CAPÍTULO 3 / TEMA 4

LA CAPACIDAD

¿CUÁNTO LÍQUIDO CABE EN UNA JARRA? ¿Y EN UNA TAZA DE TÉ? ¿Y EN UNA PISCINA? LOS OBJETOS QUE PUEDEN CONTENER A OTROS TIENEN CAPACIDAD. ESTA ES UNA PROPIEDAD QUE PUEDE MEDIRSE CON DISTINTAS UNIDADES Y UNA DE LAS MÁS COMUNES ES EL LITRO. MUCHOS DE LOS PRODUCTOS QUE CONSUMES VIENEN EN UN RECIPIENTE CON UNA ETIQUETA QUE INDICA SU CAPACIDAD.

LA CAPACIDAD

OBSERVA ESTAS IMÁGENES, ¿EN QUÉ OBJETOS CABEN OTROS OBJETOS?

EN UN VASO CABEN OTROS OBJETOS O LÍQUIDOS. EL VASO TIENE CAPACIDAD.

EN LAS LLAVES NO CABEN OTROS OBJETOS O LÍQUIDOS. LAS LLAVES NO TIENEN CAPACIDAD.

¿CUÁLES OBJETOS TIENEN CAPACIDAD?

LA CAPACIDAD ES UNA PROPIEDAD DE LOS RECIPIENTES PORQUE PUEDEN CONTENER DENTRO DE ELLOS OTRAS SUSTANCIAS LÍQUIDAS. POR EJEMPLO, UNA BOTELLA, UN CUBO, UNA TAZA DE TÉ, UNA PISCINA, UNA JARRA Y UN VASO SON OBJETOS CON CAPACIDAD.

UNIDADES DE CAPACIDAD

LA UNIDAD PRINCIPAL PARA MEDIR UNA CAPACIDAD ES EL LITRO. ES FÁCIL RECONOCER UN LITRO COMO LA CANTIDAD QUE ENTRA EN UNA BOTELLA O UN CARTÓN DE LECHE.

CUANDO QUEREMOS MEDIR CANTIDADES MÁS PEQUEÑAS DE LÍQUIDOS, COMO EL JARABE QUE DEBEMOS TOMAR CUANDO NOS SENTIMOS ENFERMOS, USAMOS OTRA UNIDAD DE CAPACIDAD LLAMADA MILILITRO.

– EJEMPLOS:

  • UN CUCHARA SUELE TENER UNA CAPACIDAD MENOR A UN LITRO.
  • UNA JARRA DE LECHE SUELE TENER UNA CAPACIDAD IGUAL A UN LITRO.
  • UNA REGADERA SUELE TENER UNA CAPACIDAD MAYOR A UN LITRO.

LOS JARABES PARA NIÑOS

SE INVENTARON HACE MUCHO TIEMPO. SU SABOR DULCE Y SU CONSISTENCIA LÍQUIDA HACEN QUE INGERIRLOS SEA MÁS AGRADABLE Y EVITA LAS MOLESTIAS DE TRAGAR PASTILLAS Y EL SABOR AMARGO DE LAS MEDICINAS. SE MIDEN EN MILILITROS YA QUE SE ADMINISTRAN EN CANTIDADES MUY PEQUEÑAS, POR ESO LO TOMAS CON CUCHARA O CON GOTERO.

VER INFOGRAFÍA

¡COMPARemos CAPACIDADES!

OBSERVA ESTOS OBJETOS, ¿EN CUÁL CABE MÁS?, ¿CUÁL TIENE MAYOR CAPACIDAD?

EN LA TETERA CABE MÁS TÉ QUE EN LA TAZA DE TÉ. LA TETERA TIENE MAYOR CAPACIDAD.

 

EN LA BOTELLA CABE MÁS VINO QUE EN LA COPA. LA BOTELLA TIENE MAYOR CAPACIDAD.

¡ES TU TURNO!

¿CUÁL DE ESTOS OBJETOS TIENE MENOR CAPACIDAD?

SOLUCIÓN
LA CUCHARA TIENE MENOR CAPACIDAD.

RELACIÓN ENTRE CAPACIDAD Y VOLUMEN

LA CAPACIDAD Y EL VOLUMEN ESTÁN RELACIONADAS ENTRE SÍ PERO NO SIGNIFICAN LO MISMO. LA CAPACIDAD ES EL ESPACIO VACÍO QUE TIENE UN RECIPIENTE, PERO EL VOLUMEN ES EL ESPACIO QUE UN CUERPO OCUPA. EN EL CASO DE LOS LÍQUIDOS, COMO NO TIENEN UNA FORMA DEFINIDA, PODEMOS DETERMINAR SU VOLUMEN AL INTRODUCIRLOS EN UN RECIPIENTE.

EL VOLUMEN DE AGUA QUE CONSUMIMOS ES MUY IMPORTANTE PARA MANTENERNOS SALUDABLES. UNA PERSONA ADULTA DEBE INGERIR ENTRE 2 Y 3 LITROS DE AGUA DIARIOS PARA MANTENERSE HIDRATADA, ESO ES ALREDEDOR DE OCHO VASOS POR DÍA. SI REALIZAS EJERCICIO FÍSICO O TE ENCUENTRAS EN UN AMBIENTE MUY CÁLIDO ESTA CANTIDAD DEBERÍA INCREMENTARSE.
¿SABÍAS QUÉ?
EL CUERPO DE UN HUMANO ADULTO TIENE ALREDEDOR DE 37 LITROS DE AGUA EN SU INTERIOR.

¡A PRACTICAR!

1. ENCIERRA EN UN CÍRCULO LOS OBJETOS QUE TIENEN UNA CAPACIDAD MAYOR A UN LITRO.

SOLUCIÓN

2. OBSERVA LOS OBJETOS DE LA IMAGEN ANTERIOR. ¿CUÁL TIENE MAYOR CAPACIDAD?, ¿CUÁL TIENE MENOR CAPACIDAD?

SOLUCIÓN
LA PISCINA TIENE MAYOR CAPACIDAD.

LA CUCHARA TIENE MENOR CAPACIDAD.

RECURSOS PARA DOCENTES

Artículo “Volumen y capacidad: aplicaciones”

Este artículo te permitirá profundizar sobre qué es la capacidad, sus diferencias con el concepto de volumen y las unidades de medida.

VER

CAPÍTULO 5 / TEMA 8 (REVISIÓN)

Geometría y mediciones | ¿Qué aprendimos?

Perímetro

El perímetro es el contorno de una figura geométrica. En el caso de los polígonos regulares, el perímetro lo calculamos al multiplicar la cantidad de sus lados por la longitud de uno de estos. Otra forma de calcular el perímetro es a través de la suma de cada uno de los lados de una figura. En cambio, el perímetro del círculo es igual a la multiplicación del número pi por el diámetro de la circunferencia. Existen también figuras compuestas que están formadas por dos o más figuras geométricas, para calcular su perímetro basta con sumar cada uno de los lados.

El perímetro tiene múltiples aplicaciones en disciplinas como la arquitectura y también se usa en el ámbito militar.

Ángulos

Uno de los elementos fundamentales para la geometría es el ángulo, el cual está formado por un par de semirrectas denominadas lados que tienen un origen común o vértice. Uno de los sistemas más usados para medir ángulos es el sistema sexagesimal, en el que medimos los ángulos en grados, minutos y segundos. De acuerdo a su tamaño, los ángulos pueden clasificarse en agudos, rectos, obtusos y llanos. Los agudos son mayores a 0° pero menores a 90°, los rectos miden 90°, los obtusos son mayores a 90° pero menores de 180° y los llanos miden siempre 180°.

El transportador es uno de los instrumentos más usados para medir ángulos.

Área

Para calcular superficies usamos el área, que es la extensión comprendida por una figura. Para cada figura plana existe una fórmula que permite determinar su área. En el Sistema Internacional de Unidades se emplea el metro cuadrado (m2) como unidad de medida de área, pero también podemos usar otras unidades derivadas, como el centímetro cuadrado (cm2) o el milímetro cuadrado (mm2). Podemos obtener el área de las figuras compuestas al descomponerlas en figuras geométricas más simples, para luego sumar las áreas de cada una.

El conocimiento del área puede ser aplicado para calcular cuántas baldosas son necesarias para cubrir una superficie.

Sistemas de referencia

Uno de los sistemas de referencias más usados es el sistema cartesiano, el cual está formado por dos ejes en el plano: uno horizontal denominado eje X o de las abscisas y otro vertical denominado eje Y o de las ordenadas. Para representar un punto en el plano cartesiano necesitamos sus coordenadas en el eje X y en el eje Y: la intersección de ambas coordenadas constituye su ubicación. Por otro lado, las figuras pueden experimentar transformaciones isométricas, es decir, cambios de posición y orientación que no afectan su forma. Estas transformaciones son: traslación, rotación y simetría.

Los sistemas de referencia son usados por el ser humano para medir las posiciones y las magnitudes de las cosas.

Cuadriláteros

Un cuadrilátero es un polígono de cuatro lados, y aunque se pueden clasificar en varios grupos, comparten elementos en común: tienen cuatro ángulos, la suma de estos es siempre igual 360° y tienen dos diagonales que dividen al cuadrado en triángulos. De manera general, los cuadriláteros son clasificados como paralelogramos, trapecios y trapezoides. Los paralelogramos tienen sus lados opuestos paralelos y pueden ser cuadrados, rombos y rectángulos. Los trapecios tienen dos de sus lados paralelos y los trapezoides no tienen ningún lado paralelo.

El campo de fútbol tiene forma de rectángulo que es un tipo de cuadrilátero.

Capacidad y volumen

El volumen es el espacio que ocupa un objeto mientras que la capacidad indica la cantidad que un objeto puede contener dentro de él. Todos los objetos tienen volumen pero no todos tienen capacidad. En el caso de los sólidos y los líquidos mientras mayor sea su volumen, mayor espacio van a ocupar. No es lo mismo el volumen de un grano de arroz que el de un edificio. Algunas unidades de volumen son el metro cúbico (m3), el centímetro cúbico (cm3) y milímetro cúbico (mm3), entre otras. El litro es una medida de capacidad que equivale a 1.000 cm3.

A pesar de estar muy relacionadas, no se deben confundir las medidas de volumen con las de capacidad.

La circunferencia

La circunferencia es una curva plana con todos sus puntos ubicados a la misma distancia del origen o centro. No debe ser confundida con el círculo que corresponde al área contenida dentro de ella, es decir, la circunferencia es el perímetro del círculo. Presenta ciertos elementos como el radio, el diámetro, la tangente, la cuerda, el arco y la semicircunferencia. Uno de los instrumentos usados para su trazado es el compás.

Los antiguos griegos empleaban la recta y la circunferencia como figuras básicas en sus cálculos.

CAPÍTULO 5 / TEMA 6

Volumen y capacidad

El volumen y la capacidad son dos conceptos que empleamos a diario. A veces necesitamos medir la cantidad de agua para una receta y otras veces necesitamos saber cuánto puede contener un molde para tortas. En el primer caso hablamos de volumen y en el segundo de capacidad. A pesar de estar relacionados, cada magnitud emplea distintas unidades de medida para los cálculos.

Cálculo de volumen de cubos

Así como en área empleamos cuadrados como referencia para medir una superficie, en la medición del volumen empleamos cubos como referencia.

El volumen es el espacio ocupado por un objeto. Por ejemplo, si una caja tiene un volumen de 200 cm3 (centímetros cúbicos) quiere decir que está formado por 200 cubos que miden 1 cm en cada lado, cada uno.

Para comprender mejor el concepto de volumen, debemos aprender cómo calcularlo en cubos. La fórmula es la siguiente:

V=a\times a\times a

Donde:

V = volumen.

a = longitud de los lados del cubo.

La fórmula de volumen también puede expresarse como V=a^{3}

– Ejemplo:

Calcula el volumen del siguiente cubo:

Como es un cubo, cada lado mide 3 cm y hay que aplicar la fórmula de volumen, es decir, multiplicar la longitud de un lado tres veces:

V = 3\, cm\times 3\, cm\times3\, cm = \mathbf{27\, cm^{3}}

Observa que la unidad centímetro se multiplicó tres veces, por lo tanto, al final se expresa en cm3.

VER INFOGRAFÍA

¿Sabías qué?
Un cubo tiene tres dimensiones: alto, ancho y profundidad.
Cuando medimos, relacionamos una cantidad con una unidad de medida base, en otras palabras, medir es un proceso de comparación. El volumen es una característica muy importante de los cuerpos porque permite saber cuánto ocupa el mismo en el espacio. Los científicos suelen medir volúmenes de muestras en sus diferentes estudios y ensayos a través de equipos especializados.

Comparación de volúmenes

Todos los objetos ocupan un lugar en el espacio, por lo tanto tienen volumen. Ese espacio ocupado depende de las características del material, por eso, para realizar comparaciones entre objetos usamos medidas de volumen.

Cuanto mayor sea el lugar que ocupe un cuerpo en el espacio, mayor será su volumen. Por ejemplo, el volumen que ocupa un grano de arroz no es igual al volumen que ocupa un edificio.

Observa las siguientes figuras:

Imaginemos que cada cubo equivale a 1 cm3, ¿cuántos cubos de 1 cm3 tiene la figura 1?, ¿y la figura 2?, ¿cuál figura tiene mayor volumen?

  • La figura 1 tiene 5 cubos de 1 cm3, así que su volumen es de 5 cm3.
  • La figura 2 tiene 15 cubos de 1 cm3, así que su volumen es de 15 cm3.

La figura 2 tiene mayor volumen que la figura 1 y, por lo tanto, ocupa mayor espacio.

Otras unidades de volumen

La unidad empleada por el Sistema Internacional de Unidades es el metro cúbico (m3), sin embargo, esta unidad tiene múltiplos y submúltiplos que en situaciones cotidianas suelen emplearse, por ejemplo, el milímetro cúbico (mm3), el decímetro cúbico (dm3), el centímetro cúbico (cm3), etc.

También existen otras unidades de volumen como pulgada cúbica (pulg3) y pie cúbico (pie3).

El litro y las unidades de capacidad

La capacidad es la propiedad que tienen los objeto de contener a otras sustancias dentro de él. Por ejemplo, es común ver en el supermercado diferentes productos con envases en los que hay cierto volumen en su interior, ya sea de gaseosas, aceites o detergentes. El litro (L) es la medida de capacidad que vemos en las etiquetas de estos artículos.

Al ocupar un lugar en el espacio, todos los objetos tienen volumen pero no todos tienen capacidad. Por ejemplo, un objeto sólido como una barra de metal, tiene volumen pero no tiene capacidad.

Relación entre capacidad y volumen

La capacidad que tiene un recipiente es equivalente al volumen del objeto. De este modo, si construimos un cubo de 10 cm en cada lado y lo llenamos con agua en su interior, notaremos que la capacidad de ese cubo es igual a 1 litro ya que su volumen es igual a 1.000 cm3.

Recordemos que:

V=10 \, cm\times 10 \, cm\times 10 \, cm = 1.000\,\, cm^{3}

1\: L = 1.000\: cm^{3}

Algunas equivalencias útiles

  • 1 litro es igual a 2 medios litros.

1\: L = \left ( \frac{1}{2}+\frac{1}{2} \right )\: L

 

  • 1 litro es igual a 4 cuartos de litro.

1\: L = \left ( \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4} \right )\: L

 

  • Medio litro es igual a 2 cuartos de litro.

\frac{1}{2}\: L = \left ( \frac{1}{4}+\frac{1}{4} \right )\: L

 

¡A practicar!

  1. Calcula el volumen de los siguientes cubos.

a)

Solución
V = 2 x 2 x 2 = 8 cm3.

b)

Solución
V = 1 x 1 x 1 = 1 cm3.

c)

Solución
V = 4 x 4 x 4 = 64 cm3.

d)

Solución
V = 5 x 5 x 5 =125 cm3.

2. ¿Cuál de los siguientes cubos tiene un volumen igual a 343 cm3?

a) 

b) 

c) 

d) 

Solución
b) Porque V = 7\, cm\times 7\, cm\times7\, cm = \mathbf{343\, cm^{3}}.

 

RECURSOS PARA DOCENTES

Video “Volumen de los cuerpos sólidos”

Este video muestra cómo se forman los cuerpos geométricos y explica las diferentes fórmulas de volumen en cada caso.

VER

Artículo “Volumen y capacidad: aplicaciones”

Este artículo explica las diferentes unidades de medición de volumen, al igual que las diferentes situaciones en las que puedes aplicarlo.

VER

Artículo “Sistemas de medición”

En este artículo destacado se explica qué es un sistema de medición, sus aplicaciones y los diferentes tipos de instrumentos para medir algunas unidades.

VER