CAPÍTULO 4 / TEMA 7 (REVISIÓN)

GEOMETRÍA | ¿QUÉ APRENDIMOS?

UBICACIÓN ESPACIAL

La ubicación espacial nos sirve para conocer dónde estamos con respecto a todo lo que nos rodea, de este modo podemos señalar con facilidad nuestra ubicación. Términos como arriba, abajo, derecha, izquierda, delante y detrás son de gran utilidad para el desarrollo del sentido de la orientación. Si deseamos ubicar puntos en un plano podemos usar los ejes de coordenadas: un conjunto de líneas verticales y horizontales que nos brindan los datos necesarios para saber la posición exacta de un objeto en una cuadrícula.

En esta imagen, los crayones están dentro de un recipiente, el cuaderno está sobre la mesa y los bolígrafos están al lado del cuaderno.

CUERPOS GEOMÉTRICOS

Los cuerpos geométricos poseen tres dimensiones: alto, largo y ancho. Estos cuerpos pueden ser poliedros, tales como el cubo, la pirámide y el prisma; también pueden ser cuerpos redondos, como la esfera, el cono y el cilindro. Los elementos que los componen son las caras, las aristas y los vértices. Las caras de los cuerpos geométricos son figuras planas.

Las pirámides de Egipto fueron construidas con forma de pirámide cuadrangular porque simbolizaban los rayos del Sol.

ELEMENTOS GEOMÉTRICOS

El punto, la recta, el rayo y el segmento son elementos geométricos. El punto indica una posición, el rayo posee un origen y se extiende hacia el infinito, el segmento tiene un principio y un final, y la recta es una sucesión de puntos que siguen una misma dirección. Por otro lado, dos rectas pueden ser paralelas cuando no se cortan en ningún punto; perpendiculares cuando al cortarse forman cuatro ángulos rectos y oblicuas cuando al cortarse no forman ángulos rectos.

Los cables de electricidad representan rectas paralelas. Al verlos dan la ilusión de tres rectas que no se tocan entre sí.

ángulos

El ángulo es una porción comprendida entre dos lados con un origen en común llamado vértice. Según sus medidas el ángulo puede ser convexo, nulo, agudo, recto, obtuso, cóncavo, llano y completo. Según su posición existen ángulos adyacentes, consecutivos y opuestos por el vértice. Para estimar la medida de un ángulo es preferible usar medidas de referencia que ya conocemos, como ángulos de 45° y 90°.

Las escuadras son instrumentas de medidas que también nos ayudan a estimar ángulos, por ejemplo, esta escuadra tiene un ángulo recto (90 grados) y dos ángulos de 45 grados.

perímetro

El perímetro es el contorno de una figura. Para averiguar el perímetro de polígonos regulares multiplicamos la cantidad de lados por la longitud del lado. En cambio, para polígonos no regulares el perímetro lo calculamos al sumar todos los lados de la figura. Conocer cuánto mide el perímetro de una figura te ayudará a saber cuánto material se utilizó para alambrar una cancha de fútbol y en otros múltiples usos.

A lo largo de la historia los perímetros de muchos castillos fueron amurallados para defender el territorio.

transformaciones isométricas

Una transformación isométrica es el cambio de posición que sufre una figura. Estas transformaciones pueden ser por rotación, por traslación o por reflexión. La rotación se refiere al giro alrededor de un punto fijo; la traslación consiste en mover todos los puntos de una figura en la misma dirección, sentido y distancia; y la reflexión no es más que el reflejo de la figura respecto de un eje de simetría. Estas transformaciones no cambian ni la forma ni el tamaño de las figuras.

El planeta Tierra presenta varios movimientos, dos de ellos son la traslación y la rotación.

CAPÍTULO 4 / TEMA 6

TRANSFORMACIONES ISOMÉTRICAS

Las figuras geométricas pueden sufrir diversas alteraciones y una de estas es la isométrica. Una transformación isométrica es el cambio de posición que puede sufrir una figura sin alterar su tamaño o forma. Existen tres tipos de transformaciones: la rotación, la traslación y la reflexión.

¿Qué es la isometría?

La palabra “isometría” significa “igual medida”, por esta razón cuando una figura recibe una transformación isométrica resulta que la figura original y la final son semejantes y congruentes, es decir no cambian ni de forma ni tamaño.

Las transformaciones isométricas que puede recibir una figura plana son la rotación, la traslación y la reflexión.

rOTACIÓN

Para rotar una figura se la gira en torno a un punto fijo llamado punto de rotación, alrededor de este punto la figura se moverá una cantidad de grados respecto de un ángulo. En este movimiento la figura mantiene la forma y el tamaño.

En la imagen, el triángulo azul giró 60° en sentido contrario a las agujas del reloj y se obtuvo otro triángulo de color rosa que no ha perdido sus dimensiones ni tamaño.

TRaslación

La traslación es un movimiento directo de una figura en la que todos sus puntos se mueven en la misma dirección y distancia. Al transformar una figura por traslación la misma no pierde la medida de sus lados ni ángulos como tampoco su orientación, no gira ni se refleja.

Podemos desplazar una figura de la siguiente manera:

  • En una dirección, ya sea horizontal, vertical u oblicua.
  • En un sentido, esto puede ser a la izquierda, a la derecha, arriba o abajo.
  • A una distancia, que es la longitud en la que se va a desplazar la figura inicial de la figura final.

En muchas situaciones de la vida cotidiana utilizamos el movimiento de traslación, por ejemplo, cuando movemos un mueble, subimos un ascensor o recorremos una ciudad en subterráneo (metro).

Movimientos de la Tierra

La Tierra se mueve constantemente en el espacio y posee dos movimientos principales: el movimiento de rotación y el movimiento de traslación. Cuando se produce el movimiento de rotación la Tierra da vueltas sobre su propio eje y tarda 24 horas en completarlo. Al mismo tiempo en el que la Tierra gira sobre su eje también se produce el movimiento de traslación alrededor del Sol que tarda 365 días.

REFLEXIÓN

La reflexión es un movimiento en la que dos figuras quedan reflejas respecto de un eje. Sobre una misma línea están todos los puntos que se asocian de una figura y la figura que se refleja. Los puntos también se encuentran a la misma distancia del eje pero en direcciones opuestas. Diferentes objetos que nos rodean se pueden reflejar en el agua, en un espejo y hasta en un vidrio de cristal.

 

¿Sabías qué?

El eje de simetría es una línea vertical que divide a dos figuras y funciona como “espejo” para mostrar que ambas son iguales pero invertidas.

Reflexión en el espejo

Cuando nos situamos frente a un espejo, la imagen que se refleja de nosotros mismos es una transformación isométrica: la reflexión. Para que esta reflexión ocurra la luz nos debe iluminar y rebotar hacia la superficie del espejo. Una vez que los rayos rebotan, cambian de dirección y son captados por nuestros ojos listos para observar nuestro reflejo.

Actividades

  1. A las siguientes figuras se les aplicó un movimiento:
  • Observa esta imagen, ¿de qué forma se movió la figura verde?

Solución
La figura verde se movió hacia arriba y a la derecha.
  • ¿La figura verde cambió de sentido respecto a la figura roja? ¿Cómo se llama el movimiento?
Solución
Sí, cambió de sentido. El movimiento se llama traslación.
  • Observa esta imagen, ¿la figura verde se movió de la misma manera que la anterior?

Solución
No.
  • ¿Cuál es el movimiento que se le aplicó a esta figura?
Solución
Se le aplicó el movimiento de reflexión.
  • Observa esta imagen, ¿qué movimiento se le aplicó a la figura roja?

Solución
Se le aplicó el movimiento de rotación.

2. A la mariposa de la izquierda se le aplicaron distintas transformaciones isométricas que aparecen en las imágenes de la derecha. Responde las preguntas.

  • ¿Qué transformación isométrica tuvo la mariposa A?
    Solución
    Una rotación.
  • ¿Qué transformación isométrica tuvo la mariposa B?
    Solución
    Una traslación.
  • ¿Qué transformación isométrica tuvo la mariposa C?
    Solución
    No hay transformación isométrica porque la figura cambia de tamaño.
  • ¿Qué transformación isométrica tuvo la mariposa D?
    Solución
    Una rotación.

 

RECURSOS PARA DOCENTES

Artículo “Simetría”

Este artículo le permitirá reforzar el concepto de simetría y su aplicación el a vida cotidiana.

VER

CAPÍTULO 4 / TEMA 4

Ángulos

Gracias al estudio de la geometría y la trigonometría, la humanidad evolucionó de tal manera que logró edificar ciudades, construir herramientas y diseñar su vestimenta; y los ángulos son parte de esto. Si observamos a nuestro alrededor todos los objetos tienen algún tipo de ángulo.

¿Qué es un ángulo?

Un ángulo es la porción comprendida entre dos semirrectas con un origen en común llamado vértice.

Tipos de ángulos

La clasificación de los ángulos dependerá por un lado de sus medidas y por el otro de sus posiciones.

Según sus medidas un ángulo puede ser:

  • Convexo: es el que mide menos de 180°.
  • Nulo: es que el que no tiene amplitud, mide 0°.
  • Agudo: es el que mide menos de 90°.
  • Recto: es el que mide 90°.
  • Obtuso: es el que mide más de 90° y menos de 180°.
  • Cóncavo: es el que mide más de 180°.
  • Llano: es el que mide 180°.
  • Completo: es el que mide 360°.

 

¿Sabías qué?
Los ángulos agudos, rectos y obtusos están dentro de la clasificación de ángulos convexos.

Según su posición, dos ángulos pueden ser:

  • Adyacentes: tienen un lado y un vértice en común. La suma de sus ángulos suma 180°.
  • Consecutivos: tienen un lado y un vértice en común.
  • Opuestos por el vértice: tienen en común solamente el vértice.

VER INFOGRAFÍA

¿Sabías qué?
Los egipcios fueron los primeros en establecer la medida de los ángulos en grados, minutos y segundos.

¡Encuentra los ángulos!

Observa la siguiente imagen:

  1. ¿Qué tipos de ángulos encuentras en la casa?
    Solución
    Agudos, rectos y obtusos.
  2. ¿Dónde encontraste los ángulos agudos?
    Solución
    En el triángulo de la chimenea y en la unión de la pared con el techo.
  3. ¿Dónde encontraste los ángulos rectos?
    Solución
    En la puerta, en las ventanas y en la unión del suelo con las paredes.
  4. ¿Dónde encontraste los ángulos obtusos?
    Solución
    En el techo.

La vuelta del Sol

En la Antigüedad, los babilonios hicieron varios estudios sobre los astros porque creían que en ellos estaba escrito el futuro. Tras observar el cielo, consideraban que el Sol tardaba 360 días en volver a estar en la misma posición. Por esto decidieron dividir la circunferencia en 360 partes iguales. Llamamos grado a cada una de las 360 partes iguales en la que dividimos a un ángulo completo.

elementos de los ángulos

Como ya vimos, un ángulo es el espacio que existe entre dos semirrectas que parten desde un mismo punto. Los elementos que componen al ángulo son los siguientes:

  • Lado: es lo que antes llamábamos semirrecta.
  • Vértice: es el punto en el que coinciden las dos semirrectas.
  • Amplitud: es la apertura que hay entre los dos lados. Medimos la amplitud en grados y usamos un transportador para eso.

 

Transportador

El transportador es el instrumento que nos permite medir y construir un ángulo gráficamente. Por lo general son de plástico y poseen una forma circular o semicircular. Para utilizarlo apoyamos el centro del semicírculo en el vértice del ángulo, hacemos coincidir uno de los lados con el 0° y el otro lado del ángulo marcará la abertura en el punto del semicírculo graduado.

Estimación de ángulos

Para conocer la medida exacta de un ángulo se usa el transportador, pero también podemos estimar su valor. Para esto podemos usar como referencia medidas ya conocidas, como el ángulo de 45° y el ángulo de 90°; y así poder saber una medida aproximada del ángulo.

Escuadra y estimación

La escuadra es una herramienta de geometría que podemos utilizar para estimar ángulos, pues posee un ángulo de 90° como se observa en la imagen. El ángulo de 45° se obtiene de dividir a la mitad el ángulo de 90°. En la última escuadra vemos la estimación de un ángulo de 30° y otro de 80°. Para aproximar usamos las referencias de los ángulos conocidos. La abertura del ángulo de 30° es más pequeña que la de 45°, por eso el ángulo es menor. Lo mismo nos pasa con el ángulo de 80°, su apertura es menor que 90°.

Cuando un ángulo es mayor que 90°, uno de los lados del ángulo quedará a la izquierda de la escuadra. Veamos un ejemplo:

Vamos a imaginar que un espejo está enmarcado en esta figura y queremos estimar cuánto mide el ángulo que está señalado en color rojo. La escuadra ya está apoyada en uno de los lados pero el otro lado se inclina a la izquierda de la escuadra. Como ya sabemos que el ángulo de la escuadra mide 90°, entonces el ángulo que debemos estimar es mayor. Por lo tanto, ese ángulo puede medir aproximadamente 120°.

¡Estima medidas!

Estima las medidas de los ángulos marcados:

  1. ¿Cuánto estimas que mide el ángulo del objeto A?
    Solución
    Como la abertura es más pequeña que 45°, pero más grande que 0°, podemos decir que mide aproximadamente 30°.
  2. ¿Cuánto estimas que mide el ángulo objeto B?
    Solución
    Como la abertura es un poco más pequeña que 90°, pero mayor a 45°, podemos decir que mide aproximadamente 60°.
  3. ¿Cuánto estimas que mide el ángulo del objeto C?
    Solución
    Mide 90°.
  4. ¿Cuánto estimas que mide el ángulo del objeto D?
    Solución
    Como la abertura es mayor a los 90°, pero está lejos de llegar a 180°, podemos decir que mide aproximadamente 120°.
  5. ¿Cuánto estimas que mide el ángulo del objeto E?
    Solución
    Como la abertura es un poco más pequeña que 90°, pero mayor a 45°, podemos decir que mide aproximadamente 75°.
RECURSOS PARA DOCENTES

Artículo “Ángulos”

Este recurso le permitirá profundizar la información sobre los ángulos y su clasificación.

VER

 

CAPÍTULO 4 / TEMA 3

elementos geométricos

Para dibujar elementos geométricos en una hoja de papel podemos inspirarnos en elementos que vemos a nuestro alrededor. Por ejemplo, un clavo en la pared, la senda peatonal o el cable de luz que atraviesa nuestra calle.

El plano, el punto y la recta son algunos de los elementos geométricos con los que podemos dibujar figuras. Cada una de ellas tienen dimensiones distintas: el plano tiene dos, la recta tiene una y el punto no tiene. Sobre un plano podemos trazar rectas, y estas rectas no son más que una sucesión de puntos. ¡Intenta hacer rectas en una hoja de papel!

El punto

El punto sirve para indicar una posición y se nombra con una letra mayúscula.

¿Sabías qué?
El matemático griego Euclides fue el primero en dar una definición del punto en geometría.

la recta

La recta es una sucesión infinita de puntos orientada en una misma dirección. No tiene principio ni final y la longitud es su única dimensión. Con dos puntos podemos trazar una recta y la nombramos con una letra minúscula.

Según la posición que tomen las rectas en un plano estas pueden ser paralelas o secantes. También existen las coincidentes que se representan una sobre otra.

Dos rectas son paralelas cuando no se cortan en ningún punto por más que intentemos extenderlas.

Dos rectas son secantes cuando se cortan en un punto y pueden ser perpendiculares u oblicuas. Las rectas perpendiculares son aquellas que al cortarse en un punto forman cuatro ángulos rectos, mientras que las rectas oblicuas son aquellas que al cortarse en un punto no forman ángulos rectos.

Veremos un ejemplo para entender más cómo se cortan las rectas. El siguiente esquema representa las calles de una ciudad, cada una lleva un nombre para poder identificarlas.

  • Francia y Neuquén son calles paralelas, observa que nunca se cortan.
  • Italia y España son perpendiculares. Notarás que las rectas se cortan en forma de cruz, lo que formará cuatro ángulos rectos.
  • Peña y Quiroga son oblicuas porque al cruzarse no forman ángulos rectos.

¡A practicar!

  1. ¿Cómo son las calles Roca y Neuquén?
    Solución
    Son perpendiculares.
  2. ¿Como son las calles Italia y Quiroga?
    Solución
    Son oblicuas.
  3. ¿Cómo son las calles Peña y Roca?
    Solución
    Son paralelas.
  4. ¿Peña y Francia son calles paralelas?
    Solución
    No. Son perpendiculares.
  5. Si extendemos más la calle Roca hasta que se cruce con Quiroga, ¿estas calles serán oblicuas?
    Solución
    Sí.
  6. ¿Italia y Francia son paralelas?
    Solución
    Sí, nunca se cortan.
  7. ¿España y Peña son perpendiculares?
    Solución
    No. Son paralelas.
  8. ¿Neuquén y Quiroga pueden ser calles oblicuas?
    Solución
    Sí, al extender las dos calles demostramos que se cortan.

El rayo

El rayo, también conocido como semirrecta, tiene un punto de origen pero no tiene fin, se extiende hacia el infinito.

el segmento

El segmento es la distancia que existe entre dos puntos de una recta, esto quiere decir que tiene un origen y un final. Además expresa gráficamente una medida.

Podemos marcar infinitos segmentos en una recta. Observa este ejemplo y anota los segmentos:

Desde el punto A al D hay tres segmentos: AB, AC y AD. Desde el punto B al D hay dos segmentos: BC y BD y por último nos queda el segmento CD. Por lo tanto, en la recta hay 6 segmentos.

¡A practicar!

  1. En la recta k, ¿cuántos segmentos hay?
    Solución
    Hay 3 segmentos.
  2. ¿Qué segmentos se forman en la recta k?
    Solución
    AB, AC y BC.
  3. En la recta s, ¿cuántos segmentos hay?
    Solución
    Hay 3 segmentos.
  4. ¿Qué segmentos se forman en la recta s?
    Solución
    FC, FG y CG.
  5. ¿En todas las rectas se forman la misma cantidad de segmentos?
    Solución
    Sí.
  6. ¿Qué segmentos se forman en la recta t?
    Solución
    DE, DB y BE.
  7. ¿Cuántos segmentos se forman en total?
    Solución
    9 segmentos.

elementos geométricos en la vida cotidiana

La geometría forma parte de nuestras vidas, a donde miremos hay figuras y cuerpos geométricos e incluso puntos que marcan donde estamos o dónde queremos ir. Las rectas pueden estar representadas por las calles de la ciudad, los cables de energía eléctrica, hasta el rayo o semirrecta se forma si un auto viaja desde un punto de inicio, por ejemplo una estación de servicio en línea recta. Los segmentos los podemos encontrar en los barrotes de una reja, todo lo que nos rodea puede convertirse en un elemento geométrico.

Las rectas pueden estar representadas por las calles de la ciudad, los cables de energía eléctrica, hasta el rayo o semirrecta se forma si un auto viaja desde un punto de inicio, por ejemplo una estación de servicio en línea recta. Los segmentos los podemos encontrar en los barrotes de una reja o en los rieles de un tren.

Al estilo de Mondrian

Para el pintor Piet Mondrian el arte era representado a través de líneas rectas y colores primarios, creía que mostraba el orden armonioso del universo. Si observamos esta imagen al estilo de las pinturas de Mondrian, las líneas rectas se convierten en rectas que al cortarse unas con otras obtenemos segmentos. Algunas de las rectas que se forman son paralelas y otras perpendiculares.

Actividades

Observa la siguiente imagen y responde.

  1. ¿Cuáles de las siguientes rectas son paralelas?
    Solución
    Las rectas a, b, c y d son paralelas entre sí.
  2. ¿Cuáles de las siguientes rectas son perpendiculares?
    Solución
    La recta “e” es perpendicular con a, b, c y d.
  3. ¿Cuáles de las siguientes rectas son oblicuas?
    Solución
    La recta f es oblicua con a, b y c.
  4. Si extendemos la recta f, ¿las recta d y e también son oblicuas con ella?
    Solución
    Sí.
RECURSOS PARA DOCENTES

Artículo “Rectas”

El siguiente recurso le permitirá profundizar la información brindada sobre las rectas.

VER

CAPÍTULO 4 / TEMA 2

CUERPOS GEOMÉTRICOS

Los cuerpos geométricos ocupan un lugar en el espacio y poseen tres dimensiones: alto, largo y ancho. Un ejemplo de esto son los dados, los cuales tienen forma de cubo; o una pelota de fútbol, que tiene forma de esfera. Si miras a tu alrededor, es posible que encuentres diferentes cuerpos geométricos con los que interactúas todos los días.

cuerpos geométricos y sus tipos

Existen dos tipos de cuerpos geométricos: los poliedros y los cuerpos redondos.

Los poliedros tienen todas sus caras planas y no pueden rodar. Entre los poliedros más conocidos encontramos:

VER INFOGRAFÍA

Pirámides de Egipto

Las pirámides de Egipto fueron construidas hace miles de años por el primer arquitecto reconocido en la historia: Imhotep. Estos increíbles monumentos servían como tumba para los faraones y fueron construidos en forma de pirámide cuadrangular porque simbolizan los rayos del Sol. Creían que, de esta manera, el alma de los faraones iría directo al cielo.

Los cuerpos redondos están formados por una cara en forma curva y pueden rodar. Encontramos los siguientes:

¿Sabías qué?

El Sol es la esfera más perfecta que se ha observado hasta el momento. Si esta esfera estuviese, vacía necesitaríamos un millón de planetas Tierra para llenarla.

elementos de los cuerpos geométricos

Los elementos de un cuerpo geométrico son: caras, aristas y vértices.

  • Caras: son figuras planas que rodean el cuerpo geométrico. Las caras de las bases sirven para apoyarse en el plano.
  • Aristas: son las uniones entre dos caras de un cuerpo.
  • Vértices: son los puntos de unión de tres o más aristas.

Atomium

Es una de las construcciones más impresionantes de Bruselas y fue construida para la exposición universal de 1958. Está construido por 9 esferas y su diseño completo tiene forma de cubo. En la esfera más alta los visitantes pueden conocer el restaurante circular y una de las vistas panorámicas más grandiosas de la ciudad. Una de las esferas tiene una exposición con los detalles de su construcción, mientras que otra está dedicada a juegos interactivos para niños.

¡Observa y responde!

  • ¿Qué elementos de la imagen son cuerpos redondos?
    Solución
    La lata de gaseosa, la Tierra y el cono de tránsito.
  • ¿Qué elementos son poliedros?
    Solución
    La caja de cereal, la pirámide y la caja marrón.
  • ¿Cómo se llama el cuerpo geométrico representado por la lata de gaseosa?
    Solución
    Cilindro.
  • ¿Cómo se llama el cuerpo geométrico representado por la caja marrón?
    Solución
    Cubo.
  • ¿Qué forma tiene la base de la pirámide?
    Solución
    Cuadrangular.
  • ¿Cuántas caras, vértices y aristas tiene esta pirámide?
    Solución
    5 caras, 5 vértices y 8 aristas.
  • ¿Qué cuerpo geométrico es la Tierra?
    Solución
    Una esfera.
  • ¿Cuántas caras, vértices y aristas tiene la caja de cereales?
    Solución
    6 caras, 8 vértice y 12 aristas.
  • ¿Qué cuerpo geométrico representa la caja de cereal?
    Solución
    Un prisma cuadrangular.

construcción de cuerpos geométricos

Podemos dibujar figuras planas como el triángulo en una hoja con las herramientas de geometría, pero para construir un cuerpo geométrico necesitamos dibujar con perspectiva, ya que estos cuerpos tienen profundidad. Veremos que los diagramas nos ayudarán a identificar las características que tiene cada cuerpo geométrico.

¿Qué podemos observar en este diagrama? ¿Qué cuerpo geométrico será? Como vemos, está formado por triángulos que son las caras del cuerpo. El triángulo que se encuentra en el medio es la base de la figura y el resto serán las caras laterales. El cuerpo geométrico que cumple con estas características es la pirámide triangular.

¡A practicar!

  1. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Un cono.
  2. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Una pirámide cuadrangular.
  3. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Un cubo.

Relación de los cuerpos geométricos y las figuras planas

Las caras de los cuerpos geométricos están formadas por figuras planas. Si observamos una caja de zapatos con la tapa al frente, notaremos que la figura plana es un rectángulo. ¿Qué pasará con la forma de las caras si la apoyamos en la mesa?

La forma de las caras también son rectángulos, entonces, la caja en forma de prisma con caras rectangulares está relacionada directamente con la figura plana llamada rectángulo.

Pirámide del Louvre

El museo de Louvre en París es uno de los museos más importantes de Francia y en su entrada se encuentra una pirámide de cristal, justo en el patio del palacio y en frente al jardín de las Tullerías. La diseñó Ieoh Ming Pei y tiene las mismas medidas que la pirámide de Keops ubicada en Egipto. Este monumento con forma de pirámide cuadrangular posee todas sus caras triangulares cubiertas por 673 placas de vidrio con formas de triángulos y rombos.

¡Cuenta caras, vértices y aristas!

  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    7 caras, 10 vértices y 15 aristas.
  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    7 caras, 8 vértices y 12 aristas.

  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    8 caras, 12 vértices y 18 aristas.

 

RECURSOS PARA DOCENTES

Artículo “Prismas”

Este recurso le permitirá obtener más información sobre los prismas y sus características.

VER

Artículo “Cuerpos redondos. Áreas y volúmenes.”

Este artículo le permitirá profundizar sobre la manera en que se generan los cuerpos de redondos y las características de los mismos.

VER

CAPÍTULO 4 / TEMA 1

uBICACIÓN ESPACIAL

La ubicación espacial nos sirve para conocer dónde estamos con respecto a otras personas, objetos o lugares; de modo que podamos señalar con facilidad nuestra ubicación. Esta nos permite desarrollar el sentido de la orientación y nos ayuda a no perdernos, por ejemplo, cuando vamos a la escuela.

relaciones espaciales

Para decir dónde nos encontramos podemos utilizar términos como “arriba”, “abajo”, “delante”, “detrás”, “al lado”, “a la izquierda” y “a la derecha”. Si usamos este tipo de expresiones para comunicar nuestra ubicación o la de un objeto será mucho más fácil que nos encuentren a nosotros o al objeto.

Observa a los niños en el parque, ¿qué posición tienen respecto a los objetos?

– María está arriba del tobogán.   – Laura está abajo de la cometa.                                       – La pelota está delante de los niños.                                         – El tobogán está detrás del arenero.                                       – El subibaja está a la derecha del arenero.                               – El tobogán está a la izquierda de las hamacas.                           – Sofía está al lado del tobogán.                                     – La arena está adentro del balde.                                         – Juan está detrás de la hamaca.

ubicación en un plano

Para ubicar un punto en el plano nos podemos mover en cuatro direcciones: arriba (↑), abajo (↓), a la izquierda (←) y a la derecha (→). Veamos cómo funciona:

Un grupo de piratas a bordo de un barco recorre los océanos en busca de tesoros. Necesitan orientarse con precisión para llegar a la tierra de las joyas. El capitán del barco marcó el recorrido en su mapa. Para ir del punto A al punto B se movió de la siguiente manera: tres (3) lugares hacia abajo y un (1) lugar a la izquierda.

¡A practicar!

Observa el mapa anterior y responde las preguntas:

  • ¿Cuál es el recorrido desde el punto C al punto D?
    Solución
    2 lugares hacia abajo y 4 lugares a la izquierda.
  • ¿Cuál es el recorrido desde el punto E al punto F?
    Solución
    3 lugares hacia abajo y 2 lugares a la derecha.
  • ¿Y del punto G al punto H?
    Solución
    3 lugares hacia arriba y 1 lugar a la derecha.
  • Si quisiera volver del punto D al punto al C, ¿cuál sería el recorrido?
    Solución
    4 lugares a la derecha y 2 lugares hacia arriba.
  • ¿Y para volver del punto H al G?
    Solución
    1 lugar a la izquierda y 3 lugares hacia abajo.
  • ¿El recorrido para volver del punto F al punto E es: 2 lugares a la derecha y 3 lugares hacia arriba?
    Solución
    No. El recorrido es: 2 lugares a la izquierda y 3 lugares hacia arriba.

¿Qué son las coordenadas?

Son las líneas horizontales y verticales que en conjunto dan conocer la posición de un punto en el plano. Estas líneas también se llaman ejes y un dato de cada una forma una coordenada. Observa cómo se escriben:

Si queremos ubicar el punto C en este plano seguimos los siguientes pasos:

  1. Nos movemos 3 lugares hacia la derecha (→) en la línea horizontal (eje x ) a partir del 0.
  2. Nos movemos 6 lugares hacia arriba (↑) en la línea vertical (eje y).

Por lo tanto, las coordenadas del punto C se escriben: (3,6).

¿Sabías qué?

Las coordenadas siempre se escriben con el mismo orden: primero el eje x (horizontal) y luego el eje y (vertical).

¡A practicar!

  • ¿En qué coordenadas está el punto E?
    Solución
    (4,1)
  • ¿En qué coordenadas está el punto B?
    Solución
    (1,4)
  • ¿El punto D está en las coordenadas (1,0)?
    Solución
    No. El punto D está en las coordenadas (0,1).

¡Otros tipos de coordenadas!

Hallar puntos en un plano es una actividad recurrente en diversas ciencias y profesiones. Por ejemplo, los astrónomos usan este sistema para conocer la posición de las estrellas, planetas y otros cuerpos celestes; de la misma forma, los marinos lo emplean para conocer las coordenadas geográficas y así llegar de un punto a otro del planeta, también lo usan para comunicarse con los diferentes puertos.

Con los avances tecnológicos, las coordenadas de cualquier lugar son más fáciles de conocer, por eso, a través de aplicaciones en celulares, tabletas y computadoras miles de personas se localizan en todo el mundo.

¿Sabías qué?
René Descartes utilizó por primera vez los ejes de coordenadas. Los usó para saber las distintas posiciones en las que se iba a posar una mosca en el techo de la casa en la que vivía.

ubicación en una cuadrícula

Una cuadrícula puede estar formada por números o por letras y nos permite encontrar elementos que están en ella por medio de coordenadas.

La siguiente cuadrícula representa un barrio. En las coordenadas (D,4) está la casa.

¡A practicar!

Encuentra las coordenadas de los otros lugares del barrio.

  • ¿En qué coordenadas está el parque?
    Solución
    (B,3)
  • ¿En qué coordenadas está la escuela?
    Solución
    (C,2)
  • ¿En qué coordenadas está el bombero?
    Solución
    (A,1)

¡Es tu turno!

Ubica en qué coordenadas te gustaría que hubiese un kiosco.

¡Juega la batalla naval con familia y amigos!

Con una cuadrícula como la que acabamos de conocer, pero con más filas y columnas, puedes jugar un juego llamado la batalla naval o hundir la flota. El objetivo del juego es hundir el barco del jugador contrario.

Cada jugador tendrá diez barcos en total: un barco que ocupe cuatro cuadrados, dos barcos que ocupen tres cuadrados, tres barcos que ocupen dos cuadrados y cuatro barcos que ocupen un cuadrado. Una vez que inicie el juego, cada jugador dará tres coordenadas como las que aprendimos anteriormente, por ejemplo (A,2), (C,5) y (E,7). Si en alguna de ellas no está el barco del jugador contrario este dirá “agua” y si está dirá “barco hundido”.

Ganará el jugador que hunda todos los barcos contrarios.

¡Practiquemos!

Observa con atención la siguiente cuadrícula llena de frutas y verduras. Responde las preguntas.

  1. ¿En qué posición se encuentran las bananas con respecto a los kiwis?
    Solución
    Las bananas se encuentran a la izquierda de los kiwis.
  2. Las uvas se encuentran ________ del morrón. 
    Solución
    arriba
  3. ¿En qué coordenadas está la sandía?
    Solución
    (C,1)
  4. ¿En qué posición se encuentra el durazno con respecto a los ajos?
    Solución
    El durazno se encuentra a la derecha de los ajos.
  5. El coco se encuentra ________ de la sandía.
    Solución
    abajo
  6. ¿En qué coordenadas están las uvas?
    Solución
    (A,2)
  7. ¿En qué posición se encuentra el tomate con respecto a las bananas?
    Solución
    El tomate se encuentra arriba de las bananas.
  8. Las frutillas se encuentran a la ________ del durazno.
    Solución
    derecha
  9. ¿En qué coordenadas están las bananas?
    Solución
    (B,3)
  10. ¿En qué coordenadas están las frutillas?
    Solución
    (C,4)

RECURSOS PARA DOCENTES

Artículo “Plano Cartesiano”

Este recurso le permitirá tener un conocimiento más amplio sobre los planos cartesianos: plano formado por dos rectas numéricas perpendiculares entre sí.

VER

Artículo “Ejes cartesianos”

Con este artículo podrá profundizar sobre el uso de los ejes cartesianos en la ubicación de puntos en el plano.

VER