CAPÍTULO 3 / TEMA 4

LA CAPACIDAD

LA CAPACIDAD SURGE CON LA NECESIDAD DE ESTABLECER UNA MEDIDA DE “LO QUE CABE” DENTRO DE UN OBJETO. POR EJEMPLO, EN UNA LLAVE NO CABE NINGUNA SUSTANCIA, PERO DENTRO DE UN VASO SÍ CABEN OBJETOS Y LÍQUIDOS, COMO AGUA O JUGO. LA UNIDAD DE MEDIDA DE LA CAPACIDAD ES EL LITRO. A CONTINUACIÓN APRENDERÁS CÓMO EMPLEARLA.

¿QUÉ ES LA CAPACIDAD?

OBSERVA ESTOS VASOS, ¿EN CUÁL HAY MÁS AGUA?

HAY MÁS AGUA EN EL VASO B.

AHORA OBSERVA ESTOS VASOS, ¿EN CUÁL CABE MÁS AGUA?

CABE MÁS AGUA EN EL VASO C. 

LA CAPACIDAD ES UNA MAGNITUD QUE SE CARACTERIZA POR CONTENER UNA CIERTA CANTIDAD DE SUSTANCIA. GENERALMENTE SE UTILIZA PARA ESTABLECER LA CANTIDAD DE LÍQUIDO QUE TIENE UN RECIPIENTE.

OBSERVA DE NUEVO LOS VASOS DE ARRIBA, ¿CUALES TIENEN MAYOR CAPACIDAD?

EN EL PRIMER EJEMPLO, LOS DOS VASOS TIENEN LA MISMA CAPACIDAD, PERO EN EL SEGUNDO EJEMPLO, EL VASO C TIENE MAYOR CAPACIDAD QUE EL VASO D.

LA CAPACIDAD INDICA CUÁNTO LÍQUIDO PUEDE CONTENER UN RECIPIENTE Y SU UNIDAD DE MEDIDA ES EL LITRO. NO DEBE CONFUNDIRSE CON EL VOLUMEN, QUE ES EL ESPACIO OCUPADO POR EL LÍQUIDO Y SU UNIDAD ES EL METRO CÚBICO. EN LA IMAGEN VEMOS DOS VASOS, ¿CUÁL TIENE MAYOR CAPACIDAD? ¡LOS DOS TIENEN LA MISMA CAPACIDAD PORQUE PUEDEN CONTENER EL MISMO VOLUMEN!

¿SABÍAS QUÉ?
TODOS LOS CUERPOS OCUPAN UN VOLUMEN EN TRES DIMENSIONES: LARGO, ANCHO Y ALTO.

¡COMPAREMOS CAPACIDADES!

¿DÓNDE CABE MÁS AGUA?, ¿CUÁL RECIPIENTE TIENE MAYOR CAPACIDAD?

EN EL BOTELLÓN CABE MÁS AGUA QUE EN LA LATA. EL BOTELLÓN TIENE MAYOR CAPACIDAD.


EN EL BARRIL CABE MÁS AGUA QUE EN LA JARRA. EL BARRIL TIENE MAYOR CAPACIDAD.


EN LA PISCINA CABE MÁS AGUA QUE EN LA PIPA. LAS PISCINA TIENE MAYOR CAPACIDAD.


¡ES TU TURNO!

SOLUCIÓN
EN LA JARRA CABE MÁS AGUA QUE EN EL CARTÓN DE JUGO. LA JARRA TIENE MAYOR CAPACIDAD.

SOLUCIÓN
EN LA CISTERNA CABE MÁS AGUA QUE EN LA BOTELLA. LA CISTERNA TIENE MAYOR CAPACIDAD.

¿CÓMO SE MIDE LA CAPACIDAD?

LA CAPACIDAD SE PUEDE MEDIR CON VARIOS INSTRUMENTOS, COMO JARRAS MEDIDORAS, GOTEROS Y CUCHARAS. EN OTROS CASOS ENCONTRAMOS ENVASES CON SU CAPACIDAD YA DELIMITADA, POR EJEMPLO UNA BOTELLA DE 1 LITRO Y MEDIO DE AGUA, O UNA CAJA DE 1 LITRO DE LECHE.

LAS JARRAS MEDIDORAS SON TRANSPARENTES, FABRICADAS DE PLÁSTICO O VIDRIO; Y TIENEN RAYAS O MARCAS QUE REPRESENTAN LA MEDIDA DE CAPACIDAD HASTA ESE PUNTO. ES POSIBLE QUE TENGAS UNA EN CASA PORQUE SON DE GRAN AYUDA CUANDO PREPARAMOS RECETAS. ALGUNAS TIENEN LAS MEDIDAS EN MILILITROS (mL), LITROS (L) O CENTÍMETRO CÚBICO (cm3 O cc).

PRINCIPALES UNIDADES DE CAPACIDAD

LA UNIDAD PRINCIPAL DE LA CAPACIDAD ES EL LITRO, PERO NO ES LA ÚNICA. TAMBIÉN EXISTEN SUS MÚLTIPLOS, QUE REPRESENTAN UNA CANTIDAD MAYOR QUE EL LITRO, Y SUS SUBMÚLTIPLOS, QUE REPRESENTAN UNA CANTIDAD MENOR QUE EL LITRO. POR EJEMPLO:

UNA JARRA TIENE CAPACIDAD DE 1 LITRO.

ALGUNAS BOTELLAS TIENEN CAPACIDAD DE 500 MILILITROS.

 UN CARTÓN PEQUEÑO DE JUGO TIENE CAPACIDAD DE 250 MILILITROS.


OBSERVA LAS EQUIVALENCIAS:

EN 1 LITRO HAY DOS ½ LITROS.

EN UN LITRO HAY CUATRO ¼ DE LITRO.

¡MUY IMPORTANTE!

1 LITRO = 1.000 MILILITROS

½ LITRO = 500 MILILITROS

¼ DE LITRO = 250 MILILITROS

 

1 L = ½ L + ½ L

1 L = ¼ L + ¼ L + ¼ L + ¼ L

– EJEMPLO:

OBSERVA LA TAZA MEDIDORA, ¿QUÉ CAPACIDAD TIENE?, ¿CUÁNTA AGUA HAY?

ESTA TAZA MEDIDORA TIENE CAPACIDAD PARA 1 LITRO.

 

NO ESTÁ LLENA DE AGUA HASTA LA MARCA DE 1 LITRO.

 

SI CONTAMOS LAS MARCAS, HAY AGUA HASTA LA MITAD DE 1 LITRO, ES DECIR, ½ LITRO.

 

POR LO TANTO, LA TAZA MEDIDORA TIENE ½ LITRO O 500 MILILITROS DE AGUA. 

TODOS LOS RECIPIENTES DE LOS PRODUCTOS QUE CONSEGUIMOS EN UN SUPERMERCADO VIENEN CON ETIQUETAS QUE INDICAN LA CAPACIDAD O VOLUMEN. ALGUNOS TIENEN LAS UNIDADES DE CAPACIDAD DEL ENVASE Y OTROS TIENEN LAS UNIDADES DE VOLUMEN DE LAS SUSTANCIAS CONTENIDAS. ¡BUSCA EN TU CASA ALGÚN RECIPIENTE Y LEE SUS UNIDADES DE MEDIDA!

RELACIÓN ENTRE centímetro CÚBICO Y miliLITRO

AUNQUE LA CAPACIDAD Y EL VOLUMEN NO SON LO MISMO, TIENEN MUCHA RELACIÓN ENTRE SÍ. CUANDO NOS REFERIMOS A LA CAPACIDAD HABLAMOS DEL ESPACIO VACÍO QUE TIENE UN RECIPIENTE PARA SER LLENADO, MIENTRAS QUE EL VOLUMEN ES EL ESPACIO OCUPADO POR EL CUERPO.

DE ESTE MODO, UN OBJETO QUE TENGA CAPACIDAD PARA 1 MILILITRO SERÁ OCUPADO POR UN VOLUMEN DE 1 CENTÍMETRO CÚBICO. ASÍ QUE:

1 MILILITRO (mL) = 1 CENTÍMETRO CÚBICO (cm3)

¡A PRACTICAR!

1. ESTOS RECIPIENTES TIENEN DEBAJO SU CAPACIDAD. CONVIÉRTELA EN LITROS O MILILITROS SEGÚN SEA EL CASO.

SOLUCIÓN

A) 5 LITROS = 5.000 MILILITROS

B) ¼ LITRO = 250 MILILITROS

C) 1.000 MILILITROS = 1 LITRO

 

2. COMPLETAR LA TABLA TENIENDO EN CUENTA LA EQUIVALENCIA 1 cm3 = 1 mL.

2 cm3 = ____ mL

SOLUCIÓN
2

____ cm3 = 6 mL

SOLUCIÓN
6

____ cm3 = 42 mL

SOLUCIÓN
42

96 cm3 = ____ mL

SOLUCIÓN
96
RECURSOS PARA DOCENTES

Artículo: “Volumen y capacidad: aplicaciones”

En el siguiente artículo podrás encontrar un trabajo sobre la relación entre volumen y capacidad y varias estrategias de enseñanza.

VER

CAPÍTULO 5 / TEMA 8 (REVISIÓN)

Geometría y mediciones | ¿Qué aprendimos?

Perímetro

El perímetro es el contorno de una figura geométrica. En el caso de los polígonos regulares, el perímetro lo calculamos al multiplicar la cantidad de sus lados por la longitud de uno de estos. Otra forma de calcular el perímetro es a través de la suma de cada uno de los lados de una figura. En cambio, el perímetro del círculo es igual a la multiplicación del número pi por el diámetro de la circunferencia. Existen también figuras compuestas que están formadas por dos o más figuras geométricas, para calcular su perímetro basta con sumar cada uno de los lados.

El perímetro tiene múltiples aplicaciones en disciplinas como la arquitectura y también se usa en el ámbito militar.

Ángulos

Uno de los elementos fundamentales para la geometría es el ángulo, el cual está formado por un par de semirrectas denominadas lados que tienen un origen común o vértice. Uno de los sistemas más usados para medir ángulos es el sistema sexagesimal, en el que medimos los ángulos en grados, minutos y segundos. De acuerdo a su tamaño, los ángulos pueden clasificarse en agudos, rectos, obtusos y llanos. Los agudos son mayores a 0° pero menores a 90°, los rectos miden 90°, los obtusos son mayores a 90° pero menores de 180° y los llanos miden siempre 180°.

El transportador es uno de los instrumentos más usados para medir ángulos.

Área

Para calcular superficies usamos el área, que es la extensión comprendida por una figura. Para cada figura plana existe una fórmula que permite determinar su área. En el Sistema Internacional de Unidades se emplea el metro cuadrado (m2) como unidad de medida de área, pero también podemos usar otras unidades derivadas, como el centímetro cuadrado (cm2) o el milímetro cuadrado (mm2). Podemos obtener el área de las figuras compuestas al descomponerlas en figuras geométricas más simples, para luego sumar las áreas de cada una.

El conocimiento del área puede ser aplicado para calcular cuántas baldosas son necesarias para cubrir una superficie.

Sistemas de referencia

Uno de los sistemas de referencias más usados es el sistema cartesiano, el cual está formado por dos ejes en el plano: uno horizontal denominado eje X o de las abscisas y otro vertical denominado eje Y o de las ordenadas. Para representar un punto en el plano cartesiano necesitamos sus coordenadas en el eje X y en el eje Y: la intersección de ambas coordenadas constituye su ubicación. Por otro lado, las figuras pueden experimentar transformaciones isométricas, es decir, cambios de posición y orientación que no afectan su forma. Estas transformaciones son: traslación, rotación y simetría.

Los sistemas de referencia son usados por el ser humano para medir las posiciones y las magnitudes de las cosas.

Cuadriláteros

Un cuadrilátero es un polígono de cuatro lados, y aunque se pueden clasificar en varios grupos, comparten elementos en común: tienen cuatro ángulos, la suma de estos es siempre igual 360° y tienen dos diagonales que dividen al cuadrado en triángulos. De manera general, los cuadriláteros son clasificados como paralelogramos, trapecios y trapezoides. Los paralelogramos tienen sus lados opuestos paralelos y pueden ser cuadrados, rombos y rectángulos. Los trapecios tienen dos de sus lados paralelos y los trapezoides no tienen ningún lado paralelo.

El campo de fútbol tiene forma de rectángulo que es un tipo de cuadrilátero.

Capacidad y volumen

El volumen es el espacio que ocupa un objeto mientras que la capacidad indica la cantidad que un objeto puede contener dentro de él. Todos los objetos tienen volumen pero no todos tienen capacidad. En el caso de los sólidos y los líquidos mientras mayor sea su volumen, mayor espacio van a ocupar. No es lo mismo el volumen de un grano de arroz que el de un edificio. Algunas unidades de volumen son el metro cúbico (m3), el centímetro cúbico (cm3) y milímetro cúbico (mm3), entre otras. El litro es una medida de capacidad que equivale a 1.000 cm3.

A pesar de estar muy relacionadas, no se deben confundir las medidas de volumen con las de capacidad.

La circunferencia

La circunferencia es una curva plana con todos sus puntos ubicados a la misma distancia del origen o centro. No debe ser confundida con el círculo que corresponde al área contenida dentro de ella, es decir, la circunferencia es el perímetro del círculo. Presenta ciertos elementos como el radio, el diámetro, la tangente, la cuerda, el arco y la semicircunferencia. Uno de los instrumentos usados para su trazado es el compás.

Los antiguos griegos empleaban la recta y la circunferencia como figuras básicas en sus cálculos.

CAPÍTULO 5 / TEMA 6

Volumen y capacidad

El volumen y la capacidad son dos conceptos que empleamos a diario. A veces necesitamos medir la cantidad de agua para una receta y otras veces necesitamos saber cuánto puede contener un molde para tortas. En el primer caso hablamos de volumen y en el segundo de capacidad. A pesar de estar relacionados, cada magnitud emplea distintas unidades de medida para los cálculos.

Cálculo de volumen de cubos

Así como en área empleamos cuadrados como referencia para medir una superficie, en la medición del volumen empleamos cubos como referencia.

El volumen es el espacio ocupado por un objeto. Por ejemplo, si una caja tiene un volumen de 200 cm3 (centímetros cúbicos) quiere decir que está formado por 200 cubos que miden 1 cm en cada lado, cada uno.

Para comprender mejor el concepto de volumen, debemos aprender cómo calcularlo en cubos. La fórmula es la siguiente:

V=a\times a\times a

Donde:

V = volumen.

a = longitud de los lados del cubo.

La fórmula de volumen también puede expresarse como V=a^{3}

– Ejemplo:

Calcula el volumen del siguiente cubo:

Como es un cubo, cada lado mide 3 cm y hay que aplicar la fórmula de volumen, es decir, multiplicar la longitud de un lado tres veces:

V = 3\, cm\times 3\, cm\times3\, cm = \mathbf{27\, cm^{3}}

Observa que la unidad centímetro se multiplicó tres veces, por lo tanto, al final se expresa en cm3.

VER INFOGRAFÍA

¿Sabías qué?
Un cubo tiene tres dimensiones: alto, ancho y profundidad.
Cuando medimos, relacionamos una cantidad con una unidad de medida base, en otras palabras, medir es un proceso de comparación. El volumen es una característica muy importante de los cuerpos porque permite saber cuánto ocupa el mismo en el espacio. Los científicos suelen medir volúmenes de muestras en sus diferentes estudios y ensayos a través de equipos especializados.

Comparación de volúmenes

Todos los objetos ocupan un lugar en el espacio, por lo tanto tienen volumen. Ese espacio ocupado depende de las características del material, por eso, para realizar comparaciones entre objetos usamos medidas de volumen.

Cuanto mayor sea el lugar que ocupe un cuerpo en el espacio, mayor será su volumen. Por ejemplo, el volumen que ocupa un grano de arroz no es igual al volumen que ocupa un edificio.

Observa las siguientes figuras:

Imaginemos que cada cubo equivale a 1 cm3, ¿cuántos cubos de 1 cm3 tiene la figura 1?, ¿y la figura 2?, ¿cuál figura tiene mayor volumen?

  • La figura 1 tiene 5 cubos de 1 cm3, así que su volumen es de 5 cm3.
  • La figura 2 tiene 15 cubos de 1 cm3, así que su volumen es de 15 cm3.

La figura 2 tiene mayor volumen que la figura 1 y, por lo tanto, ocupa mayor espacio.

Otras unidades de volumen

La unidad empleada por el Sistema Internacional de Unidades es el metro cúbico (m3), sin embargo, esta unidad tiene múltiplos y submúltiplos que en situaciones cotidianas suelen emplearse, por ejemplo, el milímetro cúbico (mm3), el decímetro cúbico (dm3), el centímetro cúbico (cm3), etc.

También existen otras unidades de volumen como pulgada cúbica (pulg3) y pie cúbico (pie3).

El litro y las unidades de capacidad

La capacidad es la propiedad que tienen los objeto de contener a otras sustancias dentro de él. Por ejemplo, es común ver en el supermercado diferentes productos con envases en los que hay cierto volumen en su interior, ya sea de gaseosas, aceites o detergentes. El litro (L) es la medida de capacidad que vemos en las etiquetas de estos artículos.

Al ocupar un lugar en el espacio, todos los objetos tienen volumen pero no todos tienen capacidad. Por ejemplo, un objeto sólido como una barra de metal, tiene volumen pero no tiene capacidad.

Relación entre capacidad y volumen

La capacidad que tiene un recipiente es equivalente al volumen del objeto. De este modo, si construimos un cubo de 10 cm en cada lado y lo llenamos con agua en su interior, notaremos que la capacidad de ese cubo es igual a 1 litro ya que su volumen es igual a 1.000 cm3.

Recordemos que:

V=10 \, cm\times 10 \, cm\times 10 \, cm = 1.000\,\, cm^{3}

1\: L = 1.000\: cm^{3}

Algunas equivalencias útiles

  • 1 litro es igual a 2 medios litros.

1\: L = \left ( \frac{1}{2}+\frac{1}{2} \right )\: L

 

  • 1 litro es igual a 4 cuartos de litro.

1\: L = \left ( \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4} \right )\: L

 

  • Medio litro es igual a 2 cuartos de litro.

\frac{1}{2}\: L = \left ( \frac{1}{4}+\frac{1}{4} \right )\: L

 

¡A practicar!

  1. Calcula el volumen de los siguientes cubos.

a)

Solución
V = 2 x 2 x 2 = 8 cm3.

b)

Solución
V = 1 x 1 x 1 = 1 cm3.

c)

Solución
V = 4 x 4 x 4 = 64 cm3.

d)

Solución
V = 5 x 5 x 5 =125 cm3.

2. ¿Cuál de los siguientes cubos tiene un volumen igual a 343 cm3?

a) 

b) 

c) 

d) 

Solución
b) Porque V = 7\, cm\times 7\, cm\times7\, cm = \mathbf{343\, cm^{3}}.

 

RECURSOS PARA DOCENTES

Video “Volumen de los cuerpos sólidos”

Este video muestra cómo se forman los cuerpos geométricos y explica las diferentes fórmulas de volumen en cada caso.

VER

Artículo “Volumen y capacidad: aplicaciones”

Este artículo explica las diferentes unidades de medición de volumen, al igual que las diferentes situaciones en las que puedes aplicarlo.

VER

Artículo “Sistemas de medición”

En este artículo destacado se explica qué es un sistema de medición, sus aplicaciones y los diferentes tipos de instrumentos para medir algunas unidades.

VER