cubrir un día. El sistema de 24 horas lleva este nombre porque divide al día en las 24 horas totales que lo conforman. Por eso no necesita de las siglas a. m. y p. m. En este sistema las 00:00 horas o 00:00 h corresponden a las 12 a. m., hora desde la cual se empiezan a contar las horas de manera ascendente. En esta convención de tiempo el día se mide de medianoche a medianoche.

Formato 24 horas Formato 12 horas
00:00 h 12:00 a. m.
01:00 h 01:00 a. m.
02:00 h 02:00 a. m.
03:00 h 03:00 a. m.
04:00 h 04:00 a. m.
05:00 h 05:00 a. m.
06:00 h 06:00 a. m.
07:00 h 07:00 a. m.
08:00 h 08:00 a. m.
09:00 h 09:00 a. m.
10:00 h 10:00 a. m.
11:00 h 11:00 a. m.
12:00 h 12:00 m.
13:00 h 01:00 p. m.
14:00 h 02:00 p. m.
15:00 h 03:00 p. m.
16:00 h 04:00 p. m.
17:00 h 05:00 p. m.
18:00 h 06:00 p. m.
19:00 h 07:00 p. m.
20:00 h 08:00 p. m.
21:00 h 09:00 p. m.
22:00 h 10:00 p. m.
23:00 h 11:00 p. m.
El sistema de 24 horas es usado en diversas áreas, de hecho, en algunos países se ha estandarizado como sistema de notación del tiempo. Es común su empleo en el área militar y en el de la astronomía. También suele usarse en áreas como la medicina para llevar registros de la historia clínica de los pacientes. Otros usos se dan en aeropuertos y otras terminales de transportes.

¡A practicar!

1. ¿Qué hora indican los relojes?

a) 

Solución
Son las once y cinco minutos.

b)

Solución
Son las once y media.

c)

Solución
Son las ocho y cuarto.

c)

Solución
Son las tres y media

2. ¿Qué hora observas en estos relojes?

a)

Solución
Son las tres y veinte minutos.

b)

Solución
Son las diez en punto.

c)

Solución
Son las once y cuarto.

3. ¿A qué hora del sistema de 12 horas corresponde?

a) Las ocho y treinta y cinco minutos.

b) Las treinta y cinco para las diecinueve.

c) Las nueve y media.

d) Las seis y treinta y cinco minutos.

Solución
d) Las seis y treinta y cinco minutos.

RECURSOS PARA DOCENTES

Artículo “Medidas de tiempo”

Este artículo describe las principales unidades de tiempo y propone una serie de operaciones que se pueden realizar con unidades de tiempo.

VER

Artículo “Reloj de arena”

El presente artículo destacado describe a este sencillo pero asombroso invento que utilizaban nuestros antepasados para medir el tiempo.

VER

Artículo “Los calendarios”

Este artículo describe el origen de los calendarios y las característica del calendario gregoriano, uno de los más usados hoy en día. También explica otros tipos de calendarios que han sido utilizados por diversas culturas como la maya y la egipcia.

VER

CAPÍTULO 4 / TEMA 2

Instrumentos de medición

Si hay algo que los seres humanos hemos necesitado desde siempre es tomar mediciones: las personas medimos desde las raciones de comida, hasta los grandes territorios. Los instrumentos de medición permiten conocer las cantidades de diferentes magnitudes como la longitud, el volumen, el tiempo, etc. Las unidades de medida son una referencia y pueden ser convencionales o no.

Características de los principales instrumentos de medición

Un instrumento de medición presenta las siguientes características:

  • Cota inferior: corresponde al valor mínimo de la magnitud que puede medir el instrumento.
  • Cota superior: corresponde al valor máximo que puede medir el instrumento.
  • Sensibilidad: corresponde a la mínima variación de la magnitud que puede detectar el instrumento.
  • Exactitud: corresponde a la capacidad del instrumento de acercarse al valor real de la magnitud leída.
  • Fiabilidad: corresponde a qué tan consistente sea la medición del instrumento, es decir, que el instrumento pueda medir la misma cantidad en las mismas condiciones y en diferentes ocasiones.
El termómetro de mercurio es un instrumento que en la actualidad comienza a estar en desuso en el área de la salud por los riesgos de toxicidad, sin embargo, en el pasado era usado para medir la temperatura corporal. Su cota inferior suele ser de 35 °C y su cota superior suele estar en los 42 °C. Quiere decir que puede medir valores entre esas dos temperaturas.

Calidad de medición

Hay instrumentos con mayor precisión y sensibilidad que otros, por lo tanto presentan mayor exactitud. Por ejemplo, las balanzas se usan para medir la masa de los cuerpos. En un mercado se usan balanzas convencionales con una cota inferior de 1 gramo y en lugares como laboratorios y fábricas pueden usar balanzas tan sensibles que permiten obtener lecturas muy pequeñas como 0,00001 g.

Para que tengas una idea, la masa de un grano de arroz es de 0,03 gramos y las balanzas de un laboratorio pueden medir cantidades 1.000 veces menores que eso, ¡increíble!

VER INFOGRAFÍA

Instrumentos de medición comunes en la escuela

En la escuela solemos usar instrumentos para medir longitudes de las cosas, como la regla o una escuadra. La longitud es una magnitud que permite medir distancias entre dos puntos, con ella podemos medir el tamaño de una recta o el de los lados de una figura geométrica.

Las reglas y escuadras que usamos en la escuela tienen una escala graduada en centímetros y milímetros. Cada centímetro está dividido en milímetros. Pueden estar construidas de materiales como metal, plástico o madera y pueden ser flexibles o rígidas. Las escuadras además de medir longitudes sirven para construir rectas paralelas y perpendiculares.

 

Otro instrumento de medición usado en la escuela es el transportador, que sirve para medir ángulos, presenta su escala en grados y es muy usado en disciplinas como la arquitectura y el dibujo técnico.

¿Sabías qué?
Hay dos tipos de transportador, el circular que se encuentra graduado de 0° a 360° y el semicircular que está graduado de 0° a 180°.

Cuando usamos el reloj, medimos el tiempo que ha transcurrido. Las unidades de tiempo se expresan en segundos minutos y horas. Hay otros instrumentos de medición de tiempo como el cronómetro, por ejemplo, que suele ser usado por los entrenadores para evaluar el desempeño de los deportistas.

Unidades de medidas no convencionales

Todas las unidades de medida son una referencia para medir la cosas. Hay unidades convencionales que se usan en gran parte del mundo, como el metro para medir la longitud o el segundo para medir el tiempo, pero también hay otras que podemos usar para medir de una manera menos convencional y que nos permiten establecer comparaciones, como nuestras manos, dedos o pies.

Podemos usar nuestra mano como unidad de medida para medir la longitud de un cuaderno, simplemente tenemos que ver cuántas veces ese patrón de medida se encuentra en el objeto. Incluso podemos usar otros objetos como un lápiz como referencia de medida. En este caso se habla de unidades no convencionales porque no pertenecen al Sistema Internacional de Unidades.

Por ejemplo:

– El cuaderno mide dos manos y media.
– El lápiz mide seis dedos.

La pulgada y los reyes

A lo largo de la historia se ha usado la pulgada como unidad de longitud. La pulgada era empleada por los monarcas, quienes empleaban la medida desde el nudillo del pulgar hasta el extremo del dedo. Este sistema de medida tuvo muchos inconvenientes porque no todos los reyes tenían el mismo tamaño de falanges, y existían pulgadas de diferentes medidas, lo que generaba confusión.

Por razones como esas, los sistemas de medición se unificaron en sistemas más homogéneos como el Sistema Internacional de Medidas. En la actualidad hay países como Estados Unidos que aún emplean la pulgada como medida de longitud que equivale a 2,54 cm.

¡A practicar!

1. ¿Cómo se denomina al máximo valor que puede medir un instrumento de medición?

a) Cota inferior.

b) Sensibilidad.

c) Cota superior.

d) Confiabilidad.

Solución
c) Cota superior.

2. ¿Cuál es una medida no convencional?

a) El metro.

b) El segundo.

c) El centímetro.

d) El dedo.

Solución
d) El dedo.

3. ¿Qué podemos medir con las unidades de longitud?

a) La distancia entre dos puntos.

b) La capacidad de un recipiente.

c) El tiempo.

d) La temperatura de una persona.

Solución
a) La distancia entre dos puntos.

4. Observa los siguientes instrumentos de medición y determina qué podemos medir con cada uno.

a) 

Solución
La longitud.

b) 

Solución
El tiempo.

c)

Solución
La medida de ángulos.

d) 

Solución
La masa.

RECURSOS PARA DOCENTES

Artículo “Sistema Internacional de unidades”

Este artículo explica qué es el Sistema Internacional de unidades y describe sus principales unidades básicas y derivadas, así como su importancia en la actualidad.

VER

Tarjetas educativas “Instrumentos de laboratorio”

Este micrositio muestra los principales instrumentos de laboratorio, dentro de los cuales se encuentran varios instrumentos de medición.

VER

Infografía “Balanza”

Esta infografía muestra uno de los instrumentos de medición más usados: la balanza. También describe sus tipos y sus características principales.

VER

CAPÍTULO 3 / TEMA 2

LA LONGITUD

LA LONGITUD NOS PERMITE SABER QUÉ TAN LARGO, ALTO O ANCHO ES UN OBJETO, TAMBIÉN NOS PERMITE CONOCER LA DISTANCIA QUE HAY DE LA CASA A LA ESCUELA. LA UNIDAD PRINCIPAL PARA MEDIR LA LONGITUD ES EL METRO, PERO TAMBIÉN PODEMOS USAR OTRAS, COMO LOS CENTÍMETROS O LOS KILÓMETROS.

¿QUÉ ES LA LONGITUD?

LA LONGITUD ES LA DISTANCIA O ESPACIO QUE HAY ENTRE DOS PUNTOS. LO REPRESENTAMOS CON UNA LÍNEA RECTA.

LA LÍNEA ROJA NOS INDICA EL LARGO DEL PIZARRÓN.

UNO DE LOS EJEMPLOS MÁS COMUNES DE LONGITUD LO PODEMOS VER EN NUESTRO CRECIMIENTO. A MEDIDA QUE PASA EL TIEMPO NUESTRAS EXTREMIDADES SE HACEN MÁS LARGAS Y NOS HACEMOS MÁS ALTOS. PASAMOS DE MEDIR UNOS CUANTOS CENTÍMETROS AL SER BEBÉS, PARA LUEGO TENER MÁS DE UN METRO DE ALTURA CUANDO SOMOS ADULTOS. HAZ LA PRUEBA, ¿CUÁL ES TU ALTURA?

Comparemos longitudes

OBSERVA LA LÍNEA ROJA QUE VA DESDE EL COMIENZO HASTA EL FINAL DE CADA LÁPIZ. ESTA LÍNEA INDICA LA LONGITUD DE LOS LÁPICES. 

¿CUÁL LÁPIZ TIENE MAYOR LONGITUD?, ¿CUÁL LÁPIZ TIENE MENOR LONGITUD?

EL LÁPIZ VERDE TIENE MAYOR LONGITUD QUE EL LÁPIZ AMARILLO.

EL LÁPIZ AMARILLO TIENE MENOR LONGITUD QUE EL LÁPIZ VERDE.

 

¡COMPAREMOS!

OBSERVA ESTOS LÁPICES DE COLORES, RESPONDE LAS PREGUNTAS.

  • ¿CUÁL LÁPIZ TIENE MAYOR LONGITUD?
SOLUCIÓN
EL LÁPIZ VERDE TIENE MAYOR LONGITUD.
  • ¿CUÁL LÁPIZ TIENE MENOR LONGITUD?
SOLUCIÓN
EL LÁPIZ AMARILLO TIENE MENOR LONGITUD.
  • ENTRE EL LÁPIZ AZUL Y AMARILLO, ¿CUÁL TIENE MAYOR LONGITUD?
SOLUCIÓN
EL LÁPIZ AZUL TIENE MAYOR LONGITUD QUE EL LÁPIZ AMARILLO.
  • ENTRE EL LÁPIZ VERDE Y ROJO, ¿CUÁL TIENE MAYOR LONGITUD?
SOLUCIÓN
EL LÁPIZ VERDE TIENE MAYOR LONGITUD QUE EL LÁPIZ ROJO.
  • ENTRE EL LÁPIZ ROJO Y AMARILLO, ¿CUÁL TIENE MENOR LONGITUD?
SOLUCIÓN
EL LÁPIZ AMARILLO TIENE MENOR LONGITUD QUE EL LÁPIZ ROJO.
  • ENTRE EL LÁPIZ AZUL Y VERDE, ¿CUÁL TIENE MENOR LONGITUD?
SOLUCIÓN
EL LÁPIZ AZUL TIENE MENOR LONGITUD QUE EL LÁPIZ VERDE.

NO TODOS LOS OBJETOS SON PLANOS, MUCHOS TIENEN PROFUNDIDAD COMO ESTA CAJA. LA LONGITUD NOS AYUDA A SABER EL LARGO, ALTO Y ANCHO DE LAS COSAS.

LA LÍNEA ROJA INDICA LO ALTO DE LA CAJA.

LA LÍNEA AZUL INDICA EL LARGO DE LA CAJA.

LA LÍNEA VERDE INDICA EL ANCHO DE LA CAJA.

¡COMPAREMOS!

  • ¿CUÁL CAJA ES MÁS LARGA?

SOLUCIÓN
LA CAJA VERDE ES MÁS LARGA QUE LA CAJA NARANJA.
  • ¿CUÁL CAJA ES MÁS ALTA?

SOLUCIÓN
LA CAJA VERDE ES MÁS ALTA QUE A CAJA NARANJA.
  • ¿CUÁL CAJA ES MÁS ANCHA?

SOLUCIÓN
LA CAJA NARANJA ES MÁS ANCHA QUE LA CAJA VERDE.
¿Sabías qué?
LAS MONTAÑAS SE MIDEN EN METROS. LA MÁS ALTA DEL PLANETA ES EL MONTE EVEREST, EN ASIA, CON 8.848 METROS DE ALTURA.

EL METRO Y EL CENTÍMETRO

EL METRO ES UNA UNIDAD DE LONGITUD QUE USAMOS PARA MEDIR OBJETOS GRANDES, PERO NO ES LA ÚNICA, EL CENTÍMETRO TAMBIÉN ES UNA UNIDAD DE MEDIDA DE LONGITUD Y LA USAMOS PARA MEDIR OBJETOS PEQUEÑOS. POR EJEMPLO:

  • ESTA MESA MIDE 1 METRO DE LARGO.

  • ESTE LÁPIZ MIDE 15 CENTÍMETROS DE LARGO.

KILÓMETRO: UNIDAD PARA UNA GRAN LONGITUD

EL KILÓMETRO ES UNA UNIDAD DE MEDIDA DE LONGITUD QUE ES IGUAL A 1.000 METROS. LA USAMOS CUANDO LAS DISTANCIAS ENTRE DOS PUNTOS SON MUY GRANDES, POR EJEMPLO, DE UNA CIUDAD A OTRA.

LOS ATLETAS PUEDEN LLEGAR A CORRER CARRERAS DE LARGA DISTANCIAS QUE VAN DESDE LOS 5 KILÓMETROS HASTA LOS 20 KILÓMETROS O MÁS.

¿qué es la distancia?

LA DISTANCIA NOS PERMITE SABER EL ESPACIO QUE SEPARA UN OBJETO DE OTRO. OBSERVA LAS DOS CASAS, ¿ESTÁN JUNTAS?

NO. NO ESTÁN JUNTAS.

EL ESPACIO QUE SEPARA A LA CASA AZUL DE LA CASA ROJA SE LLAMA DISTANCIA.

VER INFOGRAFÍA

¿CÓMO MEDIR LA LONGITUD DE ALGO CON UNA REGLA?

UNO DE LOS INSTRUMENTOS DE MEDIDA MÁS USADOS EN LAS ESCUELAS ES LA REGLA. CON ELLA PODEMOS MEDIR OBJETOS Y DISTANCIAS PEQUEÑAS.

¿QUÉ ES LA REGLA?

LA REGLA ES UN INSTRUMENTO QUE SIRVE PARA MEDIR OBJETOS PEQUEÑOS. PUEDE ESTAR FABRICADA CON DISTINTOS MATERIALES, COMO PLÁSTICO, METAL O MADERA. POR LO GENERAL, EN LA ESCUELA USAMOS REGLAS DE PLÁSTICO DURO O FLEXIBLE. CON ESTA REGLA PODEMOS MEDIR OBJETOS DE HASTA 20 CENTÍMETROS.

 

PARA MEDIR OBJETOS CON UNA REGLA SEGUIMOS ESTOS PASOS:

1. NOS ASEGURAMOS DE QUE EL OBJETO ESTÉ COLOCADO A LA ALTURA DEL NÚMERO CERO (0).

2. LEEMOS EL NÚMERO HASTA EL QUE SE EXTIENDE EL OBJETO. EN ESTE CASO EL LÁPIZ LLEGA HASTA EL 16, ENTONCES, EL LÁPIZ MIDE 16 CENTÍMETROS.

LA CINTA MÉTRICA PERMITE MEDIR OBJETOS CON PARTES CURVAS GRACIAS A SU FLEXIBILIDAD. LAS COSTURERAS Y DISEÑADORES DE ROPA SIEMPRE LA USAN PARA CONFECCIONAR ATUENDOS. HAY DE DIFERENTES LONGITUDES, PERO LA QUE VEMOS CON MÁS FRECUENCIA ES LA DE 1 METRO Y MEDIO. TAMBIÉN LA USAN ALGUNOS DOCTORES PARA MEDIR ALGUNAS PARTES DEL CUERPO DE SUS PACIENTES.

¡A PRACTICAR!

1. RESPONDE LAS PREGUNTAS.

  • ¿CUÁNTO MIDE EL CLAVO?

SOLUCIÓN
EL CLAVO MIDE 3 CENTÍMETROS.
  • ¿CUÁNTO MIDE LA HOJA?

 

SOLUCIÓN
LA HOJA MIDE 7 CENTÍMETROS.
  • ¿CUÁNTO MIDE EL PINCEL?

 

SOLUCIÓN
EL PINCEL MIDE 15 CENTÍMETROS.
  • ¿CUÁNTO MIDE LA TIRA AMARILLA?

SOLUCIÓN
LA CINTA AMARILLA MIDE 9 CENTÍMETROS.
  • ¿CUÁNTO MIDE LA CINTA AZUL?

SOLUCIÓN
LA CINTA AZUL MIDE 19 CENTÍMETROS.
  • ¿CUÁNTO MIDE LA CINTA ROJA?

SOLUCIÓN
LA CINTA ROJA MIDE 2 CENTÍMETROS.

 

2. ¿CUÁL DE LAS SIGUIENTES MANERAS ES LA CORRECTA PARA MEDIR LA TIRA GRIS?

A) 

B) 

RESPUESTAS
LA MANERA CORRECTA ES LA A), PORQUE EL INICIO ESTÁ UBICADO EN EL NÚMERO 0.
RECURSOS PARA DOCENTES

Video “Unidades métricas”

El siguiente artículo permitirá profundizar en las características y usos de las distintas unidades métricas.

VER

CAPÍTULO 3 / TEMA 3

capacidad

Si tenemos un vaso de vidrio y una taza pequeña de té, ¿en cuál cabe más agua? En el vaso, ¿cierto? La propiedad que indica lo que cabe dentro de un recipiente se llama capacidad, y la vemos en todos los envases de gaseosas, aceites y jugos. A continuación aprenderás cuáles son sus unidades de medida y cómo convertirlas.

Las unidades de medida de capacidad nos permiten conocer y comparar la cantidad de líquido que contiene un envase con la que contiene otro. El litro y el mililitro son las unidades principales y las usamos a diario. Por ejemplo, podemos tomarnos 2 litros de agua en un día, pero si estamos enfermos, el doctor nos puede recetar 5 mililitros de un jarabe.

el litro y el mililitro

La capacidad nos permite conocer qué cabe dentro de un recipiente, por ejemplo, en uno de leche, perfume o champú. Estas cantidades se expresan con unidades de medida y las más usadas son el litro y el mililitro.

Capacidad y volumen: ¿son lo mismo?

No, la capacidad es la cantidad que cabe dentro de un recipiente, mientras que el volumen es la cantidad de espacio que ocupa un cuerpo. La unidad de medida del volumen es el metro cúbico, mientras que la unidad de medida de la capacidad es el litro.

El litro es la unidad principal de las medidas de capacidad y en forma abreviada se representa con la letra L. Al litro lo podemos dividir en medios litro y cuartos de litro. Observa:

 

– Ejemplo:

Esta jarra tiene capacidad para 1 litro de jugo. Si solo tenemos vasos de ½ litro, ¿cuántos vasos podríamos llenar? ¿y si son de ¼ de litro?

 

Si dividimos un litro en dos partes iguales, cada parte es igual a ½ litro o 0,5 L, es decir, que si tenemos vasos de ½ litro podemos llenar solo 2 vasos.

1 litro = ½ litro + ½ litro

 

Si dividimos un litro en cuatro partes iguales, cada parte es ¼ de litro o 0,25 L, entonces, si tenemos vasos de ¼ de litro podemos llenar solo 4 vasos.

1 litro = ¼ de litro + ¼ de litro + ¼ de litro + ¼ de litro

¡Es tu turno!

  • Susana llenó su termo con ocho vasos de ¼ de litro. ¿Qué capacidad tiene el termo?
Solución
2 litros.
  • Una pecera tiene una capacidad de 4 litros. ¿Cuántas botellas de medio litro son necesarias para llenarla?
Solución
8 botellas.

El litro tiene submúltiplos y con ellos podemos expresar cantidades pequeñas de capacidad, estos son el decilitro (dL), centilitro (cL) y el mililitro (mL). Las equivalencias son las siguientes:

  • 1 decilitro (dL) = 0,1 litros (L)
  • 1 centilitro (cL) = 0,01 litros (L)
  • 1 mililitro (mL) = 0,001 litros (L)

Además de los submúltiplos, el litro tiene múltiplos, es decir, unidades que nos permiten expresar cantidades grandes de capacidad. Estos son el kilolitro (kL), el hectolitro (hL) y el decalitro (daL).

Sus equivalencias son:

  • 1 kilolitro (kL) = 1.000 litros (L)
  • 1 hectolitro (hL) = 100 litros (L)
  • 1 decalitro (dL) = 10 litros (L)

Para que tengas una idea acerca de las unidades de capacidad veamos algunos ejemplos:

 

El mililitro es un submúltiplo del litro y se representa con las letras mL. Se utiliza a menudo para medir pequeñas cantidades de líquidos.

En las antiguas civilizaciones se usaban envases de cerámica de medida estándar para medir el volumen, estas se llamaban ánforas y eran empleadas en todos los territorios griegos. Tenían diferentes tamaños y formas que variaban de acuerdo a su uso y capacidad, había desde 2 litros hasta 26 litros.

conversión de las unidades de capacidad

Las principales unidades de capacidad son el litro y el mililitro. Si queremos comparar dos capacidades, la de un tanque y la de una botella, y una está en litros y la otra en mililitros, lo primero que debemos hacer es convertir las unidades. De esta manera las dos tendrán la misma unidad y podrás compararlas.

Con este esquema podemos convertir litros a sus submúltiplos y viceversa:

Para convertir unidades de capacidad existen dos métodos:

  • El primero consiste en mover a la derecha o a la izquierda la coma del número tantos lugares como casillas sean necesarias para llegar a la unidad deseada.
  • El segundo consiste en multiplicar o dividir por diez tantas veces como casillas se necesiten para llegar a la unidad deseada.

– Ejemplo:

  • Convierte 1,89 L a mL

Primer método

Dibuja el cuadro y mueve tantos lugares a la derecha como sean necesarios hasta llegar a la posición de los mililitros.

Como nos desplazamos tres lugares a la derecha, movemos la coma tres lugares a la derecha.

Observa que después del 9 agregamos un cero y al lado la coma.

Entonces, 1,89 L equivalen a 1.890 mL.

Segundo método

Multiplica tres veces seguidas por diez (10).

Observa que tres veces diez (10) es igual a 10 x 10 x 10 = 1.000. Así que puedes multiplicar de forma directa:

1,89 x 1.000 = 1.890

El resultado será el mismo, 1,89 L son equivalentes a 1.890 mL.

 

– Otro ejemplo:

  • Convierte 4.320 mL a L.

Primer método

Dibuja el cuadro y mueve tantos lugares a la izquierda como sean necesarios hasta llegar a la posición de los litros.

Como nos desplazamos tres lugares a la izquierda, movemos la coma tres lugares a la izquierda.

Entonces, 4.320 mL son equivalentes a 4,32 L.

Segundo método

Divide tres veces seguidas por diez (10).

Observa que tres veces diez (10) es igual a 10 x 10 x 10 = 1.000. Así que puedes dividir de forma directa:

4.320 ÷ 1.000 = 4,32

El resultado será el mismo, 4.320 mL son equivalentes a 4,32 L.

 

Otras medidas de capacidad

• El barril, que equivale a 159 litros, se utiliza para determinar la cantidad de petróleo y algunos de sus productos derivados como la gasolina.

• El galón, que equivale a 3,785 litros, se utiliza cuando compramos enormes cantidades de líquidos, por ejemplo la pintura para pintar la casa.

¿cómo medir la capacidad?

Muchos envases muestran con etiquetas o marcas la capacidad que tienen, y muchos otros sirven para medir el líquido contenido en ellos. En tu hogar puedes ver algunos como estos:

 

Este tipo de recipientes tienen una escala en litros o en mililitros que nos permite conocer la cantidad del líquido que se encuentra dentro de ellos.

– Ejemplo:

Si tenemos una botella llena de leche, pero no conocemos su capacidad, ¿cómo podemos saber cuántos mL de leche contiene la botella?

Para conocer la capacidad de la botella podemos usar un vaso graduado o jarra medidora como esta:

Como puedes ver, el vaso tiene marcas para indicar la medidas en mililitros (mL) hasta llegar a 1 litro (L), que es su capacidad máxima. Así que solo agregamos la leche de la botella en el vaso graduado para poder medir la cantidad de líquido.

 

Después de verter todo lo líquido, nos fijamos en qué marca quedó la leche. En este caso quedó en los 500 mL o ½ L.

Por lo tanto, la botella de leche tiene una capacidad de 500 mL o ½ L.

¡Es tu turno!

¿Cuánto jugo de naranja contiene el vaso graduado?

 

Solución
400 mL.
Usamos las unidades de medida de capacidad a diario. En el supermercado podemos encontrar diferentes productos como agua, jugo, leche, yogurt y aceite envasados en algún recipiente, el cual, sin importar la forma que tenga, tendrá un volumen determinado de ese líquido. Es decir, la forma del envase no tiene relación con su capacidad.

problemas de capacidad

1. Aurora compró 3 litros de jugo de naranja, 4 litros de jugo de manzana, 2 medios litros de jugo de fresa y 4 cuartos de litro de jugo de pera. ¿Cuántos litros de jugo compró en total?

  • Datos

Jugo de naranja: 3 L

Jugo de manzana: 4 L

Jugo de fresa: 2 veces ½ L

Jugo de pera: 4 veces ¼ L

  • Pregunta

¿Cuántos litros de jugo compró en total?

  • Piensa

Para saber la cantidad total de litros debes saber el total de litros por fruta. Así que primero suma los medios litros del jugo de fresa y los cuartos de litro del jugo de pera. Al final, suma con los litro de jugo de naranja y manzana.

  • Resuelve

Juego de fresa:

½ L + ½ L = 1 L

Compró 1 L de jugo de fresa.

Jugo de pera:

¼ L + ¼ L + ¼ L + ¼ L = 1 L

Compró 1 L de jugo de pera.

Todos lo sabores:

3 L + 4 L + 1 L + 1 L = 9 L

  • Solución

Aurora compró 9 litros de jugo en total.


2. Un balde de agua tiene 3,46 litros, si la capacidad total del balde es de 10.000 mililitros, ¿cuántos litros le falta al balde para llenarse?

  • Datos

Capacidad del balde: 10.000 mL

Volumen de agua en el balde: 3,46 L

  • Pregunta

¿Cuántos litros le falta al balde para llenarse?

  • Piensa

a. Tenemos que convertir los mililitros a litros para que los dos datos tengan las mimas unidades.

b. Hay que hacer una resta entre la capacidad total del balde y lo que ya tiene de agua.

  • Resuelve

a. Para convertir los mililitros a litros basta con dividir 10.000 ÷ 1.000.

10.000 ÷ 1.000 = 10

El balde tiene una capacidad total de 10 L.

b. Hacemos la resta:

10 L − 3,46 L = 6,54 L

  • Solución

Faltan 6,54 litros para llenar el balde.


3. Durante el día, Gloria se ha tomado 800 mililitros de jugo de naranja natural y Pedro se ha tomado 1,4 litros.  ¿Cuál de los dos ha tomado más jugo?

  • Datos

Jugo tomado por Gloria: 800 mL

Jugo tomado por Pedro: 1,4 L

  • Pregunta

¿Cuál de los dos ha tomado más jugo?

  • Piensa

Tenemos que convertir los mililitros a litros para que los dos datos tengan las mismas unidades, para eso solo dividimos 800 entre 1.000. Luego comparamos el resultado con 1,4 para saber cuál es la mayor.

  • Resuelve

División:

800 ÷ 1.000 = 0,8

800 mL son equivalentes a 0,8 L.

Comparación

1,4 > 0,8.

  • Solución

Pedro ha tomado más jugo que Gloria.


4. Pablo está enfermo y el doctor le ha indicado tomar 0,7 centilitros de la medicina, pero su jeringuilla dosificadora tiene una escala en mililitros. ¿Cuántos mililitros debe tomar de su medicina?

  • Datos

Medicina indicada: 0,7 centilitros

  • Pregunta

¿Cuántos mililitros debe tomar de su medicina?

  • Piensa

Hay que convertir los centilitros a mililitros para saber cuánto puede tomar.

  • Calcula

0,7 x 10 = 7

  • Solución

Pablo debe tomar 7 mL de su medicina.

¡A practicar!

Realiza las siguientes conversiones:

  • 2.000 mL a L
Solución
2 L
  • 4,8 L a mL
Solución
4.800 mL
  • 2.960 mL a L
Solución
2,96 L
  • 5,97 L a mL
Solución
5.970 mL
  • 500 mL a L
Solución
0,5 L
RECURSOS PARA DOCENTES

Artículo “Capacidad y volumen”

El siguiente material permitirá que trabajes con tus alumnos las unidades de capacidad y volumen y sus aplicaciones.

VER