El conjunto de los números enteros surge por la necesidad de expresar cantidades negativas. Aunque los números negativos se usan desde el siglo XV, fue en 1770 cuando Leonardo Euler justificó su uso. Luego fueron legalmente aceptados para crear un conjunto, más completo que los números naturales, denominados números enteros.
¿QUÉ SON LOS NÚMEROS ENTEROS?
Son un conjunto de número que sirven para representar valores positivos y negativos. El conjunto se denota por y es:
El conjunto de los números enteros contiene otros conjuntos numéricos:
Enteros positivos ()
Enteros negativos ()
Números naturales ()
¿Sabías qué?
El conjunto de los números enteros se denota con la letra Z por la palabra Zahlen, que en alemán significa “número”.
¡Es tu turno!
¿Cuáles de estos números son enteros?
+4 −1,5 0 1/3 −3 −8,79 15 +0,5 7/4 −1/8 2 10,8 −9
Solución
Los números de color rojo son los números enteros.
+4 −1,5 0 1/3 −3 −8,79 15 +0,5 7/4 −1/8 2 10,8 −9
Valor absoluto de un número entero
El valor absoluto de un número es igual a la distancia que existe desde cero (0) hasta ese número. Para un número , el valor absoluto se denota como .
– Ejemplo:
Un buzo se encuentra a −7 metros de profundidad. ¿Qué distancia hay desde donde está hasta el nivel del mar?
Para hallar el valor absoluto de −7, debes medir los espacios entre −7 y 0. Por lo tanto, la distancia que hay desde donde está el buzo hasta el nivel del mar es de 7 metros. Matemáticamente se expresa así:
En conclusión, podemos definir el valor absoluto de un número así:
, si
, si
, si
– Ejemplo:
¿Cómo aparecieron los números enteros?
Desde la Antigüedad, hace unos 400 años a. C., el hombre ha buscado la manera de realizar cálculos para sus actividades cotidianas. En un principio, los números naturales eran suficientes para contar. Sin embargo, con el paso de los años, se necesitó un conjunto que incluyera valores negativos para expresar el déficit de una cantidad. Esta necesidad dio origen a los números enteros , que incluye a los números naturales sin el cero, al cero y a los negativos de los números naturales.
REGLA DE LOS SIGNOS
Cuando realizamos operaciones con números enteros es probable que nos cueste identificar el signo que tendrá el resultado. Para esto existe la regla de los signos, la cual se aplica a todas las operaciones básicas: suma, resta, multiplicación y división.
En la suma y la resta
Si sumamos dos números negativos, el resultado será un número negativo.
– Ejemplo:
(−3) + (−9) = −(3 + 9) = −12
(−5) + (−10) = −(5 + 10) = −15
Si sumamos dos números positivos, el resultado será un número positivo.
– Ejemplo:
(+8) + (+6) = +(8 + 6) = +14
(+43) + (+7) = +(43 + 7) = +50
Si sumamos un número positivo y un número negativo, ambos se restan y se mantiene el signo del número mayor.
Si , entonces
Si , entonces
– Ejemplo:
(+18) + (−4) = +(18 − 4) = +14
(−54) + (+20) = −(54 − 20) = −34
En la multiplicación
Si multiplicamos dos números con signos iguales, el resultado será siempre positivo.
– Ejemplo:
(+26) × (+3) = +78
(−10) × (−5) = +50
Si multiplicamos dos números con signos diferentes, el resultado siempre será negativo.
– Ejemplo:
(−8) × (+15) = −120
(+12) × (−9) = −108
En la división
Si dividimos dos números con signos iguales, el resultado será positivo.
– Ejemplo:
(+81) ÷ (+9) = +9
(−322) ÷ (−23) = +14
Si dividimos dos números con signos diferentes, el resultado será negativo.
– Ejemplo:
(+180) ÷ (−5) = −36
(−250) ÷ (+50) = −5
APLICACIÓN DE LOS NÚMEROS ENTEROS
Los números enteros tienen múltiples aplicaciones, algunas de las más comunes son las siguientes:
Expresar temperaturas en diferentes épocas del año, por ejemplo, en algunas ciudades de Argentina, durante el verano la temperatura es de 22 ºC, mientras que durante el invierno llega a −3 ºC.
Indicar la altura a la que se encuentran ciertas regiones respecto al nivel del mar. Las regiones que se encuentran por encima del nivel del mar tienen altura positiva, mientras que las que se localizan por debajo tienen altura negativa, por ejemplo, la ciudad de Lagunillas en Venezuela se ubica a −12 msnm.
Especificar el tiempo antes y después de Cristo. Consideramos negativos los años antes de Cristo (a. C.) y positivos los años después de Cristo (d. C.).
Indicar el saldo en una cuenta bancaria, donde los números positivos representan un saldo a nuestro favor y los negativos representan deudas.
¡A practicar!
1. Resuelve estas operaciones:
5 − 12
Solución
5 − 12 = −7
−13 − 15
Solución
−13 − 15 = −28
2 − 7
Solución
2 − 7 = −5
3 × (−37)
Solución
3 × (−37) = −111
(−2) × (−15)
Solución
(−2) × (−15) = 30
−17 × 18
Solución
−17 × 18 = −306
10 ÷ (−5)
Solución
10 ÷ (−5) = −2
RECURSOS PARA DOCENTES
Artículo “La clasificación de los números”
En este artículo encontrará una descripción general sobre la clasificación de los números, desde los naturales hasta los complejos.
LOS CÁLCULOS MATEMÁTICOS SON OPERACIONES QUE REALIZAMOS PARA CONOCER EL RESULTADO DE ALGO EXPRESADO EN NÚMEROS. LAS OPERACIONES QUE UTILIZAMOS CON MAYOR FRECUENCIA SON LA SUMA Y LA RESTA. PARA REGISTRARLAS EN FORMA ESCRITA UTILIZAMOS EL SÍMBOLO + (QUE SE LEE “MÁS”) Y EL SÍMBOLO − (QUE SE LEE “MENOS”). REALIZAMOS CÁLCULOS MATEMÁTICOS EN NUESTRA VIDA DIARIA: CUANDO PAGAMOS ALGO, AL MEDIR EL TIEMPO, PARA CONOCER UNA DISTANCIA Y HASTA PARA HACER MÚSICA.
ADICIÓN O SUMA
LA ADICIÓN O SUMA ES LA OPERACIÓN DE AGREGAR O AGRUPAR CANTIDADES PARA OBTENER UN RESULTADO. ESAS CANTIDADES LLEVAN EL NOMBRE DE SUMANDOS, EL RESULTADO SE DENOMINA SUMA. AL SUMAR NÚMEROS DE DOS DÍGITOS A VECES ES CONVENIENTE ESCRIBIR LA OPERACIÓN EN FORMA VERTICAL. EN ESE CASO ES IMPORTANTE UBICAR EN LA COLUMNA DE LA DERECHA LAS UNIDADES Y EN LA DE LA IZQUIERDA LAS DECENAS.
SUSTRACCIÓN O RESTA
LA SUSTRACCIÓN O RESTA ES LA OPERACIÓN CONTRARIA A LA SUMA. CONSISTE EN EXTRAER O QUITAR A UNA CANTIDAD MAYOR A UNA MENOR. AL NÚMERO MAYOR LO LLAMAMOS MINUENDO Y AL MENOR LO LLAMAMOS SUSTRAENDO, EL RESULTADO DE LA RESTA SE CONOCE COMO DIFERENCIA O RESTA.
SITUACIONES PROBLEMÁTICAS
LAS SUMAS Y RESTAS SON LAS OPERACIONES MATEMÁTICAS MÁS USADAS POR TODOS DÍA A DÍA, ASÍ QUE ES POSIBLE QUE MUCHAS SITUACIONES LAS TENGAS QUE RESOLVER CON CÁLCULOS. CUANDO ESTO SUCEDE, ES IMPORTANTE QUE SIGAMOS UNA SERIE DE PASOS QUE NOS AYUDEN A RAZONAR Y ORGANIZAR LA INFORMACIÓN PARA RESOLVER EL PROBLEMA. ALGUNOS DE ESTOS PASOS SON IDENTIFICAR LOS DATOS, PENSAR EN EL PROCEDIMIENTO PARA LA RESOLUCIÓN, HACER LA OPERACIÓN Y DAR LA RESPUESTA.
SI TIENES 2 CARAMELOS Y LUEGO TE REGALAN 2 CARAMELOS MÁS, ¿CUÁNTOS CARAMELOS TIENES? ESTE ES UN PROBLEMA QUE SE RESUELVE POR MEDIO DE UNA SUMA. LA SUMA O ADICIÓN ES UNA OPERACIÓN EN LA QUE AGREGAMOS O AGRUPAMOS CANTIDADES PARA OBTENER UN RESULTADO FINAL. LOS NÚMEROS A SUMAR SE LLAMAN SUMANDOS Y EL TOTAL SE LLAMA SUMA.
LA SUMA Y SUS ELEMENTOS
ANA Y NICO DECIDIERON LLEVAR SUS OSITOS PARA JUGAR EN EL RECREO DE LA ESCUELA. ¿CUÁNTOS OSITOS TIENEN ENTRE LOS DOS?
1 Y 2 SON LOS SUMANDOS.
3 ES LA SUMA O EL RESULTADO.
¡VAMOS A SUMAR!
ESCRIBE LOS SUMANDOS Y LA SUMA EN CADA CASO.
SOLUCIÓN
SOLUCIÓN
PROPIEDADES DE LA SUMA
PROPIEDAD CONMUTATIVA
ESTA PROPIEDAD EXPLICA QUE EL ORDEN DE LOS SUMANDO NO ALTERA LA SUMA O RESULTADO.
PROPIEDAD ASOCIATIVA
ESTA PROPIEDAD EXPLICA QUE SI SUMAMOS TRES NÚMEROS, PODEMOS AGRUPAR DOS Y LUEGO SUMAR EL TERCERO.
ELEMENTO NEUTRO: OTRA PROPIEDAD A CONOCER
ESTA PROPIEDAD NOS INDICA QUE LA SUMA DE TODO NÚMERO MÁS EL CERO ES IGUAL AL MISMO NÚMERO, DE MANERA QUE EL CERO ES EL ELEMENTO NEUTRO DE LA SUMA.
APLICACIÓN DE LA SUMA
A VECES NECESITAMOS SUMAR NÚMEROS MÁS GRANDES, ENTONCES NO PODEMOS DIBUJAR CADA ELEMENTO Y CONTARLO PORQUE NOS LLEVARÍA MUCHO TIEMPO. ¡APRENDERÁS AHORA OTRA FORMA DE SUMAR!
PRIMERO COLOCAMOS LOS SUMANDOS UNOS SOBRE OTRO. ESCRIBIMOS LAS UNIDADES EN LA COLUMNA DE LAS UNIDADES Y LAS DECENAS EN LA COLUMNA DE LAS DECENAS.
LUEGO SUMAMOS LAS UNIDADES: 1 + 6 = 7.
DESPUÉS SUMAMOS LAS DECENAS: 1 + 1 = 2.
PUEDES ESCRIBIR ESTA SUMA DE FORMA HORIZONTAL:
11 + 16 = 27
¡ES TU TURNO!
REALIZA ESTAS SUMAS:
14 + 11
23 + 35
29 + 10
44 + 31
25 + 33
18 + 61
SOLUCIÓN
¿SABÍAS QUÉ?
PARA RESOLVER CÁLCULOS MENTALMENTE PUEDES UTILIZAR OTROS QUE YA SEPAS DE MEMORIA O HAYAS REALIZADO ANTES.
SITUACIONES PROBLEMÁTICAS
1. ES EL CUMPLEAÑOS DE MARTA. SU TÍA LE REGALÓ $ 15 Y SU ABUELO LE REGALÓ $ 23. ¿CUÁNTO DINERO LE REGALARON A MARTA?
DATOS
DINERO REGALADO POR SU TÍA: $ 15
DINERO REGALADO POR SU ABUELO: $ 23
REFLEXIONA
PARA CONOCER LA CANTIDAD DE DINERO QUE LE REGALARON EN TOTAL TENEMOS QUE SUMAR LAS DOS CANTIDADES. PARA ESO COLOCAMOS LOS SUMANDO UNO SOBRE OTRO. LUEGO SUMAMOS LAS UNIDADES Y DESPUÉS LAS DECENAS.
CALCULA
RESPUESTA
A MARTA LE REGALARON $ 38.
2. LA MAMÁ DE JULIETA COMPRÓ 20 GLOBOS ROJOS Y 25 GLOBOS NARANJAS PARA DECORAR EL SALÓN EL DÍA DE SU CUMPLEAÑOS ¿CUÁNTOS GLOBOS COMPRÓ EN TOTAL?
DATOS
GLOBOS ROJOS: 20
GLOBOS NARANJAS: 25
REFLEXIONA
PARA CONOCER LA CANTIDAD DE GLOBOS COMPRADOS TENEMOS QUE SUMAR LAS DOS CANTIDADES. PARA ESO COLOCAMOS LOS SUMANDO UNO SOBRE OTRO. LUEGO SUMAMOS LAS UNIDADES Y DESPUÉS LAS DECENAS.
CALCULA
RESPUESTA
LA MAMÁ DE JULIETA COMPRÓ EN TOTAL 45 GLOBOS.
3. CARLOS INVITÓ A SU FESTEJO DE CUMPLEAÑOS A 14 NIÑOS Y 21 NIÑAS ¿CUÁNTOS INVITADOS HAY EN TOTAL?
DATOS
NIÑOS INVITADOS: 14
NIÑAS INVITADAS: 21
REFLEXIONA
PARA CONOCER LA CANTIDAD NIÑOS INVITADOS EN TOTAL TENEMOS QUE SUMAR LAS DOS CANTIDADES. PARA ESO COLOCAMOS LOS SUMANDOS UNO SOBRE OTRO. LUEGO SUMAMOS LAS UNIDADES Y DESPUÉS LAS DECENAS.
CALCULA
RESPUESTA
CARLOS INVITÓ A 35 NIÑOS EN TOTAL.
¡A PRACTICAR!
RESUELVE ESTAS SUMAS.
28 + 11
SOLUCIÓN
28 + 11 = 39
36 + 52
SOLUCIÓN
36 + 52 = 88
15 + 33
SOLUCIÓN
15 + 33 = 48
78 + 10
SOLUCIÓN
78 + 10 = 88
24 + 25
SOLUCIÓN
24 + 25 = 49
16 + 62
SOLUCIÓN
16 + 62 = 78
RECURSOS PARA DOCENTES
Artículo “Propiedades de la suma”
Con este recurso podrás ampliar la información sobre las propiedades de las sumas.
DÍA A DÍA NOS ENCONTRAMOS CON SITUACIONES EN LAS QUE TENEMOS QUE HACER CÁLCULOS, POR EJEMPLO, CUANDO COMPARTIMOS NUESTROS DULCES O CUANDO AGRUPAMOS NUESTROS JUGUETES. COMO VES, SIEMPRE RESOLVEMOS PROBLEMAS MATEMÁTICOS. PARA ELLO ES ÚTIL SEGUIR ALGUNOS CONSEJOS Y UTILIZAR SÍMBOLOS ESPECIALES.
¿QUÉ ES UN CÁLCULO MATEMÁTICO?
UN CÁLCULO MATEMÁTICO ES UNA OPERACIÓN QUE REALIZAMOS PARA CONOCER EL RESULTADO, VALOR O MEDIDA DE ALGO EXPRESADO EN NÚMEROS. LAS OPERACIONES QUE UTILIZAMOS CON MAYOR FRECUENCIA PARA CALCULAR SON LA SUMA Y LA RESTA.
¿por qué es importante la matemática?
LA MATEMÁTICA NOS PERMITE ADQUIRIR HABILIDADES MUY ÚTILES PARA NUESTRA VIDA. NOS AYUDA A PENSAR, RAZONAR Y AGILIZAR NUESTRA MENTE. EN LA VIDA COTIDIANA ESTO TE AYUDARÁ A RESOLVER JUEGOS CON AMIGOS, ADMINISTRAR TUS AHORROS, UTILIZAR BIEN TU TIEMPO, UBICARTE EN EL ESPACIO Y NUNCA DEJAR DE APRENDER.
LA MATEMÁTICA Y LA MÚSICA
A SIMPLE VISTA LA MATEMÁTICA Y LA MÚSICA PUEDEN PARECER QUE NO TIENEN RELACIÓN. SIN EMBARGO, LOS MÚSICOS UTILIZAN CONSTANTEMENTE ELEMENTOS MATEMÁTICOS PARA CREAR Y EJECUTAR SUS PRODUCCIONES. LA UTILIZAN PARA INDICAR LA DURACIÓN DE LAS NOTAS, EL RITMO, EL VOLUMEN, LOS TONOS. ¡YA VES! LA MATEMÁTICA ESTÁ PRESENTE AÚN DONDE NO PODEMOS VERLA.
¿SABÍAS QUÉ?
EN TODOS LOS DEPORTES ES NECESARIA LA MATEMÁTICA. YA SEA PARA CONTAR LOS GOLES APUNTADOS, LA CANTIDAD DE JUGADORES O EL TAMAÑO DE LA CANCHA DE JUEGO.
SÍMBOLOS MATEMÁTICOS
EN MATEMÁTICA LOS SÍMBOLOS SIRVEN PARA EXPRESAR OPERACIONES O RELACIONES ENTRE LOS NÚMEROS. LA SUMA Y LA RESTA SON LAS OPERACIONES QUE UTILIZAMOS CON MAYOR FRECUENCIA.
= ESTE ES EL SÍMBOLO “IGUAL”.
EL SÍMBOLO = ES USADO PARA DAR EL RESULTADO DE UN CÁLCULO COMO LA SUMA O LA RESTA.
+ ESTE ES EL SÍMBOLO “MÁS”.
EL SÍMBOLO + ES USADO PARA HACER SUMAS O ADICIONES. LA SUMA ES UN CÁLCULO EN EL QUE AGRUPAMOS CANTIDADES.
− ESTE ES EL SÍMBOLO “MENOS”.
EL SÍMBOLO − ES USADO PARA HACER RESTAS O SUSTRACCIONES. LA RESTA ES UNA CÁLCULO EN QUE QUITAMOS UNA CANTIDAD A OTRA.
– EJEMPLO:
SI MARÍA TIENE 4 LIMONES Y SU MAMÁ LE DA 3 LIMONES, ¿CUÁNTOS LIMONES TIENE AHORA?
MARÍA TIENE 7 LIMONES.
SI LUEGO LE REGALA 5 LIMONES A JOSÉ, ¿CUÁNTOS LIMONES LE QUEDAN?
LE QUEDAN 2 LIMONES.
CONSEJOS PARA RESOLVER PROBLEMAS
PIENSA SI YA HAS RESUELTO UN PROBLEMA PARECIDO.
ANOTA LA INFORMACIÓN O LOS DATOS QUE EL PROBLEMA TE PROPORCIONA.
REALIZA DIBUJOS O ESQUEMAS.
PIENSA SI ALGUNA OPERACIÓN MATEMÁTICA TE AYUDARÍA A RESOLVERLO.
REALIZA LOS CÁLCULOS.
TOMA NOTA DE TODO LO QUE CONSIDERES NECESARIO.
ESCRIBE EL RESULTADO.
¡SIGUE LOS CONSEJOS!
JUAN TIENE 6 LÁPICES DE COLOR ROJO Y 3 LÁPICES DE COLOR AMARILLO. ¿CUÁNTOS LÁPICES TIENE EN TOTAL?
DATOS
LÁPICES DE COLOR ROJO:
LÁPICES DE COLOR AMARILLO: 3
DIBUJO
CÁLCULOS
RESULTADO
JUAN TIENE 9 LÁPICES EN TOTAL. 6 DE COLOR ROJO Y 3 DE COLOR AMARILLO.
RECURSOS PARA DOCENTES
Artículo “Matemáticas en las vida cotidiana”
Este artículo ofrece información sobre el uso diario de la matemática, lo que te servirá para analizar con tus alumnos la importancia de la misma.
Día a día comparamos números. Lo hacemos al ver que un precio es más bajo que otro, que los grados aumentan o disminuyen en el termómetro de acuerdo a la temperatura, o que un compañero tuvo una calificación diferente a la nuestra. Todos los números pueden compararse entre sí y para hacerlo existen algunas reglas y símbolos especiales.
USO DE LOS SÍMBOLOS DE RELACIÓN
¿Qué son los símbolos de relación?
Son aquellos que permiten comparar números según el valor que estos tengan. Así, al observar dos cantidades podemos determinar si una es mayor, menor o igual que la otra. Para indicar estas relaciones colocamos los siguientes símbolos:
>, se lee “mayor que”.
<, se lee “menor que”.
=, se lee “igual a”.
Mayor que (>)
Todo número ubicado a la izquierda del símbolo “>“ será mayor que el número ubicado a su derecha, entonces, si el símbolo se encuentra entre dos números, significa que el primero es mayor que el segundo.
Menor que (<)
Todo número ubicado a la izquierda del símbolo “<“ será menor que el número ubicado a su derecha, entonces, si el símbolo se encuentra entre dos números, significa que el primero es menor que el segundo.
Igual a (=)
Los números ubicados tanto a la derecha como a la izquierda del símbolo “=” son iguales.
¿Sabías qué?
El matemático inglés Robert Recorde fue quien inventó el símbolo de igualdad. Le dio esta forma porque decía que “dos cosas no pueden ser más iguales que dos rectas paralelas”.
ESTABLECER ORDEN ENTRE DIFERENTES CANTIDADES
Orden de los números naturales
Los números naturales son los números que usamos para contar y con los que estamos más familiarizados. El orden de estos números comienza con sus unidades básicas, que se distribuyen de la siguiente manera:
Posterior al número 9 comienzan los números de dos cifras, formados por decenas y unidades:
El orden de los números naturales continúa en crecimiento hasta alcanzar el número 100, momento en el que se llega a las 3 cifras y aparece la primera centena de la sucesión:
El proceso se repite mientras se suman más y más cifras a la izquierda del número, cada una en representación de un valor mayor:
Esto indica que mientras más cifras tenga un número natural, mayor será su valor. Sin embargo, si dos números poseen la misma cantidad de cifras, hay que diferenciar los valores de cada dígito.
Observa estos ejemplos:
– Compara los números 110 y 120.
Primero vemos sus centenas. En este caso, las dos centenas son iguales (1), así que pasamos a las decenas. Estas son distintas y, por lo tanto, comparamos esos dos dígitos. Como 1 es menor que 2, entonces 110 es menor que 120.
– Compara los números 122 y 123.
Estos números tienen centenas y decenas iguales, así que pasamos a comparar las unidades. Como 2 es menor que 3, decimos que 122 es menor que 123.
– Compara los números 5.392.897 y 5.403.121.
La primera cifra corresponde a las unidades de millón y es la misma en los dos números. Comparamos entonces la siguiente cifra: la centena de mil. Como 3 es menor que 4, decimos que 5.392.897 es menor que 5.403.121.
– Compara los números 25.072.518 y 25.072.523.
Al igual que los casos anteriores, comparamos de izquierda a derecha cada cifra hasta ubicar las que tienen distinto valor. En este ejemplo, las decenas son distintas. Como 1 es menor que 2, decimos que 25.072.518 es menor que 25.072.523.
¡Es tu turno!
– Compara estos números.
9.854.125.369 y 9.854.311.003
Solución
9.854.125.369 < 9.854.311.003
658.899.157.021 y 658.899.157.001
Solución
658.899.157.021 > 658.899.157.001
Desigualdades
Las desigualdades, también llamadas inecuaciones, son expresiones algebraicas que contienen incógnitas y emplean símbolos para expresar la relación entre las partes. Los símbolos usados son:
< menor que
> mayor que
≤ menor o igual que
≥ mayor o igual que
≠ no es igual a
Orden de los números enteros
Los números enteros están formados por los números naturales y los números negativos. Los números negativos poseen una peculiaridad que los diferencia de los positivos: sus valores actúan de forma completamente opuesta. A partir de cero hacia la derecha, los números naturales se hacen cada vez mayores; en cambio, a partir de cero hacia la izquierda, los números negativos se hacen cada vez menores.
Esto quiere decir que si 2 es mayor que 1, −2 es menor que −1.
Es así como los números negativos siguen las mismas reglas de jerarquía que los naturales, pero de forma opuesta. Por ejemplo:
Los dos números tienen la misma cantidad de centenas y de decenas, pero las unidades son distintas. Como −4 es menor que −3, decimos que −424 es menor que −423.
¡Colócalos en orden!
– Ordena los siguientes números enteros de menor a mayor y utiliza el símbolo correspondiente.
Los números decimales son aquellos que tienen una parte entera y una parte decimal, es decir, una cantidad inferior a la unidad. Ambas partes son separadas por una coma.
El orden que siguen los números decimales es parecido a los explicados anteriormente. Observa este ejemplo:
1,4 es menor que 2,4 porque solo se consideraron sus partes enteras.
Si la parte entera de los números es la misma, empezamos a considerar la parte decimal, la cual se divide en cifras con nombres específicos: décimas, centésimas y milésimas. Estas tres unidades decimales son las más comunes, pero la cantidad de cifras puede extenderse hasta el infinito.
Lo más importante a saber para poder ordenar números decimales es que las décimas tienen mayor valor que las centésimas, y estas, a su vez, valen más que las milésimas. Observa las equivalencias:
1 décima = 0,1 unidades
1 centésima = 0,01 unidades
1 milésima = 0,001 unidades
Por lo tanto: 0,1 > 0,01 > 0,001
Ejemplo:
– Compara los números 2,3462 y 2,35.
La parte entera del número es la misma, así que pasamos a la parte decimal. Las décimas son iguales, pero las centésimas no. Como 4 es menor que 5, decimos que 2,3462 es menor que 2,35.
¿Sabías qué?
A diferencia de los números enteros, la cantidad de decimales no determina el valor del número.
¡Colócalos en orden!
– Ordena los siguientes números decimales de menor a mayor y utiliza el símbolo correspondiente.
Los números fraccionarios o fracciones son aquellos números que representan una división o la separación de algo en varias partes. Están formados por un numerador y denominador, ambos separados por una barra horizontal.
La comparación de fracciones dependerá del numerador y el denominador. Los casos pueden ser los siguientes:
Fracciones con igual denominador.
Fracciones con igual numerador.
Fracciones con diferentes numeradores y denominadores.
Fracciones con igual denominador
Si dos fracciones tienen el mismo denominador, la mayor fracción será aquella con mayor numerador. Por ejemplo:
¿Por qué es menor que ?
Observa las gráficas:
Las dos gráficas están divididas en 8 partes, como lo indica el denominador. En la primera tomamos 2 partes de las 8 (2/8), y en la segunda tomamos 4 partes (4/8). Hay más partes tomadas en la segunda gráfica.
Puedes comprobarlo por medio de divisiones:
Si comparamos estos números decimales, tenemos que:
Que es igual a:
Fracciones con igual numerador
Si dos fracciones tienen el mismo numerador, la mayor fracción será aquella con menor denominador. Por ejemplo:
¿Por qué es menor que ?
Observa las gráficas:
En las dos gráficas tomamos 2 partes, como lo indica el numerador. La primera se dividió en 6 partes totales y la otra en 4 partes totales. A pesar de que el número 6 es mayor que 4, aquí el 6 indica una mayor cantidad de divisiones y esto le resta valor a la fracción.
Puedes comprobarlo por medio de divisiones:
Si comparamos estos números decimales, tenemos que:
Que es igual a:
Fracciones con diferente numerador y denominador
Para conocer el orden que tienen estas fracciones no basta con observarlas a simple vista. Para lograrlo debemos seguir dos pasos:
Hallar una fracción equivalente a la que deseamos comparar. Ambas deben tener el mismo denominador.
Comparar las fracciones resultantes según el método ya explicado para las fracciones con igual denominador.
¿Cómo comparar estas fracciones:y ?
1. Calcula el mínimo común múltiplo de los denominadores. Para ello, debes descomponer cada número en sus factores primos.
m.c.m (5; 9) = 5 x 32 = 5 x 9 = 45
2. Multiplica el denominador por un número cuyo producto sea el m.c.m. Luego multiplica el numerador por ese mismo número. El resultado será su fracción equivalente.
Observa que en la primera fracción 5 x 9 = 45. Por eso, toda la fracción se multiplica por 9/9. Lo mismo sucede con la fracción 5/9, como 9 x 5 = 45, toda la fracción se multiplica por 5/5.
3. Compara las nuevas fracciones con igual denominador. La mayor fracción será aquella con mayor numerador, y como 72 > 25, entonces:
Ejercicios
1. Coloca el símbolo correcto entre los siguientes números.
10 ____ 9
4 ____ 4
8 ____ 27
46 ____ 6
59 ____ 59
40 ____ 70
2 ____ 22
100 ____ 1
23 ____ 32
85 ____ 85
Solución
10 > 9
4 = 4
8 < 27
46 > 6
59 = 59
40 < 70
2 < 22
100 > 1
23 < 32
85 = 85
2. Ordena los siguientes números naturales de menor a mayor y utiliza el símbolo correspondiente para ello.