CAPÍTULO 7 / TEMA 1

Clasificación de los seres vivos

Desde tiempos remotos, el hombre se ha visto motivado por la necesidad de clasificar y ordenar todo lo que observa a su alrededor. Al estudio que describe y explica la diversidad del mundo natural se lo conoce como sistemática.

Todas las clasificaciones han sido establecidas en base a un sistema que nombra y agrupa las especies conocidas.

HISTORIA DE LAS CLASIFICACIONES

En el 300 a. C., Aristóteles introdujo un sistema de clasificación jerárquico y resaltó la importancia de definir y unificar criterios a la hora de clasificar. Dividió a todos los organismos conocidos en plantas y animales.

Organismos que no encajan

 

El sistema de clasificación de Aristóteles no era muy preciso, había muchos organismos que no encajaban. Por ejemplo, las ranas nacen en el agua y tienen branquias como los peces, pero cuando crecen tienen pulmones y viven en la tierra.

A pesar de los problemas del sistema de clasificación limitado de Aristóteles, se utilizó durante casi 2.000 años hasta que fue reemplazado en el siglo XVIII por el del biólogo sueco Carlos Linneo.

De igual manera, Linneo clasificó los organismos de acuerdo a sus rasgos y comenzó con los mismos dos grupos: plantas y animales. Sin embargo, los llamó reinos y a diferencia de Aristóteles, dividió cada reino en cinco niveles: clase, orden, género, especie y variedad.

Los organismos se colocaron en estos niveles en función de sus rasgos, así como de las similitudes en las partes del cuerpo, la forma, el tamaño y los métodos de obtención de alimentos.

Sistema de clasificación binomial

Este sistema se usa para nombrar un organismo, donde la primera palabra que comienza con mayúscula es el género y la segunda que comienza con una letra minúscula es la especie.

El nombre debe estar en cursiva y en latín, que fue el idioma principal de las artes y las ciencias en el siglo XVIII. El nombre científico también se puede abreviar. Para ello se coloca la inicial del género seguido de un punto.

Por ejemplo, los humanos pertenecemos al género Homo y dentro de este género a la especie sapiens, por lo tanto, el nombre de la especie en dos partes para los humanos es Homo sapiens.

¿Sabías qué?
La taxonomía y la nomenclatura binomial ayudan a eliminar problemas, como la identidad errónea y las suposiciones falsas, causadas por nombres comunes.

Charles Darwin

Después de Linneo, la visión estática de la naturaleza fue anulada en la ciencia a mediados del siglo XIX por algunos naturalistas, entre los cuales se destacó Charles Darwin, quien proporcionó evidencia concluyente de que la evolución de las formas de vida ocurría.

Charles Darwin propuso la selección natural como mecanismo responsable de los cambios evolutivos.

CLASIFICACIÓN DE REINOS

Clasificación de dos reinos

En su Systema Naturae de 1735, Linneo distinguió dos reinos de seres vivos: animal y vegetal. Clasificó a todos los organismos vivos en estos dos sobre la base de la nutrición y la locomoción.

Colocó organismos unicelulares y multicelulares en el reino animal debido a su cuerpo compacto, la nutrición holozoica y la locomoción. Todos los demás organismos se agruparon en el reino vegetal debido a su inmovilidad, apariencia dispersa y modo de nutrición autótrofo. Por lo tanto, el reino vegetal tradicional comprendía bacterias, algas, plantas y hongos.

Limitaciones:

 

  • No indicó ninguna relación evolutiva entre las plantas y los animales.
  • Agrupó los procariotas con otros eucariotas.
  • También agrupó organismos unicelulares y multicelulares.
  • No distinguía los hongos heterotróficos.
  • Los organismos duales como Euglena y los líquenes no cayeron en ninguno de los reinos.
  • No mencionó algunos organismos acelulares como virus y viroides.

Clasificación de cinco reinos

El sistema de cinco reinos fue desarrollado por un taxonomista estadounidense llamado Robert H. Whittaker en 1969, y es la forma más común de agrupar seres vivos basada en características distintivas simples.

Los reinos son:

  • Animalia

  • Plantae

  • Fungi

  • Protista

  • Monera

Utilizó los siguientes criterios para la clasificación:

  • Complejidad de la estructura celular.
  • Complejidad de la organización del cuerpo.
  • Modo de nutrición.
  • Estilo de vida (función ecológica).
  • Relación filogenética.

CLASIFICACIÓN DE DOMINIOS

En 1990, Carl Woese ideó el sistema de tres dominios y propuso que las eubacterias, las arqueobacterias y los eucariotas representan tres líneas primarias de descendencia denominándolas Bacteria, Archaea y Eukarya.

Un dominio es más grande que un reino y separa organismos en función de sus secuencias de ARN ribosómico.
  • Archaea: formado por arqueobacterias, bacterias que viven en ambientes extremos.
  • Bacteria: bacterias comunes que se encuentran en la vida cotidiana, como micoplasmas, cianobacterias, bacterias Gram-positivas y bacterias Gram-negativas.
  • Eukarya: abarca la mayoría de los seres vivos visibles. Se subdivide en los reinos: Protista, Fungi, Plantae y Animalia.

NUEVAS FORMAS DE CLASIFICACIÓN

Luego del cambio a un sistema de tres dominios, los sistemáticos tuvieron que  volver a examinar los reinos dentro de cada dominio y ese proceso aún no concluye. A medida que nuevos sistemas de clasificación surgen y se modifican, el conocimiento de la diversidad biológica avanza.

El sistema original de los cinco reinos ya no está en uso, aun cuando se tomen referencias generales de los mismos. Principalmente, el Monera es el que ha sufrido constantes cambios, por lo que ahora se conoce que existe un sistema de seis reinos: Animalia, Plantae, Fungi, Protista, Monera y Archaea.

Estado biológico de los virus

 

El estado de los virus es incierto y altamente discutible ya que exhiben las características tanto de los vivos como los no vivos. Son metabólicamente inertes fuera de las células hospedadoras, por lo tanto no pueden considerarse  organismos.

RECURSOS PARA DOCENTES

Artículo “La vida en tamaño súper pequeño”

Este recurso le permitirá obtener más información acerca de un gran grupo de seres vivos de tamaño considerablemente pequeño, con material genético y conformación simple, que sólo pueden ser observados bajo un microscopio.

VER

Vídeo “Niveles de complejidad celular de los organismos”

Este vídeo le permitirá conocer las características de los seres vivos que vemos bajo el microscopio.

VER

Infografía “Microorganismos”

Con este recurso podrá dar a conocer los pequeños organismos que causan grandes enfermedades y no son visibles para nuestros ojos.

VER

CAPÍTULO 4 / TEMA 5

Fuentes de energía

El ser humano aprovecha la energía disponible en la naturaleza en su búsqueda de mejoramiento de la calidad de vida. Las fuentes de energía son aquellos recursos naturales o cuerpos que almacenan energía que puede ser utilizada.

La energía eléctrica puede generarse de diversas fuentes.

VER INFOGRAFÍA

FUENTES RENOVABLES

VER INFOGRAFÍA

Estas fuentes de energía son las más abundantes en la naturaleza. Se consideran inagotables, ya que después de ser usadas pueden regenerarse de forma natural o artificial a una velocidad superior al que se consumen.

Las energías renovables son menos contaminantes que las energías no renovables.

Algunas ventajas de las fuentes de energía renovable son las siguientes:

  1. No afectan de gravedad al medio ambiente.
  2. Disminuyen la dependencia de los recursos fósiles.
  3. Promueven el desarrollo industrial y económico donde se instalan.
  4. Son inagotables, por ende, pueden aplicarse en una amplia gama de escenarios.

También presentan desventajas como:

  1. La elección de este tipo de energía representa una inversión significativa, lo que hace parecer que no es rentable.
  2. Varios tipos de energía renovable tienen una naturaleza difusa.
  3. Se necesita esperar para que haya cantidad suficiente de energía para poder almacenarla.
  4. Muchas veces debe disponerse de un gran equipo o sistema para que la energía de utilice.
Energía renovable en Latinoamérica

 

Debido a la gran variedad de ecosistemas en Latinoamérica, los países de esta región se beneficiarían en gran medida de la energía renovable. Por orden de importancia y beneficios de estos recursos se encuentran los siguientes países: Brasil, Colombia, Argentina, Chile y Uruguay.

¿Cuáles son las fuentes de energía renovable?

Ciertas fuentes de energía renovable también son conocidas como energías alternativas, ya que se usan poco pero adquieren más importancia con el paso del tiempo.

Energía hidráulica

Es producida por el aprovechamiento de la energía cinética y potencial gravitatoria de los saltos de agua natural, en otras palabras, se obtiene mediante el movimiento del agua. Por esta razón, las centrales hidroeléctricas se construyen cerca de caídas de agua, donde el movimiento hidráulico mueve unas turbinas que se encargan de transformar esa energía en energía eléctrica que luego llega a los hogares a través de una red eléctrica de distribución.

¿Qué es una represa hidroeléctrica?

 

Es un sistema diseñado y construido para producir energía eléctrica mediante el aprovechamiento del caudal de los cursos de agua.

 

VER INFOGRAFÍA

 

Energía solar

Llega a la Tierra en forma de radiación electromagnética proveniente del Sol. Una de las formas de aprovechamiento es mediante el uso de paneles solares. Es una energía gratuita, inagotable, limpia y no contaminante.

El Sol es una fuente ilimitada de energía. Si se almacenara toda la energía que emite durante algunas horas, se podrían abastecer las necesidades humanas del planeta por un año.

¿Sabías qué?
La energía solar se renueva rápidamente porque el Sol emite de manera continua radiación.

Energía eólica

Es la que se aprovecha por el movimiento del aire. Como fuente de energía es segura, inagotable y no contamina.

VER INFOGRAFÍA

Para poder utilizar esta fuente de energía a gran escala se requieren gigantescas turbinas eólicas, también llamadas aerogeneradores, que al moverse producen electricidad. El único inconveniente es que los vientos en general no son constantes, por lo que la energía eléctrica producida debe ser almacenada en baterías.

¿Cómo se aprovechan las energías renovables?

 

La energía del viento se aprovecha a través de grandes turbinas, la energía del Sol por medio de paneles solares y la energía del agua mediante centrales hidroeléctricas.

Energía mareomotriz

Se la obtiene a partir del movimiento del agua que es generado por las mareas. Durante el día, las aguas suben (marea alta o pleamar) y bajan (marea baja o bajamar) secuencialmente; cuando la Luna está sobre la playa, las aguas suben, luego de seis horas bajan.

VER INFOGRAFÍA

La marea es el movimiento constante y alterno de ascenso y descenso de las aguas marinas que se produce por las acciones atractivas del Sol y la Luna.

Durante el fenómeno de la pleamar, las aguas ganan energía gravitatoria. Al bajar, esa energía gravitatoria se transforma en energía cinética: las aguas se aceleran en su caída. Para obtener esta energía se dispone de centrales mareomotrices. Dichas centrales atrapan el agua del mar en enormes piletas que se cierran por medio de compuertas. Cuando la marea comienza a bajar, las compuertas se abren y el agua guardada empieza a caer hacia al mar por medio de unos conductos.

¿Qué son los diques móviles?

 

Es una respuesta a fenómenos naturales donde las altas mareas pueden atentar contra el bienestar de un área geográfica determinada y a su comunidad. Ingeniados por los Países Bajos después del desastre natural de 1953 e inaugurados en 1997, son sinónimo de resguardo y eficiencia tecnológica en el resto del mundo.

 

VER INFOGRAFÍA

 

Energía de la biomasa

La biomasa es la materia orgánica que se origina en un proceso biológico, como por ejemplo la madera, los cultivos o los residuos animales. Puede utilizarse directa o indirectamente como fuente de energía y permite aprovechar los residuos.

Como combustible, produce una contaminación parecida a la de los combustibles fósiles. La gran ventaja sobre éstos es que el CO2 que se produce en la combustión ha sido retirado previamente de la atmósfera por las plantas con las que se ha fabricado el combustible y no se altera la concentración media de este gas.

Energía geotérmica

Es el aprovechamiento del calor proveniente del interior de la Tierra, el cual se transmite a los cuerpos por conducción y convección. Esta energía es capaz de ofrecer más energía que el petróleo, el carbón y el uranio. Puede ser aprovechada gracias a la intervención de turbinas que absorben el vapor (energía calórica) generado por las altas temperaturas, para luego ser transformado en energía eléctrica.

¿Sabías qué?
Italia y Chile son algunos de los países que aprovechan la energía calórica que proviene del interior de la Tierra por medio de centrales que generan vapor para luego producir electricidad.
Datos de interés sobre fuentes de energía renovable
Tipo de energía Fuente Mayor productor Aplicación
Hidráulica Agua Estados Unidos Producir energía eléctrica.
Solar Sol China Producir energía eléctrica.
Eólica Viento China Producir energía eléctrica.
Mareomotriz Agua Japón Producir energía eléctrica.
Biomasa Plantas y animales Inglaterra Producir energía eléctrica y biocombustibles.
Geotérmica Calor del interior de la Tierra Estados Unidos Industrial y en aguas termales.

FUENTES NO RENOVABLES

¿Qué es el desarrollo sustentable?

 

Es un proceso integral que conjuga a la sociedad, la economía y al planeta Tierra con su naturaleza. Se trata de un modo de ver y de hacer que desterró la antigua idea de “progreso”, relacionada a la explotación desmedida de los recursos.

Estas fuentes de energía son las más usadas en la actualidad a pesar de encontrarse en cantidades limitadas en la naturaleza. Se agotan al ser usadas, por lo tanto no se regeneran a corto plazo y requieren miles o millones de años para volver a formarse.

Dato de interés

 

Según estudios recientes, aproximadamente el 85 % de toda la energía que se consume a nivel mundial surge de la quema de combustibles fósiles.

Algunas ventajas de las fuentes de energía no renovable son las siguientes:

  1. Estas fuentes de energía son más económicas que las energías renovables, razón por la que son más usadas en los países en vías de desarrollo.
  2. Al ser fuentes que el ser humano ha conocido desde hace mucho tiempo, existe la infraestructura y la tecnología necesaria para aprovecharlas y transformarlas.
  3. El recurso no renovable más usado es probablemente el petróleo, del cual se produce una gran cantidad de combustibles y derivados como solventes y parafinas.

También presenta desventajas como:

  1. No son abundantes en la Tierra, por lo que en algún momento se gastarán las reservas que existen.
  2. Al quemar combustibles fósiles se producen enormes cantidades de contaminantes que potencian el calentamiento global.
  3. Los combustibles fósiles pueden ocasionar grandes accidentes si no se tratan con cuidado.
Protocolo de Kioto

 

Es un acuerdo internacional firmado en firmado en Japón, en la ciudad de Kioto. Entró en vigor en febrero de 2005 y comprometió a los países industrializados a estabilizar las emisiones de gases de efecto invernadero entre el período 2008 y 2012. El segundo periodo de vigencia del Protocolo se extiende desde el 1 de enero de 2013 hasta el 31 de diciembre de 2020.

¿Cuáles son las fuentes de energía no renovable?

Las fuentes de energía no renovable también son conocidas como energías convencionales, ya que son las más usadas en la actualidad.

Combustibles fósiles

Las fuentes de energía fósil son aquellos recursos que provienen de la transformación de materia que alguna vez tuvo vida, es decir, que se originaron por la acumulación de restos vivientes hace millones de años. Entre ellas podemos encontrar el carbón, el petróleo y el gas. El carbón fue el primer combustible fósil en ser comercializado, le siguió el petróleo y por último el gas natural. En la actualidad coexisten para satisfacer las necesidades energéticas.

¿Sabías qué?
El combustible fósil se quema para así obtener energía térmica o energía cinética. También puede emplearse para obtener electricidad en centrales termoeléctricas.
  • El carbón

VER INFOGRAFÍA

Es un combustible sólido de origen vegetal. Se originó hace más de 300 millones de años cuando el planeta estaba cubierto por una densa vegetación que, al morir, quedó sumergida bajo el agua y empezó a descomponerse anaeróbicamente (sin presencia de oxígeno), lo que produjo que la materia orgánica ganara carbono hasta convertirse en un mineral sólido de color negro.

  • El petróleo

VER INFOGRAFÍA

Es un compuesto líquido negruzco complejo formado por una mezcla de hidrocarburos de gran viscosidad, perecidos al aceite. Se originó hace millones de años por la fosilización de zooplancton, algas y organismos marinos.

El petróleo tiene una apariencia negra y viscosa.

Utilizar este compuesto como fuente de energía tiene varios inconvenientes:

  • No es soluble en agua y es difícil de limpiar.
  • Los derrames afectan los ecosistemas.
  • La combustión de los derivados produce productos residuales.
  • Es una de las principales causas de la excesiva emisión de dióxido de carbono a la atmósfera, lo cual genera calentamiento global.

Este combustible es muy utilizado debido a que con una pequeña porción del material se producen grandes cantidades de energía, y sus costos de extracción y utilización son baratos en comparación con otras fuentes. Es decir, se prioriza el beneficio económico por sobre el cuidado del planeta.

¿Qué es el fracking?

 

La explotación indiscriminada de los recursos fósiles es una práctica común que ha disminuido las reservas a nivel mundial de manera notable. El fracking se ha presentado como una técnica de extracción en yacimientos no convencionales, y el daño para el hombre y el planeta es objeto de debate.

 

VER INFOGRAFÍA

Es una mezcla de gases ligeros que se obtiene de los yacimientos de petróleo o de depósitos de carbón.  Si la energía se obtiene de los procesos de descomposición de restos orgánicos se denomina biogás.

Una de las ventajas de la utilización de esta fuente de energía es que el gas natural produce mucho menos dióxido de carbono que otros combustibles. Sin embargo, la forma de extraer, transportar y almacenar este combustible implica grandes cuidados, ya que es una sustancia muy inflamable.

Energía nuclear

Es aquella energía que se libera durante las reacciones nucleares y se obtiene mediante un proceso físico-químico. Dentro de los núcleos atómicos, las fuerzas entre los protones y neutrones del núcleo atómico son muy intensas, por lo que los procesos de transformación nuclear generan gran cantidad de energía.

RECURSOS PARA DOCENTES

Artículo destacado “Energía eólica”

Recurso que describe las características de la energía eólica como fuente de energía renovable.

VER

Video “Los movimientos de la Tierra: Rotación y traslación. Estaciones del año, las mareas”

Este video le permitirá comprender los fenómenos relacionados con la posición del planeta Tierra, entre ellos, las mareas.

VER

Video “¿Cuál es el desierto más árido del planeta? ¿Qué es la energía renovable?

Recurso audiovisual que explica datos de interés sobre las energías renovables.

VER

Células, tejidos y órganos

Estos tres términos se pueden agrupar como una jerarquía, donde cada elemento es un bloque de construcción para el siguiente nivel. La unidad más pequeña es la célula y a partir de los billones que hay en el cuerpo humano se forman los tejidos, y un grupo de tejidos forman un órgano.

Células Tejidos Órganos
Definición Unidad básica y funcional de todos los seres vivos. Conjunto de células con el mismo origen embrionario que se encargan de realizar funciones especializadas. Unidad estructural formada por un grupo de tejidos que realizan una función determinada.
¿Qué forman? Tejidos. Órganos. Sistemas.
Ejemplos Neuronas, gametos, miocitos, leucocitos, osteocitos y eritrocitos, entre otros. Epiteliales, nerviosos, musculares y conectivos, entre otros. Estómago, cerebro, corazón y pulmones, entre otros.

 

Autótrofos y heterótrofos

Todos los organismos necesitan nutrirse para poder obtener energía, por supuesto no todos lo hacen de la misma manera. Podemos definir dos tipos principales de nutrición: autótrofa y heterótrofa.

Autótrofos Heterótrofos
Definición Son aquellos organismos capaces de producir su propio alimento. Son aquellos organismos que obtienen su alimento a partir del consumo de otros organismos o materia en descomposición.
¿Producen su  propio alimento? Sí. No.
Eslabones en la red trófica Productores primarios. Consumidores y descomponedores.
¿Cómo obtienen su energía? A través de la luz solar o de reacciones químicas. A través del consumo de otros organismos o materia en descomposición.
Tipos  Fotosintéticos y quimiosintéticos. Carnívoros, herbívoros y descomponedores.
Ejemplos Organismos vegetales y algunas bacterias. Animales, hongos y algunas bacterias.

 

Anabolismo y catabolismo

El metabolismo es un proceso bioquímico que permite que un organismo viva, crezca, se reproduzca, sane y se adapte a su entorno. El anabolismo y el catabolismo son dos procesos o fases metabólicas, uno construye moléculas que el cuerpo necesita y el otro transforma las moléculas complejas en moléculas más pequeñas mediante la liberación de energía.

Anabolismo Catabolismo
Definición Los procesos anabólicos usan moléculas simples dentro del organismo para crear compuestos más complejos y especializados. Los procesos catabólicos descomponen compuestos complejos y moléculas para liberar energía.
Moléculas Las construye. Transforma las moléculas más complejas en otras más pequeñas.
Energía Requiere energía. Libera energía.
Conversión de la energía La energía cinética se convierte en energía potencial. La energía potencial se transforma en energía cinética.
Hormonas Estrógeno, testosterona, insulina y la hormona del crecimiento. Adrenalina, cortisol, glucagón y citosinas.
Oxígeno No utiliza oxígeno. Utiliza oxígeno.
Importancia Apoya el crecimiento de nuevas células, el almacenamiento de energía y el mantenimiento de tejidos corporales. Proporciona energía para el anabolismo, calienta el cuerpo y permite la contracción muscular.
Efecto sobre el ejercicio Los ejercicios anabólicos generalmente desarrollan masa muscular. Los ejercicios catabólicos suelen ser buenos para quemar grasas y calorías.
Ejemplos Asimilación en los animales y fotosíntesis en las plantas. Respiración celular, digestión y excreción.

 

Monocotiledóneas y dicotiledóneas

Las plantas se pueden separar en dos categorías distintas: monocotiledóneas y dicotiledóneas. Estas difieren en cuatro características estructurales distintas: las hojas, los tallos, las raíces y las flores. Sin embargo, las diferencias más estrictas comienzan desde el inicio del ciclo de vida de la planta, en la semilla.

Monocotildóneas Dicotiledóneas
Cotiledón 1 2
Tipo Angiospermas. Angiospermas.
Tipos de raíz Fasciculada. Pivotante.
¿El tallo está ramificado? No. Sí.
Haces vasculares del tallo Numerosos y dispersos. Pocos y dispuestos en anillos.
Estructuras florales 3 sépalos y 3 pétalos o múltiplos de 3. 4 o 5 pétalos o múltiplos de 4 o 5.
Polen El tubo de polen contiene un solo poro o surco (monocolpado). El tubo de polen tiene tres o más poros o surcos (tricolpado).
¿Cómo son las venas de las hojas? Paralelas. Ramificadas.
Crecimiento secundario Ausente Presente
Ejemplos Caña de azúcar, maíz y trigo, entre otras. Mango, neem y girasol, entre otras.

 

Angiospermas y gimnospermas

La vida tal como la conocemos no existiría sin las plantas, ya que son capaces de convertir la luz solar y los compuestos inorgánicos en energía alimentaria. En el reino Plantae, las especies se clasifican según su método de reproducción. Las que producen semillas se llaman espermatofitas y se dividen en dos grupos: angiospermas y gimnospermas.

 

Angiospermas Gimnospermas
Vascularidad Todas son vasculares. Todas son vasculares.
¿Tienen flores y frutos? Sí. No.
Ciclo de vida Estacional. Perenne.
Hojas Planas. Escamosas y acuminadas.
Madera Dura. Blanda.
¿Donde se desarrolla la semilla? Dentro de una capa externa protectora llamada ovario. En la superficie de escamas y hojas, y no están contenidas dentro de un ovario.
Reproducción A través de las flores. A través de conos.
Estructuras reproductoras Estambre y carpelo. Cono masculino y cono femenino.
Condiciones climáticas Se encuentran en todos los tipos de climas. Generalmente se encuentran en condiciones xerofíticas o secas.
Polinización Viento, agua, insectos y aves. Viento.
Ejemplos Lirios, orquídeas, agaves, robles, rosales, arces y pastos, entre otros. Pinos y abetos.
Usos Madera, alimento, medicinas y ornamento, entre otros. Papel y madera.

 

Leyes de Mendel: primera, segunda y tercera

La herencia mendeliana es un conjunto de principios relacionados con la transmisión de características hereditarias entre los organismos. Las leyes de la herencia fueron derivadas por Gregor Mendel, un monje del siglo XIX, mediante la realización de experimentos de hibridación en guisantes (Pisum sativum).

 

Primera ley Segunda ley Tercera ley
Nombre Ley de la uniformidad. Ley de la segregación de caracteres. Ley de la asociación independiente de caracteres.
Enunciado Si se cruzan 2 líneas puras homocigotas para un determinado carácter, los descendientes tendrán el fenotipo de uno de los progenitores y serán todos iguales en genotipo y fenotipo. Previo a la formación de gametos, cada alelo se separa de su par para establecer el genotipo de la segunda generación. La forma en que un par de alelos se segrega en dos células hijas durante la segunda división de la meiosis no tiene efecto sobre cómo se segrega cualquier otro par de alelos.
Resultado El gen que se exprese en la primera generación será el gen dominante. El carácter recesivo permanece oculto. Los caracteres que quedaron ocultos en la primera generación no desaparecieron. Con la ayuda de otros alelos se expresan en la segunda generación. Los rasgos heredados a través de un gen son independientes de los rasgos heredados a través de otro gen porque los genes residen en diferentes cromosomas.

 

Proteínas, carbohidratos y lípidos

Los carbohidratos, los lípidos y las proteínas constituyen los tres macronutrientes. Sus requerimientos dietéticos son altos en relación con los micronutrientes. Las macromoléculas biológicas son orgánicas, lo que significa que contienen carbono y además, pueden contener hidrógeno, oxígeno, nitrógeno y elementos menores adicionales.

Proteínas Carbohidratos Lípidos
Monómero Aminoácidos Monosacárido Glicerol y ácido graso.
Formado por 20 aminoácidos. Átomos de carbono, hidrógeno y oxígeno. Cadenas de carbono e hidrógeno principalmente.
Tipos Simples y conjugadas. Simples y complejos. Grasas, fosfolípidos y colesterol.
Digestión Rápida. Lenta. Muy lenta.
¿Dónde se digieren? Intestino. Intestino. Intestino.
Solubles en agua Algunas. Todas. Ninguna.
Almacenamiento de energía A largo plazo. A corto plazo. A largo plazo.
Funciones Componentes básicos de la vida, almacenamiento de energía, movimiento muscular, soporte estructural, defensa y medio de transporte celular. Almacenamiento de energía, soporte estructural y ayudan a la comunicación entre células. Almacenamiento de energía, protección y  como mensajeros químicos.
Alimentos que lo contienen Mariscos, carnes magras, aves de corral, huevos, frijoles y guisantes, productos de soya, nueces y semillas sin sal. Frutas, granos, lácteos, harinas refinadas y bebidas gaseosas, entre otros. Lácteos, carnes, aves, mariscos, huevos, semillas, nueces, aguacates y cocos.
Ejemplos Enzimas y algunas hormonas. Glucosa, fructosa, almidón, glucógeno y celulosa. Aceites y colesterol.
Estructura

 

Virus, viroides y priones

Con las investigaciones que los científicos han realizado para descubrir los agentes causantes de nuevas enfermedades, se han descubierto formas no vivas diferentes a los virus que están formadas sólo por ARN o sólo por proteínas, y que también pueden propagarse a expensas de un huésped.

 

Virus Viroides Priones
¿Qué son? Partículas acelulares. Partículas acelulares. Partículas acelulares.
Reproducción A través de un huésped. A través de un huésped. Obligan a las proteínas celulares normales a comenzar a plegarse en formas anormales.
Visualización A través de un microscopio electrónico. A través de un microscopio electrónico. A través de un microscopio electrónico.
Tipo de agente Infeccioso. Infeccioso. Infeccioso.
Material genético ADN o ARN. ARN. No tienen, están formados por proteínas.
Infecta  Todas las formas de vida. Plantas. Principalmente animales. Rara vez humanos.
Cubierta Si presenta, se llama cápside. No presenta. No presenta.
Medio de propagación Fluidos corporales, aire o picaduras de insectos. Semillas o polen. Aire.
Ejemplos Varicela, VIH, gripe y herpes, entre otros. Cadang-cadang, exocortis y piel de manzana, entre otros. Enfermedad de las vacas locas y el kuru.