CAPÍTULO 1 / TEMA 7 (REVISIÓN)

SENTIDO NUMÉRICO | REVISIÓN

UNIVERSO DE LOS NÚMEROS

Los números desde su invención han servido para contar cosas y por eso existen diferentes sistemas y tipos de números que permiten un mejor conocimiento de las cantidades. Para comprender el sentido numérico, dentro del universo de los números se utilizan diversas clasificaciones. Un tipo de números son los ordinales que sirven para establecer un orden. Por otro lado, existen los cardinales que indican cantidades numéricas de elementos que pertenecen a un grupo o conjunto. Actualmente, el sistema más usado es el sistema numérico decimal pero no es el único que existe. Otras culturas crearon sistemas de numeración distintos al decimal, como por ejemplo, los mayas y los romanos.

El sistema de numeración binario se utiliza principalmente en la informática. Está conformado solo por dos cifras: el 0 y el 1.

NÚMEROS PRIMOS Y COMPUESTOS

De acuerdo a la cantidad de divisores que poseen los número, los podemos clasificar en primos y compuestos. Los números primos son aquellos que solo son divisibles por el número uno y por sí mismos. En cambio, los números compuestos son aquellos que además de ser divisibles por el uno y por sí mismos, también son divisibles por otro u otros números, es decir, tienen más de dos divisores. Todos los números compuestos pueden expresarse como un producto de factores primos.

Para determinar los factores primos de un número compuesto se emplean los criterios de divisibilidad.

VALOR POSICIONAL

Una de las principales características de nuestro sistema de numeración decimal es que el valor de los dígitos varía de acuerdo a su ubicación dentro del número. Esta característica se denomina valor posicional y aplica tanto en los números enteros como en los fraccionarios. Una herramienta que nos permite observar directamente el valor de cada dígito de acuerdo al lugar que ocupa es la tabla posicional.

Según la posición de cada dígito, los números pueden descomponerse en forma de suma (descomposición aditiva) o de multiplicación (descomposición multiplicativa).

NÚMEROS DECIMALES

Hay números que se ubican entre dos números enteros consecutivos, estos números se denominan números decimales y se caracterizan porque presentan una parte entera y una decimal, que se encuentran separadas por una coma o punto de acuerdo a la convención del país. Los números decimales se clasifican en racionales y en irracionales. Los racionales se pueden representar en forma de fracción, y los irracionales son números infinitos cuya parte decimal no sigue ningún patrón, como sucede en el caso del número pi.

A menudo se pueden aplicar redondeos en las cifras decimales de un número para simplificar los cálculos.

POTENCIAS

La potenciación es una operación compuesta de tres partes fundamentales: el exponente, la base y la potencia. El exponente indica cuántas veces se debe multiplicar la base por si misma. La base es el número que se multiplica por sí mismo las veces que indique el exponente. La potencia es el resultado de la operación de potenciación. Como toda operación matemática, las potencias cumplen con algunas propiedades. Por ejemplo, todo número elevado a 0 es igual a 1. Para resolver potencias se aplican sus propiedades y se realizan multiplicaciones sucesivas de la base.

Cuando el exponente es 1, la potencia es siempre igual a la base.

RAÍZ DE UN NÚMERO

La radicación es la operación inversa a la potenciación y por ello se encuentran estrechamente relacionadas. Esta operación emplea el símbolo (√) denominado radical. Sus elementos principales son el radicando, el índice y la raíz. El radicando es el número al cual se le va a calcular la raíz y se encuentra en la parte inferior del radical. El índice es el número que índica la cantidad de veces en las que debe multiplicarse un número por sí mismo para que el resultado sea igual al radicando, y se ubica en la parte izquierda del radical. La raíz es el resultado de la operación. Para calcular una raíz se debe buscar un número que multiplicado por sí mismo las veces que indique el índice dé como resultado el mismo valor del radicando.

En las raíces cuadradas, el índice 2 no se coloca en el radical: simplemente se denotan como (√).

 

CAPÍTULO 1 / TEMA 6

RAÍZ DE UN NÚMERO

Estrechamente relacionada con la potenciación, existe otra operación matemática denominada “radicación”. Ambas operaciones matemáticas son inversas. La raíz cuadrada y la raíz cúbica son unas de las formas de radicación más conocidas. Este tipo de operaciones se emplea en varios ámbitos, especialmente en la geometría y en otras ciencias.

¿Qué es una raíz?

La raíz es el número que se obtiene como resultado de la operación matemática denominada “radicación”. La potenciación calcula el número o potencia que resulta de multiplicar la base por si misma las veces que indica el exponente. La radicación por su parte, calcula la base a partir del exponente y de la potencia. Por eso se dice que son operaciones inversas.

Elementos de las raíces

Para saber cómo encontrar la raíz de un número, primero debemos conocer todos los elementos de la radicación:

Radical: es el símbolo que se emplea en la radicación y se denota como (√).

Radicando: es el número al que se le va a hallar la raíz. Se ubica en la parte inferior del radical, por lo cual es denominado también cantidad subradical.

Índice: es el número que indica las veces que hay que multiplicar un número por sí mismo para obtener el radicando. Se ubica en la abertura izquierda del radical.

Raíz: es el número que al multiplicarse por si mismo las veces que indica el índice es igual al radicando.

¿Sabías qué?
Cuando el índice de una raíz es 2, se denomina raíz cuadrada. En este caso basta con escribir el símbolo de radical sin el índice.

Lectura de raíces

Para leer expresiones de este tipo se debe tener en cuenta que todo depende del número índice de la raíz.

Cuando el número índice es mayor a tres, se  utilizan números ordinales para leer el valor de la raíz seguido del radicando. Por ejemplo:

\sqrt[6]{64} = raíz sexta de sesenta y cuatro.

\sqrt[4]{625} = raíz cuarta de seiscientos veintiocho.

Si el índice es 2 se lee “raíz cuadrada” y luego se menciona el número del radicando:

\sqrt[]{5} = raíz cuadrada de cinco.

Cuando el índice es 3 se lee “raíz cúbica” y luego se menciona el número del radicando:

\sqrt[3]{27} = raíz cúbica de veintisiete.

¿Cómo se encuentra la raíz?

La raíz de un número se debe calcular al buscar un número que multiplicado por sí mismo la cantidad de veces que exprese el índice dé como resultado el radicando.

Por ejemplo: si el índice es 3 y el radicando es 8, se debe buscar un número que multiplicado 3 veces por si mismo dé como resultado 8. En este caso, sería 2 porque 2 × 2 × 2 = 8. Por lo tanto, la raíz cúbica de 8 es igual a 2.

\sqrt[3]{8}= 2

En el siguiente ejemplo, la raíz cúbica de 64, se obtuvo al buscar un número que multiplicado tres veces por sí mismo dé como resultado 64. En este caso, el resultado es 4 porque 4 × 4 × 4 = 64.

\sqrt[3]{64}= 4

Relación entre potenciación y radicación

Existe una estrecha relación entre la potenciación y la radicación, esto se debe a que ambas operaciones son inversas entre sí.

Si consideramos el ejemplo anterior se podría afirmar que como cuatro elevado al cubo es igual a sesenta y cuatro, a su vez, la raíz cúbica de sesenta y cuatro es cuatro. En el siguiente diagrama podemos observar de forma más clara a esta relación:

Al utilizar la relación que existen entre la potenciación y la radicación podemos definir a esta última como la búsqueda de la base de una potencia cuyo exponente es el índice de la raíz; o, en otras palabras, la búsqueda de un número que elevado al índice dé como resultado el radicando. Esto se aplica de forma habitual en cálculos y fórmulas avanzadas.

 

¿Sabías qué?
No todos los números tienen una raíz exacta. Por ejemplo, \sqrt{2}=1,41421356... 

Cálculo de raíces

Como vimos anteriormente, para encontrar una raíz debemos hacer multiplicaciones de un número por sí mismo según indique el índice. Sin embargo, en la radicación podemos encontrar uno o más cálculos dentro del radicando. Cuando esto sucede, debemos seguir los siguientes pasos.

  1. Resolver las operaciones que están dentro del radicando.
  2. Resolver la raíz

En los siguientes ejemplos veremos el cálculo cuando dentro del radicando existen sumas y restas:

  1. \sqrt{100 + 44}   →  \sqrt{144} = 12
  2. \sqrt{250 - 25}   → \sqrt{225}= 15

Cuando se encuentren otras operaciones además de la suma o resta, se resuelven aquellas primero y luego se resuelven las sumas y restas:

  1. \sqrt[3]{50\times 6 + 43 }  →  \sqrt[3]{300 + 43}  →  \sqrt[3]{343}= 7
  2. \sqrt{270 : 3 + 10}  →  \sqrt{90 + 10}  → \sqrt{100}= 10
Los elementos de la radicación son: el índice, el radicando y la raíz. Esta última se obtiene al buscar un número que multiplicado por sí mismo la cantidad de veces que exprese el índice dé como resultado el radicando. En la radicación podemos encontrar uno o más cálculos dentro del símbolo radical. Cuando esto sucede primero se realizan las operaciones y luego se busca la raíz.

¡A practicar!

1. ¿Cómo se leen las siguientes raíces?

a) \sqrt[3]{1.000} 

b) \sqrt{49}

c) \sqrt[3]{125}

d) \sqrt{144}

e) \sqrt[4]{256}

f) \sqrt[3]{343}

g) \sqrt{121}

RESPUESTAS

a) \sqrt[3]{1.000} = raíz cúbica de mil.

b) \sqrt{49} = raíz cuadrada de cuarenta y nueve.

c) \sqrt[3]{125} = raíz cúbica de ciento veinticinco.

d) \sqrt{144} = raíz cuadrada de ciento cuarenta y cuatro.

e) \sqrt[4]{256} = raíz cuarta de doscientos cincuenta y seis.

f) \sqrt[3]{343} = raíz cúbica de trescientos cuarenta y tres.

g) \sqrt{121} = raíz cuadrada de ciento veintiuno.

 

2. Calcula las siguientes raíces.

a) \sqrt[3]{27}

b) \sqrt{36}

c) \sqrt{16}

RESPUESTAS

a) \sqrt[3]{27}  = 3 → porque 3 x 3 x 3 (o 33) es 27.

b) \sqrt{36} = 6 → porque 6 x 6  (o 62) es 36.

c) \sqrt{16} = 4 → porque 4 x 4 (o 42) es 16.

d) \sqrt{81} = 9 → porque 9 x 9 (o 92) es 81.

e) \sqrt[3]{8} = 2 porque 2 x 2 x 2 (o 23) es 8.

f) \sqrt[3]{64} = 4 → porque 4 x 4 x 4 (o 43) es 64.

g) \sqrt{9} = 3 → porque 3 x 3 (o 32) es 9.

  • Resuelve los cálculos y luego encuentra las raíces:

a) \sqrt{9 - 7 + 2}

b) \sqrt{32\times 2}

c) \sqrt{100 : 5 + 5}

RESPUESTAS

a) \sqrt{9 - 7 + 2}= \sqrt{2 + 2}=\sqrt{4}=2

b) \sqrt{32 \times 2} = \sqrt{64} = 8

c) \sqrt{100 : 5 + 5}= \sqrt{20 + 5}=\sqrt{25}=5

RECURSOS PARA DOCENTES

Artículo destacado “La radicación”

El siguiente artículo explica qué es la radicación, cuáles son sus principales elementos y cómo resolver problemas de este tipo.

VER

Artículo destacado “Propiedades de raíces”

El siguiente artículo te ayudará a conocer en mayor profundidad cuáles son las propiedades de la radicación. Además, contiene algunos ejemplos en donde son aplicadas.

VER

CAPÍTULO 1 / TEMA 5

Potencias

La potencia es una expresión matemática en la que un número denominado base está elevado a un exponente, el cual indica las veces que la base debe multiplicarse por si misma. Este tipo de operación tiene múltiples aplicaciones en los cálculos combinados y en una forma especial de escribir números: la notación científica.

¿Qué es una potencia?

La potenciación es una operación matemática compuesta por dos partes principales: la base y el exponente.

Como podemos observar, el exponente se escribe en la parte superior derecha de la base y su tamaño es mucho menor.

El exponente de una potencia indica cuántas veces se debe multiplicar a la base por si misma. La potencia es el producto de esa multiplicación.

Por ejemplo:

Una potencia es una multiplicación sucesiva de la base por si misma. Por ejemplo si el exponente fuera 6 y la base 5, esta última se repetiría exactamente 6 veces dentro de la multiplicación, es decir:

 56 = × × × × × 5.

Resolver potencias

Al calcular una potencia debemos saber que el número correspondiente a la base se va a repetir sin alterarse en todas las multiplicaciones según indique el exponente. Por lo tanto, cuando el número del exponente sea grande, se deben resolver las multiplicaciones de forma separada. Esto quiere decir que se comienza a resolver el primer producto y luego el resultado se multiplica nuevamente por la base y así sucesivamente hasta obtener el resultado. Por ejemplo:

En este caso la base de esta potencia es 5 y se multiplica por si misma las veces que indica el exponente. Como el exponente es 3, se debe multiplicar el 5 tres veces por si mismo. Se recomienda resolver el primer producto 5 × 5 y luego volver a multiplicar por 5 al resultado.

Algunas propiedades de la potencia

Existen algunos casos en las potencias que cumplen con ciertas propiedades. Algunas de ellas son:

Exponente cero

Cuando el exponente es 0 (cero), la potencia siempre va a ser igual a 1 (uno). Esto sucede con cualquier número como base diferente de cero. Por ejemplo: 70 = 1.

Exponente igual a uno

Cuando el exponente es 1 (uno), la potencia siempre va a ser igual al número perteneciente a la base. Por ejemplo: 81 = 8.

Base igual a 10

Cuando la base de una potencia es 10 (diez), la potencia va a ser igual a la unidad  seguida de tantos ceros como indique el exponente. Por ejemplo: 10= 1.000.000. 

¿Sabías qué?
Cuando el exponente de una potencia es igual a uno, a menudo se escribe solo el valor de la base y se omite al exponente.

Elementos de la potencia

Los elementos de la potencia son los siguientes:

Base: es el número que se multiplica por si mismo las veces que indique el exponente.
Exponente: es el número que indica las veces en las se tiene que multiplicar la base por si misma. También se lo denomina índice.
Potencia: es el resultado.

¿Cómo leer una potencia?

La manera correcta es leer primero el número de la base, luego se dice la expresión “elevado a la” y por último se lee el valor del exponente en números ordinales (cuarta, quinta, sexta, etc.). De manera resumida se debe seguir la siguiente estructura:

Base + “elevado a la” + exponente

La expresión 34 se lee como “tres elevado a la cuarta“.

Otros ejemplos:

85 = ocho elevado a la quinta.

4= cuatro elevado a la novena.

17 = uno elevado a la séptima.

Exponentes particulares

Existen dos exponentes que particularmente se leen de forma distinta al restos. Estos son el dos y el tres.

  • Cuando el exponente es 2, se dice que el número de la base está elevado al cuadrado. Por ejemplo: 42 se lee “cuatro elevado al cuadrado”.
  • Cuando el exponente es 3, se dice que el número de la base está elevado al cubo. Por ejemplo: 33 se lee “tres elevado al cubo”.

¿Sabías qué?
Si la base es 1, sin importar el exponente,  la potencia siempre va a ser igual a 1.

Cálculo de potencias

Como vimos anteriormente, el cálculo de una potencia se realiza al multiplicar la base según indique el exponente. Sin embargo, hay ejercicios que contienen otras operaciones además de la potencia.

Suma o resta de un número y una potencia

En estos casos se resuelve primero la potencia y luego se resuelve la suma o resta.

Observemos el siguiente caso:

84

Lo primero que debemos resolver es la potencia; es decir, resolver  82:

82 = 8 × 8 = 64

Luego se sustituye el valor de la potencia en la expresión inicial y se resuelve:

64 4 = 60

De esta forma se obtiene que:

84 = 60

 

Paréntesis con suma o resta

Cuando la base de una potencia se encuentra entre paréntesis, lo primero que debemos resolver es la operación que se encuentra dentro del paréntesis, posteriormente se resuelve la potencia del resultado obtenido.

Observemos el siguiente caso:

(6 + 2)3 

Lo primero es resolver la operación dentro del paréntesis:

6 + 2 = 8

Luego se reemplaza el resultado obtenido en la operación ubicada dentro del paréntesis:

(8)3 

Al resolver dicha potencia obtenemos el resultado del problema:

(8)3 = 8 × 8 × 8 = 512

De esta forma tenemos que:

(6 + 2)3  512

Conocer las propiedades de las potencias permite resolver problemas de este tipo de forma rápida. Por ejemplo, si tenemos (100 + 93)0 podemos responder rápidamente que el resultado es 1 sin realizar ningún cálculo. Esto se debe a que una de las propiedades indica que la potencia de todo número diferente de cero que tenga exponente cero va a ser igual a uno.

¡A practicar!

1. Resuelve las siguientes potencias.

a. 5^{3}

b. 7^{4}

c. 2^{6}

d. 4^{5}

e. 5^{0}

f. 9^{2}

g. 2^{1}

RESPUESTAS

a. 5^{3}= 125

b. 7^{4}= 2.401

c. 2^{6} = 64

d. 4^{5}= 1.024

e. 5^{0}= 1

f. 9^{2}= 81

g.2^{1} = 2

2. Escribe cómo deberían leerse las siguientes potencias.

a. 8^{7}

b. 3^{4}

c. 4^{3}

d. 9^{5}

e. 6^{6}

f. 1^{2}

RESPUESTAS

a. 8^{7} = ocho elevado a la séptima.

b. 3^{4} = tres elevado a la cuarta.

c. 4^{3} = cuatro elevado al cubo.

d. 9^{5} = nueve elevado a la quinta.

e. 6^{6} = seis elevado a la sexta.

f. 1^{2} = uno elevado al cuadrado.

3. Resuelve los siguientes cálculos.

a. 5^{2}+9

b.\left ( 15-3 \right )^{1} 

c. \left ( 2\times 5 \right )^{3}

RESPUESTAS

a. 5^{2}+9= 25 + 9 = 34

b. \left ( 15-3 \right )^{1}= (12)^{1} = 12

c. \left ( 2\times 5 \right )^{3}= (10)^{3} = 1.000

RECURSOS PARA DOCENTES

Artículo destacado “Potenciación: operaciones de exponentes”

El siguiente artículo ayuda a conocer cómo leer y resolver las operaciones básicas de las potencias. De igual forma, explica sus propiedades.

VER

Artículo destacado “Ejercicios de potenciación”

Este artículo está enfocado en la forma de resolver problemas relacionados con las potencias a través del empleo de sus propiedades.

VER

CAPÍTULO 1 / TEMA 4

Números decimales

Dentro del universo de los números nos encontramos con un tipo muy especial: el de los decimales. Estos números sirven para representar cantidades menores a la unidad. Sus aplicaciones son muchas y son muy importantes, sobre todo en el ámbito de las mediciones porque permiten establecer valores más exactos.

Características de los números decimales

Los números decimales son los que se encuentran entre dos números enteros. Por ejemplo, entre el 1 y el 2 se ubican: 1,1; 1,2; 1,3…

Este tipo de números no llega a conformar un nuevo entero, por lo tanto su composición es de dos partes: la entera y la decimal. Para dividir ambas partes del número se utiliza la coma.

En algunos países se emplea el punto en vez de la coma para separar a los números decimales de los enteros.

Distintos tipos de decimales

Los números decimales se dividen en racionales e irracionales. Los irracionales son números en los que sus cifras decimales son infinitas y no siguen un patrón. Un ejemplo de estos números es el número pi (π). Los racionales, por su parte, pueden ser expresados en forma de fracción y se dividen en exactos, periódicos puros y periódicos mixtos.

  • Los números decimales exactos son los que tienen un final, es decir; que la parte decimal del número no es infinita. Por ejemplo: 24,657.
  • Los números decimales periódicos tienen una parte decimal que contiene una o más cifras que se repiten infinitamente, a esta parte decimal se conoce como período. Cuando dicho período está compuesto por una cifra que se repite infinitamente se lo denomina periódico puro. Por ejemplo: 6,8888… Por otro lado, cuando la parte decimal está compuesta por un número que no se repite y otro que sí se repite se lo denomina periódico mixto. Por ejemplo: 4,287878787…

VER INFOGRAFÍA

¿Cómo escribir un número periódico?

Para escribir un número decimal periódico (sea puro o mixto), se debe escribir un arco encima de la parte periódica del número para indicar que se repite infinitamente.

– Por ejemplo:

Decimal puro: 5,222...=\boldsymbol{5,\widehat{2}}

Decimal mixto: 8,1646464...=\boldsymbol{8,1\widehat{64}}

¿Sabías qué?
Hay infinitos números decimales entre dos números enteros.

Lectura de números decimales

Para poder leer números decimales debemos tener presente la clasificación de cada cifra según su valor posicional; es decir, tenemos que recordar que las cifras decimales de los números decimales, de izquierda a derecha después de la coma, se denominan: décima, centésima y milésima. Estos serían valores posicionales de la parte decimal del número.

A la hora de leerlo podemos expresar la parte entera seguida de la preposición “con” y luego la parte decimal. Para esta última se lee el número que se forma con las cifras decimales y se asigna el valor posicional de la última cifra decimal. Por ejemplo, para leer el número 6,718 debemos hacerlo de la siguiente manera:

6,718 → “Seis con setecientas dieciocho milésimas”.

Otra manera posible es: leer la parte entera seguida de la palabra “coma” y luego el número que conforma la parte decimal, sin expresar el valor de la posición. Por ejemplo:

6,718 → “Seis coma setecientos dieciocho”.

Cero a la izquierda de la coma

Cuando un decimal tiene un cero a la izquierda de la coma quiere decir que es menor a la unidad y se suele leer solo la parte decimal de acuerdo a su última cifra. Por ejemplo:

0,45 → “Cuarenta y cinco centésimas”.

Otra forma es decir la palabra “cero” seguida de la palabra “coma” y luego el número que conforma la parte decimal, sin expresar el valor de la posición.

0,45 → “Cero coma cuarenta y cinco”.

Para tener en cuenta

Los ceros que están en la última cifra de la parte decimal del número pueden o no leerse.

5,20 = 5,2

Esto se debe a que veinte centésimas es equivalente (es decir que vale lo mismo) a dos décimas, ya que veinte centésimas son veinte partes de cien (20/100) y dos décimas son dos partes de diez (2/10).

Por lo tanto, el número del ejemplo puede leerse de estas dos maneras:

5,20 → “Cinco con veinte centésimas”.

5,2 → “Cinco con dos décimas”.

Redondeo de decimales

En primer lugar, debemos saber que el término “redondear” aplicado a los números decimales quiere decir: aproximar un número a otro (menor o mayor) que tenga menos cifras decimales para lograr reducir la cantidad y poder determinar de forma más fácil la ubicación del número.

– Por ejemplo:

  • 5,649 se puede redondear a 5,65.
  • 8,78 se puede redondear a 8,8.
  • 15,86 se puede redondear a 15,9.
  • 42,39 se puede redondear a 42,4.

Reglas para el redondeo de decimales

  • Cuando la última cifra decimal es 0, 1, 2, 3 o 4: el número se debe redondear hacia abajo (uno menor). Por lo tanto, se quita la última cifra del número. Por ejemplo: 7,6281 se puede redondear a 7,628.
  • Cuando la última cifra decimal es 5, 6, 7, 8 o 9: el número se debe redondear hacia arriba (uno mayor). Por lo tanto, se le quita la última cifra al número y se aumenta +1 la penúltima. Por ejemplo: 4,58 se puede redondear a 4,6.

¡A practicar!

1. Escribe en letras como se leerían los siguientes números.

  • 64,15
  • 21,4
  • 9,285
  • 7,406

Solución
  • 64,15 → sesenta y cuatro con quince centésimas. / sesenta y cuatro coma quince.
  • 21,4 → veintiuno con cuatro décimas. / veintiuno coma cuatro.
  • 9,285 → nueve con doscientos ochenta y cinco milésimas. / nueve coma doscientos ochenta y cinco.
  • 7,406 → siete con cuatrocientas seis milésimas. / siete coma cuatrocientos seis.

 

2. Ubica la coma donde corresponda.

  • Ocho con trescientas once milésimas  8311

Solución
8,311
  • Cincuenta y cuatro centésimas → 054
Solución
,054
  • Veintisiete con setenta y siete centésimas → 2777
Solución
27,77

 

3. Escribe en letras los números decimales.

a. 15,02

b. 6,616

c. 71,25

d. 822,3

Solución

a. 15,02 → “quince con dos centésimas.”

b. 6,616 → “seis con seiscientas dieciséis milésimas.”

c. 71,25 → “setenta y uno con veinticinco centésimas.”

d. 822,3 → “ochocientos veintidós con tres décimas.”

 

4. Lee y escribe los números que correspondan.

a. Veintiuno con cinco décimas.

b. Doce con cuarenta y cinco centésimas.

c. Ciento veinte con trescientos veinte milésimas.

d. Setenta y cinco centésimas.

Solución

a. 21,5

b. 12,45

c. 120,320

d. 0,75

RECURSOS PARA DOCENTES

Artículo destacado “Números decimales”

El siguiente artículo te permitirá conocer más acerca de los números decimales:

VER

Video “Aproximación de decimales”

El video se enfoca en cómo calcular aproximaciones de números decimales a través de varios ejercicios que facilitan su comprensión.

VER

CAPÍTULO 1 / TEMA 3

VALOR POSICIONAL

El sistema de numeración decimal se caracteriza por ser de base 10 y por ser posicional. Esto significa que solo usa diez dígitos y que la posición de cada uno de ellos determina el valor que tienen. La tablas posicionales y la descomposición son algunas técnicas que podemos emplear para escribir y leer números con más de cinco cifras de manera sencilla. A continuación verás lo fácil que es.

VALOR POSICIONAL DE CIFRAS HASTA 1.000.000

En el sistema de numeración decimal contamos con los siguientes dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. Con ellos podemos formar todos los números del sistema ya que si variamos la posición de las cifras dentro del número, también cambiamos su valor. Esta característica se denomina valor posicional.

Como podemos observar en este ejemplo, todas las cifras que componen el número 999.999 son las mismas: 9, pero cada una tiene un valor diferente debido a su posición dentro del número.

Como ya sabemos, luego de 3 cifras debemos colocar un punto. En este caso, dicho punto separa a los miles de los millones. El número que le sigue al 999.999 es el millón, que se escribe de la siguiente manera:

1.000.000

¿Sabías qué?
Si empiezas a contar de uno en uno no terminarás nunca porque los números no tienen un final, es decir, son infinitos.
Cuando algo no termina decimos que es infinito, y los números son un ejemplo de ello. No hay un límite final para los números, pero tampoco hay un comienzo, ya que antes del 0 hay una infinidad de número negativos. Cuando queramos expresar que una cuenta es infinita podemos utilizar el símbolo que lo representa: ∞.

LA TABLA POSICIONAL

Existe una clasificación según la posición que tengan las cifras dentro del número. Cada posición recibe el nombre de un orden, como las unidades, decenas y centenas. Cada tres órdenes se forma una clase, que va desde las unidades, miles, millones, millares de millón, billones, etc. Podemos observar toda esta información en una tabla posicional.

– Ejemplo:

Según la tabla posicional, los valores de cada cifra de derecha a izquierda son los siguientes:

  • 2 unidades = 2 se lee “dos”.
  • 3 decenas = 30 se lee “treinta”
  • 5 centenas = 500 se lee “quinientos”.
  • 9 unidades de mil = 9.000 se lee “nueve mil”.
  • 4 decenas de mil = 40.000 se lee “cuarenta mil”.
  • 8 centenas de mil = 800.000 se lee “ochocientos mil”.
  • 1 unidad de millón = 1.000.000 se lee “un millón”

Por lo tanto, el número 1.849.532 se lee “un millón ochocientos cuarenta y nueve mil quinientos treinta y dos”.

 

– Otro ejemplo:

Según la tabla posicional, los valores son:

  • 5 unidades = 5 se lee “cinco”.
  • 8 decenas = 80 se lee “ochenta”.
  • 9 centenas = 900 se lee “novecientos”.
  • 2 unidades de mil = 2.000 se lee “dos mil”.
  • 4 decenas de mil = 40.000 se lee “cuarenta mil”.
  • 6 centenas de mil = 600.000 se lee “seiscientos mil”.
  • 1 unidad de millón = 1.000.000 se lee “un millón”.

Entonces, el número 1.642.985 se lee “un millón seiscientos cuarenta y dos mil novecientos ochenta y cinco”.

¡Es tu turno!

Coloca los siguientes números en sus tablas posicionales:

  • 1.022.467
Solución

  • 270.628
Solución

  • 896.501
Solución

VALOR POSICIONAL DE DECIMALES

Los números decimales se componen de una parte entera y una parte decimal que van separadas por una coma. Esto quiere decir que de un lado de la coma vamos a tener la parte de los números enteros con unidades, decenas, centenas, etc.; y del otro lado, la parte decimal que también tiene valores posicionales conocidos como décimas, centésimas, milésimas, etc.

 

La parte decimal de los números decimales también puede ser representada en una tabla posicional. Al igual que la parte entera, el valor cambia de acuerdo a la posición de la cifra.

Unidades decimales

Son las que obtenemos al dividir la unidad en partes iguales. Las primeras unidades decimales son las décimas, las centésimas y las milésimas.

Décimas Centésimas Milésimas
\boldsymbol{\frac{1}{10}=0,1} \boldsymbol{\frac{1}{100}=0,01} \boldsymbol{\frac{1}{1.000}=0,001}
1 unidad = 10 décimas

1 décima = 0,1 unidades

1 unidad = 100 centésimas

1 centésima = 0,01 unidades

1 unidad = 1.000 milésimas

1 milésima = 0,001 unidades

– Ejemplo:

Podemos leer los números decimales de dos formas:

  1. Leemos la parte entera seguida de la palabra “enteros”. Luego leemos la parte decimal como se lee la parte entera y mencionamos la posición en la que está la última cifra.
  2. Leemos la parte entera seguida de la palabra “coma”. Después leemos la parte decimal de la misma forma en la que lees la parte entera.

De este modo, el número 5.897,234 puede ser leído de dos formas, ambas correctas:

  1. “Cinco mil ochocientos noventa y siete enteros doscientos treinta y cuatro milésimas“.
  2. “Cinco mil ochocientos noventa y siete coma doscientos treinta y cuatro”.

DESCOMPOSICIÓN ADITIVA DE UN NÚMERO

Todos los números pueden descomponerse de diversas maneras. Una de ellas es la descomposición aditiva, la cual consiste en representar números como la suma de otros.

Por ejemplo, podemos descomponer el número 128 de forma aditiva y representarlo así:

128 = 100 + 20 + 8

Observa que sumamos los valores posicionales de cada cifra.

– Otros ejemplos:

  • 419.847 = 400.000 + 10.000 + 9.000 + 800 + 40 + 7
  • 1.589.634 = 1.000.000 + 500.000 + 80.000 + 9.000 + 600 + 30 + 4
  • 25,39 = 20 + 5 + 0,3 + 0,09 
Cualquier número puede ser expresado a través de la suma, en lo que se conoce como descomposición aditiva. Este tipo de descomposición considera el valor posicional de cada una de sus cifras, pero también es posible verlo como la suma de diferentes cifras, por ejemplo, 15 = 10 + 5, pero también lo podemos escribir como 15 = 7 + 8.

DESCOMPOSICIÓN MULTIPLICATIVA DE UN NÚMERO

Es otro tipo de descomposición en el que representamos números por medio de multiplicaciones. Aquí tomamos en cuenta el valor del dígito por el valor de su posición.

– Ejemplo:

Este número tiene:

  • 2 unidades = 2 × 1
  • 3 decenas = 3 × 10
  • 9 centenas = 9 × 100
  • 6 unidades de mil = 6 × 1.000

Su descomposición multiplicativa es:

6.932 = 6 × 1.000 + 9 × 100 + 3 × 10 + 2 ×

– Otros ejemplos:

  • 958.348 = 9 × 100.000 + 5 × 10.000 + 8 × 1.000 + 3 × 100 + 4 × 10 + 8 × 1
  • 22.076 = 2 × 10.000 + 2 × 1.000 + 7 × 10 + 6 × 1
  • 143,896 =1 × 100 + 4 × 10 + 3 × 1 + 8 × 0,1 + 9 × 0,01 + 6 × 0,001

¡A practicar!

1. Coloca los siguientes números en tablas posicionales.

  • 775.426
Solución

  • 2.325,682
Solución

  • 987.110,85
Solución

 

2. Escribe la descomposición aditiva de los siguientes números:

  • 6.887
Solución

6.887 = 6.000 + 800 + 80 + 7

  • 359
Solución

359 = 300 + 50 + 9

  • 856.421
Solución

856.421 = 800.00 + 50.00 + 6.000 + 400 + 20 + 1

  • 1.325.644,856
Solución

1.325.644,856 = 1.000.000 + 300.000 + 20.000 + 5.000 + 600 + 40 + 4 + 0,8 + 0,05 + 0,006

 

3. Escribe la descomposición multiplicativa de los siguientes números:

  • 427
Solución

427 = 4 × 100 + 2 × 10 + 7 × 1

  • 17.504
Solución

17.504 = 1 × 10.000 + 7 × 1.000 + 5 × 100 + 4 × 1

266.915

Solución

266.915 = 2 × 100.000 + 6 × 10.000 + 6 × 1.000 + 9 × 100 + 1 × 10 + 5 × 1

RECURSOS PARA DOCENTES

Artículo destacado “Sistemas posicionales de numeración”

El siguiente artículo te permitirá conocer más acerca del valor posicional en distintos sistemas de numeración.

VER

Artículo destacado “Composición y descomposición de números”

El siguiente artículo te permitirá profundizar la información sobre la composición y descomposición de los números.

VER

CAPÍTULO 1 / TEMA 2

NÚMEROS PRIMOS Y COMPUESTOS

Podemos clasificar los números según distintos criterios, y uno de esos es la cantidad de divisores que tengan. Si un número tiene solo dos divisores, el uno y él mismo, decimos que ese número es primo; en cambio, si el número tiene más de dos divisores, a ese número lo llamamos compuesto.

CARACTERÍSTICAS DE LOS NÚMEROS PRIMOS Y COMPUESTOS

Números primos

Los números primos son aquellos que solo son divisibles por el número uno y por sí mismos. Por ejemplo, el número 13 es un número primo porque solo es divisible por el número 1 y por el número 13.

Además, los números primos no pueden formarse como producto de la multiplicación de otros dos factores que no sean el 1 y el mismo número. Por ejemplo, el número 7 solo puede formarse al multiplicar 7 × 1 = 7.

Divisibilidad

Un número es divisible por otro cuando al efectuar la operación de división entre ellos el resto es cero.

  • El 12 es divisible por 2 porque el resto de la división en 0.
  • El 13 no es divisible por 2 porque el resto de la división no es 0.

El número 12 es divisible por 1, 2, 3, 4, 6 y 12.

Números compuestos

Los números compuestos son aquellos que aparte de ser divisibles por el uno y por sí mismos, también son divisibles por otro u otros números. Por ejemplo, el número 4 es un número compuesto porque tiene tres divisores: 1, 2 y 4.

A su vez, los números compuestos pueden ser formados como productos de la multiplicación de otros dos factores. Por ejemplo, el número 10 puede ser formado por la multiplicación de 5 x 2 = 10.

¿Sabías qué?
El número 1 no es primo ni compuesto ya que solo puede dividirse por sí mismo.
Los números primos solo son divisibles por el uno y por sí mismos, mientras que los números compuestos, además de ser divisibles por uno y por sí mismos, también pueden ser divididos por otro u otros números. No obstante, hay un número que no cumple con estas características: el uno. El número 1 no es primo ni compuesto.

CRIBA DE ERATÓSTENES

Es un procedimiento para identificar los números primos. La podemos elaborar de la siguiente manera:

  1. Comenzamos desde el número 2, que es el primer número primo, por lo tanto no lo vamos a tachar. Pero sí eliminamos todos los siguientes múltiplos de 2: 4, 6, 8, 10, 12,…
  2. El siguiente primo es el 3, así que debemos tachar todos los múltiplos de este número: 6, 9, 12, 15…
  3. En esta instancia, ya tenemos gran parte de los números eliminados. Podemos observar que el siguiente número que aparece sin tachar es el 5, que sería el siguiente primo. Entonces, tachamos los múltiplos de 5 que aparecen a continuación: 5, 10, 15, 20…
  4. Del mismo modo procedemos con el 7.
  5. El siguiente número que aparece sin eliminar es el 11, pero… ¡Todos sus múltiplos están tachados! Por ello, aquellos números que han quedado sin descartar en esta instancia son los primos.

Observa que los números resaltados son los primos y los tachados son los compuestos.

¿Sabías qué?
El 2 es el único número primo que es par.
¡A practicar!

Marca con una circunferencia los números que sean primos:

Solución

EXPRESIÓN DE NÚMEROS EN FACTORES PRIMOS

Todos los números compuestos pueden representarse como producto de una multiplicación de 2 o más factores primos. Esto se conoce comúnmente como factorización en números primos, o factorización de números compuestos.

Así como podemos representar cualquier número como una suma (por ejemplo: 5 = 2 + 3) o como una resta (por ejemplo 5 = 7 − 2), también podemos descomponer un número compuesto por medio de una multiplicación de sus números primos.

Recuerda que:

  • Factor: es el número que multiplica.
  • Producto: es el resultado de una multiplicación.

Pasos para factorizar en números primos

  1. Escribe el número compuesto que se quiere expresar en factores primos y a su derecha traza una semirrecta vertical.
  2. Pon a la derecha de la semirrecta el número primo más pequeño que sea divisor, es decir, que pueda dividir de forma exacta el número compuesto elegido.
  3. Escribe el cociente de la división anterior debajo del número compuesto elegido y a su derecha, del otro lado de la semirrecta, escribe el número primo más pequeño que sea divisor de este último.
  4. Repite el procedimiento la cantidad de veces que sean necesarias hasta obtener el número 1 como cociente.

– Ejemplo:

Expresa el número 36 como producto de sus factores primos.

El número compuesto 36 se expresa como producto de factores primos así: 2 x 2 x 3 x 3.

Observa que también podemos expresar los factores primos como una potencia, de este modo, 2 × 2 = 22 y 3 × 3 = 32.

¡A practicar!

Expresa los siguientes números como productos de factores primos:

  • 12
  • 40
  • 64
Solución

CRITERIOS DE DIVISIBILIDAD

Los criterios de divisibilidad son reglas que nos permiten reconocer si un número es divisible por otro sin necesidad de hacer la división. Es decir, por medio de la observación de las características de un número podemos darnos cuenta si se puede dividir o no por otro número determinado.

Todo número tiene sus múltiplos, de la misma manera, también tiene sus divisores; estos son números que lo dividen de forma exacta, es decir, que al hacer la operación el cociente es un número exacto y el resto es cero. Por ejemplo, 2 es divisor de 8 y 3 es divisor de 6 porque al calcular 2 : 8 = 4 y 6 : 3 = 2, el resto es cero en ambos casos.

 

Cada número tiene un criterio de divisibilidad distinto. En la siguiente tabla están desde el 2 hasta el 10:

Número Criterio Ejemplos
2 Un número es divisible por 2 si es un número par. 6

8

125.972

Son números pares.

3 Un número es divisible por 3 si la suma de sus cifras da como resultado un número múltiplo de 3. 93 porque 9 + 3 = 12 y 12 es múltiplo de 3.

 

123 porque 1 + 2 + 3 = 6 y 6 es múltiplo de 3.

4 Un número es divisible por 4 si las 2 últimas cifras del número forman un múltiplo de 4 o si son dos ceros. 140 porque 40 es múltiplo de 4.

 

33.624 porque 24 es múltiplo de 4.

 

700 porque termina con dos ceros.

5 Un número es divisible por 5 si su última cifra es un 0 o un 5. 495 porque termina en 5.

 

874.280 porque termina en 0.

6 Un número es divisible por 6 si es divisible por 2 y por 3 a la vez. 12 porque es divisible por 2 y por 3 a la vez.

 

150 porque es divisible por 2 y por 3 a la vez.

7 Un número es divisible por 7 si al restar el doble de la unidad a el resto de la cantidad sin la última cifra el resultado es 0 o un múltiplo de 7. 91 porque 9 −2 = 7 y 7 es múltiplo de 7.

 

105 porque 10 − 10 = 0.

 

182 porque 18 − 4 = 14 y 14 es múltiplo de 7.

8 Un número es divisible por 8 si sus 3 últimas cifras forman un múltiplo de 8 o son tres ceros. 25.200 porque 200 es múltiplo de 8.

 

9.000 porque sus últimas 3 cifras son tres ceros.

9 Un número es divisible por 9 si la suma de sus cifras da como resultado un número múltiplo de 9. 99 porque 9 + 9 = 18 y 18 es múltiplo de 9.

 

207 porque 2 + 0 + 7 = 9 y 9 es múltiplo de 9.

10 Un número es divisible por 10 si su última cifra es un 0. 1.235.250 porque termina en 0.

 

2.000 porque termina en 0.

 

¡A practicar!

1. Expresa los siguientes números como productos de factores primos:

  • 98
  • 60
  • 18
  • 36
Solución

2. Indica si las siguientes afirmaciones son verdaderas o falsas.

  • 161 es divisible por 7.
Solución
Verdadero.
  • 222 es divisible por 3.
Solución
Verdadero.
  • 523 es divisible por 5.
Solución
Falso.
  • 234 es divisible por 9.
Solución
Verdadero.
  • 10.001 es divisible por 10.
Solución
Falso.
  • 32 es divisible por 6.
Solución
Falso.
  • 500 es divisible por 4.
Solución
Verdadero.
RECURSOS PARA DOCENTES

Artículo destacado “Números primos y compuestos”

El siguiente artículo te permitirá ampliar la noción de números primos y compuestos.

VER

Artículo destacado “Criterios de divisibilidad”

El siguiente artículo profundiza en las explicaciones sobre los criterios de divisibilidad.

VER

CAPÍTULO 1 / TEMA 1

Universo de los números

El universo de los números es muy amplio y diverso. Si nos sumergimos en él, encontraremos una gran variedad de situaciones en las que aplicamos distintos números. Por ejemplo, usamos los números ordinales para indicar las posiciones de los ganadores de una carrera, pero usamos los números binarios para procesar datos informáticos. En definitiva, los distintos tipos de números nos ayudan a representar diferentes aspectos de la vida cotidiana.

El sentido numérico nos permite comprender los números y sus operaciones, de manera tal que podamos aplicarlos de forma eficiente para resolver problemas día a día. En la vida cotidiana disponemos de los números para distintos usos, por este motivo existen varias clasificaciones, como los números romanos, los números cardinales o los números ordinales.

Secuencia de números naturales

Las secuencias son sucesiones de números que van hacia una dirección establecida. Pueden avanzar o retroceder una cantidad determinada de espacios dentro de la recta numérica.

Dichas secuencias pueden ser de 1 en 1, de 5 en 5, de 10 en 10, de 100 en 100, o de cualquier cantidad de espacios que haya sido establecida.

Estos son los ejemplos de distintas secuencias de números naturales:

1 en 1

10 en 10

100 en 100

Algunas rectas pueden estar incompletas. En ese caso debemos tener en cuenta cuál es la regularidad de la recta para poder completarla.

Por ejemplo:

Esta recta va de 10 en 10, por lo tanto debemos completarla por medio de sumas o restas de a 10 unidades según corresponda.

¡A practicar!

Completa la siguiente recta numérica:

Solución

Las secuencias son sucesiones de números que van hacia una dirección establecida. Las mismas pueden avanzar o retroceder una cantidad determinada de espacios dentro de la recta numérica. Dichas secuencias pueden ser de 1 en 1, de 5 en 5, de 10 en 10, de 100 en 100, o de cualquier cantidad de espacios que hayan sido establecidos.

¿Sabías qué?
Aunque para nosotros sea normal tenerlo, algunas civilizaciones no utilizaban el concepto del número cero (0) porque creían que no les hacía falta un número para referirse a la nada.

Números ordinales

Los números ordinales nos sirven para establecer un orden. Con ellos podemos ordenar de una manera determinada distintas cosas. Por ejemplo, podemos ordenar un grupo de personas en una fila, las posiciones de los autos en las carreras o también o las cosas que queremos hacer este fin de semana. 

Si queremos nombrar los resultados de las carreras de autos debemos utilizar números ordinales. Así, decimos que los ganadores obtuvieron el “primer” y el “segundo” lugar en la competencia. A su vez, si queremos expresar que una cosa va antes que otra, también debemos utilizar los números ordinales de la siguiente manera: “esta muñeca va primera y esta otra va segunda”.

 

A este tipo de números los nombramos y escribimos de la siguiente manera:

1°/1ª = primero/primera 11°/11ª = décimo primero/primera
2°/2ª = segundo/segunda 12°/12ª = décimo segundo/segunda
3°/3ª = tercero/tercera 13°/13ª = décimo tercero/tercera
4°/4ª = cuarto/cuarta 14°/14ª = décimo cuarto/cuarta
5°/5ª = quinto/quinta 15°/15ª = décimo quinto/quinta
6°/6ª = sexto/sexta 16°/16ª = décimo sexto/sexta
7°/7ª = séptimo/séptima 17°/17ª = décimo séptimo/séptima
8°/8ª = octavo/octava 18°/18ª = décimo octavo/octava
9°/9ª = noveno/novena 19°/19ª = décimo noveno/novena
10°/10ª = décimo/décima 20°/20ª = vigésimo/vigésima

 

Por ejemplo, en este grupo alineado de figuras podemos decir que, de izquierda a derecha, la primera tiene forma de sol y la segunda es un cuadrado.

 

¡A practicar!

¿En qué orden están todas las figuras del grupo anterior?

Solución
Posición Figura
Primero Sol
Segundo Cuadrado
Tercero Corazón
Cuarto Círculo
Quinto Estrella
Sexto Triángulo
Séptimo Luna
Octavo Nube

¿Qué son los números cardinales?

Son aquello que nos indican cantidades numéricas de elementos que pertenecen a un grupo o conjunto. Aparecen en nuestra vida cotidiana en diversas situaciones: al contar los goles que le hizo un equipo a otro o para saber si alcanzan las galletas que compartiremos con nuestros amigos.

Números romanos

El sistema de numeración romano se utilizó durante muchos años a lo largo de todo el Imperio romano. Los números romanos, a pesar de ser muy antiguos, aparecen todavía en nuestra vida cotidiana, por ejemplo en capítulos de libros, en los nombres de los reyes, en relojes o en las numeraciones de los siglos.

En este sistema se utilizan siete letras mayúsculas de nuestro alfabeto para representar a los números.

VER INFOGRAFÍA

Muchos relojes utilizan un sistema de numeración para señalar la hora. El reloj solar de la imagen utiliza la sombra que da un estilete para medir el paso del tiempo. Los más antiguos tenían las inscripciones en números romanos para leer la hora, los minutos y los segundos. Este sistema de numeración se mantiene vigente en la actualidad en diferentes sitios.

Algunas reglas de este sistema son las siguientes

  • Un número romano ubicado a la derecha de otro de mayor valor se suma.

XI = 10 + 1 = 11

  • Las símbolos I, X, C y M son los únicos que pueden repetirse, pero solo hasta 3 veces.

XXX = 10 + 10 + 10 = 30

  • Algunas letras se pueden ubicar a la izquierda de otras para restarlas.

IV = 5 − 1 = 4

  • A partir del 4.000 se coloca una pequeña raya arriba del símbolo para indicar que debe multiplicarse por 1.000.

\overline{V} = 5 x 1.000 = 5.000

¡Para ejercitar!

Marca cuáles de las siguientes escrituras son incorrectas:

  • VV = 10
  • XV = 15
  • LXXXX = 90
  • CCCIII = 303
Solución
  • VV = 10 X = 10
  • XV = 15
  • LXXXX = 90 XC = 90
  • CCCIII = 303

Números binarios

Los números binarios son utilizados en un sistema que contiene solo dos símbolos: el cero (0) y el uno (1). Este sistema es usado en el ámbito de la informática.

El sistema binario es el lenguaje de la informática. Si queremos leer un número binario, lo que debemos hacer es nombrar dígito por dígito, los cuales serán siempre cero (0) y uno (1). Por ejemplo, el número natural catorce (14) en el sistema binario se escribe de la siguiente manera: 1110, y se lee “uno, uno, uno, cero”.

Transformar a número binario

Para convertir un número del sistema decimal al sistema binario, solo debemos dividir por 2 el número natural. El cociente de esa división se vuelve a dividir por 2 en sucesivas divisiones hasta que el cociente sea igual a uno (1). Luego leemos el número binario de derecha a izquierda, de abajo hacia arriba.

En el caso del 30, su número binario equivalente es 11110.

¿Sabías qué?
Un dígito binario por sí solo se llama “bit”.

Ejercicios

1. Completa la secuencia numérica con los números correspondientes del sistema numérico romano.

De 1 en 1

  1. X – XI – ____ –  XIII – ____ – XV – ____ – XVII
  2.  CL – ____ – ____ – CLIII – CLIV – ____ – CLVI

De 10 en 10 

  1. I – ____ – XXI – ____ – XLI – LI  – ____ – LXXI – ____ –
  2. V – XV – ____ – XXXV – ____ – ____ –  LXV – ____ – LXXXV

De 100 en 100

  1. II – CII – ____ – CCCII – ____ – DII – ____ – ____ – DCCCII
Solución

De 1 en 1

  1. X – XI – XII –  XIII – XIV – XV – XVI – XVII
  2.  CL – CLICLII – CLIII – CLIV – CLV – CLVI

De 10 en 10 

  1. I – XI – XXI – XXXI – XLI – LI  – LXI – LXXI – LXXXI
  2. V – XV – XXV – XXXV – XLV – LV –  LXV – LXXV– LXXXV

De 100 en 100

  1. II – CII – CCII – CCCII – CDII – DII – DCII DCCII– DCCCII

2. Escribe los siguientes números en sistema romano:

  1. 421
  2. 9
  3. 109
  4. 1.003
  5. 70
  6. 299
Solución
  1. 421 = CDXXI
  2. 9 = IX
  3. 109 = CIX
  4. 1.003 = MIII
  5. 70 = LXX
  6. 299 = CCXCIX

3. Transforma los siguientes números naturales en números binarios:

  1. 50
  2. 13
  3. 46
  4. 28
Solución
  1. 50 = 110010
  2. 13 = 1101
  3. 46 = 101110
  4. 28 = 11100

4. Completa la siguientes secuencias numéricas de números naturales:

b. 

Solución

 

RECURSOS PARA DOCENTES

Artículo destacado “Recta numérica”

El siguiente artículo te permitirá ampliar la noción de “recta numérica” por medio de su uso en distintos contextos.

VER

Artículo destacado “Números romanos (Sistemas de numeración)”

El siguiente artículo te proporcionará más información acerca del sistema de numeración romano.

VER 

Artículo destacado “Sistemas posicionales de numeración”

Este recurso te ayudará a conocer las características de los sistemas posicionales de numeración, como el decimal o el binario.

VER