CAPÍTULO 2 / TEMA 1

Adición y sustracción

En matemática existen cuatro operaciones básicas: adición, sustracción, multiplicación y división. De las dos primeras se desprenden las otras, lo que quiere decir que aprender a sumar y a restar es fundamental para resolver la mayoría de los ejercicios matemáticos y para realizar cuentas cotidianas como, por ejemplo, en compras del supermercado.

Elementos de la adición

La adición es una de las operaciones básicas de la aritmética que permite combinar dos o más números para obtener un total. Esta operación se representa con el símbolo “+” y es aplicada en los diferentes tipos de números: naturales, enteros, racionales, reales y complejos.

Una adición presenta dos partes básicas: los sumandos y la suma. Los sumandos son todos los números que se van a sumar y la suma se refiere al resultado.

La adición anterior tiene dos sumandos: 352 y 431, y el resultado o suma es 783. Es importante tener presente que en estos casos la palabra “suma” se emplea para hablar de la operación de adición y también para referirse al resultado.

¿Sabías qué?
La aritmética es una rama de la matemática que estudia los números y las operaciones elementales que se realizan con ellos.

Propiedades de la adición

La suma de números enteros cumple tres propiedades básicas:

Propiedad conmutativa

Sin importar cómo se ordenen los sumandos de una suma, el resultado siempre será el mismo. Por ejemplo:

Por lo tanto:

15 + 3 = 18

3 + 15 = 18

Propiedad asociativa

No importa como se agrupen los elementos de una suma, el resultado siempre será el mismo. Por ejemplo:

En el problema: 8 + 2 + 6, se pueden sumar primero el 8 y 2 para luego sumar el 6, o se pueden sumar el 2 y el 6 y después sumar el 8. Entonces:

8 + 2 = 10, 10 + 6 = 16

2 + 6 = 8; 8 + 8 = 16

Propiedad del elemento neutro

El cero es el único número que no altera el resultado en una suma, es decir, la suma de cualquier número con el cero es igual al mismo número:

5 + 0 = 5
45 + 0 = 45
219 + 0 = 219

Conocer las propiedades de la suma permite realizar cálculos de manera más rápida. Por ejemplo, si necesitamos sumar 6 + 85, es más fácil agregar mentalmente 6 a 85 que 85 a 6. También se usa la propiedad asociativa en la suma de números con diferentes cifras, estos se pueden ordenar de mayor a menor y luego realizar una suma por reagrupación más sencilla.

VER INFOGRAFÍA

Adición por reagrupación

Es un método en el que se agrupan las unidades, decenas, centenas, etc., de un número. Para resolver problemas de este tipo se suman primero las unidades, luego las decenas, después las centenas y así sucesivamente.

Pasos para resolver adiciones por reagrupación

  1. Colocar los sumandos uno debajo del otro de manera que los valores posicionales iguales estén ubicados en una misma columna: unidades con unidades, decenas con decenas, centenas con centenas…
  2. Sumar cada columna por separado a partir de las unidades. El resultado de la suma de cada columna se escribe en la parte inferior de esta.
  3. En caso de obtener un número de dos cifras al momento de sumar una columna, se anotará el número de la unidad de dicho número y la decena se sumará a la columna siguiente.

Con estos ejemplos podrás ver mejor cómo resolver una suma por reagrupación:

– Sumar 242 + 351

Lo primero es colocar los números uno debajo del otro según sus mismos valores posicionales.

Luego suma la columna de las unidades y anota el resultado debajo de dicha columna.

Repite el procedimiento anterior en las demás columnas de derecha a izquierda hasta completarlas todas. En este caso el resultado es: 242 + 351 = 593.

– Sumar 198 + 23

Ordena los números de la siguiente manera:

Cuando sumas la columna de las unidades tienes que 8 + 3 = 11, entonces solo debes colocar el 1 de la unidad y el 1 de la decena lo sumas en la siguiente columna. Anota el número en la parte superior de la columna para no olvidar sumarlo al final.

Suma la segunda columna. Allí tienes que 9 + 2 = 11, pero hay que sumarle 1 de la columna anterior, entonces el resultado de la segunda columna es 12. Anota el 2 de la unidad y el 1 de la decena lo sumas a la siguiente columna.

En la tercera columna solamente está el número 1, así que el 1 de la columna anterior se suma a este. Anota el resultado.

El resultado de la suma anterior es: 198 + 23 = 221. En caso de sumar la última columna y obtener un número de dos cifras, este se anotará exactamente igual en el resultado.

Elementos de la sustracción

La sustracción es otra operación básica de la aritmética que consiste en quitar una cantidad a otra, por eso se considera como la operación opuesta a la suma. Se representa con el símbolo “−”.

Este tipo de operación cuenta con un minuendo, número al cual se le quita cierta cantidad; un sustraendo, número que resta al minuendo; y la diferencia, resultado de la operación.

¿Sabías qué?
La diferencia de una resta es la cantidad que falta para que ambos números sean iguales.

Propiedades de la sustracción

La sustracción cumple con dos propiedades básicas:

Elemento neutro

El resultado de cualquier número y cero da como resultado el mismo número. Por ejemplo:

3 − 0 = 3

157 − 0 = 157

Elemento simétrico

El resultado de restar un número con su opuesto (número del mismo valor con signo opuesto) da como resultado el número cero.

5 − 5 = 0

74 − 74 = 0

¿Sabías qué?
En la sustracción no existen ni la propiedad conmutativa ni la asociativa.

Sustracción por reagrupación

Este tipo de problemas se realizan mediante la agrupación de los números uno debajo del otro de forma tal que valores posicionales entre las cifras de los números que se restan sean los mismos. Para las restas con naturales, el número mayor debe estar ubicado en la parte de arriba (minuendo) y el número menor debajo (sustraendo).

¿Sabías qué?
La resta por reagrupacion también es conocida como resta con llevada y sirve para restar una cifra mayor a una menor.
Pasos para resolver restas por reagrupación

  1. Colocar el minuendo y el sustraendo uno debajo del otro de manera que los valores posicionales iguales estén ubicados en la misma columna. El número mayor siempre debe estar ubicado en la parte de arriba.
  2. Comenzar a restar desde la columna de las unidades, de derecha a izquierda.
  3. Si en una columna se tiene que la cifra de arriba es menor que la de abajo, esta cifra toma prestado un valor posicional a la columna del minuendo de la izquierda.
  4. En caso de que la cifra del minuendo le haya “prestado” un valor posicional a la cifra de al lado, esta se reduce en una unidad y se debe considerar el nuevo valor de la cifra al momento de restar en su columna.

Con estos ejemplos podrás apreciar mejor cómo resolver una resta por reagrupación:

– Restar 425 − 263

Lo primero es colocar los números uno debajo del otro con sus valores posicionales iguales, todos ubicados en la misma columna.

Luego resta las cifras en la columna de las unidades.

Repite la resta en la columna de las decenas, pero como en este caso el 2 es menor que el 6, el 4 presta una centena al 2. De este modo, 4 centenas y 2 decenas, se convierten en 3 centenas y 12 decenas. Ahora sí es posible restar 12 menos 6 en la columna de las decenas.

 

Resta las cifras en la columna de las centenas. Como el 4 le prestó 1 al 2, entonces quedó en 3 centenas que al restarse con el 2 el resultado de la columna es 1.

Ejercicios

1. Resuelve las siguientes sumas:

a) 452 + 395 =

Solución
847
b) 256 + 122 =
Solución
378
c) 603 + 113 =
Solución
716
d) 126 + 460 =
Solución
586
e) 1.830 + 2.178 =
Solución
4.008

2. Resuelve las siguientes restas:

a) 853 − 741 =

Solución
112
b) 544 − 35 =
Solución
509
c) 1.789 − 1.354 =
Solución
435
d) 957 − 362 =
Solución
595
e) 4.780 − 3541 =
Solución
1.239
RECURSOS PARA DOCENTES

Artículo “Operaciones básicas de los números naturales y sus propiedades”

El presente artículo permite profundizar el tema de las operaciones básicas y de sus diferentes propiedades.

VER

Enciclopedia “Nana y Enriqueta en el país de las matemáticas”

Es una enciclopedia diseñada para explicar de manera didáctica los conceptos matemáticos básicos desde la realidad de los niños.

VER

Video “Suma y resta de números decimales”

En este video se muestra como realizar sumas en el conjunto de los números decimales.

VER

CAPÍTULO 1 / TEMA 6 (REVISIÓN)

NÚMEROS | ¿QUÉ APRENDIMOS?

El universo de los números

El ser humano ha creado muchos inventos, pero uno de los más significativos han sido los números. En la actualidad, el sistema de numeración más usado es el decimal, llamado así porque emplea diez dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. Este sistema es posicional porque cada cifra adquiere un valor distinto de acuerdo a la posición en donde se encuentre. A lo largo del tiempo han existido otros sistemas de numeración como el romano, que es usado hoy en día en ciertas situaciones.

La falta del número cero y la imposibilidad de representar fracciones y números decimales hizo que el sistema romano quedara en desuso.

Números primos y compuestos

Los números enteros que solo son divisibles entre ellos mismos y la unidad se denominan números primos. Hay números que además de ser divisibles entre ellos mismos y la unidad pueden ser divisibles por otros números, y se conocen como números compuestos. Por convención, el 1 no es clasificado como número primo ni compuesto; por otro lado, el 0, al no poder ser dividido entre él mismo, tampoco entra en dichas clasificaciones.

La Criba de Eratóstenes es una tabla que permite identificar de manera simple los números primos.

Un vistazo a los números decimales

Los números que se encuentran entre dos números enteros consecutivos se denominan números decimales y se caracterizan por una parte entera y otra parte decimal. La parte entera puede ser igual o diferente de cero y la parte decimal está ubicada después del separador decimal que puede ser un punto o una coma de acuerdo a la convención de cada país. La suma y resta de decimales se hace igual que con los números enteros, pero se debe tener la precaución que cada cifra esté ordenada de acuerdo a su mismo valor posicional.

Los números decimales pueden tener decimales infinitos como sucede en el caso del número pi: 3,141592…

Valor posicional

Cada cifra adquiere un valor dentro de un número y por medio de una tabla posicional se pueden representar dichos valores. Para números de seis dígitos estos son, de mayor a menor: centena de mil, decena de mil, unidad de mil, centena, decena y unidad. Conocer los valores posicionales facilita realizar operaciones como la descomposición aditiva de un número.

La descomposición aditiva permite expresar un número en forma de suma. Este tipo de descomposición relaciona el valor relativo de cada cifra.

Secuencias

Al conjunto de elementos que guardan relación y conservan un orden particular se lo denomina “secuencia”. El orden de una secuencia viene dado por una regla que puede ser, por ejemplo, su forma, tamaño o color. Además, en el caso de las secuencias numéricas, la regla puede implicar que los números incrementen o disminuyan su valor, en estos casos se denominan secuencias ascendentes y descendentes respectivamente. Conocer las secuencias permite realizar operaciones como las divisiones con restas sucesivas.

Los números naturales corresponden a una secuencia numérica infinita del tipo ascendente donde cada número se encuentra ordenado de 1 en 1.

CAPÍTULO 1 / TEMA 5

SeCUENCIAS

Al contar los números naturales, ya sea de 1 en 1, 2 en 2, o de 5 en 5, se aplican secuencias de números ordenados que se rigen por ciertas reglas, de manera que cumplen con un orden establecido. Una de las más conocidas es la sucesión de Fibonacci, pero las secuencias pueden ser de varios tipos: finitas o infinas, ascendentes o descendentes.

SeCUENCIAS con figuras

Una secuencia es un conjunto de elementos que están relacionadas entre sí y que se encuentran ordenadas según un criterio.

En las secuencias ordenadas en función de un patrón de figuras, se observa que los objetos están organizados de acuerdo a uno o más atributos. Algunos ejemplos son:

  • Por tamaño:

  • Por color:

  • Por forma:

  • También pueden contener imágenes y patrones más complejos:

El orden de una secuencia numérica no siempre es el mismo, por ejemplo, los elementos pueden estar ordenados de forma ascendente, de manera alternada o de manera decreciente.

Partes de una secuencia numérica

Una de las primeras secuencias que la mayoría de las personas aprende es la secuencia de los números naturales y se expresa de la siguiente forma: \mathbb{N} = {1, 2, 3, 4 ,…} en donde cada uno de los números denominados elementos, se encuentran ordenados de 1 en 1. Los tres puntos suspensivos al final de la secuencia indican que los números continúan.

Las secuencias pueden ser infinitas, como pasa con los números naturales, que siguen la secuencia de manera ilimitada, y también pueden ser finitas como sucede con la secuencia de las vocales: {a, e, i, o, u}.

¿Sabías qué?
Las secuencias numéricas permiten desarrollar el razonamiento matemático.

Secuencias ascendentes y descendentes

– Secuencias ascendentes

Las secuencias numéricas tienen una regla que permite determinar el valor de cada término o elemento de la misma. Por ejemplo, cuando se cuentan los números de 2 en 2, en realidad se incrementan 2 números por cada elemento, es decir, la regla en este caso sería sumar 2 a cada elemento:

En la imagen se puede observar como cada elemento de la secuencia se incrementa por 2, esto significa que es una secuencia ascendente porque todos sus elementos van en aumento, por lo tanto, cada número es mayor que el anterior. Si a 2 se le suma 2, el resultado es 4 y si a este número se le suma 2 el resultado es 6, y así sucesivamente. En este caso, la secuencia numérica se representa como: {2, 4, 6, 8, …}.

– Secuencia descendente

Las secuencias descendentes, en cambio, se desarrollan en forma regresiva y cada número es menor que el anterior. En la siguiente imagen se puede observar un ejemplo de secuencia descendente:

La regla en esta secuencia descendente es restar 3 a cada número, de manera que es fácil calcular el número a continuación del 9, para ello realizamos la regla: 9 – 3 = 6, así, el número siguiente a 9 en esta secuencia es 6.

¿Sabías qué?
Hay secuencias ascendentes cuya regla consiste en multiplicar un número a cada elemento y secuencias descendentes donde se divide un número a cada elemento.

Números de Fibonacci

Son conocidos también como secuencia de Fibonacci. Su nombre proviene de quien la describió por primera vez en Europa: el matemático italiano Leonardo Fibonacci. Es una secuencia en la cual el número siguiente se obtiene al sumar los dos números anteriores a este y se detalla a continuación {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 ,…}. En la secuencia se puede observar que, por ejemplo, los dos números anteriores al 13 son el 5 y el 8, que al sumarlos dan como resultado al número siguiente: 5 + 8 = 13. Esto se cumple para todos los números de la secuencia.

VER INFOGRAFÍA

Divisiones y restas sucesivas

Antes de comenzar con este tema es importante recordar que multiplicar es lo mismo que sumar muchas veces el mismo número, por ejemplo:

4 x 3 = 12   es igual a   4 + 4 + 4= 12

Esto se debe a que la multiplicación está muy relacionada con la adición. Algo similar sucede con la división, la cual guarda relación con la resta. Por ejemplo, si se tiene la división 12 ÷ 3, hay que restarle 3 a 12 tantas veces como sea posible:

Al observar la imagen se razona que 12 fue restado 4 veces por el número 3. De esta manera se tiene que 12 ÷ 3 = 4.

Pasos para dividir a través de restas sucesivas

Las divisiones pueden realizarse a través de restas sucesivas de la siguiente manera:

  1. Resta el divisor al dividendo tantas veces como sea posible. Hazlo hasta que el resultado sea 0 o un número menor al divisor.
  2. Se cuenta el número de veces que se restó el divisor.
  3. El cociente de la división será igual al número de veces que se restó el divisor y el resto será igual al último número que dio como resultado la resta.

Otro ejemplo:

– Resuelve la división 30 ÷ 5

Se resuelve a través de los pasos anteriores, para simplificar se sugiere utilizar una tabla similar a esta:

El resultado es 30 ÷ 5 = 6, y se trata de una división exacta porque el resto es igual a 0.

A continuación se muestra otro ejemplo de división pero en este caso es inexacta:

En el ejercicio anterior 27 ÷ 4 = 6 pero existe un resto igual a 3, como 3 es menor que el divisor no se puede continuar las restas en este método.

Ejercicios

  1. Completa las siguientes oraciones:
    a. En las secuencias ________ todos sus elementos van en aumento.
    Solución
    ascendentes
    b. La secuencia {25, 20, 15, 10 , …} es una secuencia ______.
    Solución
    descendente
    c. Las divisiones pueden calcularse con el método de ______.
    Solución
    restas sucesivas
  2. Completa las siguientes secuencias numéricas:
    a. {50, 40, ___, 20, …}
    Solución
    30
    b. {12, ___, 8, 6, …}
    Solución
    10
    c) {15, 30, ___, 60, 75, …}
    Solución
    45
    d) { ___, 5.000, 4.000, 3.000, 2.000, …}
    Solución
    6.000
  3. Resuelve las siguientes divisiones a través de restas sucesivas
    a. 20 ÷ 5
    b. 24 ÷ 6
    c. 16 ÷ 5
    d. 20 ÷ 3
    Solución
RECURSOS PARA DOCENTES

Artículo “Sucesiones y series”

El siguiente artículo explica la diferencia entre una serie y una sucesión:

VER

Video “Aprendiendo restas por descomposición” 

El video muestra cómo realizar restas por descomposición que el docente puede emplear para relacionar la secuencias de sistema decimal con las secuencias numéricas estudiadas.

VER