CAPÍTULO 2 / TEMA 3

SUSTRACCIÓN O RESTA

IMAGINA QUE TIENES 6 CARAMELOS Y QUE LUEGO REGALAS 3, ¿CUÁNTOS CARAMELOS TE QUEDAN? ESTA OPERACIÓN SE RESUELVE POR MEDIO DE UNA RESTA O SUSTRACCIÓN. LA RESTA ES UN CÁLCULO QUE CONSISTE EN QUITAR UNA CANTIDAD A OTRA. ES MÁS COMÚN DE LOS QUE CREES Y HOY APRENDERÁS CUÁLES SON SUS ELEMENTOS.

EL SÍMBOLO “MENOS” ES UNA RAYA HORIZONTAL “−”Y LA UTILIZAMOS CADA VEZ QUE REALIZAMOS UNA RESTA O SUSTRACCIÓN, ES DECIR, CUANDO QUEREMOS EXPRESAR QUE SE QUITAN ELEMENTOS DE UNA COLECCIÓN. PUEDES INTENTARLO CON TUS DEDOS: REPRESENTA 7 UNIDADES Y LUEGO “QUITA” UNA UNIDAD, ¿CUÁNTOS DEDOS VES? ¡HAY 6 DEDOS! ESTO ES IGUAL A 7 − 1 = 6.

LA RESTA Y SUS ELEMENTOS

LA RESTA ES LA OPERACIÓN OPUESTA A LA SUMA. SE TRATA DE EXTRAER O QUITAR DE UNA CANTIDAD A OTRA MAYOR. LOS NÚMEROS QUE INTERVIENEN EN UNA RESTA TIENEN DIFERENTES DENOMINACIONES:

  • EL 5 ES EL MINUENDO.
  • EL 3 ES EL SUSTRAENDO.
  • EL 2 ES LA RESTA O DIFERENCIA.

¡VAMOS A RESTAR!

ESCRIBE EL MINUENDO, EL SUSTRAENDO Y LA RESTA EN CADA CASO.

SOLUCIÓN

SOLUCIÓN

¿SABÍAS QUÉ?
EL MINUENDO ES EL NÚMERO MAYOR Y EL SUSTRAENDO ES EL NÚMERO MENOR DE UNA RESTA. LA DIFERENCIA ES EL RESULTADO.

PROPIEDADES DE LAS RESTA 

LA RESTA NO CUMPLE CON LAS MISMAS PROPIEDADES DE LA SUMA.

  • EL ORDEN DE LOS ELEMENTOS SÍ IMPORTA EN LA RESTA, ASÍ QUE NO CUMPLE CON LA PROPIEDAD CONMUTATIVA.
  • EN LAS RESTAS QUE INVOLUCRAN MÁS DE DOS NÚMEROS NATURALES NO SE CUMPLE LA PROPIEDAD ASOCIATIVA, YA  QUE EL RESULTADO VARÍA EN FUNCIÓN DE CÓMO SE AGRUPAN LOS TÉRMINOS.
UNA MANERA MUY SENCILLA DE HACER RESTAS ES CON PALITOS, AUNQUE TAMBIÉN LO PUEDES HACER CON OTROS OBJETOS. COMO LA RESTA ES UNA OPERACIÓN EN LA QUE QUITAMOS UNA CANTIDAD A OTRA, SI QUIERES REPRESENTAR LA RESTA 5 − 2 = 3, BASTA CON QUE A UN GRUPO DE 5 PALITOS LE QUITES 2 PALITOS. VERÁS QUE EL RESULTADO ES 3. INTENTA HACER ESTAS RESTAS CON OBJETOS DE TU CASA.

APLICACIÓN DE LA RESTA

NO SIEMPRE PODEMOS RESTAR CANTIDADES CON LOS DEDOS O POR MEDIO DE DIBUJOS. OTRO MODO DE RESTAR ES CON TABLAS DE POSICIÓN. ¡APRENDE CÓMO HACERLO!

PRIMERO COLOCAMOS EL MINUENDO SOBRE EL SUSTRAENDO. ESCRIBIMOS LAS UNIDADES EN LA COLUMNA DE LAS UNIDADES Y LAS DECENAS EN LA COLUMNA DE LAS DECENAS.

PRIMERO RESTAMOS LAS UNIDADES: 5 − 2 = 3.

LUEGO RESTAMOS LAS DECENAS: 3 − 2 = 1.

PODEMOS ESCRIBIRLO DE MANERA HORIZONTAL:

35 − 22 = 13

¿CÓMO COMPROBAR UNA RESTA?

SI SUMAS EL SUSTRAENDO CON LA DIFERENCIA DE LA RESTA Y EL RESULTADO ES IGUAL AL MINUENDO, ENTONCES LA RESTA ESTÁ CORRECTA.

RESTAR PUEDE PARECER UNA OPERACIÓN DIFÍCIL DE REALIZAR LAS PRIMERAS VECES. DEBES CONOCER BIEN SUS PROPIEDADES, ESTUDIAR SU PROCEDIMIENTO Y CON MUCHA PRÁCTICA TE RESULTARÁ CADA VEZ MÁS SENCILLO. RECUERDA QUE SIEMPRE AL NÚMERO MAYOR SE LE RESTARÁ EL MENOR, ES DECIR, EL MINUENDO VA SOBRE EL SUSTRAENDO. NUNCA AL REVÉS, PORQUE ENTONCES EL RESULTADO SERÍA OTRO.

¡A PRACTICAR!

RESUELVE ESTAS RESTAS:

  • 18 − 6
  • 29 − 10
  • 46 − 22
  • 69 − 53
  • 84 − 53
  • 48 − 15
SOLUCIÓN

RECURSOS PARA DOCENTES

Artículo “Resta de números naturales”

Este recurso te ayudará con algunos ejemplos y aplicaciones de las restas o sustracción.

VER

CAPÍTULO 2 / TEMA 2

SUSTRACCIÓN

La sustracción es una de las cuatro operaciones básicas de las matemáticas que nos permite resolver infinidad de situaciones cotidianas. Cuando decimos “me queda”, “me falta” o “la diferencia” nos referimos a la sustracción. A continuación aprenderás cómo restar número naturales.

La sustracción o resta es una operación aritmética elemental que consiste en quitar una cantidad a otra para averiguar la diferencia entre las dos; se representa con el signo “–” (menos). La resta es la operación opuesta a la suma. Para realizar problemas de este tipo es necesario reconocer el valor posicional de cada cifra que luego va a permitir ordenarlas.

la susTRACCIÓN 

La sustracción es una operación matemática que consiste en quitar o restar una cantidad a otra con el propósito de obtener la diferencia de ambas. Por esta razón, la sustracción es considerada la operación inversa a la adición.

Los términos de la sustracción son: minuendo, sustraendo y resta o diferencia. Observa:

  • El minuendo es la cantidad a la que se le va a restar la cantidad indicada por el sustraendo.
  • El sustraendo es la cantidad que se resta
  • La resta o diferencia es el resultado de la operación.

La sustracción no cumple con la propiedad conmutativa, es decir, el orden de los factores sí afecta el resultado, por lo tanto, para restar dos cantidades, la cantidad mayor, es decir el minuendo debe escribirse siempre en primer lugar.

¿cómo resolver una sustracción?

Si un número tiene más de tres cifras conviene usar el algoritmo de la resta. Esto consiste en ordenar el minuendo y el sustraendo de tal manera que las unidades, las decenas, las centenas y las unidades de mil estén en las mismas columnas. Luego restamos cada posición desde la derecha. Los pasos son los siguientes:

1. Restamos la unidades: 8 − 2 = 6.

2. Restamos las decenas: 7 − 2 = 5

3. Restamos las centenas: 5 − 3 = 2

4. Restamos la unidades de mil: 9 − 5.

¿Sabías qué?
Si le restamos cero (0) al cualquier número, la diferencia será el mismo número. Por eso el cero (0) es el elemento neutro de la sustracción.

 

– Otro ejemplo:

1. Restamos las unidades: 8 − 1 = 7.

2. Restamos las decenas: 7 − 2 = 5

3. Restamos las centenas: 3 − 3 = 0

4. Restamos las unidades de mil: 5 − 4 = 1

Los ejemplos anteriores representan una sustracción “sin canje” ya que cada cifra del minuendo es menor o igual a las cifras del sustraendo, lo que hace que estas cantidades se resten en forma sencilla.

La resta, al igual que el resto de las operaciones básicas de las matemáticas, tienen relación con muchas de las actividades de la vida cotidiana, por ejemplo, administrar dinero, preparar una receta de cocina, calcular la distancia que tenemos que recorrer para llegar a algún lugar, etc. A través de estas podemos resolver problemas y tomar decisiones.

¡Es tu turno!

Resuelve las sustracciones:

  • 8.971 – 3.801
  • 9.999 – 7.554
  • 5.649 – 2.628
Solución

SUSTRACCIÓN CON CANJE

Las sustracciones con y sin canje se resuelven de la misma manera. Solo se diferencian en que, al resolver sustracciones con canje, si en una posición el dígito del minuendo es menor que el del sustraendo, se desagrupa la cifra de la izquierda y se hace el canje. Para restas de números con más tres cifras los pasos son los siguientes:

1. Restamos las unidades: 9 − 6 = 3.

2. Como no le podemos restar 9 a 7, tomamos prestado o canjeamos una centena de la izquierda. Ahora, la decena 7 se transforma en 17 y la centena 3 se convierte en 2. Restamos 17 − 9 = 8.

3. Restamos las centenas: 2 − 2 = 0.

4. Restamos las unidades de mil: 4 − 2 = 2.

¿Sabías qué?
En una sustracción puede haber canje en una o más cifras.

– Otro ejemplo:

1. Restamos las unidades. Como no podemos restarle 9 a 1, prestamos una decena de de la izquierda. Ahora, a 11 le restamos 9 y la decena 3 se convierte en 2. Entonces. 11 − 9 = 2.

2. Restamos las decenas: 2 − 1 = 1.

 

3. Restamos las centenas: 7 − 3 = 4.

 

4. Restamos las unidades de mil: 9 − 6 = 3.

Ten presente que cuando el cero (0) está en el minuendo debes realizar las transformaciones respectivas. El mismo indica ausencia de valores en un orden específico.

¡Es tu turno!

Resuelve las siguientes sustracciones:

  • 4.353 – 1.845
  • 6.957 – 3.529
  • 9.843 – 7.626

Solución

En la sustracción no se cumple la propiedad conmutativa, lo que significa que el cambio del orden de los términos da como resultado diferente cantidad y cambia el signo de la respuesta. Esta operación tampoco cumple con la propiedad asociativa, lo que significa que cuando se restan más de dos números, importa el orden en el que se realiza la resta.

¡COMPRUEBA SUSTRACCIONES!

Cuando resuelvas sustracciones, es muy importante que verifiques su solución, de esta manera evitarás resultados incorrectos.

La sustracción se puede comprobar con su operación matemática inversa: la suma. Para comprobarla basta con sumar la diferencia con el sustraendo, si el resultado es igual al minuendo; entonces la operación está correcta. Ejemplo:

También podemos expresarlo como:

Sustraendo + Diferencia = Minuendo 

¡A practicar!

Resuelve las siguientes restas:

  • 2.652 − 1.398
Solución
2.652 − 1.398 = 1.254
  • 1.563 − 581
Solución
1.563 − 581 = 982
  • 3.862 − 1.475
Solución
3.862 − 1.475 = 2.387
  • 7.539 − 2.864
Solución
7.539 − 2.864 = 4.675
  • 2.841 − 1.563
Solución
2.841 − 1.563 = 1.278
  • 1.349 − 580
Solución
1.349 − 580 = 769

RECURSOS PARA DOCENTES

Artículo “Suma y resta utilizando el algoritmo de descomposición”

El siguiente artículo te permitirá trabajar con sus alumnos las operaciones de adición y sustracción por medio del algoritmo de descomposición.

VER

Artículo “Operaciones Matemáticas”

En este artículo se explican las operaciones básicas o elementales en matemática. También se hace un enfoque en sus diferentes propiedades y sus elementos.

VER

Video “Aprender a restar por descomposición”

Con este material audiovisual podrás explicar con mayor profundidad cómo realizar restas o sustracciones por medio de la descomposición de los números.

VER

CAPÍTULO 2 / TEMA 1

adición y sustracción

La adición y la sustracción son dos operaciones muy usadas en la cotidianidad. La primera consiste en combinar o agrupar números; y la segunda, en cambio, consiste en quitar números a un grupo. Saber los valores posicionales de cada cifra nos ayudan a hacer sumas y restas con números grandes por reagrupación de sus unidades, decenas y centenas. 

Las primeras operaciones básicas que todos aprendemos son la adición y la sustracción. Estas nos ayudan día a día en cálculos cotidianos, como saber cuántos juguetes tenemos en total, cuánto dinero gastamos en el desayuno, cuánta tarea nos falta por hacer o cuántas horas faltan para ver nuestro programa favorito.

ADICIÓN POR REAGRUPACIÓN

La adición es una operación básica en la que combinamos dos o más números para obtener una cantidad final o total. El símbolo empleado para hacer esta operación es “+“.

Toda adición consta de dos partes:

  • Sumandos: son los números que vamos a sumar.
  • Suma: es el resultado de la suma.

La adición por reagrupación es un método que consiste en agrupar las unidades, decenas y centenas del número. Para sumar dos números como 12.468 y 147.314, los pasos son los siguientes:

1. Ubica los sumandos uno arriba del otro de tal manera que los valores posicionales estén en una misma columna, es decir, unidades con unidades, decenas con decenas, centenas con centenas, y así sucesivamente.

2. Suma cada columna a partir de las unidades. Escribe en la parte inferior de la columna el resultado. Si el resultado de la suma en una columna es de dos cifras, coloca el número de la unidad de dicho número en la parte inferior y la decena la sumanos a la columna siguiente.

Propiedades de la adición

Propiedad conmutativa

Esta propiedad indica que el orden de los números no afecta el resultado de la suma.

– Ejemplo:

  • 12.046 + 71 = 71 + 12.046

 

Observa que sin importar la ubicación de los sumandos, el resultado es el mismo.

¡Hay otra solución! 

Podemos representar la propiedad conmutativa de otra manera. Para la suma anterior es así:

Propiedad asociativa

Esta propiedad indica que la forma en la que agrupemos los sumandos no afecta el resultado.

– Ejemplo:

  • (856.127 + 12.713) + 82.311 = 951.151

Primero resolvemos la suma que está dentro de los paréntesis y al final sumamos 82.311.

  • 856.127 + (12.713 + 82.311) = 951.151

Primero resolvemos las sumas que están dentro de los paréntesis y al final sumamos 856.127.

En ambas ocasiones el resultado es el mismo sin importar la manera en la que se agruparon.

¡Hay otra solución!

Podemos representar la propiedad asociativa de otra manera. Para la suma anterior es así:

Elemento neutro

Esta propiedad indica que si a cualquier número le sumamos cero el resultado será el mismo número.

– Ejemplo:

  • 148.583 + 0 = 148.583

Ábaco: una herramienta para contar

El ábaco es una herramienta o instrumento que se utiliza para realizar cálculos manuales a través de contadores o marcadores que representan ciertas cantidades. Es uno de los objetos más antiguos utilizados por el hombre para realizar sus operaciones matemáticas y quizás el de mayor distribución a nivel mundial.

sustracción por reagrupación

La sustracción, al igual que la adición, es una operación básica. Es considerada una operación opuesta a la adición, ya que consiste en quitar una cantidad a otra. Se representa con el símbolo ““.

Las partes de esta operación son:

  • Minuendo: es el número al cual le quitamos una cantidad.
  • Sustraendo: es el número que resta al minuendo.
  • Diferencia: es el resultado de la operación.

La sustracción por reagrupación es un método que consiste en agrupar las unidades, decenas y centenas del número. Para restar dos números como 549.763 y 95.126, los pasos son los siguientes:

1. Ubica el minuendo sobre el sustraendo y verifica que los valores posicionales de cada cifra coincidan en la misma columna.

2. Comienza a restar desde la columna de las unidades, de derecha a izquierda. Cuando en una columna una cifra del minuendo es menor que la del sustraendo, esta toma una decena del minuendo de la izquierda. En estos casos, el minuendo que prestó una decena se reduce y debemos considerar el valor de la nueva cifra.

¿Sabías qué?
En la sustracción no existen las mismas propiedades que en la adición.

Propiedades de la sustracción

Elemento neutro

Si a un número se le resta 0, el resultado es el mismo número.

– Ejemplo:

  • 245.630 − 0 = 245.630

Elemento simétrico

Si dos números iguales se restan, el resultado siempre es 0.

– Ejemplo:

  • 983.124 − 983.124 = 0

En una ciudad se recolectaron 55.879 botellas de plástico para reciclar. Si solo se han reciclado 48.250 botellas, ¿cuántas botellas faltan para terminar la tarea? Responder esta pregunta es fácil cuando sabemos las restas por reagrupación. Así que restamos: 55.879 – 49.250 = 6.629. Entonces, aún faltan 6.629 botellas por reciclar.

Problemas de adición y sustracción

Para resolver problemas matemáticos debemos seguir una serie de pasos. Observa estos ejemplos:

1. Juan tenía en el banco $ 132.798 y le pagaron por la venta de su vehículo $ 369.000. ¿Cuánto dinero tiene Juan ahora?

  • Datos

Dinero en el banco: $ 132.798

Pago por el vehículo: $ 369.000

  • Pregunta

¿Cuánto dinero tiene Juan ahora?

  • Piensa

Para saber la cantidad total de dinero que Juan tiene ahora debemos sumar el dinero que tenía en el banco y el dinero que le pagaron.

  • Calcula

  • Solución

Juan tiene $ 501.798 en el banco.


2. Gabriel jugaba un videojuego. En un día obtuvo 412.312 puntos en el primer partido, 469.142 puntos en el segundo partido y 111.222 en el tercero. ¿Cuántos puntos obtuvo en total ese día?

  • Datos

Puntos en el primer partido: 412.312

Puntos en el segundo partido: 469.142

Puntos en el tercer partido: 111.222

  • Pregunta

¿Cuántos puntos obtuvo en total?

  • Piensa

Para hallar la cantidad total de puntos solo debemos sumar todos los puntos que obtuve en los tres partidos. Según la propiedad asociativa, no importa cómo se agrupen los números, el resultado siempre será el mismo.

  • Calcula

  • Solución

Gabriel obtuvo 992.676 puntos ese día en el videojuego.


3. Carla y Pedro tomaban fotografías en el parque. Carla tomó 2.546 fotografía y Pedro tomó 620 fotografía menos que ella. ¿Cuántas fotografía tomaron los dos?

  • Datos

Fotografía tomadas por Carla: 2.546

Fotografía tomadas por Pedro: 620 menos que Carla

  • Pregunta

¿Cuántas fotografía tomaron los dos?

  • Piensa
  1. Hay que hallar las fotos que tomó Pedro. Para esto restamos 620 a la cantidad de fotos que tomó Carla.
  2. Para saber el total de fotos tomadas entre los dos solo debemos sumar la cantidad de foto que tomaron ambos.
  • Calcula

1. Fotos tomadas por Pedro:

2. Fotos tomadas por los dos:

  • Solución

Carla y Pedro tomaron 4.472 fotografías.


¡A practicar!

Resuelve las siguientes operaciones:

  • 18.654 + 987 =
    Solución
    18.654 + 987 = 19.641
  • 546.821 + 12.547 =
    Solución
    546.821 + 12.547 = 559.368
  • 452.365 − 0 =
    Solución
    452.365 − 0 = 452.365
  • 89.546 + 6.547 + 3.245 =
    Solución
    89.546 + 6.547 + 3.245 = 99.338
  • 81.974 − 9.634 =
    Solución
    81.974 − 9.634 = 72.340
  • 15.689 − 15.689 =
    Solución
    15.689 − 15.689 = 0
  • 35.785 + 54.753 + 56.852 =
    Solución
    35.785 + 54.753 + 56.852 =147.390
  • 258.369 + 0 =
    Solución
    258.369 + 0 = 258.369

RECURSOS PARA DOCENTES

Artículo “Operaciones básicas de los número naturales y sus propiedades”

Este artículo explica las propiedades de las operaciones básicas con los números naturales, lo que te permitirá ampliar el tema.

VER

Artículo “Cómo enseñar a sumar y restar”

Este recurso contiene sugerencias y prácticas que puedes emplear para enseñar operaciones como la suma y la resta.

VER

Artículo “Resta de números naturales

Este recurso te permitirá profundizar sobre los elementos que conforman una sustracción, sus propiedades y usos.

VER

CAPÍTULO 2 / TEMA 3

Operaciones combinadas

Hay ocasiones en las que pueden aparecer varias operaciones matemáticas en un mismo problema: estas expresiones se conocen como operaciones combinadas. Para resolverlas, es importante que tengas buenas bases en las propiedades de la suma, la resta, la multiplicación y la división, así como también que sepas priorizar entre ellas.

¿Qué es una operación combinada?

Es una expresión que contiene dos o más operaciones matemáticas, como la suma, la resta, la división y la multiplicación. Algunas veces puede aparecer con paréntesis para separar términos dentro de la expresión.

Para estos problemas se deben tener en cuenta dos cosas:

  1. La regla de los signos.
  2. La prioridad de operaciones, lo que significa que hay operaciones que deben resolverse antes que otras.

Ley de los signos en suma y resta

Para resolver operaciones combinadas es indispensable comprender ciertos criterios que cumplen los números en relación a su signo, a estos criterios se los conoce como “ley de los signos”. A continuación, te mostramos aquellos orientados únicamente a operaciones de suma y resta.

  1. Cuando se suman números positivos, el resultado es otro número con signo positivo:
    10 + 13 = 23
  2. Cuando se suman números negativos, se mantiene el signo negativo y suman los números:
    (−3) + (−2) = −5
  3. Cuando se tienen números con diferente signo, se restan y se coloca el signo que corresponda al número mayor:
    15 − 3 = 12 → El número mayor es 15 y como no tiene signo se entiende que es positivo, ya que por convención los números que no presentan signo se asumen como números positivos, así que al resultado no se le coloca signo.

    3 − 7 = −4 → El número mayor es el 7 y, por tener el signo menos, el resultado debe ser negativo.

¿Sabías qué?
El símbolo “÷” algunas veces es reemplazado por dos puntos “:” para indicar una división.

Ejercicios combinados de sumas y restas

Las operaciones combinadas de sumas y restas con números naturales son fáciles de reconocer porque no llevan paréntesis. En los ejercicios de este tipo, la resolución se hace de izquierda a derecha en el orden en que aparecen los números.

– Por ejemplo:

458 − 352 + 157 − 235 + 784 − 568

Primero debes resolver los dos primeros términos: 458 − 352 = 106, y colocar el resultado como reemplazo de esos números. Luego escribe los números siguientes con sus signos:

106 + 157 − 235 + 784 − 568

Suma el resultado anterior con el siguiente término:

106 + 157 − 235 + 784 − 568

Como el resultado de 106 + 157 es igual a 263, sustituye esos números y anota los números siguientes:

263 − 235 + 784 − 568

Debido a que el número que le sigue a 263 está precedido por un signo menos, la operación a realizar es una resta, es decir, 263 − 235, cuyo resultado es 28. Anota este resultado y resuelve con el número siguiente:

28 + 784 − 568

De 28 + 784 resulta 812, entonces, escribe este resultado junto con el último número que queda y resuelve:

812 − 568 = 244

Con esta última operación obtendrás el resultado del ejercicio. También puedes escribir la solución de esta forma:

458 − 352 + 157 − 235 + 784 − 568 = 244

En los ejercicios combinados de sumas y restas es importante conocer el valor posicional de los números y dominar correctamente estas operaciones. Aunque no es necesario mantener estrictamente el orden de resolución de izquierda a derecha (se pueden resolver los números positivos primero y los negativos después), se sugiere hacerlo para evitar errores.

Ejercicios combinados de multiplicación y división

Los ejercicios combinados que involucran multiplicación y división sin paréntesis se resuelven en este orden:

  1. Realiza las multiplicaciones y las divisiones primero.
  2. Realiza las sumas y restas de la manera en la que fue explicado en el punto anterior.

– Por ejemplo:

112 + 3 x 15 − 85

Resuelve primero la multiplicación 3 x 15:

112 + 3 x 15 − 85

Como 3 x 15 = 45, coloca el 45 como reemplazo de la expresión y respeta el orden de los demás números:

112 + 45 − 85

Ahora tenemos una operación combinada de suma y resta que puedes solucionar de izquierda a derecha como se explicó anteriormente:

112 + 45 − 85

157 − 85 = 72

El resultado es el siguiente:

112 + 3 x 15 − 85 = 72

 

– Otro ejemplo:

21 + 25 ÷ 5 − 12 + 8 x 6

Primero debes identificar los números que multiplican y dividen:

21 + 25 ÷ 5 − 12 + 8 x 6

Resuelve las operaciones de multiplicación y división y reemplaza por sus respectivos resultados. El orden y los signos del resto de los números se mantiene. Recuerda que 25 ÷ 5 = 5 y que 8 x 6 = 48. Al sustituir estos números queda:

21 + 5 − 12 + 48

Ya puedes resolver la operación combinada de suma y resta de la manera explicada anteriormente:

21 + 5 − 12 + 48

26 − 12 + 48

14 + 48 = 62

Expresa el resultado de la siguiente manera:

21 + 25 ÷ 5 − 12 + 8 x 6 = 62

 

Al momento de resolver ejercicios combinados, se debe prestar atención a los signos. Un signo que no sea correcto se traduce, en la mayoría de los casos, en un resultado erróneo. De igual forma se debe tener presente el orden de las operaciones a resolver, es decir, primero resolver multiplicaciones y divisiones, después resolver sumas y restas.
¡A practicar!

1. Resuelve las siguientes operaciones combinadas de sumas y restas sin paréntesis:

a) 115 − 94 + 525 − 32 =

Solución
514
b) 350 − 257 − 50 + 117 =
Solución
160
c) 450 − 358 + 15 + 452 − 527 + 13 =
Solución
45
d) 1.975 − 1.875 + 252 =
Solución
352
e) 759 − 651 + 875 − 532=
Solución
451

2. Resuelve las siguientes operaciones combinadas con multiplicaciones y divisiones sin paréntesis:

a) 14 − 6 x 3 − 11 =

Solución
−15
b) 28 − 12 ÷ 3 + 10 =
Solución
34
c) 42 + 5 x 5 − 48 + 42 ÷ 6 =
Solución
26
d) 272 − 105 + 6 x 6 − 15 + 2 x 2 =
Solución
192
e) 3.615 ÷ 15 + 9 − 90 + 5 x 2 =
Solución
170

RECURSOS PARA DOCENTES

Artículo “Ley de los signos: suma y resta”

Este artículo explica la ley de los signos para la suma y la resta. También muestra ejemplos de ejercicios para cada caso.

VER

Artículo “Números negativos”

Este artículo ayuda a ampliar el conocimiento sobre los números negativos y algunas de sus aplicaciones. También incluye una serie de ejercicios para resolver.

VER

Artículo “Cálculos combinados”

Este artículo destacado profundiza en explicaciones sobre los cálculos combinados y su metodología para resolverlos.

VER