NUESTRO SISTEMA DE NUMERACIÓN ES DECIMAL Y POSICIONAL. ES DECIMAL PORQUE ESTÁ FORMADO POR DIEZ CIFRAS Y ES POSICIONAL PORQUE CADA CIFRA TIENE UN VALOR DIFERENTE SEGÚN SU POSICIÓN. ESTOS DOS ASPECTOS DETERMINAN LA LECTURA Y ESCRITURA DE TODOS LOS NÚMEROS. CADA NÚMERO DEL 0 AL 29 SE NOMBRA CON UNA SOLA PALABRA, POR EJEMPLO, ONCE (11) O VEINTICINCO (25). A PARTIR DE 31 SE NOMBRAN CON TRES PALABRAS, COMO CUARENTA Y DOS (42) U OCHENTA Y UNO (81).
VALOR POSICIONAL
EL SISTEMA DE NUMERACIÓN ES POSICIONAL, ESTO QUIERE DECIR QUE, SEGÚN LA POSICIÓN QUE UNA CIFRA TENGA DENTRO DE UN NÚMERO, SU VALOR SERÁ DIFERENTE. LAS POSICIONES DE CADA CIFRA EN UN NÚMERO TIENEN UN NOMBRE. DE DERECHA A IZQUIERDA: LA UNIDAD ES LA PRIMERA CIFRA Y VALOR 1; LA CENTENA ES LA SEGUNDA CIFRA Y VALE 10; LA CENTENA ES LA TERCERA CIFRA Y VALE 100.
NÚMEROS ORDINALES
LOS NÚMEROS ORDINALES NOS INDICAN EL ORDEN O POSICIÓN DE LOS OBJETOS, LAS PERSONAS O LAS COSAS. ESTOS SON MUY UTILIZADOS EN LA VIDA COTIDIANA Y LOS PODEMOS VER EN MUCHAS SITUACIONES. LA ESCRITURA DE LOS NÚMEROS ORDINALES VA A DEPENDER DEL GÉNERO CON EL QUE ESTÁ RELACIONADO, POR EJEMPLO, MARÍA ES LA PRIMERA DE SU CLASE, Y JOSÉ ES EL SEGUNDO.
NÚMEROS ROMANOS
EN LA ANTIGÜEDAD, DIFERENTES CIVILIZACIONES CREABAN SUS PROPIOS SISTEMAS DE NUMERACIÓN. LOS ROMANOS CREARON EL SISTEMA DE NUMERACIÓN ROMANA QUE CUENTA CON SIETE LETRAS DE NUESTRO ALFABETO: I, V, X, L, C, D, M. CADA UNA TIENE UN VALOR QUE NO CAMBIARÁ SIN IMPORTAR EL ORDEN EN QUE SE ESCRIBAN. LAS COMBINACIONES ENTRE ESTAS LETRAS SIGUEN UNAS REGLAS DE SUMA, RESTA Y MULTIPLICACIÓN PARA FORMAR LOS NÚMEROS DEL SISTEMA DECIMAL.
SERIES NUMÉRICAS
LAS SERIES NUMÉRICAS NOS AYUDAN A ESTABLECER UN ORDEN Y UNA RELACIÓN ENTRE NÚMEROS. ESTA SUCESIÓN DE NÚMEROS UNO AL LADO DE OTRO TIENEN DISTINTAS CARACTERÍSTICAS QUE LAS RELACIONAN Y PUEDEN SER PROGRESIVAS, CUANDO VAN DE MENOR A MAYOR; O REGRESIVAS, CUANDO VAN DE MAYOR A MENOR. EL PATRÓN, O REGLA EN COMÚN, PUEDE ESTAR DETERMINADO POR UNA SUMA O UNA RESTA.
CONJUNTO
UN CONJUNTO ES UN GRUPO DE OBJETOS QUE ESTÁN AGRUPADOS Y COMPARTEN UNA CARACTERÍSTICA EN COMÚN. LOS OBJETOS QUE ESTÁN DENTRO DE UN CONJUNTO SE LLAMAN ELEMENTOS Y PUEDEN SER DE CUALQUIER TIPO. POR OTRO LADO, ALGUNOS ELEMENTOS DE UN CONJUNTO TAMBIÉN PUEDEN PERTENECER A OTRO CONJUNTO INTERNO POR OTRA CARACTERÍSTICA QUE LO IDENTIFIQUE, A ESTOS SE LOS DENOMINA SUBCONJUNTOS.
RELACIONES
TODOS LOS NÚMEROS QUE USAMOS PARA CONTAR TIENEN UNA RELACIÓN ENTRE SÍ. AL COMPARARLOS PODEMOS USAR SÍMBOLOS DE RELACIÓN: “>” QUE SIGNIFICA QUE UN NÚMERO ES MAYOR QUE OTRO (8 > 2), “=” QUE SIGNIFICA QUE UN NÚMERO ES IGUAL A OTRO (5 = 5); O “<” QUE SIGNIFICA QUE UN NÚMERO ES MENOR QUE OTRO (2 < 8). OTRA MANERA SENCILLA Y MUY ÚTIL DE COMPARAR NÚMEROS ES A TRAVÉS DE UNA RECTA NUMÉRICA.
Las fracciones, a diferencia de los números enteros, permiten expresar proporciones de algo. Son útiles en la vida cotidiana y se usan con más frecuencia de lo que piensas. Frases como “un cuarto de kilo” o “un tercio de taza” son algunos ejemplos. En matemática son tan relevantes que forman su propio conjunto de números: los racionales.
Partes de una fracción
Una fracción resulta de dividir un número entero en partes iguales. En matemática es representada por dos números enteros ,denominados términos, que están separados por una línea horizontal, denominada raya de división o raya fraccionaria.
Los números que componen a una fracción se denominan numerador y denominador. El primero está ubicado en la parte superior de la raya de división y el segundo está en la parte inferior de esta. El numerador indica el número de partes que se han tomado de un entero, mientras que el denominador representa el número de partes en que se ha dividido el entero.
Podemos expresar las fracciones con una línea divisoria horizontal o diagonal. En este sentido, a la fracción también la podríamos expresar como 1/2.
Para entender el significado de la fracción anterior imaginemos que una pizza representa el “todo”, es decir, sería el entero que queremos dividir, el denominador de una fracción representa el número de partes que se ha dividido el entero, lo que nos permite concluir que la pizza se ha dividido en dos parte. Por otro lado, el numerador representa el número de partes que se ha tomado, en este ejemplo es 1, lo que quiere decir que 1/2 de pizza sería una de las dos porciones de la pizza.
¿Sabías qué?
El denominador de una fracción nunca es igual a cero (0).
Como ya sabemos, el denominador indica en cuántas partes se dividió un número entero. Cada una de esas partes recibe un nombre, por ejemplo, si dividimos en dos son medios, si dividimos en tres son tercios, si dividimos en cuatro son cuartos y así hasta el número once, a partir de ese número añadimos el sufijo –avos al número: onceavos, doceavos, treceavos y así sucesivamente.
Esta tabla muestra el nombre de cada una de las partes en las que se puede dividir un entero hasta el cien:
Partes que se divide del entero
Nombre
2
Medios
3
Tercios
4
Cuartos
5
Quintos
6
Sextos
7
Séptimos
8
Octavos
9
Novenos
10
Décimos
11
Onceavos
12
Doceavos
13
Treceavos
14
Catorceavos
15
Quinceavos
16
Dieciseisavos
17
Diecisieteavos
18
Dieciochoavos
19
Diecinueveavos
20
Veinteavos
30
Treintavos
40
Cuarentavos
50
Cincuentavos
60
Sesentavos
70
Setentavos
80
Ochentavos
90
Noventavos
100
Centavo
Para leer una fracción primero indicamos el número del numerador y luego las partes en las que está dividido el entero de acuerdo a la tabla anterior. Por ejemplo, se lee como “un medio”. Observemos otros ejemplos:
a) se lee “dos tercios”.
b) se lee “seis octavos”.
c) se lee “quince treintavos”.
d) se lee “doce veintitresavos”.
e) se lee “treinta y dos cuarentavos”.
f) se lee “noventa y siete centavos”.
¿Sabías qué?
Los centavos también son llamados céntimos.
Origen muy antiguo
Las antiguas civilizaciones como la babilónica, la egipcia y la griega usaban las fracciones en sus cálculos. Cada una tenía una manera particular de expresarlas y no fue sino hasta el siglo XIII cuando el matemático italiano Leonardo Fibonacci difundió el uso de la línea horizontal, símbolo que se emplea en la actualidad para separar el numerador y denominador en una fracción.
Relación de las fracciones y la división
Las fracciones representan porciones de un todo, es por ello que de alguna manera están estrechamente relacionadas con la división. De hecho, toda fracción es una división sin resolver, es decir; es equivalente a . Por lo tanto, es igual a .
En algunas ocasiones podemos expresar operaciones en forma de fracción, pero también podemos hacerlo como división y resolver la misma.
¿Sabías qué?
Existen fracciones que están formadas por una parte entera y una fraccionaria, a ellas se las conoce como fracciones mixtas.
Aplicación en la vida cotidiana de las fracciones
El ser humano siempre ha tenido la necesidad de contar, medir y repartir; razón por la que inventó los números. Las fracciones no están lejos de esta realidad y son usadas para entender porciones de cosas.
Están presentes en recetas de cocinas, en mediciones de telas y de volúmenes de productos (como en las gaseosas de medio litro o 1/2 L). Hay autos donde los indicadores del nivel de gasolina son expresados en fracciones para saber si el tanque está lleno, tiene la mitad o un cuarto de su capacidada.
Incluso, están presentes en algunas monedas como el dólar, donde existe una denominación llamada “centavo de dólar”, es decir, si el valor de un dólar lo pudiéramos dividir en 100 partes iguales, una de esas partes sería el centavo.
En resumen, las fracciones permiten expresar cantidades cotidianas de manera más sencilla.
¡A practicar!
1. ¿Cómo se leen las siguientes fracciones?
a)
Solución
Cinco tercios.
b)
Solución
Un centavo.
c)
Solución
Veintitrés cuarentavos.
d)
Solución
Tres medios.
e)
Solución
Dos quintos.
f)
Solución
Doce onceavos.
g)
Solución
Siete décimos.
h)
Solución
Once sextos.
i)
Solución
Trece cuartos.
j)
Solución
Cincuenta y ocho séptimos.
2. ¿Cómo se escriben en número estas fracciones?
a) Nueve décimos.
Solución
b) Catorce novenos.
Solución
c) Setenta y tres centavos.
Solución
d) Ochenta y ocho novenos.
Solución
RECURSOS PARA DOCENTES
Video “Fracciones decimales”
Este video ayuda a entender la relación entre las fracciones y los números decimales así como la manera en transformar una fracción en decimal.
En el presente tomo de la Enciclopedia Matemáticas Primaria tendrás acceso a información más detallada sobre las fracciones, así como la posibilidad de obtener diferentes recursos educativos sobre este tema.
Hay ocasiones en las que los números enteros no son útiles para expresar ciertas magnitudes; los números decimales, en cambio, permiten indicar una cantidad ubicada entre dos enteros y por este motivo son usados a diario en diversas situaciones, como por ejemplo en los precios de los productos y la lectura de la temperatura del cuerpo.
¿Qué son los números decimales?
Son números formados por una parte entera y otra parte menor que la unidad. Los números decimales generalmente se representan con una coma (,) para indicar la separación entre la parte entera que puede ser igual a cero y la parte menor a la unidad.
Los decimales de un número pueden ser finitos o infinitos.
Por ejemplo:
– El número 3,15 es un decimal con un número finito de decimales.
– El número pi es un número con infinitos decimales: 3,1415926535… Al observar sus decimales se puede apreciar que no son periódicos, por lo tanto no siguen un patrón de repetición, a este tipo de números se lo conoce como número irracional.
Los puntos suspensivos (…) son usados para indicar que los decimales de un número son infinitos.
Elementos de un decimal
Como ya sabemos, los números decimales están formados por una parte entera y otra menor a la unidad (conocida también como parte decimal), la parte entera se ubica a la izquierda y la parte decimal a la derecha de la coma.
La parte entera puede ser igual a cero, como por ejemplo 0,5, que es la mitad del número 1.
La parte decimal es conocida también como parte fraccionaria, y siempre representa cantidades menores a la unidad.
Lectura de decimales
Antes de aprender a leer números decimales es importante conocer los conceptos de décima, centésima y milésima.
Décima: es el resultado de dividir la unidad en diez partes iguales. En la tabla de valor posicional se muestra con la letra d minúscula.
Centésima: es el resultado de dividir la unidad en cien partes iguales. En la tabla de valor posicional se muestra con la letra c minúscula. La centésima es menor que la décima.
Milésima: es el resultado de dividir la unidad en mil partes iguales. En la tabla de valor posicional se muestra con la letra m minúscula. La milésima es menor que la centésima.
La tabla de valor posicional para un número decimal es:
Para leer un número decimal debes seguir estos pasos:
Lee su parte entera de la misma forma como se hace en la lectura de números enteros en el siguiente orden: centena de mil, decena de mil, unidad de mil, centena, decena, unidad.
Agrega la palabra “unidades” o “enteros”.
Coloca una coma.
Lee la parte decimal de la misma manera en la que se leen los enteros y al final nombra el orden decimal que ocupa la última cifra (décimas, centésimas o milésimas).
Por ejemplo, 535,42 se lee: “quinientas treinta y cinco unidades, cuarenta y dos centésimas“.
En el ejemplo anterior, el 2 corresponde a la última cifra y ocupa el orden de las centésimas por eso se agrega dicho orden al final del número.
Si el decimal tiene una parte entera igual a cero solo se nombra la parte decimal de acuerdo al orden de la última cifra. Por ejemplo, 0,579 se lee: “quinientas setenta y nueve milésimas“.
¿Sabías qué?
Cuando un número decimal termina en cero este número puede omitirse sin alterar su valor. Así, 1,50 es igual a 1,5.
Utilidad de los decimales
Gracias a que permiten expresar números menores a la unidad, uno de sus principales usos son en las mediciones, desde la lectura de la temperatura hasta la determinación del tamaño de una bacteria, por ejemplo. Por esta razón, los decimales son indispensables en los cálculos empleados en disciplinas como la arquitectura, la medicina, la ingeniería y muchas otras más.
¿Se usa punto o coma?
La respuesta es simple: ¡cualquiera de las dos! La diferencia en usar una u otra radica en el lugar en donde te encuentres. La coma y el punto son usados como separadores de los números decimales y ambos son válidos. En gran parte de Europa y América del Sur se emplea la coma, pero algunos países como Estados Unidos, Canadá, México y Reino Unido emplean el punto.
Sumas y restas de decimales
Las sumas y restas de números decimales se hacen del mismo modo que con los números enteros. En estos casos se deben colocar los números que se vayan a sumar o restar uno debajo del otro, de manera tal que las cifras del mismo orden se encuentren en la misma columna, es decir, las centenas con las centenas, las decenas con las decenas, las unidades con las unidades, las décimas con las décimas y así sucesivamente. De igual forma, las comas deben estar ubicadas en la misma columna.
Observa la manera correcta de sumar los números 124,32 + 267,11:
Luego, la suma se realiza como una suma normal sin considerar la coma, al final, la coma en el resultado estará ubicada en la columna correspondiente.
Si las cifras que se suman no tiene la misma cantidad de decimales, se completa con cero la cifra de menor número de decimales. Por ejemplo, 74,874 +41,41 se calcula de la siguiente manera:
En el caso de una resta se cumplen los mismos pasos para restar enteros y las cifras se ubican una debajo de la otra de acuerdo a su valor posicional. Si es necesario se agregan ceros en la parte decimal de forma tal que los números tengan la misma cantidad de decimales.
Por ejemplo, al realizar la resta de 945,5 − 307,182 el procedimiento sería:
¡A practicar!
¿Cómo se leen los siguientes números decimales?
a) 457,5
Solución
Cuatrocientas cincuenta y siete unidades, 5 décimas.
b) 8,742
Solución
Ocho unidades, setecientas cuarenta y dos milésimas.
c) 0,92
Solución
Noventa y dos centésimas.
d) 100,102
Solución
Cien unidades, ciento dos milésimas.
Calcula el resultado de las siguientes sumas:
a) 178,45 + 278,73
Solución
457,18
b) 14,2 + 29,178
Solución
43,378
c) 402,745 + 61,45
Solución
464,195
d) 652,314 + 174,074
Solución
826,388
Calcula el resultado de las siguientes restas:
a) 279,3 − 142,1
Solución
137,2
b) 542,22 − 419,1
Solución
123,12
c) 547,943 − 390,451
Solución
157,492
d) 482,1 − 125,748
Solución
356,352
RECURSOS PARA DOCENTES
Artículo “Números decimales”
El siguiente artículo profundiza la información sobre los números decimales y explica su relación con las fracciones.
El video muestra ejemplos de sumas y restas de números decimales, así como los elementos a tener en cuenta durante la realización de este tipo de ejercicios.
Los números pueden parecer muy difíciles si tienen muchas cifras, pero no son tan complicados cuando conoces la posición de los dígitos y el valor relativo de cada uno. Con unos pasos muy sencillos podrás leerlos, ya sea que pertenezcan a nuestro sistema de numeración decimal o al sistema de numeración romano.
Lectura de números naturales
Los números naturales son aquellos que usas para contar. Inician desde el cero (0) y siguen hasta el infinito. Este conjunto de números fue el primero que se utilizó para calcular y por definición matemática se representan así:
Estos son los que más empleas día a día. Con ellos das la hora, tu fecha de cumpleaños o tu número de identificación. En cualquier caso, la ubicación de cada cifra cumple un valor relativo. Así, en el número 25.651, el 5 se ubica en dos posiciones: en las decenas y en las unidades de mil. El valor relativo de cada cifra es:
Y el número se lee: veinticinco milseiscientos cincuenta y uno.
Las posiciones de cada cifra permiten la correcta lectura de los números, en especial, cuando los números son grandes. Para leer un número natural, lo primero que debes hacer es escribirlo correctamente. Esto se logra por medio de agrupación de dígitos. Para leer el número 123604785219, los pasos son los siguientes:
Coloca un punto cada tres dígitos. Empieza de derecha a izquierda.
Cada punto rojo, de derecha a izquierda, representará la palabra “mil”.
Cada punto azul, de derecha a izquierda, representará en orden ascendente la secuencia: millones, billones, trillones, cuatrillones, quintillones, etc.
Por último, se lee el número de izquierda a derecha: ciento veintitrés mil seiscientos cuatro millones setecientos cincuenta y ocho mil doscientos diecinueve.
¿Cómo se leen estos números?
121.568.265
Solución
Ciento veintiún millones quinientos sesenta y ocho mil doscientos sesenta y cinco.
923.645.687.156
Solución
Novecientos veintitrés mil seiscientos cuarenta y cinco millones seiscientos ochenta y siete mil ciento cincuenta y seis.
216.035.548.665.021
Solución
Doscientos dieciséis billones treinta y cinco mil quinientos cuarenta y ocho millones seiscientos sesenta y cinco mil veintiuno.
¿Sabías qué?
El número de Graham es el número más grande que se ha representado matemáticamente. Su símbolo es la letra G y requirió el uso de símbolos y la notación flecha de Knuth para su representación.
LECTURA DE NÚMEROS DECIMALES
Los números decimales se componen de una parte entera y una parte decimal que va separada por una coma. Estos números están presentes en nuestro día a día: en nuestro peso, cuando usamos el termómetro o en los precios de los productos.
Para el número 325,086 el valor relativo de cada cifra se representa así:
Según el lugar que ocupe el decimal se representará en orden ascendente la secuencia: décima, centésima, milésima, diezmilésima, cienmilésima, milmilésima, etc. Todos estos son valores más pequeños que uno (1). Observa la tabla:
Décimas
Centésimas
Milésimas
La décima parte de la unidad es
La centésima parte de la unidad es
La milésima parte de la unidad es
1 U = 10 d
1 U = 100 c
1 d = 10 c
1 U = 1.000 m
1 d = 100 m
1 c = 10 m
Donde:
U: unidad
d: décimas
c: centésimas
m: milésimas
De centenas a milésimas
Para leer un número decimal debes seguir estos pasos:
Lee la parte entera de izquierda a derecha seguida de la palabra “enteros”.
Lee toda la parte decimal como se lee la parte entera.
Menciona la posición en la que se encuentra la última cifra decimal.
Entonces, la lectura del número 122,96 es: ciento veintidós enterosnoventa y seis centésimas.
Existe otra forma de leer números decimales, los pasos son los siguientes:
Lee la parte entera de izquierda a derecha seguida de la palabra “coma”.
Lee toda la parte decimal como se lee la parte entera.
De este modo, la lectura del número 122,96 también es: ciento veintidós coma noventa y seis.
¿Cómo se leen estos números?
2,364
Solución
Dos enteros trescientos sesenta y cuatro milésimas.
5.879.009,587
Solución
Cinco millones ochocientos setenta y nueve mil nueve enteros quinientos ochenta y siete milésimas.
175.756,2
Solución
Ciento setenta y cinco mil setecientos cincuenta y seis enteros dos décimas.
¿Sabías qué?
El número pi (π) es un número con decimales infinitos y es una de las constantes matemáticas más utilizadas. Relaciona el perímetro de una circunferencia con la amplitud de su diámetro.
LECTURA DE NÚMEROS ROMANOS
La numeración romana tiene siete símbolos representados por siete letras del abecedario latino:
Número romano
I
V
X
L
C
D
M
Número arábigo
1
5
10
50
100
500
1.000
Por ejemplo, el número XVI es igual a 16 porque:
XVI = 10 + 5 + 1 = 16
Para poder realizar la lectura de los números romanos de pocas o muchas cifras necesitas conocer las siguientes reglas:
1. Regla de la suma
Si a la derecha de una número romano tenemos otro de menor valor, entonces las cifras se suman.
CL = 100 + 50 = 150
XXIII = 10 + 10 + 3 = 23
2. Regla de la resta
I solo puede colocarse delante de V y X.
IV = 5 − 1 = 4
IX = 10 − 1 = 9
X solo puede restar a L y C.
XL = 50 − 10 = 40
XC = 100 − 10 = 90
C solo puede restar a D y M.
CD = 500 − 100 = 400
CM = 1.000 − 100 = 900
V, L y D nunca pueden usarse para restar otros números.
3. Regla de la repetición
Podemos repetir I, X, C y M un máximo de tres veces. En cambio, V, L y D no se pueden repetir.
III = 1 + 1 + 1 = 3
MMM = 1.000 + 1.000 + 1.000 = 3.000
4. Regla de la multiplicación
Después de 3.999 el sistema es diferente y se coloca una raya horizontal encima del número romano, esto significa que se ha multiplicado por 1.000. Si se colocan dos rayas, el número será multiplicado por 1.000.000.
Al descomponer un número natural puedes encontrar el equivalente a su número romano. Para ello, solo debes usar los números 1, 5, 10, 50, 100, 500 o 1.000 en la descomposición. Las sumas y restas están permitidas.
Por ejemplo, el número romano equivalente a 279 se encuentra por medio de esta descomposición:
¿Estos números romanos son correctos?
VIIII
Solución
No. El número romano I solo puede repetirse un máximo de tres veces. Si deseas escribir el número 9 en números romanos lo correcto es:
IX = 10 − 1 = 9
VX
Solución
No. El número romano X solo puede restar a L y C. Si deseas escribir el número 15 en número romano lo correcto es:
XV = 10 + 5 = 15
DDD
Solución
No. El número romano D no puede repetirse. Si deseas escribir el número 1.500 en número romanos, lo correcto es:
MD = 1.000 + 500 = 1.500
VALOR POSICIONAL DE CIFRAS
El sistema de numeración decimal es el más usado en el mundo, se caracteriza por:
Estar conformado por 10 cifras: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9.
Ser posicional, es decir, cada cifra tiene un valor de acuerdo a su posición dentro del número.
Mismos números, distintas posiciones
Con tres dígitos, como 8, 3 y 5, se pueden formar varios números, sin embargo, no todos tendrán el mismo valor posicional.
Según la posición que ocupe un dígito en un número su valor será diferente. Por ejemplo, el dígito 3 ocupa distintos puestos en el número 53.412.130.004.322,18, y por lo tanto, cada uno tiene un valor diferente. Observa la tabla de valores posicionales:
En este número, el dígito 3 ocupa tres posiciones:
Unidad de billón, que equivale a 1.000.000.000.000 unidades, entonces:
3 x 1.000.000.000.000 = 3.000.000.000.000
Decena de millón, equivalente a 10.000.000 unidades, entonces:
3 x 10.000.000 = 30.000.000
Centena, que equivale a 100 unidades, entonces:
3 x 100 = 300
Este número se lee: cincuenta y tres billones cuatrocientos doce mil ciento treinta millones cuatro mil trescientos veintidós enteros dieciocho centésimas.
Tabla de equivalencias
1 unidad = 1 unidad
1 decena = 10 unidades
1 centena = 100 unidades
1 unidad de mil (millar) = 1.000 unidades
1 decena de mil (millar) = 10.000 unidades
1 centena de mil (millar) = 100.000 unidades
1 unidad de millón = 1.000.000 unidades
1 decena de millón = 10.000.000 unidades
1 centena de millón = 100.000.000 unidades
1 unidad de millar de millón = 1.000.000.000 unidades
1 decena de millar de millón = 10.000.000.000 unidades
1 centena de millar de millón = 100.000.000.000 unidades
1 unidad de billón = 1.000.000.000.000 unidades
1 decena de billón = 10.000.000.000.000 unidades
1 centena de billón = 100.000.000.000.000 unidades
¿Qué valor posicional tienen los números marcados en rojo?
587.124.687,7956
Solución
Decena.
8.147.561,115
Solución
Unidad de millón.
64.789,185948
Solución
Milésima.
189.547.963.004.279
Solución
Centena de billón.
Ejercicios
1. Lee y escribe en letras los siguientes números:
3465268
Solución
3.465.268 = tres millones cuatrocientos sesenta y cinco mil doscientos sesenta y ocho.
12563,158
Solución
12.563,158 = doce mil quinientos sesenta y tres enteros ciento cincuenta y ocho milésimas.
684812313
Solución
684.812.313 = seiscientos ochenta y cuatro millones ochocientos doce mil trescientos trece.
Solución
Sesenta y cinco mil.
MM
Solución
Dos mil.
165,5346821
Solución
Ciento sesenta y cinco enteros cinco millones trescientos cuarenta y seis mil ochocientos veintiún diezmillonésimas.
Solución
Tres millones cien mil.
Solución
Quinientos once mil.
RECURSOS PARA DOCENTES
Artículo “Números grandes: lectura y escritura”
El siguiente artículo le permitirá ampliar información sobre la lectura y escritura de números grandes.
La vida sería más complicada si no existieran los números. Tareas como contar o sumar cosas no serían posibles y eso traería muchos problemas. A lo largo de la historia el ser humano ha inventado diferentes sistemas de numeración, porque si hay algo que no ha cambiado es nuestra necesidad de contar.
Lectura y representación de números naturales
El sistema de numeración usado en la actualidad presenta dos características principales: es decimal, porque emplea diez dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) y es posicional, porque el valor de cada cifra obedece al lugar que ocupa dentro de un número. Como ya sabemos, a los números los agrupamos de diez en diez, de menor a mayor.
10 U = 1 D
10 D = 1 C
10 C = 1 UM
Donde:
U: unidad
D: decena
C: centena
UM: unidad de mil
¡Y así sucesivamente hasta el infinito!
En el número 3.145 la cifra 1 ocupa la posición de las centenas, como puede verse en el siguiente esquema:
¿Sabías qué?
La palabra “dígito” proviene del latín dígitus, que significa dedo, y surge al comparar el número de dedos de las manos con el número de dígitos.
En números de 6 cifras el esquema sería el siguiente:
Donde:
DM: decena de mil
CM: centena de mil
Para leer un número de seis cifras se comienza leer la cantidad del orden de los miles y luego se lee el resto de la cantidad.
Por ejemplo el número 254.873 se lee de la siguiente forma: doscientos cincuenta y cuatro milochocientos setenta y tres.
¡A practicar!
¿Cómo se leen estos números?
145.254
Solución
Ciento cuarenta y cinco mil doscientos cincuenta y cuatro.
927.630
Solución
Novecientos veintisiete mil seiscientos treinta.
501.588
Solución
Quinientos un mil quinientos ochenta y ocho.
470.625
Solución
Cuatrocientos setenta mil seiscientos veinticinco.
Sistema de numeración romana
Hace muchos años, se desarrolló en la Antigua Roma un sistema de numeración basado en letras, dicho sistema fue implementado en todo el Imperio romano. La extensión de este era tal que ocupaba gran parte de los países europeos actuales y de algunos países de África y Asia, esto permitió que su influencia se mantuviera por mucho tiempo después de la caída del imperio.
A pesar de que se encuentran en desuso, todavía existen ciertas aplicaciones de los números romanos. Tanto en capítulos de libros como incluso en relojes están presentes los números romanos.
Características de los números romanos
– Es un sistema predominantemente aditivo, es decir; los valores de cada signo se suman (aunque hay ocasiones en los que se restan).
– Emplea letras del abecedario para representar a los números, por eso, podría catalogarse como un sistema alfanumérico.
– Los romanos, para ese momento, no conocían el número cero (que fue introducido más adelante a Europa con la numeración arábiga) y por ello no lo representaban.
– Las letras en este sistema siempre deben escribirse en mayúscula.
Reglas para escribir números romanos
Lo primero que se debe tener en cuenta es que este sistema emplea 7 letras del abecedario que se suman o restan entre ellas de acuerdo a ciertos criterios.
I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1.000
Con los símbolos anteriores y a veces con algún símbolo auxiliar se pueden construir el resto de los números de acuerdo a los siguientes criterios:
Valores que se suman
– Las letras que se escriben a la derecha de otra de igual o mayor valor se suman:
Números mayores a 3.999 (MMMCMXCIX) necesitan símbolos auxiliares, en estos caso se emplea una raya horizontal arriba de la letra para multiplicar su valor por 1.000.
¿Sabías qué?
Si se colocan dos rayas horizontales sobre un número romano su valor se multiplica por 1 millón.
Ejercicios
1. Escribe con letra los siguientes números
45.987
Solución
Cuarenta y cinco mil novecientos ochenta y siete.
120.501
Solución
Ciento veinte mil quinientos uno.
197.234
Solución
Ciento noventa y siete mil doscientos treinta y cuatro.
100.985
Solución
Cien mil novecientos ochenta y cinco.
2. Escribe en número:
Doscientos mil.
Solución
200.000
Setenta y nueve mil ochocientos treinta y dos.
Solución
79.832
Ciento veinticuatro mil quinientos sesenta y nueve.
Solución
124.569
Cuarenta mil trescientos uno.
Solución
40.301
3. Escribe el valor de cada número:
XXIV
Solución
24
CLX
Solución
160
MMMCLIX
Solución
3.159
MMCMLXIV
Solución
2.964
CLVIII
Solución
158
4. Escribe los siguientes números en número romanos:
2.157
Solución
MMCLVII
739
Solución
DCCXXXIX
1.199
Solución
MCXCIX
3.578
Solución
MMMDLXXVIII
5.000
Solución
RECURSOS PARA DOCENTES
Artículo destacado “Sistema de numeración”
El siguiente artículo destacado te permitirá conocer más sobre los sistemas de numeración, desde los más antiguos hasta los más actuales.