CAPÍTULO 7 / TEMA 3

PLANO CARTESIANO

El plano cartesiano fue propuesto por René Descartes en el siglo XVII y desde entonces ha sido una herramienta empleada en múltiples áreas del conocimiento. Su uso radica principalmente en la ubicación de puntos en el plano y en el análisis de figuras geométricas.

¿QUÉ ES EL PLANO CARTESIANO?

El plano cartesiano es una representación gráfica de dos rectas numéricas que se intersecan de forma perpendicular, por lo que forman cuatro cuadrantes como se muestra:

En cada cuadrante del plano cartesiano podemos ubicar infinitos puntos, los cuales se definen mediante un par ordenado expresado de esta manera: (coordenada en x, coordenada en y).

VER INFOGRAFÍA

El plano cartesiano es un sistema de ejes de coordenadas muy útiles para ubicar e identificar puntos en un plano. Este sistema se aplica en radares y mapas a nivel mundial, razón por la que actualmente podemos localizar cualquier persona o ciudad de forma rápida solo con ver una cuadrícula en un mapamundi o con un simple botón en el celular.

ELEMENTOS DEL PLANO CARTESIANO

El plano cartesiano está formado por un eje horizontal denominado eje de las abscisas, que tradicionalmente denotamos con la letra x; y un eje vertical llamado eje de las ordenadas, que por lo general representamos con la letra y. Cada eje se comporta como una recta numérica que se prolonga hasta el infinito.

Ambos ejes se intersecan a 90 grados en el origen (0, 0). Hacia la derecha del eje x están las coordenadas positivas y a la izquierda, las negativas. En el eje y tenemos las coordenadas positivas hacia arriba y las negativas hacia abajo. Además, debemos mostrar una escala sobre los ejes como se muestra a continuación.

Los ejes son la base para la construcción del plano cartesiano, el cual se forma con la intersección del eje x y el eje y en el origen. El eje x se llama también eje de las abscisas y el eje y, eje de las ordenadas. El par de número que resulta de la unión de dos datos de cada eje se llama par ordenado. Estos se escriben separados por una coma dentro de paréntesis.

UBICACIÓN DE PUNTOS EN EL PLANO

Los puntos a ubicar en el plano cartesiano deben venir expresados en pares ordenados, es decir, un valor que indique las coordenadas en x e y que tendrá dicho punto. Convencionalmente, el primer valor corresponde al eje x y el segundo al eje y. Por ejemplo, el par ordenado (−6, 5) significa que el punto se encuentra a 6 unidades a la izquierda del origen (0) y 5 unidades por encima del origen. Vemos los siguientes ejemplos:

  • Ubiquemos el punto (4, −3)

Al igual que en la recta numérica, podemos representar la escala de los números enteros de uno en uno. Ubicamos el primer valor que se indica en el par ordenado sobre el eje x, es decir, 4. Luego localizamos el segundo número del par ordenado, o sea, −3 en el eje y.

A continuación, trazamos dos líneas guías: una vertical que pase por la coordenada de x, y una horizontal que pase por la coordenada de y. A estas líneas se les conocen como proyecciones ortogonales. El lugar donde ambas líneas se intersecan es la ubicación del punto. Sin embargo, es frecuente que el plano cartesiano se dibuje sobre una hoja cuadriculada o papel milimetrado, de modo que ya se tengan todas las líneas guías y sea más fácil la ubicación del punto.

 

Uso de la escala

Puedes seleccionar una escala conveniente en los ejes para que puedas ubicar de manera sencilla los puntos; por ejemplo, si deseas ubicar el punto de coordenadas (1.500, −4.500), no resulta práctico que hagamos un plano y que contemos de 1 en 1 hasta 4.500 divisiones. En ese caso, podemos tomar cada división equivalente a 500 unidades.

  • Ubiquemos el punto (−1,5, 2)

El procedimiento a seguir para ubicar número decimales es el mismo que en el ejemplo anterior, sin embargo, tomaremos una escala diferente. Como las coordenadas a ubicar en el plano son −1,5 y 2; podemos asignarle a cada división un valor de 0,5 unidades como se muestra a continuación:

¿Sabías qué?
Se dice que las primeras ideas del plano cartesiano le surgieron a René Descartes a muy temprana edad mientras observaba una mosca en el techo y se preguntaba cómo podía indicar su posición en el plano a partir de dos coordenadas.
  • Ubiquemos el punto (8, 4)

Aplicamos de nuevo el mismo procedimiento, pero en esta ocasión, como se trata de números más elevados, tomaremos la escala de 2 en 2 unidades; es decir, que cada división, equivale a 2 unidades.

EMPLEO DEL PLANO CARTESIANO

Aunque en matemática es común que utilicemos el plano cartesiano para representar puntos, vectores o funciones al relacionar dos variables espaciales (posición en x y posición en y), el empleo del plano cartesiano no se limita solo a eso. En física, por ejemplo, se suele utilizar para relacionar la posición y el tiempo, o el comportamiento del voltaje en función de la resistencia. En geografía, puede ser aplicado para observar el crecimiento demográfico a lo largo del tiempo. En finanzas, por otra parte, es de utilidad para representar las ganancias de una empresa en función de sus ventas.

El plano cartesiano es muy utilizado para representar funciones que relacionan dos variables, e incluso podemos graficar varias funciones sobre un mismo diagrama, lo cual nos permite identificar puntos de corte entre las curvas, simetrías, proporciones y otras características que tal vez no resultan tan evidentes a partir de las ecuaciones.

 

Diagramas en el plano

Estos diagramas pueden tener diversas aplicaciones, por ejemplo, de izquierda a derecha en la imagen observamos: 1) la representación de un número complejo como un par ordenado, 2) una campana gaussiana estudiada en estadística en distribuciones normales o 3) la superposición de tres gráficas que pueden ser ondas de vibraciones.

¡A practicar!

1. Ubica los siguientes puntos en el plano cartesiano:

a) (0,5, −2)

Solución

b) (5, −5)

Solución

c) (−12, 8)

Solución

d) Dada la siguiente gráfica, indica el par ordenado del siguiente punto en el plano cartesiano:

Solución
(10, −16)
RECURSOS PARA DOCENTES

Artículo “Plano cartesiano”:

Este artículo ofrece información sobre los elementos que conforman el plano cartesiano, así como también la explicación para ubicar puntos en coordenadas rectangulares.

VER

Artículo “Ejes cartesianos”

En este artículo encontrarás el contenido relacionado con la representación puntos en el plano cartesiano, así como actividades lúdicas con aplicaciones del plano cartesiano.

VER

CAPÍTULO 4 / TEMA 5

CONSTRUCCIÓN DE FIGURAS GEOMÉTRICAS

¿QUÉ FORMA TIENE UNA HOJA DE TU CUADERNO? ¿Y UNA LATA DE GASEOSA? LA PRIMERA ES UN RECTÁNGULO Y LA SEGUNDA ES UN CILINDRO. AMBAS SON FIGURAS GEOMÉTRICAS Y PUEDES DIBUJARLAS O CONSTRUIRLAS SI UTILIZAS LOS INSTRUMENTOS ADECUADOS. ES MUY SENCILLO, LEE ESTE ARTÍCULO Y APRENDERÁS CÓMO HACERLO. 

¿QUÉ SON LAS FIGURAS GEOMÉTRICAS?

LAS FIGURAS GEOMÉTRICAS SON TODAS AQUELLAS QUE ESTÁN DEFINIDAS POR LÍNEAS RECTAS O CURVAS. PUEDEN TENER DOS O TRES DIMENSIONES Y ADEMÁS CONFORMAN LA SUPERFICIE DE LA MAYORÍA DE LOS OBJETOS QUE NOS RODEAN, POR EJEMPLO, LA PANTALLA DE UN TELÉFONO TIENE FORMA DE RECTÁNGULO Y UNA PELOTA TIENE FORMA DE ESFERA.

LAS FIGURAS GEOMÉTRICAS PLANAS O CON DOS DIMENSIONES SON:

CUADRADO

 

TRIÁNGULO

CÍRCULO

RECTÁNGULO

 

LAS FIGURAS GEOMÉTRICAS TRIDIMENSIONALES O CON TRES DIMENSIONES SON:

CUBO

PRISMA RECTANGULAR

PIRÁMIDE

CONO

CILINDRO

ESFERA

¿QUÉ ES UNA LÍNEA?

UNA LÍNEA ES LA UNIÓN DE MUCHOS PUNTOS CONTINUOS EN EL PLANO. PUEDEN SER ABIERTAS, CERRADAS, RECTAS O CURVAS.

  • LA LÍNEA DE COLOR AZUL ES RECTA Y ABIERTA.
  • LA LÍNEA DE COLOR AMARILLO ES CURVA Y ABIERTA.
  • LA LÍNEA DE COLOR VERDE ES RECTA Y CERRADA.
  • LA LÍNEA DE COLOR ROJO ES CURVA Y CERRADA.

¿SABÍAS QUÉ?
A LAS FIGURAS TRIDIMENSIONALES TAMBIÉN SE LAS CONOCE COMO SÓLIDOS GEOMÉTRICOS.

INSTRUMENTOS PARA CONSTRUIR FIGURAS GEOMÉTRICAS

REGLA

ES UN INSTRUMENTO PLANO Y LARGO QUE SIRVE PARA TRAZAR LÍNEAS RECTAS Y PARA MEDIR LONGITUDES. POR LO GENERAL VIENE CON MARCAS QUE REPRESENTAN LOS CENTÍMETROS. CON UNA REGLA PUEDES TRAZAR LAS RECTAS DE UN CUADRADO O UN RECTÁNGULO.

ESCUADRA Y CARTABÓN

LA ESCUADRA ES UNA PLANTILLA CON FORMA DE TRIÁNGULO RECTÁNGULO ISÓSCELES. SE USA PARA TRAZAR LÍNEAS PARALELAS O PERPENDICULARES JUNTO CON EL CARTABÓN O LA REGLA GRADUADA. EN LA IMAGEN, LA ESCUADRA ES LA DE COLOR ROJO Y EL CARTABÓN ES EL DE COLOR AZUL.

TRANSPORTADOR

ES UN INSTRUMENTO CIRCULAR O SEMICIRCULAR QUE SIRVE PARA MEDIR ÁNGULOS. ES DE MUCHA AYUDA CUANDO DIBUJAMOS TRIÁNGULOS SEGÚN SUS ÁNGULOS.

COMPÁS

ES UN INSTRUMENTO DE GRAN UTILIDAD PARA DIBUJAR CIRCUNFERENCIAS. TIENE DOS PARTES QUE SE UNEN POR UNA BISAGRA AJUSTABLE. UNA PUNTA TIENE UN EXTREMO DE METAL Y LA OTRA TIENE UN LÁPIZ CON EL CUAL SE HACE EL DIBUJO.

CONSTRUCCIÓN DE FIGURAS EN LO COTIDIANO

LA CONSTRUCCIÓN DE FIGURAS GEOMÉTRICAS ES FUNDAMENTAL PARA LOS ARQUITECTOS E INGENIEROS, QUIENES ELABORAN PLANOS QUE MUESTRAN LOS DETALLES DE UNA OBRA EN UN PAPEL. ASIMISMO, GRANDES ARTISTAS DE LA HISTORIA HAN PRODUCIDO INCREÍBLES CREACIONES EN LAS QUE TOMAN LAS FIGURAS GEOMÉTRICAS COMO BASE.

KANDINSKI FUE UN PINTOR RUSO DESTACADO EN EL ARTE ABSTRACTO. EN SU TRABAJO RESALTAN LOS COLORES VIVOS Y LA ABUNDANCIA DE FIGURAS GEOMÉTRICAS COMO LOS TRIÁNGULOS, CUADRADOS Y CÍRCULOS. EN 1913 CREÓ ESTA OBRA LLAMADA ESTUDIO DE COLOR CON CUADROS EN LA QUE PUEDES VER CÍRCULOS UNO DENTRO DE OTRO, CADA UNO DE UN COLOR DIFERENTE.

¡CONSTRUYE TUS PROPIAS FIGURAS!

CON ESTAS PLANTILLAS PUEDES CREAR FIGURAS TRIDIMENSIONALES. SOLO TIENES QUE COPIAR LA PLANTILLA, CORTAR Y PEGAR SUS LADOS. ¡INTÉNTALO!

CILINDRO

CONO

CUBO

PIRÁMIDE

PRISMA RECTANGULAR

 

¡A PRACTICAR!

1. ¿CÓMO SE LLAMAN ESTOS INSTRUMENTOS?

SOLUCIÓN
TRANSPORTADOR.

SOLUCIÓN
REGLA.

SOLUCIÓN
ESCUADRA.

SOLUCIÓN
COMPÁS.

SOLUCIÓN
CARTABÓN.

 

2. UNE LOS PUNTOS DEL MISMO COLOR EN ESTA CUADRÍCULA. UTILIZA TU REGLA O COMPÁS PARA CREAR LAS FIGURAS.

  • LOS PUNTOS VERDES FORMAN UN TRIÁNGULO.
  • LOS PUNTOS ROJOS FORMAN UN CUADRADO.
  • LOS PUNTOS AZULES FORMAN UN RECTÁNGULO.
  • EL PUNTO AMARILLO ES EL CENTRO DE UN CÍRCULO.

SOLUCIÓN

 

CAPÍTULO 5 / TEMA 1

Elementos geométricos

El punto, la recta y el plano representan los cimientos de la geometría. Seguramente, muchos otros conceptos no podrían ser definidos sin ellos y por tal motivo son tan importantes. Cada uno está relacionado: infinitos puntos forman una recta, infinitos puntos y rectas forman un plano e infinitos puntos, rectas y planos forman el espacio.

El punto

El punto es el objeto más pequeño del espacio, por tanto no tiene longitud, área o volumen. Es adimensional, lo que quiere decir que no tiene dimensiones.

Una de las funciones del punto es describir la posición en un sistema de coordenadas como el cartesiano.

¿Sabías qué?
Los puntos se nombran con letras mayúsculas del abecedario, por ejemplo: A, B, C, D, etc.

Entes fundamentales de la geometría

Se denominan así a los entes que por sí solos no tienen definición y se comprenden a partir de las características de elementos similares. La mayoría de las personas tiene noción de lo que cada uno representa. Los entes fundamentales en la geometría son el punto, la recta y el plano.

La recta y sus tipos

Una recta es un tipo de línea que se extiende en una misma dirección y está formada por infinitos puntos. Por esta razón, la recta tiene longitud pero no anchura. En geometría, las rectas se suelen denominar con letras minúsculas.

De acuerdo a su posición en el plano, las rectas pueden ser paralelas, perpendiculares y secantes.

¿Sabías qué?
Entre dos puntos, solamente existe una recta que los une.

Rectas paralelas

Son rectas que no tienen ningún punto en común, es decir, nunca se interceptan. Para la construcción de este tipo de rectas se emplean la regla, la escuadra y el compás. En el siguiente ejemplo la recta a es paralela a la recta b.

Un ejemplo de rectas paralelas son los lados opuestos de un cuadrilátero como el cuadrado.

VER INFOGRAFÍA

Rectas secantes

Son aquellas que se interceptan en un punto en común y forman cuatro ángulos internos. Las rectas c y d son secantes.

Un ejemplo de rectas secantes son dos calles que se interceptan en un punto en común.

Rectas perpendiculares

Son aquellas rectas secantes que al cortarse forman cuatro ángulos iguales, específicamente rectos (de 90°). Estas rectas dividen al plano en cuatro regiones. Las rectas e y f son perpendiculares entre sí.

Un ejemplo de rectas perpendiculares son los ejes del plano cartesiano.

La recta es un tipo de línea pero no es la única, existen líneas curvas, quebradas y mixtas. Además de su empleo en la geometría, los diferentes tipos de líneas son recursos usados por artistas plásticos y diseñadores gráficos en sus trabajos para proporcionar expresividad gráfica, dinamismo y movimiento. También son útiles para crear planos y texturas.

Otros conceptos relacionados

Semirrecta

Todo punto que pertenece a una línea recta la divide en dos partes denominadas semirrectas. Las semirrectas también son llamadas rayos y contienen infinitos puntos como la recta. La diferencia es que una recta no tiene origen y una semirrecta sí lo tiene.

Segmento

Corresponde a la parte de una recta que se encuentra delimitada entre dos de sus puntos, cada uno de ellos es denominado extremo. Los segmentos se escriben a través de la escritura sin espacio de sus extremos y con una raya horizontal en la parte superior. En el siguiente ejemplo, la figura corresponde al segmento \overline{PQ}.

El plano

Es un ente ideal que posee dos dimensiones (bidimensional). Se suele representar con letras del alfabeto griego. En geometría, un plano queda definido cuando se cumplen algunas de las siguientes condiciones:

  • Tres puntos no alineados.
  • Dos rectas que son paralelas.
  • Dos rectas secantes.

Un plano contiene infinitas rectas y puntos. En el siguiente ejemplo se puede observar un ejemplo de plano.

Otro ejemplo de plano sería la parte superior de una mesa.

Con el propósito de facilitar su gráfica y simplificar su visualización, los planos suelen representarse como una figura delimitada con bordes irregulares. Sin embargo, un plano contiene infinitos puntos, por lo tanto, al igual que sucede con la recta, sería imposible representarlo completamente, así que se muestra una pequeña porción de su superficie.

El plano cartesiano

Es un sistema de coordenadas desarrollado por el célebre matemático René Descartes en el siglo XVII. Permite asignar ubicación a cualquier punto del plano. Este sistema cuenta con dos ejes numerados que permiten localizar las coordenadas de los puntos. Un eje vertical denominado eje Y o de las ordenadas muestra las coordenadas en Y de un punto, y un eje horizontal denominado eje X o de las abscisas indica las coordenada en X de un punto.

¡A practicar!

1. Observa la siguiente imagen y responde qué tipo de rectas son las indicadas.

a) Las rectas e y h.

Solución
Secantes.

b) Las rectas d y g.

Solución
Secantes perpendiculares.

c) Las rectas e y f.

Solución
Paralelas.

d) Las rectas h y f.

Solución
Secantes.

2. De acuerdo al contenido explicado responde las siguientes preguntas.

a) ¿Cuántos puntos no alineados definen a un plano?

Solución
3

b) ¿Qué diferencia tiene una recta de una semirrecta?

Solución
La semirrecta tiene un origen y la recta no.

c) ¿De qué medida son los ángulos formados por dos rectas perpendiculares?

Solución
90°

d) ¿En cuántos puntos se intersectan dos rectas paralelas?

Solución
En ningún punto.

e) ¿Cuáles entes fundamentales de la geometría suelen nombrarse con letras del alfabeto griego?

Solución
Los planos.

f) ¿Cómo se denominan a los puntos que forman un segmento?

Solución
Extremos.

g) ¿Qué tipo de ente fundamental de la geometría tiene longitud pero no anchura?

Solución
La recta.

h) ¿Qué tipo de ente fundamental de la geometría no tiene dimensiones?

Solución
El punto.

i) ¿Con qué otro nombre se denominan las semirrectas?

Solución
Rayos.

j) ¿Quién inventó el sistema cartesiano?

Solución
René Descartes.

RECURSOS PARA DOCENTES

Artículo “Determinación de rectas y puntos notables de los triángulos”

El artículo explica cuáles son las rectas y puntos notables que presentan los triángulos y qué características geométricas poseen.

VER

Micrositio “Tarjetas educativas – Geometría y medidas”

En este micrositio podrá encontrar una variedad de tarjetas que resumen los elementos principales de la geometría como el punto, la recta y las principales figuras geométricas.

VER

Artículo “Las rectas en el plano”

El artículo explica la clasificación de las rectas según su posición en el plano y muestra cómo graficar cada una de ellas mediante el uso de regla, escuadra y compás.

VER

CAPÍTULO 4 / TEMA 2

Formas

SI OBSERVAMOS A NUESTRO ALREDEDOR, ENCONTRAREMOS DIFERENTES TIPOS DE OBJETOS. TODOS LOS OBJETOS TIENEN UNA FORMA, ES DECIR, UNA APARIENCIA EXTERNA ESPECÍFICA. GRACIAS A ESTO PODEMOS DECIR QUE ALGO ES REDONDO, CUADRADO, PLANO O CURVO.

formas de los objetos

OBSERVA ESTA ESCUELA, ¿RECONOCES ALGUNA FORMA?

  • LA VENTANA ES CUADRADA PORQUE SE PARECE A UN CUADRADO.

LA FIGURA DE COLOR VERDE ES UN CUADRADO.

  • EL RELOJ ES CIRCULAR PORQUE SE PARECE A UN CÍRCULO.

LA FIGURA DE COLOR AZUL ES UN CÍRCULO.

  • EL TECHO ES TRIANGULAR PORQUE SE PARECE A UN TRIÁNGULO.

 

LA FIGURA DE COLOR AMARILLO ES UN TRIÁNGULO.

  • LA PUERTA ES RECTANGULAR PORQUE SE PARECE A UN RECTÁNGULO.

LA FIGURA DE COLOR MORADO ES UN RECTÁNGULO.


NO TODOS LOS OBJETOS SON PLANOS Y SE PUEDEN CLASIFICAR COMO CUADRADOS, CIRCULARES, TRIANGULARES O RECTANGULARES. MUCHAS DE LAS COSAS QUE TENEMOS EN NUESTRA CASA SON SÓLIDOS GEOMÉTRICOS, ES DECIR, FIGURAS CON TRES DIMENSIONES: ALTO, ANCHO Y PROFUNDIDAD. PARA DESCRIBIRLAS NECESITAMOS CONOCER FORMAS NUEVAS.

¿QUÉ FORMA TIENEN LOS OBJETOS?

ES POSIBLE QUE TENGAS TODOS ESTOS OBJETOS EN TU CASA, ¿QUÉ FORMA TIENEN?


  • ESTOS OBJETOS TIENE FORMA DE CILINDRO.

  • ESTOS OBJETOS TIENEN FORMA DE ESFERA.

  • ESTOS OBJETOS TIENEN FORMA DE CUBO.

sUPERFICIE

AL TOCAR UNA COSA, TOCAS SU SUPERFICIE. LA SUPERFICIE ES LA PARTE EXTERIOR DE LOS OBJETOS.

CUANDO TOCAS UNA MESA, TOCAS UNA SUPERFICIE PLANA. LAS SUPERFICIES PLANAS PUEDEN TENER LÍNEAS RECTAS EN CUALQUIER POSICIÓN.

CUANDO TOCAS UN GLOBO, TOCAS UNA SUPERFICIE CURVA. LAS SUPERFICIES CURVAS PUEDEN TENER LÍNEAS CURVAS EN CUALQUIER POSICIÓN.

tIPOS DE SUPERFICIE

LAS SUPERFICIES DE LOS OBJETOS PUEDEN SER PLANAS, CURVAS O MIXTAS.

  • LOS OBJETOS CON SUPERFICIE PLANA NO RUEDAN Y PUEDES COLOCAR COSAS SOBRE ELLOS.

EL CUBO TIENE SUPERFICIE PLANA.


  • LOS OBJETOS CON SUPERFICIE CURVA RUEDAN Y NO PUEDES COLOCAR COSAS SOBRE ELLOS.

LA ESFERA TIENE SUPERFICIE CURVA.


  • LOS OBJETOS CON SUPERFICIE MIXTA TIENEN UNA COMBINACIÓN DE SUPERFICIES PLANAS Y CURVAS. ESTOS OBJETOS PUEDEN RODAR Y SOBRE ELLOS PUEDES COLOCAR COSAS.

EL CILINDRO TIENE SUPERFICIE MIXTA.

¡DESCUBRE LA SUPERFICIE!

MIRA DE NUEVO LOS OBJETOS DE ARRIBA, ¿CÓMO ES SU SUPERFICIE?

SOLUCIÓN

UNA NUEVA FORMA POR CONOCER

LAS PIRÁMIDES DE EGIPTO SON ENORMES MONUMENTOS QUE SERVÍAN COMO TUMBAS A LOS FARAONES HACE MILES DE AÑOS. ESTAS MAGNÍFICAS ESTRUCTURAS TIENEN EL MISMO NOMBRE DE UN CUERPO GEOMÉTRICO: PIRÁMIDE. LAS PIRÁMIDES SOLO TIENEN SUPERFICIES PLANAS, ES DECIR, SON FORMAS QUE NO PUEDEN RODAR Y QUE PUEDEN TENER LÍNEAS RECTAS EN CUALQUIER POSICIÓN.

 

¿Sabías qué?

EL CÍRCULO ES UNA FIGURA PLANA Y LA ESFERA ES UNA FIGURA SÓLIDA. SI DIBUJAS UN CÍRCULO EN EL PAPEL Y LO RECORTAS OBTENDRÁS UNA FIGURA PLANA, PERO SI HACES UNA PELOTA CON PLASTILINA OBTENDRÁS UN CUERPO SÓLIDO.

¡COMPAREMOS FORMAS!

OBSERVA ESTAS IMÁGENES.


  • ¿CUÁLES OBJETOS TIENEN FORMA DE ESFERA Y SUPERFICIE CURVA?
SOLUCIÓN

  • ¿CUÁLES OBJETOS TIENEN FORMA DE CUBO Y SUPERFICIE PLANA?
SOLUCIÓN

  • ¿CUÁLES OBJETOS TIENEN FORMA DE CILINDRO Y SUPERFICIE MIXTA?
SOLUCIÓN

 ¡A PRACTICAR!

COLOREA LAS FIGURAS QUE TIENEN SUPERFICIE CURVA Y MIXTA. SON AQUELLAS QUE PUEDEN RODAR.

SOLUCIÓN

 

RECURSOS PARA DOCENTES

Artículo “Aprendiendo las formas”

Este recurso le permitirá describir de forma didáctica una variedad de figuras geométricas planas.

VER