Cadenas alimentarias y redes tróficas

Las cadenas alimentarias y las redes tróficas son la parte del ecosistema que puede describirse como la comunidad de  microorganismos, plantas y  animales que se alimentan, viven, se reproducen, interactúan y mueren en el mismo entorno. Todos los ecosistemas tienen una jerarquía de alimentación que incluye al Sol como fuente de energía, a los productores, a los consumidores y a los descomponedores.

Cadenas alimentarias Redes tróficas
Dirección Unidireccional. Multidireccional.
Número de cadenas 1 2 o más interconectadas.
Estabilidad Inestable. Estable.
Perturbaciones Si un organismo desaparece la cadena se ve perturbada. No se ven perturbadas por la eliminación de un grupo de organismo.
Alimentación El organismo del nivel superior se alimenta de un único organismo del nivel inferior. El organismo del nivel superior se alimenta de varios organismos del nivel inferior.
Niveles tróficos 3 o 4. Más de 4.
Efecto en la adaptabilidad y la competitividad No tiene ningún efecto. Mejoran la adaptabilidad y la competitividad.
Ejemplo

Proteínas, carbohidratos y lípidos

Los carbohidratos, los lípidos y las proteínas constituyen los tres macronutrientes. Sus requerimientos dietéticos son altos en relación con los micronutrientes. Las macromoléculas biológicas son orgánicas, lo que significa que contienen carbono y además, pueden contener hidrógeno, oxígeno, nitrógeno y elementos menores adicionales.

Proteínas Carbohidratos Lípidos
Monómero Aminoácidos Monosacárido Glicerol y ácido graso.
Formado por 20 aminoácidos. Átomos de carbono, hidrógeno y oxígeno. Cadenas de carbono e hidrógeno principalmente.
Tipos Simples y conjugadas. Simples y complejos. Grasas, fosfolípidos y colesterol.
Digestión Rápida. Lenta. Muy lenta.
¿Dónde se digieren? Intestino. Intestino. Intestino.
Solubles en agua Algunas. Todas. Ninguna.
Almacenamiento de energía A largo plazo. A corto plazo. A largo plazo.
Funciones Componentes básicos de la vida, almacenamiento de energía, movimiento muscular, soporte estructural, defensa y medio de transporte celular. Almacenamiento de energía, soporte estructural y ayudan a la comunicación entre células. Almacenamiento de energía, protección y  como mensajeros químicos.
Alimentos que lo contienen Mariscos, carnes magras, aves de corral, huevos, frijoles y guisantes, productos de soya, nueces y semillas sin sal. Frutas, granos, lácteos, harinas refinadas y bebidas gaseosas, entre otros. Lácteos, carnes, aves, mariscos, huevos, semillas, nueces, aguacates y cocos.
Ejemplos Enzimas y algunas hormonas. Glucosa, fructosa, almidón, glucógeno y celulosa. Aceites y colesterol.
Estructura

 

Virus, viroides y priones

Con las investigaciones que los científicos han realizado para descubrir los agentes causantes de nuevas enfermedades, se han descubierto formas no vivas diferentes a los virus que están formadas sólo por ARN o sólo por proteínas, y que también pueden propagarse a expensas de un huésped.

 

Virus Viroides Priones
¿Qué son? Partículas acelulares. Partículas acelulares. Partículas acelulares.
Reproducción A través de un huésped. A través de un huésped. Obligan a las proteínas celulares normales a comenzar a plegarse en formas anormales.
Visualización A través de un microscopio electrónico. A través de un microscopio electrónico. A través de un microscopio electrónico.
Tipo de agente Infeccioso. Infeccioso. Infeccioso.
Material genético ADN o ARN. ARN. No tienen, están formados por proteínas.
Infecta  Todas las formas de vida. Plantas. Principalmente animales. Rara vez humanos.
Cubierta Si presenta, se llama cápside. No presenta. No presenta.
Medio de propagación Fluidos corporales, aire o picaduras de insectos. Semillas o polen. Aire.
Ejemplos Varicela, VIH, gripe y herpes, entre otros. Cadang-cadang, exocortis y piel de manzana, entre otros. Enfermedad de las vacas locas y el kuru.

 

Contaminación del suelo, contaminación acuática y contaminación sonora

La contaminación es el proceso que consiste en alterar las condiciones naturales del suelo, el agua, el aire u otras partes del medioambiente y que no es seguro o adecuado para su uso o permanencia. Esto se puede suceder mediante la introducción de algún contaminante, que necesariamente no tiene que ser tangible.

 

Contaminación del suelo Contaminación acuática Contaminación sonora
Tipos de fuentes Puntuales y no puntuales. Puntuales y no puntuales. Puntuales.
Fuentes de contaminación Defecación al aire libre, letrinas de pozo y basura. Todas las sustancias físicas, químicas o biológicas que cambien las cualidades del agua. Sonido proveniente de aviones, industrias u otras fuentes que generen altos niveles de ruido.
Afecta  La superficie terrestre. Las aguas superficiales como ríos y lagos, la humedad del suelo, las aguas subterráneas y los océanos. Todo el ambiente.
Contaminantes biológicos Microorganismos. Bacterias, virus, protozoos y helmintos (gusanos). No.
Contaminantes químicos Fertilizantes e insecticidas. Metales pesados y pesticidas. No.
Enfermedades Larva migrans cutánea, anquilostomiasis, ascaridiasis, tétanos, esporotricosis y tungiasis, entre otras. Cólera, fiebre tifoidea, poliomielitis, meningitis, hepatitis y diarrea, entre otras. Estrés, hipertensión, disfonía y la pérdida auditiva.
Ejemplo

 

Dopamina, oxitocina y endorfina

Las hormonas son sustancias químicas producidas por diferentes glándulas que viajan a través del torrente sanguíneo y que actúan como mensajeros en muchos procesos corporales. Algunas de ellas, como la dopamina, la oxitocina y la endorfina, regulan el estado de ánimo al promover sentimientos positivos como la felicidad y el placer.

 

Dopamina Oxitocina Endorfina
Tipo de hormona Neurotransmisora. Neurotransmisora. Neurotransmisora.
Se conoce también como: Hormona del bienestar. Hormona del vínculo emocional. Analgésico natural.
Función principal Motiva a tomar medidas hacia las metas, los deseos y las necesidades, y brinda un refuerzo de placer al lograrlo. Ayuda a promover la confianza, la empatía y el vínculo en las relaciones. Se libera en respuesta al dolor y al estrés, y ayuda a controlar la ansiedad y la depresión.
Influye en: Las sensaciones placenteras, el aprendizaje y la memoria, entre otros. El parto, la lactancia, la unión entre padres e hijos, la confianza y la empatía, entre otros. Las sensaciones de alivio ante cualquier tipo dolor.
Provee Energía, entusiasmo y optimismo. Confianza e intimidad con otros. Inspiración, entusiasmo y felicidad interior.
Alimentos estimulantes Legumbres, plátano, tomate, huevo, carne y pescado. Leche, perejil, hierbabuena y romero. Chocolate y los alimentos ricos en Omega 3.
Ejemplo de activación Ejercitarse, meditar, escuchar música y evitar actitudes adictivas. Dar o recibir regalos, escuchar a los demás, ejercitarse y meditar. Ejercitarse, reírse y tomar contacto con la naturaleza.

 

Herbívoros y carnívoros

Dentro de las comunidades ecológicas, los animales tienen dietas específicas que los conectan a una cadena alimentaria, ejemplo de esto son los carnívoros y los herbívoros. El equilibrio de un ecosistema depende de la presencia de cada tipo de animal. Si uno se vuelve demasiado numeroso o escaso, cambiará todo el equilibrio del ecosistema.

Herbívoros Carnívoros
Alimentación Material vegetal. Carne.
Clasificación Frugívoros, nectívoros, granívoros y folívoros. Obligados y facultativos.
Tipos de dientes Grandes y planos. Afilados.
Demanda de alimentos Mayor. Menor.
Tipo de consumidor Primario. Secundario.
Sistema digestivo Complejo, con múltiples cámaras estomacales. Simple, con una sola cámara estomacal.
Ejemplos vertebrados Vacas, ciervos, koalas, ovejas, caballos y loros, entre otros. Leones, tigres, serpientes y tiburones, entre otros.
Ejemplos invertebrados Grillos y orugas. Estrellas de mar, libélulas y arañas.
Ejemplo del más grande Elefante africano. Ballena azul (acuático) y oso polar (terrestre).

 

Reproducción sexual y asexual

La reproducción hace posible la vida como la conocemos, ya que a través de este proceso es que nuevos organismos son generados. Que estos organismos sean una copia idéntica o no de su progenitor va a depender de si se lleva a cabo la reproducción sexual o la asexual. 

Reproducción sexual Reproducción asexual
Gametos  Intervienen los gametos masculinos y femeninos. No intervienen gametos.
Fecundación Sí, del óvulo y el espermatozoide. No.
N° de progenitores necesarios  Dos: hembra y macho. Uno.
Características de los descendientes.  Son idénticos al progenitor pero no genéticamente iguales. Son una copia genética exacta del progenitor.
Tipos  Isogamina, anisogamia y oogamia. Escisión, fisión binaria, gemación y esporulación.
N° de descendientes Generalmente pocos. Muchos.
Gasto energético  Alto. Bajo.
Variabilidad genética  Alta. Baja.
Común en:  Organismos pluricelular como plantas y animales superiores. Organismos unicelulares y algunos hongos, plantas y animales sencillos.
Ejemplos Oogamia

 

Fisión binaria

 

 

Energía cinética y energía potencial

Un sistema posee energía si tiene la capacidad de hacer el trabajo. El trabajo desplaza la energía de un sistema a otro. Hay muchos tipos diferentes de energía que se dividen en dos formas principales: cinética y potencial. Aunque puede transformarse de un tipo a otro, la energía nunca puede ser creada o destruida.

Energía cinética Energía potencial
Se asocia con:
El movimiento. La energía almacenada.
Depende de: La masa del objeto y su velocidad. La altura del cuerpo respecto a un sistema de referencia.
Se puede convertir en: Energía potencial Energía cinética
Unidad de medición Joule (J) Joule (J)
Formas de energía
Mecánica, térmica, eléctrica, radiante y sonora. Mecánica, eléctrica e hidráulica.
Fórmula Ek= ½ m. v2 EPg= m.g.h
Ejemplo Cualquier tipo de movimiento. La energía de un objeto ubicado a lo alto de una montaña con respecto a la base de la misma.

 

Mito y leyenda

Una de las características más destacadas del ser humano es su imaginación. Esta, entre otras cosas, le ha ayudado a encontrar una explicación a todo aquello que lo rodea, de donde viene, y a donde va. Producto de ello surgen el mito y la leyenda, formas narrativas de expresión que a lo largo de los años han establecido la cultura e identidad de los pueblos del mundo.

Mito Leyenda
Descripción Relatos que para ser contados parten directamente desde la imaginación, por lo que tanto el argumento como los personajes que involucra son elementos ficticios. Relatos que se basan en algún evento o personaje real, pero que son alterados progresivamente a medida que se cuentan, para finalmente obtener historias alimentadas con elementos fantásticos.
Personajes Ficticios. En varias ocasiones son seres sobrenaturales y fantásticos, y generalmente simbolizan la explicación del motivo o razón de un evento o un hecho. Reales o basados en personajes reales.
Supuesto origen Relatos creados o sólo contados por seres fantásticos que han informado al ser humano de los hechos. Relatos vividos o evidenciados por alguien que ha informado a otra u otras personas de los hechos.
Transmisión Historias contadas de generación en generación de forma oral o escrita. Historias contadas de generación en generación de forma oral o escrita.
Ubicación temporal Los eventos de la historia transcurren en tiempos muy antiguos, desde los mismos orígenes del universo hasta épocas en donde tradicionalmente se pensaba que el ser humano compartía una relación más directa con los dioses. Los eventos de la historia pueden ocurrir en cualquier momento del tiempo, siempre en base al período cronológico en el que existan los eventos o personajes originales que inspiraron dicha historia.
Objetivo Buscan explicar de forma fantástica el origen y la razón de ser de todo aquello que ocurre y que nos rodea. A partir de ello se forman las creencias y la cultura de muchos pueblos. Buscan informar y enseñar sobre algún personaje, evento o hecho curioso o difícil de comprender. En otros casos, sólo busca entretener.
Tipos
  • Cosmogénicos
  • Teogónicos
  • Antropogónicos
  • Fundacionales
  • Morales
  • Etiológicos
  • Escatológicos
  • Históricas
  • Urbanas
  • Rurales
  • Locales
  • Etiológicas
  • Religiosas
  • Escatológicas
Ejemplos
  • Mitos sobre la Creación del Universo
  • Mito de los doce trabajos de Hércules
  • Mito del rey Midas
  • Mito de Perseo y Medusa
  • Mito de Izanagi e Izanami
  • Mito de la caja de Pandora
  • Mito del Ragnarök
  • Mito de Atlas
  • Mito de la muerte de Baldur
  • Mitos sobre el inframundo
  • Leyenda de la Llorona
  • Leyenda de la congelación de Walt Disney
  • Leyenda del monstruo del lago Ness
  • Leyenda del hombre lobo
  • Leyenda del Área 51
  • Leyenda de la luz mala
  • Leyenda del Silbón
  • Leyenda de la sandía y el vino
  • Leyenda del Chupacabras
  • Leyenda de las brujas y las lechuzas

 

Relación de la biología con otras ciencias

La biología es el estudio de la vida, que incluye el origen, la evolución, la función, la estructura y la distribución de los organismos vivos. Esta ciencia se ocupa también de la clasificación de los organismos y de la interacción de estos dentro de un entorno.

No se puede negar la interrelación que existe entre las diferentes ramas de la ciencia. Cada una de ellas se relaciona con otras y en particular la biología, ya que esta necesita como base la inclusión de otras ciencias para el estudio de los organismos. Esto constituye la base de las ciencias interdisciplinarias.

La biología está ligada a otras ciencias de la siguiente manera:

Física

La física proporciona la base para la biología. Sin espacio, materia, energía y tiempo, que son los componentes que conforman el universo, los organismos vivientes no existirían.

La física ayuda a explicar cómo los murciélagos usan ondas de sonido para volar en la oscuridad y cómo las alas dan a los insectos la capacidad de moverse por el aire.
La física ayuda a explicar cómo los murciélagos usan ondas de sonido para volar en la oscuridad y cómo las alas dan a los insectos la capacidad de moverse por el aire.

En algunos casos, la biología ayuda a probar las leyes y las teorías físicas. El físico Richard Feynman afirma que la biología ayudó a los científicos a elaborar la ley de conservación de la energía.

La interacción entre estas dos ciencias dio origen a la biofísica, que se ocupa del estudio de los principios de la física, aplicables a los fenómenos biológicos. Por ejemplo, hay una similitud entre los principios de trabajo de la palanca en la física y las extremidades de los animales en la biología.

Química

La química y la biología no solo están relacionadas, sino que están completamente entrelazadas, ya que todos los procesos biológicos derivan de procesos químicos. Así que la capacidad de crecimiento, reproducción, actividad funcional y cambio continuo en los seres vivos no puede ocurrir sin reacciones químicas.

Incluso los procesos aparentemente físicos, tales como el movimiento muscular, requieren de la liberación de energía química, que siguen procesos ordenados por el código de ADN de un organismo.

El ADN es en sí mismo una cadena codificada de sustancias químicas que implementa sus instrucciones mediante procesos químicos.

Es allí, por tanto, que entra la bioquímica una rama específica del estudio biológico que se centra en los soportes químicos de la vida misma. Trata del estudio de la química de los diferentes compuestos y procesos que se producen en los organismos vivos.

El estudio de los metabolismos básicos de la fotosíntesis y la respiración se basan en reacciones químicas.
El estudio de los metabolismos básicos de la fotosíntesis y la respiración se basan en reacciones químicas.

Estrecha relación con la Física y la Química

Inicialmente, la biología era una ciencia descriptiva que buscaba estudiar la morfología de los seres vivos y su organización sistemática en grupos y subgrupos basados en similitudes y diferencias.

El conocimiento actual en el campo de la biología se ha logrado con la ayuda de ciencias como la física y la química. Este enfoque multidisciplinario es esencial por diversos motivos:

  1. Todos los organismos vivos están formados por compuestos orgánicos e inorgánicos disueltos en agua.
  2. Los compuestos inorgánicos se presentan en forma de iones. Estos influyen en el ambiente interno de los seres vivos y, en consecuencia, en los procesos de la vida.
  3. El equilibrio ácido-base mantiene el pH específico dentro de los organismos para proporcionar el entorno más adecuado en la realización de diversas reacciones bioquímicas.
  4. La tensión superficial y la capilaridad producida por la fuerza cohesiva y adhesiva de los líquidos también ayudan en ciertos procesos de vida.
  5. La difusión y la ósmosis son responsables del movimiento de iones y moléculas dentro y fuera de las células.
  6. La transferencia de energía y la transformación de energía son dos acontecimientos importantes en todas las células vivas.

Matemática

A diferencia de la física y la química, la biología no suele ser una ciencia asociada a las matemáticas. Pero debido a que hay aspectos cuantificables de las ciencias de la vida, las matemáticas juegan un papel importante en la comprensión del mundo natural.

La biología matemática es un campo de investigación que examina las representaciones matemáticas de los sistemas biológicos.
La biología matemática es un campo de investigación que examina las representaciones matemáticas de los sistemas biológicos.

Ejemplo cuantificable

Un biólogo que estudia migraciones de mariposas entra en el campo y cuenta una población de la muestra en una región confinada y después multiplica los números de la muestra por el rango geográfico total para conseguir una estimación de la población.

A continuación, vuelve a su laboratorio y revisa los informes de otros investigadores que describen el lapso del patrón de migración y el uso de cálculos vectoriales para predecir su futuro recorrido. Finalmente, examina los datos de años anteriores sobre el número de mariposas y la ubicación para establecer un margen de error probable para su predicción.

En cada paso de este proceso, intervienen las matemáticas para medir, predecir y comprender los fenómenos naturales.

Un subcampo de la ciencia biológica es el campo de la bioestadística, en el cual se usan análisis estadísticos para describir y explicar las ciencias de la vida, con el propósito de encontrar correlaciones o relaciones interdependientes entre variables y comparar variables entre sí.

Geografía

La geografía y la biología se relacionan en el estudio de la ocurrencia y distribución de diferentes especies de organismos en las distintas regiones geográficas del mundo, esto es lo que se conoce como biogeografía.

La biogeografía aplica el conocimiento de las características particulares de las regiones geográficas para determinar las de los organismos vivos allí encontrados.

Antropología

La antropología biológica es el estudio de la evolución de la especie humana y se ocupa especialmente de comprender las causas de la diversidad humana actual. Dentro de esta definición abarca campos tan heterogéneos como la paleontología humana, la biología evolutiva, la genética humana, la anatomía comparada y la fisiología, el comportamiento de los primates, la ecología del comportamiento humano y la biología humana.

La biología y la antropología se unen en la búsqueda de fósiles que permitan explicar el origen y evolución de la humanidad.
La biología y la antropología se unen en la búsqueda de fósiles que permitan explicar el origen y evolución de la humanidad.

Agronomía

La relación se da por medio de la agricultura biológica, la cual entiende la necesidad de equilibrio entre los tres aspectos del suelo, físico, químico y biológico para sostener la vida.

Todo proviene del suelo y vuelve al suelo, es un sistema no vivo con billones de organismos que reciclan nutrientes y sostienen la vida.

La forma en que se maneja el suelo y la vida microbiana determina la vitalidad de los alimentos de origen vegetal que consumimos.
La forma en que se maneja el suelo y la vida microbiana determina la vitalidad de los alimentos de origen vegetal que consumimos.

La pareja dispareja

Hay casos en que la física no puede explicar los sucesos biológicos y viceversa. La física y la biología no pueden explicar el origen de la vida o cómo los objetos inorgánicos pasaron a la vida orgánica. La Universidad de Cornell de Nueva York afirma que la teoría biológica de la evolución contradice la segunda ley de la termodinámica, puesto que la naturaleza no puede crear el orden a partir del desorden y la evolución es un proceso que crea niveles crecientes de orden.