Los números desde su invención han servido para contar cosas y por eso existen diferentes sistemas y tipos de números que permiten un mejor conocimiento de las cantidades. Para comprender el sentido numérico, dentro del universo de los números se utilizan diversas clasificaciones. Un tipo de números son los ordinales que sirven para establecer un orden. Por otro lado, existen los cardinales que indican cantidades numéricas de elementos que pertenecen a un grupo o conjunto. Actualmente, el sistema más usado es el sistema numérico decimal pero no es el único que existe. Otras culturas crearon sistemas de numeración distintos al decimal, como por ejemplo, los mayas y los romanos.
NÚMEROS PRIMOS Y COMPUESTOS
De acuerdo a la cantidad de divisores que poseen los número, los podemos clasificar en primos y compuestos. Los números primos son aquellos que solo son divisibles por el número uno y por sí mismos. En cambio, los números compuestos son aquellos que además de ser divisibles por el uno y por sí mismos, también son divisibles por otro u otros números, es decir, tienen más de dos divisores. Todos los números compuestos pueden expresarse como un producto de factores primos.
VALOR POSICIONAL
Una de las principales características de nuestro sistema de numeración decimal es que el valor de los dígitos varía de acuerdo a su ubicación dentro del número. Esta característica se denomina valor posicional y aplica tanto en los números enteros como en los fraccionarios. Una herramienta que nos permite observar directamente el valor de cada dígito de acuerdo al lugar que ocupa es la tabla posicional.
NÚMEROS DECIMALES
Hay números que se ubican entre dos números enteros consecutivos, estos números se denominan números decimales y se caracterizan porque presentan una parte entera y una decimal, que se encuentran separadas por una coma o punto de acuerdo a la convención del país. Los números decimales se clasifican en racionales y en irracionales. Los racionales se pueden representar en forma de fracción, y los irracionales son números infinitos cuya parte decimal no sigue ningún patrón, como sucede en el caso del número pi.
POTENCIAS
La potenciación es una operación compuesta de tres partes fundamentales: el exponente, la base y la potencia. El exponente indica cuántas veces se debe multiplicar la base por si misma. La base es el número que se multiplica por sí mismo las veces que indique el exponente. La potencia es el resultado de la operación de potenciación. Como toda operación matemática, las potencias cumplen con algunas propiedades. Por ejemplo, todo número elevado a 0 es igual a 1. Para resolver potencias se aplican sus propiedades y se realizan multiplicaciones sucesivas de la base.
RAÍZ DE UN NÚMERO
La radicación es la operación inversa a la potenciación y por ello se encuentran estrechamente relacionadas. Esta operación emplea el símbolo (√) denominado radical. Sus elementos principales son el radicando, el índice y la raíz. El radicando es el número al cual se le va a calcular la raíz y se encuentra en la parte inferior del radical. El índice es el número que índica la cantidad de veces en las que debe multiplicarse un número por sí mismo para que el resultado sea igual al radicando, y se ubica en la parte izquierda del radical. La raíz es el resultado de la operación. Para calcular una raíz se debe buscar un número que multiplicado por sí mismo las veces que indique el índice dé como resultado el mismo valor del radicando.
EXISTEN DISTINTOS TIPOS DE NÚMEROS, COMO LOS CARDINALES, LOS ORDINALES Y LOS ROMANOS. NO TODOS SE ESCRIBEN IGUAL Y SUS FUNCIONES SON DIVERSAS. POR EJEMPLO, CON LOS NÚMEROS CARDINALES CONTAMOS LA CANTIDAD DE LÁPICES QUE TENEMOS Y CON LOS ORDINALES INDICAMOS LA POSICIÓN DE LLEGADA EN UNA CARRERA.
NÚMEROS CARDINALES
LOS NÚMEROS CARDINALES NOS PERMITEN CONTAR CANTIDADES: UNO, DOS, TRES, CUATRO, CINCO…
SIEMPRE QUE OBSERVEMOS UN CONJUNTO DE COSAS QUE PODAMOS CONTAR TAMBIÉN PODEMOS ASIGNARLE UN NÚMERO CARDINAL. POR EJEMPLO:
CONTAMOS TODOS ESTOS ELEMENTOS AGRUPADOS: LOS TOMATES, LOS CONOS DE HELADOS Y LAS PERAS. 6, 5 Y 4 SON LOS NÚMEROS CARDINALES QUE INDICAN LA CANTIDAD DE ELEMENTOS DE CADA CONJUNTO.
NUESTRO SISTEMA DE NUMERACIÓN
LOS NÚMEROS QUE USAMOS PARA CONTAR PERTENECEN AL SISTEMA DE NUMERACIÓN DECIMAL. SE LO LLAMA ASÍ PORQUE SOLO TIENE DIEZ DÍGITOS QUE VAN DESDE EL CERO (0) HASTA EL NUEVE (9). CON ESTOS DÍGITOS PODEMOS FORMAR CUALQUIER NÚMERO, COMO EL 568 O EL 123.
NÚMEROS ORDINALES
LOS NÚMEROS ORDINALES NOS INDICAN EL ORDEN O LA POSICIÓN DE LOS ELEMENTOS DE UNA SERIE.
QUIZÁS NO TE HAYAS DADO CUENTA PERO LOS USAMOS MUCHAS VECES EN NUESTRA VIDA COTIDIANA. POR EJEMPLO AL MENCIONAR LOS PISOS DE UN EDIFICIO, AL ANUNCIAR EL ORDEN DE LOS GANADORES DE UNA CARRERA, LA POSICIÓN EN LA FILA DE LA ESCUELA O EL TURNO DE LLEGADA AL MÉDICO.
OBSERVA ESTA IMAGEN, ¿QUIÉN ENTRARÁ PRIMERO AL SALÓN DE CLASES?
MARIO ENTRARÁ PRIMERO AL SALÓN DE CLASES. ¿Y LOS DEMÁS?
PARA RESPONDER ESTA PREGUNTA TIENES QUE SABER QUE LOS NÚMEROS ORDINALES PUEDEN SER MASCULINOS O FEMENINOS Y SE ESCRIBEN CON UN PEQUEÑO SÍMBOLO A LA DERECHA DEL NÚMERO.
ESTA TABLA MUESTRA LOS PRIMEROS DIEZ NÚMEROS ORDINALES:
MASCULINO
FEMENINO
1.º
PRIMERO
1.ª
PRIMERA
2.º
SEGUNDO
2.ª
SEGUNDA
3.º
TERCERO
3.ª
TERCERA
4.º
CUARTO
4.ª
CUARTA
5.º
QUINTO
5.ª
QUINTA
6.º
SEXTO
6.ª
SEXTA
7.º
SÉPTIMO
7.ª
SÉPTIMA
8.º
OCTAVO
8.ª
OCTAVA
9.º
NOVENO
9.ª
NOVENA
10.º
DÉCIMO
10.ª
DÉCIMA
¡ES TU TURNO!
OBSERVA DE NUEVO LA IMAGEN DE ARRIBA. INDICA EL ORDEN EN EL QUE ENTRARÁN LOS ESTUDIANTES AL SALÓN DE CLASES.
SOLUCIÓN
PRIMERO: MARIO
SEGUNDA: LUISA
TERCERO: JUAN
CUARTO: PEDRO
QUINTA: CARLA
SEXTO: JOSÉ
SÉPTIMA: ÁNGELA
¿SABÍAS QUÉ?
CUANDO DAMOS UNA FECHA CON EL PRIMER DÍA DEL MES USAMOS NÚMEROS ORDINALES, POR EJEMPLO, EL DÍA DEL TRABAJADOR ES EL PRIMERO DE MAYO.
NÚMEROS ROMANOS
LOS NÚMEROS ROMANOS ERAN MUY UTILIZADOS EN LA ANTIGUA ROMA HASTA QUE SURGIERON LOS NÚMEROS ARÁBIGOS, QUE SON LOS QUE CONOCEMOS EN LA ACTUALIDAD.
LOS NÚMEROS ROMANOS SON SOLO SIETE Y ESTÁN REPRESENTANDO CON LAS LETRAS DE NUESTRO ABECEDARIO:
Cada número está formado por diferentes cifras y cada una de estas cifras tiene un valor según la posición que ocupan dentro del número. Por ejemplo, el 300 se lee “trescientos” porque el 3 se ubica en el lugar de las centenas, pero el 30 se lee “treinta” porque el 3 está en el lugar de las decenas. Además de los números naturales que usamos para contar, también existen otros que representan orden, como los ordinales; y otros que podemos ver en relojes antiguos, como los números romanos.
Valor posicional
El valor posicional es el valor que tiene una cifra dentro de un número, por ejemplo, el número 555, a pesar de tener tres cifras iguales, cada una tiene un valor distinto: 500, 50 y 5. Estos valores los podemos representar en una tabla posicional en la que están los órdenes (unidades, decenas, centenas) y las clases (miles, millones, etc.). Por otro lado, la descomposición aditiva nos ayuda a expresar un número como la suma de sus valores posicionales.
Recta numérica
La recta numérica, como su nombre lo indica, es una recta que contiene infinitos números. Para graficarla basta con hacer una línea recta, dibujar flechas a los lados, ubicar el cero (0) y hacer separaciones de igual distancia en las que colocaremos los puntos que simbolizan los números. Es importante recordar que cada número tiene un orden y pueden ser mayores o menores que otros. Para esto usamos símbolos de relación como mayor que (>), menor que (<) o igual a (=).
series
Las series numéricas son conjuntos de números organizados bajo una misma regla o patrón, pueden ser ascendentes y descendentes. Una serie es ascendente cuando los números están ordenados de menor a mayor y el patrón es una suma sucesiva; mientras que una serie numérica descendente es aquella en la que los números están ordenados de mayor a menor y el patrón es una resta sucesiva. A estos patrones los podemos identificar si restamos dos números contiguos de la serie. También vemos patrones en las tablas de 100 números.
DESDE QUE EXISTE EL SER HUMANO, TAMBIÉN EXISTE LA NECESIDAD DE CONTAR. DISTINTAS CIVILIZACIONES CREARON SUS PROPIOS SISTEMAS DE NUMERACIÓN, ESTE ES EL CASO DE LA CIVILIZACIÓN ROMANA. LOS NÚMEROS ROMANOS SOLO CUENTAN CON SIETE SÍMBOLOS, PERO CON ELLOS PUEDES FORMAR INFINIDAD DE NÚMEROS.
HISTORIA DE LOS NÚMEROS ROMANOS
EL SISTEMA DE NUMERACIÓN ROMANO TIENE SUS ORÍGENES EN LOS ETRUSCOS, UN ANTIGUO PUEBLO UBICADO EN LA ACTUAL ITALIA CENTRAL. LOS SÍMBOLOS DE ESTE SISTEMA SURGIERON EN LA ANTIGUA ROMA Y SE MANTUVIERON DURANTE TODO EL IMPERIO ROMANO.
SI BIEN SU USO DISMINUYÓ TRAS LA CAÍDA DEL IMPERIO, AÚN ERAN EMPLEADOS EN MUCHAS OCASIONES. CON EL TIEMPO, EL SISTEMA DE NUMERACIÓN ROMANO FUE SUSTITUIDO POR EL SISTEMA DECIMAL, EL CUAL USAMOS DÍA A DÍA Y CONSTA DE DIEZ CIFRAS: 1, 2, 3, 4, 5, 6, 7, 8, 9 Y 10.
¿QUÉ SON LOS NÚMEROS ROMANOS?
LOS NÚMEROS ROMANOS SON NÚMEROS EXPRESADOS EN LETRASQUE INDICAN UNA CANTIDAD. ESTE SISTEMA DE NUMERACIÓN SOLO TIENE SIETE SÍMBOLOS:
NÚMERO ROMANO
VALOR
I
1
V
5
X
10
L
50
C
100
D
500
M
1.000
¿SABÍAS QUÉ?
EN EL SISTEMA DE NUMERACIÓN ROMANO EL 1 SIEMPRE VALDRÁ UNO 1, YA SEA QUE LO SUMEMOS O LO RESTEMOS. EN CAMBIO, EN NUESTRO SISTEMA DE NUMERACIÓN DECIMAL, EL UNO 1 PUEDE TENER VALORES DISTINTOS SEGÚN EL LUGAR QUE OCUPE EN EL NÚMERO, POR EJEMPLO, EN 21, EL 1 ES UNIDAD Y VALE 1, PERO EN 15, ESE 1 NO VALE 1, VALE 10.
ESCRITURA Y LECTURA DE LOS NÚMEROS ROMANOS
PARA LEER Y ESCRIBIR NÚMEROS ROMANOS DEBEMOS SEGUIR LAS SIGUIENTES REGLAS:
LOS SÍMBOLOS SE ESCRIBEN DE IZQUIERDA A DERECHA. SI UN NÚMERO UBICADO A LA DERECHA DE OTRO ES IGUAL O MENOR A ESTE, SE SUMAN.
XVII = 10 + 5 + 1 + 1 = 17
VIII = 5 + 1 + 1 + 1 = 8
SI UN SÍMBOLO DE MENOR VALOR ESTÁ A LA IZQUIERDA DE UNO DE MAYOR VALOR, ENTONCES SE RESTAN.
IV = 5 − 1 = 4
IX = 10 − 1 = 9
¿SABÍAS QUÉ?
LOS SÍMBOLOS I (1) Y X (10) SÓLO PUEDEN RESTAR A SUS DOS SÍMBOLOS INMEDIATAMENTE SUPERIORES, ES DECIR:
I SÓLO PUEDE RESTAR A V Y X.
X SÓLO PUEDE RESTAR A L Y A C.
LOS SÍMBOLOS V (5) Y L (50) SIEMPRE SUMAN Y NUNCA PUEDEN ESTAR A LA IZQUIERDA PARA RESTAR A UN VALOR MAYOR:
XCV = 100 − 10 + 5 = 95
XLV = 50 − 10 + 5 = 45
LOS SÍMBOLOS PUEDEN REPETIRSE TRES VECES DE MANERA CONSECUTIVA COMO MÁXIMO. V Y L NO SE REPITEN.
III = 1 + 1 + 1 = 3
XXX = 10 + 10 + 10 = 30
UN SÍMBOLO QUE RESTA NO PUEDE REPETIRSE DE MANERA CONSECUTIVA.
¡A PRACTICAR!
EXPRESA LOS SIGUIENTES NÚMEROS ARÁBIGOS EN NÚMEROS ROMANOS:
58
SOLUCIÓN
LVIII
86
SOLUCIÓN
LXXXVI
73
SOLUCIÓN
LXXIII
61
SOLUCIÓN
LXI
48
SOLUCIÓN
XLVIII
36
SOLUCIÓN
XXXVI
APLICACIÓN DE LA NUMERACIÓN ROMANA
HOY DÍA AÚN USAMOS LOS NÚMEROS ROMANOS EN DIVERSAS CIRCUNSTANCIA. ESTOS SON ALGUNOS EJEMPLOS:
PARA DAR LA HORA EN ALGUNOS TIPOS RELOJES.
PARA NOMBRAR PAPAS, POR EJEMPLO, EL PAPA BENEDICTO XVI.
PARA NOMBRAR REYES, POR EJEMPLO, LA REINA ISABEL II.
PARA NOMBRAR SIGLOS, POR EJEMPLO, EL SIGLO XXI.
PARA NOMBRAR EVENTOS, POR EJEMPLO, LA V EDICIÓN DEL FESTIVAL DE MÚSICA.
ACTIVIDADES
1. ORDENA LOS SIGUIENTES NÚMEROS ROMANOS DE MENOR A MAYOR:
XIII – LXX – XXIV – IV – VIII – XXXI
SOLUCIÓN
IV (4)- VIII (8)- XIII (13)- XXIV (24)- XXXI (31) – LXX (70)
2. EXPRESAR LOS SIGUIENTES NÚMEROS ROMANOS EN NÚMEROS CARDINALES:
III – IX – XII – XXII – LXXIX – LXV – LIII
SOLUCIÓN
3 – 9 – 12 – 22 – 79 – 65 – 53
RECURSOS PARA DOCENTES
Artículos “Números romanos”
En el siguiente artículo hay más estrategias de enseñanza para ampliar los conocimientos acerca del sistema de numeración romana.
El universo de los números es muy amplio y diverso. Si nos sumergimos en él, encontraremos una gran variedad de situaciones en las que aplicamos distintos números. Por ejemplo, usamos los números ordinales para indicar las posiciones de los ganadores de una carrera, pero usamos los números binarios para procesar datos informáticos. En definitiva, los distintos tipos de números nos ayudan a representar diferentes aspectos de la vida cotidiana.
Secuencia de números naturales
Las secuencias son sucesiones de números que van hacia una dirección establecida. Pueden avanzar o retroceder una cantidad determinada de espacios dentro de la recta numérica.
Dichas secuencias pueden ser de 1 en 1, de 5 en 5, de 10 en 10, de 100 en 100, o de cualquier cantidad de espacios que haya sido establecida.
Estos son los ejemplos de distintas secuencias de números naturales:
1 en 1
10 en 10
100 en 100
Algunas rectas pueden estar incompletas. En ese caso debemos tener en cuenta cuál es la regularidad de la recta para poder completarla.
Por ejemplo:
Esta recta va de 10 en 10, por lo tanto debemos completarla por medio de sumas o restas de a 10 unidades según corresponda.
¡A practicar!
Completa la siguiente recta numérica:
Solución
¿Sabías qué?
Aunque para nosotros sea normal tenerlo, algunas civilizaciones no utilizaban el concepto del número cero (0) porque creían que no les hacía falta un número para referirse a la nada.
Números ordinales
Los números ordinales nos sirven para establecer un orden. Con ellos podemos ordenar de una manera determinada distintas cosas. Por ejemplo, podemos ordenar un grupo de personas en una fila, las posiciones de los autos en las carreras o también o las cosas que queremos hacer este fin de semana.
A este tipo de números los nombramos y escribimos de la siguiente manera:
1°/1ª = primero/primera
11°/11ª = décimo primero/primera
2°/2ª = segundo/segunda
12°/12ª = décimo segundo/segunda
3°/3ª = tercero/tercera
13°/13ª = décimo tercero/tercera
4°/4ª = cuarto/cuarta
14°/14ª = décimo cuarto/cuarta
5°/5ª = quinto/quinta
15°/15ª = décimo quinto/quinta
6°/6ª = sexto/sexta
16°/16ª = décimo sexto/sexta
7°/7ª = séptimo/séptima
17°/17ª = décimo séptimo/séptima
8°/8ª = octavo/octava
18°/18ª = décimo octavo/octava
9°/9ª = noveno/novena
19°/19ª = décimo noveno/novena
10°/10ª = décimo/décima
20°/20ª = vigésimo/vigésima
Por ejemplo, en este grupo alineado de figuras podemos decir que, de izquierda a derecha, la primera tiene forma de sol y la segunda es un cuadrado.
¡A practicar!
¿En qué orden están todas las figuras del grupo anterior?
Solución
Posición
Figura
Primero
Sol
Segundo
Cuadrado
Tercero
Corazón
Cuarto
Círculo
Quinto
Estrella
Sexto
Triángulo
Séptimo
Luna
Octavo
Nube
¿Qué son los números cardinales?
Son aquello que nos indican cantidades numéricas de elementos que pertenecen a un grupo o conjunto. Aparecen en nuestra vida cotidiana en diversas situaciones: al contar los goles que le hizo un equipo a otro o para saber si alcanzan las galletas que compartiremos con nuestros amigos.
Números romanos
El sistema de numeración romano se utilizó durante muchos años a lo largo de todo el Imperio romano. Los números romanos, a pesar de ser muy antiguos, aparecen todavía en nuestra vida cotidiana, por ejemplo en capítulos de libros, en los nombres de los reyes, en relojes o en las numeraciones de los siglos.
En este sistema se utilizan siete letras mayúsculas de nuestro alfabeto para representar a los números.
Un número romano ubicado a la derecha de otro de mayor valor se suma.
XI = 10 + 1 = 11
Las símbolos I, X, C y M son los únicos que pueden repetirse, pero solo hasta 3 veces.
XXX = 10 + 10 + 10 = 30
Algunas letras se pueden ubicar a la izquierda de otras para restarlas.
IV = 5 − 1 = 4
A partir del 4.000 se coloca una pequeña raya arriba del símbolo para indicar que debe multiplicarse por 1.000.
= 5 x 1.000 = 5.000
¡Para ejercitar!
Marca cuáles de las siguientes escrituras son incorrectas:
VV = 10
XV = 15
LXXXX = 90
CCCIII = 303
Solución
VV = 10X = 10
XV = 15
LXXXX = 90 XC = 90
CCCIII = 303
Números binarios
Los números binarios son utilizados en un sistema que contiene solo dos símbolos: el cero (0) y el uno (1). Este sistema es usado en el ámbito de la informática.
Transformar a número binario
Para convertir un número del sistema decimal al sistema binario, solo debemos dividir por 2 el número natural. El cociente de esa división se vuelve a dividir por 2 en sucesivas divisiones hasta que el cociente sea igual a uno (1). Luego leemos el número binario de derecha a izquierda, de abajo hacia arriba.
En el caso del 30, su número binario equivalente es 11110.
¿Sabías qué?
Un dígito binario por sí solo se llama “bit”.
Ejercicios
1. Completa la secuencia numérica con los números correspondientes del sistema numérico romano.
De 1 en 1
X – XI – ____ – XIII – ____ – XV – ____ – XVII
CL – ____ – ____ – CLIII – CLIV – ____ – CLVI
De 10 en 10
I – ____ – XXI – ____ – XLI – LI – ____ – LXXI – ____ –
V – XV – ____ – XXXV – ____ – ____ – LXV – ____ – LXXXV
Los números son símbolos escritos que reflejan cantidades de objetos reales e imaginarios. Por ejemplo, vemos números en las medidas y posiciones en el orden de llegada de una carrera, en la tabla de puntajes de un juego o en actividades cotidianas, como cuando cambiamos de canal con el control remoto del televisor.
Lectura de números hasta el 10.000
Existen ocasiones en las que usamos números que involucran una, dos, tres o más cifras. Cada una de estas cifras tiene un valor según la posición que tengan dentro del número. De acuerdo a esta posición y a los nombres de cada dígito podremos nombrar números de hasta cinco o más cifras.
Ejemplo:
Si queremos leer el número 542, lo primero que hacemos es ubicar cada cifra en una tabla de valor posicional como esta:
Donde:
U: unidades
D: decenas
C: centenas
Observa que:
El 5 está ubicado en la posición de las centenas → 5 x 100 = 500, se lee “quinientos”.
El 4 está ubicado en la posición de la decenas → 4 x 10 = 40, se lee “cuarenta”.
El 2 está ubicado en la posición de la unidades → 2 x 1 = 2, se lee “dos”.
Por lo tanto, el número 542 se lee: “quinientos cuarenta y dos”.
Otro ejemplo:
Para el leer el número 709 realizamos una tabla de valor posicional y ubicamos sus cifras:
Observa que:
El 7 está ubicado en la posición de las centenas → 7 x 100 = 700, se lee “setecientos”.
El 9 está ubicado en la posición de la unidades → 9 x 1 = 2, se lee “nueve”.
El número 709 se lee: “setecientos nueve”.
¡Atención a los ceros!
¿Qué pasa cuando una posición está ocupada por el cero (0)?
En estos casos no tomamos en cuenta su valor posicional para la lectura del número.
Para leer números mayores a 999 colocamos un punto después de las centenas, es decir, a la izquierda de la tercera cifra. Este punto indica el comienzo de una clase llamada miles.
De este modo, para escribir y leer correctamente el número 2435, primero colocamos un punto al lado izquierdo de la centena. El punto rojo se lee “mil”:
2.435
Luego ubicamos cada cifra en una tabla posicional. Esta vez, añadimos las unidades, decenas y centenas de mil.
Observa que:
El 2 está ubicado en la posición de las unidades de mil → 2 x 1.000 = 2.000, se lee “dos mil”.
El 4 está ubicado en la posición de la centenas → 4 x 100 = 400, se lee “cuatrocientos”.
El 3 está ubicado en la posición de la decenas → 3 x 10 = 30, se lee “treinta”.
El 5 está ubicado en la posición de las unidades → 5 x 1 = 5, se lee “cinco”.
El número 2.435 se lee: “dos mil cuatrocientos treinta y cinco”.
Ejemplo:
– Lee el número 6.028.
El 6 está ubicado en la posición de las unidades de mil → 6 x 1.000 = 6.000, se lee “seis mil”.
El 2 está ubicado en la posición de la decenas → 2 x 10 = 20, se lee “veinte”.
El 8 está ubicado en la posición de las unidades → 8 x 1 = 8, se lee “ocho”.
El número 6.028 se lee: “seis mil veintiocho”
Representación de cantidades
Para representar cantidades utilizamos 10 dígitos que combinados entre sí forman infinitos números y, como ya sabes, cada dígito cambia su valor según la posición que tenga en el número. Por lo tanto, la misma cifra puede tener distintos valores. Observa:
Esta información es útil si tuviésemos, por ejemplo, que pagar una cuenta y debemos descomponer un número grande. Los billetes y monedas por lo general señalan el valor de una unidad (1), de una decena (10) o de una centena (100). Por ejemplo, si tienes monedas de $ 1 y billetes de $ 10 y $ 100 y debes pagar $ 435, ¿cuántos billetes y monedas tomarías de cada uno?
De la tabla de valor posicional observamos sus valores relativos:
Ahora sabemos que si tomamos 5 monedas de $ 1; 3 billetes de $ 10 y 4 billetes de $ 100, tenemos $ 435. De modo gráfico puedes verlo a continuación:
Podemos concluir que 435 = (4 x 100) + (3 x 10) + (5 x 1)
¡A practicar!
¿Cuántos billetes y monedas de $ 1 , $ 10 y $ 100 necesitarías para formar estas cantidades?
876
Solución
8 billetes de $ 100
7 billetes de $ 10
6 monedas de $ 1
1.000
Solución
10 billetes de $ 100
611
Solución
6 billetes de $ 100
1 billete de $ 10
1 moneda de $ 1
¿Dónde usamos los números?
En los carteles que indican la numeración de las calles. Por ejemplo, calle Maipú del 800 al 900.
En los precios de los productos que se compran y venden en la juguetería. Por ejemplo, una muñeca cuesta $ 850, es decir, ochocientos cincuenta pesos.
En el número que señala la balanza cuando nos pesamos. Por ejemplo, Juan se pesó en la balanza de la farmacia y su peso fue 65 kilogramos.
En el dinero entregado al vendedor cuando se paga el precio de un producto. Por ejemplo, la mamá de Pedro fue a la verdulería y gastó $ 420, entonces le dio al vendedor cuatro billetes de $ 100 y dos billetes de $ 10.
¿Sabías que...?
En el sistema de numeración egipcio se simbolizaban los múltiplos de 10 (1, 10, 100, 1.000, 10.000, 100.000 y 1.000.000) con dibujos denominados ideogramas que representaban conceptos o ideas.
Aproximación por redondeo
Consiste en reducir o aumentar la cantidad del número para acercarlo al número redondo más próximo en la recta númerica. Redondear números te ayudará a manejar mejor los cálculos mentales cuando no necesites una respuesta exacta.
Pasos para aproximar un número a la decena más cercana
1. Identifica la cifra que está en la posición de las unidades.
2. Si la cifra que está en la posición de las unidades es menor que cinco (5), no cambies la decena y escribe un cero (0) en el lugar de las unidades.
3. Si la cifra que está ubicada en la posición de las unidades es igual o mayor que cinco (5), aumenta una unidad en la decena y escribe un cero (0) en el lugar de las unidades.
– Redondea el número 343 a su decena más cercana.
Primero identificamos la unidad:
343
Luego, como la unidad es menor que cinco (3 < 5), mantenemos la decena igual y escribimos un cero (0) en el lugar de la unidades:
343 ≈ 340
Por lo tanto, el número 343 es aproximadamente igual a 340.
¿Sabías qué?
El símbolo “≈” se lee “aproximadamente igual a”.
– Redondea el número 2.589 a su decena más cercana.
Primero identificamos la unidad.
2.589
Luego, como la unidad es mayor que cinco (9 > 5), aumentamos la decena una unidad y escribimos un cero en el lugar de las unidades.
2.589 ≈ 2.590
Por lo tanto, el número 2.589 es aproximadamente igual a 2.590.
Pasos para aproximar un número a la centena más cercana
1. Identifica la cifra que está en la posición de las decenas.
2. Si la cifra que está en la posición de las decenas es menor que cinco (5), no cambies la centena y escribe un cero (0) en el lugar de las decenas y de las unidades.
3. Si la cifra que está ubicada en la posición de las decenas es igual o mayor que cinco (5), aumenta una unidad en la centena y escribe un cero (0) en el lugar de las decenas y de las unidades.
– Redondea el número 9.411 a la centena más cercana
Primero identificamos la decena.
9.411
Luego, como la decena es menor que cinco (1 < 5), no cambiamos la centena y escribimos un cero (0) en el lugar de las decenas y de las unidades:
9.411 ≈ 9.400
Por lo tanto, el número 9.411 es aproximadamente igual a 9.400.
– Redondea el número 6.382 a la centena más cercana.
Primero identificamos la decena.
6.382
Luego, como la decena es mayor que cinco (8 > 5), aumentamos la centena una unidad y escribimos un cero en el lugar de las decenas y de las unidades.
6.382 ≈ 6.400
Por lo tanto, el número 6.382 es aproximadamente igual a 6.400.
¡A practicar!
Una familia se va de viaje y cuando llegan al kilómetro 485 hacen una parada para comer en una estación de servicio. Luego siguen su camino. En el kilómetro 495 se detiene el auto por falta de combustible y el padre tiene que salir a buscar gasolina. Él sabe que en el kilómetro 500 también hay una estación de servicio.
¿Hacia dónde le conviene ir si quiere caminar la menor cantidad de kilómetros posible? ¿Hacia la estación de servicio del kilómetro 485 o a la del kilómetro 500?
Solución
Le conviene ir a la estación de servicio del kilómetro 500 porque está a menor distancia que la otra.
Números ordinales
Los números ordinales nos indican la posición en la que se ubica un elemento en una sucesión o lista. Para representarlos usamos números naturales seguidos por una letra que indica el género (masculino-femenino) del sustantivo al que se refieren. Por ejemplo:
El 5.º auto, se lee “el quinto auto”.
La 6.ª mesa, se lee “la quinta mesa”.
Estos números sirven para designar los pisos que hay en un edificio e indicar la dirección de vivienda de una persona. Por ejemplo, departamento A del 2º piso:
Estos son los nombres de los números ordinales del 1 al 50:
Número arábigo
Número ordinal
1.º/1.ª
primero/primera
2.º/2.ª
segundo/segunda
3.º/3.ª
tercero/tercera
4.º/4.ª
cuarto/cuarta
5.º/5.ª
quinto/quinta
6.º/6.ª
sexto/sexta
7.º/7.ª
séptimo/séptima
8.º/8.ª
octavo/octava
9.º/9.ª
noveno/novena
10.º/10.ª
décimo/décima
11.º/11.ª
décimo primero/décimo primera
12.º/12.ª
décimo segundo/décimo segunda
13.º/13.ª
décimo tercero/décimo tercera
14.º/14.ª
décimo cuarto/décimo cuarta
15.º/15.ª
décimo quinto/décimo quinta
16.º/16.ª
décimo sexto/décimo sexta
17.º/17.ª
décimo séptimo/décimo séptima
18.º/18.ª
décimo octavo/décimo octava
19.º/19.ª
décimo noveno/décimo novena
20.º/20.ª
vigésimo/vigésima
30.º/30.ª
trigésimo/trigésima
40.º/40.ª
cuadragésimo/cuadragésima
50.º/50.ª
quincuagésimo/quincuagésima
Para escribir números ordinales mayores al 20 primero se escribe el número ordinal del primer valor relativo, luego se escribe el del segundo, por ejemplo:
25.º es igual a “vigésimo quinto”.
42.º es igual a “cuadragésimo segundo”.
¿Sabías qué?
El número ordinal correspondiente al once puede ser nombrado como “décimo primero” o “undécimo”. En el caso del número 12, se lo denomina “décimo segundo” o “duodécimo”.
Números romanos
Cuando hablamos de números romanos nos referimos a un sistema de numeración que usa letras mayúsculas para representar cantidades. Está compuesto por siete letras y cada una tiene un valor diferente.
¿Para qué se usan los números romanos en la actualidad?
Nombrar los siglos históricos: siglo I antes de Cristo o siglo XX.
Numerar tomos, capítulos, partes de una obra literaria, actos y escenas de una obra teatral: tomo III, capítulo IV o escena VIII.
Nombrar reyes, papas y emperadores: Felipe IV o Juan Pablo II.
Denominar congresos, campeonatos y festivales: IV Congreso de la infancia o XIII Muestra de cine independiente.
Reglas para escribir números romanos
– Si a la derecha de una letra se escribe otra igual o de menor valor, sus valores se suman. Ejemplo:
VI = 5 + 1 = 6
XXI = 10 + 10 + 1= 21
LXVII = 50 + 10 + 5 + 1 + 1 = 67
– La letra I, colocada a la izquierda de V o X, les resta 1. Ejemplo:
IV = 5 − 1 = 4
IX = 10 − 1 = 9
– La letra X, colocada a la izquierda de L o C, les resta 10. Ejemplo:
XC = 100 − 10 = 90
XL = 50 − 10 = 40
– La letra C, colocada a la izquierda de D o M, les resta 100. Ejemplo:
CD = 500 − 100 = 400
CM = 1.000 − 100 = 900
– No se pueden repetir las letras I, X, C y M más de tres veces seguidas. Ejemplo:
XIII = 10 + 1 + 1 + 1 = 13
XXXIII = 10 + 10 + 10 + 1 + 1 + 1 = 33
MMM = 1.000 + 1.000 + 1.000 = 3.000
– Las letras V, L y D no pueden duplicarse, porque otras ya representan su valor. Ejemplo:
X = 10 (2 veces 5)
C = 100 (2 veces 50)
M = 1.000 (2 veces 500)
– Una raya encima de una letra o grupo de letras multiplica su valor por mil.
a) Escribe los números en cifras o en palabras, según corresponda.
Setecientos cincuenta y dos
Solución
Setecientos cincuenta y dos = 752
Mil cien
Solución
Mil cien = 1.100
1.308
Solución
1.308 = mil trescientos ocho
8.444
Solución
8.444 = ocho mil cuatrocientos cuarenta y cuatro
10.000
Solución
10.000 = diez mil
b) Escribe los números ordinales en palabras:
4.ª
Solución
4.ª = cuarta
7.º
Solución
7.º = séptimo
12.º
Solución
12.º = décimo segundo o duodécimo
17.º
Solución
17.º = décimo séptimo
20.ª
Solución
20.ª = vigésima
23.º
Solución
23.º = vigésimo tercero
34.ª
Solución
34.ª = trigésima cuarta
40.º
Solución
40.º = cuadragésimo
46.ª
Solución
46.ª = cuadragésima sexta
c) Descubre los números romanos que están mal representados y escríbelos correctamente.
Número en sistema decimal
Número en sistema romano
4
IV
9
VIIII
15
VVV
40
XL
150
CL
1.000
CMC
Solución
VIIII no es la representación de 9, porque no se puede repetir la letra I más de tres veces. La escritura correcta es IX.
VVV no es la representación de 15, ya que no se puede repetir la letra V más de tres veces. La escritura correcta es XV.
CMC no es la representación de 1.000, porque hay un símbolo que tiene exactamente ese valor. La escritura correcta es M.
d) Aproxima por redondeo los siguientes números a la decena.
46
Solución
46 ≈ 50
493
Solución
493 ≈ 490
2.456
Solución
2.456 ≈ 2.460
RECURSOS PARA DOCENTES
Artículo “Sistemas de numeración”
Es una lectura ampliatoria sobre la numeración a lo largo de la historia. Una síntesis que contextualiza y explica el funcionamiento de algunos sistemas de numeración que han sentado las bases de lo que hoy conocemos como aritmética: babilónico, egipcio, chino, griego, romano y decimal.
Artículo que explica cómo leer números grandes sin dificultades, a partir de dos saberes básicos en cuanto a la numeración: leer números de tres cifras y reconocer el valor posicional de cada dígito en un número. Recomendado para enseñar lectura y escritura de números a niños de 3.° grado en adelante.