CAPÍTULO 9 / TEMA 6

EVIDENCIAS DE DEGRADACIÓN DE LA CAPA DE OZONO

El ozono es un gas de color azul conformado por tres átomos de oxígeno. Puede hallarse en dos zonas de la atmósfera de forma natural: en la tropósfera y en la estratósfera. En la tropósfera, se encuentra aproximadamente el 10 % de la masa total de ozono, mientras que el 90 % restante se localiza en la estratósfera. Esta región es conocida como la capa de ozono.

La capa de ozono se localiza entre los 15 y 30 kilómetros de altura.

Importancia de la capa de ozono

La capa de ozono u ozonósfera es una capa profunda de la estratósfera que rodea la Tierra. Su característica principal es que tiene grandes cantidades de ozono. Esta capa protege nuestro planeta de gran parte de la radiación ultravioleta proveniente del Sol, a pesar de que es la radiación ultravioleta en sí la que forma el ozono en primer lugar.

¿Quiénes descubrieron la capa de ozono?

 

Sus descubridores fueron Charles Fabry y Henri Buisson, dos físicos franceses, hacia 1913. Más tarde, el meteorólogo británico G.M.B. Dobson analizó sus propiedades y creó un espectrofotómetro para medir el ozono.

Charles Fabry, uno de los científicos que halló la capa de ozono.

¿CÓMO ACTÚA LA CAPA DE OZONO?

El ozono actúa como una especie de escudo protector que filtra las radiaciones, evita el paso de aquellas nocivas y de alta energía, y permite el paso de las radiaciones ultravioletas de onda larga. Esta es una energía de vital importancia porque le brinda calor a la superficie terrestre, interviene en el clima y permite a las plantas realizar la fotosíntesis.

¿Sabías qué?
La unidad de medida del ozono es el Dobson, en honor al meteorólogo británico que estudió sus propiedades, y además creó estaciones de monitoreo de ozono.

Aunque este gas es venenoso, incluso letal si se respira, es necesario para la vida. Algunos tipos de cáncer de piel y enfermedades visuales han sido relacionados con la exposición a la radiación ultravioleta. Algunas especies, como los corales, se han visto afectadas por este tipo de radiación.

AGUJERO EN LA CAPA DE OZONO

El agujero de la capa de ozono es una zona en donde la cantidad de ozono está reducida de manera anormal. La disminución ocurre principalmente en la Antártida durante la primavera.

Estas disminuciones se comenzaron a notar desde finales de la década 1970, durante las mediciones de ozono. Esto se atribuyó a la actividad del hombre y al uso de productos refrigerantes a base de cloro o clorofluorocarbonados (CFC).

¿Qué son los clorofluorocarbonados?

Son una serie de compuestos químicos formados en su mayoría por átomos de flúor, carbono y cloro. Se caracterizan por tener muy baja toxicidad, no ser inflamables y servir como refrigerantes. Sin embargo, a pesar de sus usos, provocan la disminución del ozono de la siguiente manera:

  • Los compuestos CFC llegan hasta la estratósfera sin desnaturalizarse. Allí la radiación UV los descompone y se libera un átomo de cloro que reacciona con el ozono, lo que produce la liberación de oxígeno y óxido de cloro.
  • El óxido de cloro reacciona nuevamente con los átomos de oxígeno y deja como resultado un cloro libre.
  • El cloro libre se unirá nuevamente con otra molécula de ozono. De esta manera, se repite el ciclo y el porcentaje de ozono en la estratósfera disminuye.

Agujero de la capa de ozono en la actualidad

Gracias al Convenio de Viena (1985), el Protocolo de Montreal (1987) y a la prohibición del uso de los CFC (1989), el agujero de la capa de ozono ha disminuido. Las mediciones realizadas en el 2018 muestran que la capa de ozono se ha recuperado cerca de un 1-3 % por década desde el 2000. De seguir así, los científicos esperan que el ozono del hemisferio norte y latitudes medias se recupere cerca del año 2030; el hemisferio sur en el 2050, y en las regiones polares en el 2060.

CONSECUENCIAS DE LA DEGRADACIÓN DE LA CAPA DE OZONO

El descubrimiento de que la capa de ozono se encontraba en disminución alarmó tanto a científicos como a la sociedad, ya que los efectos podrían ser devastadores para el ambiente y la salud. Entre las consecuencias están:

  • Aumento de la temperatura del planeta, lo que a la larga puede provocar derretimiento de  los polos y aumento del nivel del mar.
  • Tormentas tropicales más frecuentes o más intensas.
  • Inundaciones considerables.
  • Cambios en zonas agrícolas y en niveles de producción.
  • Cambios en ecosistemas naturales.
  • Escasez de agua potable.
  • Contaminación y lluvia ácida.
  • Amenaza a la vida silvestre.
  • Mayores tasas de cáncer de piel.
  • Daños al sistema inmunológico.
  • Daños a los ojos.
  • Posibles quemaduras severas.
  • Aumento del riesgo de dermatitis alérgica y tóxica.
  • Alteración del ADN.
  • Desplazamiento de vectores de enfermedades tropicales.
El aumento de las tormentas tropicales es una consecuencia de la degradación de la capa de ozono.

¿CÓMO PROTEGER LA CAPA DE OZONO?

  • Corroborar que los productos que se compran especifiquen que están libres de compuestos que dañen la capa de ozono.
  • No utilizar productos que contengan sustancias que alteren la capa de ozono, como los que contienen cloro y bromo.
  • Sustituir los extintores que usen gases halones por aquellos elaborados a base de agua, gas carbónico, nitrógeno o argón.
MATERIAL PARA EL DOCENTE

Infografía “Capa de ozono”

En esta infografía encontrará información didáctica sobre las características de la capa de ozono, su funcionamiento y las consecuencias de su pérdida.

VER

Artículo “Capa de Ozono”

Este artículo contiene mayor información sobre la capa de ozono y los clorofluorocarbonos.

VER

 

 

CAPÍTULO 9 / REVISIÓN

Impacto ambiental y catástrofes naturales | ¿qué aprendimos?

IMPACTO SOBRE LA BIÓSFERA

La biósfera es el subsistema que sustenta la vida de la superficie de la Tierra, se extiende desde la atmósfera hasta las zonas más profundas del océano. La biósfera es un ecosistema global compuesto por organismos vivos (biota) y factores abióticos (no vivos). De todos los seres vivos que habitan en el planeta, el hombre, con su modo de vida, provoca que su impacto en la Tierra sea mayor que el causado por cualquier otra especie. Dentro de las actividades humanas que afectan la biósfera se encuentran: el uso de energías a base de carbón, las cuales aumentan los gases de efecto invernadero; la deforestación, la cual contribuye con eliminar a los pulmones naturales del planeta; y la quema de basura, que genera gases tóxicos para el ambiente.

El término “biósfera” fue utilizado por primera vez en 1875 por Eduard Suess.

IMPACTOS EN LA TRAMA TRÓFICA

Se conoce como red trófica a la interconexión natural entre las cadenas tróficas de un ecosistema determinado. Cada uno de los compartimentos por los que fluye la energía recibe el nombre de nivel trófico, y a su vez están conformados por las especies o los eslabones. Para que las relaciones entre los organismos que conforman cada una de las redes funcionen de manera adecuada debe existir un equilibrio. Entre las actividades que dañan las redes tróficas se encuentran: la deforestación, los incendios provocados, la minería, los vertidos industriales y la pesca indiscriminada. A largo plazo, todas ellas provocan la desaparición o disminución de varios eslabones, lo cual a su vez trae como consecuencia la desaparición de otras especies y por lo tanto un desequilibrio en los ecosistemas.

El concepto de red alimenticia tiene su origen en los escritos de Charles Darwin.

DESASTRES NATURALES E INDUCIDOS

Se define como desastre natural a la pérdida de vidas humanas o bienes materiales a causa de fenómenos naturales. En esta categoría se incluyen los terremotos, los cuales ocurren cuando la tierra libera energía acumulada y hace que el suelo tiemble, los huracanes, los tifones y los ciclones, mismo tipo de fenómeno meteorológico en el que una gran tormenta gira en círculos y supera los 118 km/h, los tsunamis, que se producen a causa de una erupción o un deslizamiento, las mangas de agua, fenómeno natural que ocurre en aguas tropicales, y las sequías e inundaciones. Por otro lado, los desastres inducidos son aquellos provocados por la acción del ser humano, como los incendios, la deforestación y la contaminación.

Los desastres naturales pueden causar serios daños, entre ellos, pérdidas de vidas.

MOVIMIENTOS DE MASAS TERRESTRES

Las placas tectónicas se encuentran en constante movimiento. Sus bordes son activos, por lo que es frecuente que se produzcan fenómenos como los sismos, terremotos, tsunamis y erupciones volcánicas. Estas últimas, además de provocar la pérdida de muchas vidas humanas, tienen impactos graves en el medio ambiente, por ejemplo: la lluvia de cenizas, que modifica las características del agua, el humo, que posee gases nocivos tanto para el ser humano como para los seres vivos, y la lluvia ácida, la cual destruye la capa vegetal. Ante estas catástrofes existen medidas que suponen una prevención y garantizaran la posibilidad de sobrevivir, entre ellas se encuentran: identificar lugares seguros dentro o fuera del hogar, utilizar ropa que proteja la piel, alejarse de postes o cualquier objeto que tenga electricidad y, la más importante de todas, mantener la calma.

Las consecuencias de los desastres naturales generalmente son catastróficas, pero en los países subdesarrollados recuperarse económicamente es más difícil que en los desarrollados.

TEMPERATURA AMBIENTAL

El efecto invernadero es un proceso natural que calienta la superficie de la Tierra gracias a la presencia de ciertos gases que se encuentran en la atmósfera, como el dióxido de carbono, el vapor de agua, el metano, el ozono y los clorofluorocarbonos. Sin embargo, la actividad humana ha intensificado este fenómeno y algunas de las consecuencias de ello son: aumento de la radiación solar, acidificación de los océanos y derretimiento de los polos. Por otro lado, el calentamiento global es el aumento de la temperatura media de la atmósfera terrestre y del agua del mar. Algunas de las consecuencias de este fenómeno son: el deshielo de los casquetes polares, la disminución de la superficie cubierta por nieve o por hielo y la muerte de muchas especies, entre otras.

Si los gases de efecto invernadero siguen aumentando, la temperatura de la Tierra también lo hará.

EVIDENCIAS DE DEGRADACIÓN DE LA CAPA DE OZONO

La capa de ozono es una capa profunda de la estratósfera que rodea la Tierra y protege todo nuestro planeta de gran parte de la radiación ultravioleta. A lo largo de los años, la capa de ozono se ha visto afectada por las actividades humanas. El agujero de la capa de ozono es una de las consecuencias de ello, es una zona donde la cantidad de ozono está reducida de manera anormal. Para evitar la continua degradación de la capa, se recomienda corroborar que los productos que se compran estén libres de compuestos dañinos, no utilizar productos que contengan sustancias que alteren la capa de ozono, como cloro y bromo y, sustituir los extintores que usen gas halón por aquellos elaborados a base de agua, gas carbónico, nitrógeno o argón.

El ozono es un gas de color azul conformado por tres átomos de oxígeno en cada una de sus moléculas.

CAPÍTULO 3 / TEMA 4

AGUA

El agua es un compuesto químico de vital importancia que brinda grandes beneficios para los seres vivos. Es la sustancia más abundante en la Tierra. Está compuesta por hidrógeno y oxígeno.

Molécula vital

El agua es clave para la vida. El 70 % de nuestro cuerpo está formado por agua y es un alimento para nuestro organismo porque contiene sales minerales.

ESTADOS DEL AGUA

El proceso mediante el cual el agua pasa de estado sólido a líquido se llama fusión. En cambio, el proceso mediante el cual el agua pasa de estado líquido a sólido se denomina solidificación.

Si ponemos agua líquida a calentar, esta se transformará en vapor de agua. Este proceso se llama vaporización. Si hacemos el proceso inverso y enfriamos el vapor de agua, obtendremos nuevamente agua líquida. Esto se llama condensación.

El agua también puede pasar del estado sólido al gaseoso, es decir, de hielo a vapor de agua al aumentar la presión y bajar la temperatura: este proceso se llama volatilización o sublimación regresiva. Si, en cambio, el vapor de agua se congela, este proceso se llama sublimación.

ESTADOS DEL AGUA

Líquido

El agua en este estado puede encontrarse, por ejemplo, en mares, ríos y lagos.

 

Sólido

El hielo es un claro ejemplo de este estado. Lo podemos encontrar en glaciares.

 

Gaseoso

El vapor de agua es gaseoso. Lo vemos cuando el agua hierve o cuando nos damos un baño de agua caliente.

Agua en dos estados

En las aguas termales pueden encontrarse dos estados juntos: el vapor y el agua líquida.

PROPIEDADES DEL AGUA

El agua cuenta con diferentes propiedades que se clasifican en organolépticas y fisicoquímicas. Las primeras son las que percibimos con nuestros sentidos y las segundas tienen relación con la composición química.

  • Propiedades organolépticas

Inodora: no tiene olor.

Incolora: no tiene color.

Insípida: no tiene sabor.

  • Propiedades fisicoquímicas

Polaridad: tiene una distribución irregular de la densidad electrónica.

Capacidad calorífica: el agua necesita mucho calor para elevar su temperatura.

Tensión superficial: es un fenómeno a través del cual la gota de agua pareciera tener una superficie resistente. Así, un insecto se puede posar sobre una gota y no hundirse mediante adaptaciones en sus patas.

Capacidad de disolución: es el solvente universal.

Cambios de estado: sólido, líquido y gaseoso.

Efectos del pH
El pH ácido en el agua afecta el metabolismo de las especies acuáticas, toma el sodio de la sangre y el oxígeno de los tejidos; además, afecta el funcionamiento de las branquias de los peces. Si la acidez no los mata, el estrés adicional puede frenar el crecimiento y hacerlos menos capaces de competir por el alimento.

CICLO DEL AGUA

El ciclo del agua, también conocido como ciclo hidrológico, describe el movimiento continuo y cíclico del agua que circula entre los océanos, la atmósfera, la biósfera y la litósfera de nuestro planeta. El agua de las precipitaciones (lluvia, nevadas y glaciares) alimenta manantiales, ríos, lagos y acuíferos. Gracias a este ciclo todos los seres vivos tienen acceso al agua.

El ciclo del agua comienza con la evaporación. Este proceso puede darse de dos formas:

  • Evaporación de agua de mares, ríos y lagos.
  • Evapotranspiración, que es la transpiración de las plantas.
Agua dulce

Las aguas dulces de los arroyos, lagos y ríos apenas tienen 3 gramos de sal por litro. Este tipo de agua, que es la más escasa en el mundo, representa el 4 % del agua del planeta.

A medida que se eleva, el vapor de agua se enfría y se condensa en forma de pequeñas gotitas, lo que origina las nubes. Cuando las gotitas se juntan, se hacen más grandes y caen por su propio peso: se forma la lluvia (precipitación). Si hace mucho frío, esas gotitas se congelan y caen en forma de nieve o granizo.

El agua que llega a la superficie de la Tierra puede:

  • Ser aprovechada por los seres vivos.
  • Escurrir hasta alcanzar un curso de agua.
  • Filtrar en el suelo y formar acuíferos.

Finalmente, toda el agua que se encuentra en la Tierra en forma líquida vuelve a la atmósfera por medio de la evaporación y así se cierra el ciclo.

¿POR QUÉ EL AGUA ES UNA MOLÉCULA VITAL?

Al igual que el oxígeno, el agua es un elemento de la naturaleza esencial para que todas las formas de vida puedan existir. Es fundamental tanto para la reproducción de algunas especies de plantas y animales como para el desarrollo de los procesos biológicos que posibilitan la vida en nuestro planeta.

Los seres vivos tienen agua en su composición. Desde una bacteria hasta el ser humano contienen en su estructura este componente que puede hallarse en la sangre de los animales, en el citoplasma de las células o intervenir en las reacciones químicas que tienen lugar en los organismos.

Están compuestos por agua:

Plantas: entre un 75 % y un 90 %, según la especie.

¿Sabías qué?
Algunas plantas acuáticas tiene un gran valor alimentario y económico para las sociedades. Por ejemplo, el arroz es un alimento muy consumido en todo el mundo.

Animales: las proporciones varían desde un 40 % en insectos hasta casi un 100 % en medusas. Pero en promedio, el porcentaje de agua en animales es de un 75 %. Se debe tener en cuenta la etapa de la vida del organismo y la especie para poder determinar la proporción que posee de dicho líquido.

  • Importancia para la vida

Al ser el componente principal de los organismos vivos, el agua cumple diversas funciones, entre las que se destacan:

  • Permitir las reacciones químicas necesarias para el metabolismo celular.
  • Intervenir como medio de trasporte de sustancias.
  • Formar parte de la función de amortiguación que tienen las articulaciones de los animales vertebrados.
  • Regular la temperatura del cuerpo.
  • Humedecer el oxígeno para facilitar la respiración de animales.
  • Participar en el proceso de fotosíntesis en los organismos autótrofos.
Del agua dulce del planeta depende la supervivencia de las especies.

USOS DEL AGUA

  • Regulador de la temperatura

El agua, además de ser la principal fuente de vida de todos los seres vivos, juega un rol importante en la regulación de la temperatura a nivel corporal y planetario.

La temperatura corporal es regulada por el agua a través de la transpiración. El cuerpo incorpora agua de los alimentos que se consumen y de los subproductos del metabolismo. Cuando no se consume diariamente la cantidad de agua requerida, se genera un desequilibrio en los líquidos corporales, lo que provoca la deshidratación. En algunos casos, esta puede ser causa de muerte.

¿Sabías qué?
Una canilla que gotea desperdicia más de 75 litros de agua por día aproximadamente.

Por su parte, la hidrósfera y la atmósfera tienen un papel esencial en la regulación de la temperatura atmosférica. El agua de los mares y los océanos intercambia energía con la atmósfera en los períodos cálidos para devolverla en períodos fríos, así se evitan los cambios bruscos de temperatura. Al mismo tiempo, los vientos empujan las corrientes marinas que distribuyen el calor: llevan agua caliente procedente de latitudes tropicales hasta regiones que son frías.

Por otro lado, los casquetes polares y los hielos de los glaciares también contribuyen a la regulación de la temperatura terrestre al reflejar gran cantidad de radiación solar.

  • Energía hidroeléctrica

Una central hidroeléctrica utiliza el agua para generar energía eléctrica. Tiempo atrás, esta acción se realizaba con los molinos de agua, que aprovechaban las corrientes de los ríos para mover la rueda.

Las represas hidroeléctricas aprovechan la caída del agua desde una cierta altura para producir la energía. En el proceso, la caída de agua mueve una turbina para generar energía eléctrica. La naturaleza nos brinda este recurso, por ejemplo, en una cascada o una garganta.

Gran energía

La represa más grande, la Central Hidroeléctrica de las Tres Gargantas, se encuentra en Yichang, China.

  • Aguas residuales

Desechamos agua cuando nos bañamos, cocinamos o limpiamos. A este tipo de agua se la denomina residual y es la que también proviene de los procesos industriales. Para devolverla al medio de donde fue tomada, es necesario someterla a un proceso de limpieza para descontaminarla.

Para esto se llevan cabo procedimientos físicos, químicos y biológicos que pueden sintetizarse de la siguiente manera:

  1. Recepción del agua
  2. Sedimentación: el agua es vertida en piletas donde se retienen los sólidos, como la arena.
  3. Descontaminación: por acción bacteriana se eliminan sustancias contaminantes.

Luego de esta etapa, se llevan a cabo procesos iguales al de la potabilización del agua.

  1. Coagulación.
  2. Filtración.
  3. Cloración y desinfección.
  4. Devolución al ambiente.
El tratamiento del agua residual contribuye con el mantenimiento de este recurso natural.
RECURSOS PARA DOCENTES

Artículo “El agua”

Un artículo destacado con más información sobre el agua como sustancia vital para las especies.

VER

 

Galería de Infografías

Material gráfico referido a diferentes tópicos sobre el agua

VER

VER

VER

 

Mesosfera, termosfera y exosfera

Se conoce como atmósfera terrestre a la capa de gases que rodea el planeta Tierra y que lo protege de la radiación solar y otros cuerpos celestes. Está compuesta por 5 capas: tropósfera, estratósfera, mesósfera, termósfera y exósfera. 

Mesósfera Termósfera Exósfera
Orden Tercera capa de la atmósfera. Cuarta capa de la atmósfera. Quinta capa de la atmósfera.
Ubicación Entre unos 50 km y 80 km desde la superficie de la Tierra. Entre unos 90 km y 500 km desde la superficie de la Tierra. Entre unos 600 km y 10.000 km desde la superficie de la Tierra.
Limite Mesopausa. Termopausa. Espacio exterior.
Temperatura Alrededor de los -80 °C. Alrededor de los 1.500 °C. Es difícil de analizar en esta capa por su cercanía con el espacio exterior.
Composición química Principalmente oxígeno, dióxido de carbono y nitrógeno. Oxígeno, nitrógeno y helio. Similar al espacio exterior.
Densidad del aire Baja. Baja. Baja.
Dato curioso En esta capa los meteoritos son desintegrados. En esta capa se producen las auroras boreales. En esta capa hay una gran cantidad de polvo cósmico.

Anabolismo y catabolismo

El metabolismo es un proceso bioquímico que permite que un organismo viva, crezca, se reproduzca, sane y se adapte a su entorno. El anabolismo y el catabolismo son dos procesos o fases metabólicas, uno construye moléculas que el cuerpo necesita y el otro transforma las moléculas complejas en moléculas más pequeñas mediante la liberación de energía.

Anabolismo Catabolismo
Definición Los procesos anabólicos usan moléculas simples dentro del organismo para crear compuestos más complejos y especializados. Los procesos catabólicos descomponen compuestos complejos y moléculas para liberar energía.
Moléculas Las construye. Transforma las moléculas más complejas en otras más pequeñas.
Energía Requiere energía. Libera energía.
Conversión de la energía La energía cinética se convierte en energía potencial. La energía potencial se transforma en energía cinética.
Hormonas Estrógeno, testosterona, insulina y la hormona del crecimiento. Adrenalina, cortisol, glucagón y citosinas.
Oxígeno No utiliza oxígeno. Utiliza oxígeno.
Importancia Apoya el crecimiento de nuevas células, el almacenamiento de energía y el mantenimiento de tejidos corporales. Proporciona energía para el anabolismo, calienta el cuerpo y permite la contracción muscular.
Efecto sobre el ejercicio Los ejercicios anabólicos generalmente desarrollan masa muscular. Los ejercicios catabólicos suelen ser buenos para quemar grasas y calorías.
Ejemplos Asimilación en los animales y fotosíntesis en las plantas. Respiración celular, digestión y excreción.

 

Arterias y venas

Las venas y las arterias son órganos importantes en el sistema circulatorio de todos los vertebrados y forman dos sistemas cerrados que comienzan y terminan en el corazón. Trabajan juntos para transportar y oxigenar la sangre por todo el cuerpo, y para eliminar los desechos de cada célula con cada latido del corazón.

 

Arterias Venas
Dirección del flujo sanguíneo Transportan la sangre desde el corazón a los tejidos del cuerpo. Transportan sangre desde los tejidos del cuerpo de regreso al corazón.
Tipo de sangre Oxigenada. Desoxigenada (excepto la vena pulmonar).
Grosor Tienen paredes musculares gruesas y elásticas. Tienen paredes delgadas, menos elásticas y menos musculares.
Válvulas Ausentes. Presentes.
Presión Alta. Baja.
Color Rojizo. Azulado.
Tipos Pulmonares y sistémicas. Superficiales, profundas, pulmonares y sistémicas.
Diámetro interno Estrecho (4 mm). Ancho (5 mm).
Pulso Detectable. No detectable.
Paredes Rígidas. Flexibles.
Nivel de oxígeno Alto. Bajo.
Nivel de dióxido de carbono Bajo. Alto.
Contracción muscular Presente. Ausente.
Enfermedades Aterosclerosis, angina de pecho e isquemia miocárdica. Trombosis venosa profunda y varices.

 

Fotosíntesis y respiración celular

Existe una estrecha relación entre la fotosíntesis y la respiración celular ya que, los productos de un sistema son los reactivos del otro. Ambos consumen y crean las mismas sustancias como agua, glucosa, oxígeno y dióxido de carbono, pero de diferentes maneras. Juntos, permiten que la vida en la Tierra reúna energía para su uso en otras reacciones.

 

Fotosíntesis Respiración celular
Utiliza Luz solar, agua y dióxido de carbono. Glucosa y oxígeno.
Producto Glucosa y oxígeno. Dióxido de carbono y agua.
Ocurre en: Plantas y otros organismos fotosintéticos. Todos los seres vivos.
Propósito Capturar, convertir y almacenar la energía. Liberar energía.
Función en común Sintetizar y usar ATP Sintetizar y usar ATP
Proceso metabólico Anabólico Catabólico
Ubicación Cloroplasto Citoplasma y mitocondrias
Fuente de energía Luz solar Glucosa
Portadores de electrones NADPH NADH y FADH2
Etapas Reacciones de luz y ciclo de Calvin. Glucólisis, oxidación del piruvato, ciclo de Krebs y cadena de transporte de electrones.

 

Propiedades y nomenclatura de éteres

Los éteres son utilizados como solventes orgánicos en diversas reacciones de síntesis orgánica, así como en la separación de mezclas y purificación debido a sus propiedades física y químicas.

El dietil éter fue utilizado como anestésico quirúrgico en décadas pasadas, actualmente se prefiere el uso de sustancias cuyos efectos secundarios son menores.
El dietil éter fue utilizado como anestésico quirúrgico en décadas pasadas, actualmente se prefiere el uso de sustancias cuyos efectos secundarios son menores.

Los éteres (R-O–R´) son compuestos oxigenados que se caracterizan por tener dos cadenas carbonadas unidas a un átomo de oxígeno mediante enlaces simples C-O.

Dicho de otra forma, los éteres son el resultado de sustituir los hidrógenos de la molécula de agua por sustituyentes del tipo alquilo y arilo, entre otros.

PROPIEDADES FÍSICAS Y QUÍMICAS DE LOS ÉTERES

Los éteres son compuestos polares, ya que la suma de los momentos polares de sus enlaces es diferente de cero, así mismo los dos pares de electrones libres contribuyen a la polaridad de este tipo de compuestos.

Las fuerzas intermoleculares que predominan en los éteres son del tipo dipolo-dipolo. Además, debido a la ausencia de grupos hidroxilos en su estructura, no son capaces de formar enlaces o puentes de hidrogeno por lo cual sus puntos de ebullición son inferiores a los observados en alcoholes con masas molares semejantes.

Los éteres son sustancias más volátiles que los alcoholes.

En cuanto a su comportamiento químico, los éteres son sustancia de baja reactividad si se comparan con otros compuestos oxigenados, de allí que sean utilizados como solventes en diversas reacciones químicas.

Uno de los puntos a favor que presentan los éteres frente a otro solventes orgánicos polares como los alcoholes es que no se comportan como ácidos en presencia de una base fuerte y por tanto pueden ser utilizados en reacciones en medio básico sin riesgo alguno.

NOMENCLATURA DE ÉTERES

Según la nomenclatura funcional, los éteres se denominan al colocar el nombre de los sustituyentes en orden alfabético, seguidos de la palabra éter.

Por otra parte, debido a que los éteres son considerados derivados oxigenados de los alcanos, se pueden nombrar con la denominación del alcano correspondiente a la cadena principal precedido por el nombre del sustituyente alcoxido.

En el caso de los éteres cíclicos el nombre está conformado por el prefijo oxa- seguido del nombre del ciclo correspondiente, cuya numeración inicia en el átomo de oxígeno.

¡RECUERDA!

Las normas generales de nomenclatura orgánica son:

  1. Seleccionar la cadena principal, ésta siempre es la más larga y la que contiene el grupo funcional de mayor prioridad.
  2. Enumerar la cadena principal, para lo cual se asigna la numeración más baja posible al grupo funcional principal y a los sustituyentes e insaturaciones presentes en la estructura.
  3. Identificar y nombrar los sustituyentes presentes.
  4. Los sustituyentes se nombran en orden alfabético, en casos donde los sustituyentes se encuentran repetidos se utilizan prefijos de cantidad que no son considerados al momento de ordenar, por ejemplo: di = 2, tri = 3, tetra = 4, penta = 5, hexa = 6 y así sucesivamente.

¡Aplica lo aprendido!

Indica el nombre del siguiente éter.

  1. Ubicar los sustituyentes y enumerar la cadena principal de los mismos.

 

  1. El sustituyente señalado en azul es un alqueno, el nombre indica la posición del doble enlace seguida del prefijo correspondiente a la cadena principal y el sufijo –enil.

SUSTITUYENTES INSATURADOS

Para nombrar sustituyentes con doble y triple enlace es necesario cambiar los sufijos correspondientes a cada caso, como se indica a continuación:

-Alquenos, se cambia la terminación –eno por –enil.

-Alquinos, se cambia el sufijo –ino por -inil.

  1. El sustituyente señalado en verde tiene a su vez dos radicales iguales, los cuales se deben nombrar indicando la posición y utilizando el prefijo de cantidad correspondiente seguido del nombre de la cadena principal.

  1. Una vez que se nombran ambos sustituyentes, se agrega la palabra “éter” al final para completar el nombre del compuesto.

Los ciclos de la naturaleza

Los ciclos en los ecosistemas son de vital importancia para su funcionamiento, y es que cada ser vivo depende de los nutrientes que éstos le aportan para realizar sus funciones vitales; por lo que una variación en ellos generaría cambios drásticos a corto y largo plazo.

Un ciclo es definido por la Real Academia Española como una “serie de fases por las que pasa un fenómeno periódico”; por lo que al aplicarlo a los ciclos de la naturaleza podemos decir que son eventos o procesos naturales que ocurren continuamente.

Los seres vivos, tanto plantas como animales, están formados por elementos químicos (oxígeno, fósforo, carbono, entre otros) que funcionan como nutrientes esenciales para su funcionamiento normal y además el del ambiente circundante.

Dichos nutrientes se encuentran en las capas de la Tierra (atmósfera, hidrósfera y geósfera) durante un período de tiempo, pero pronto siguen una trayectoria hasta la superficie terrestre (suelo, agua) y a los individuos que en ella se encuentran, para posteriormente regresar a las capas de la Tierra y continuar el ciclo, formando lo que se conoce como ciclos biogeoquímicos.

Los nutrientes van circulando entre la superficie terrestre y las capas de la Tierra a través de diferentes procesos (lluvias, evaporación, condensación, transpiración, etc.).
Ciclos biogeoquímicos
bio”: organismos vivos.
geo”: capas de la Tierra (rocas, aire, agua).
químicos”: elementos químicos.

Si decimos que los nutrientes siguen un ciclo constante en la Tierra, podemos calificarla entonces como un sistema cerrado, en el que los nutrientes están siendo aprovechados primero por los organismos y luego por los ecosistemas o viceversa.

Los ciclos biogeoquímicos de los nutrientes que circulan constantemente en la naturaleza son:

Ciclo del Carbono (C): El carbono es, si se quiere, el elemento principal del esqueleto de las biomoléculas (carbohidratos, lípidos, proteínas y ácidos nucleicos) que constituyen a los seres vivos; lo encontramos en el aire, en el suelo o disuelto en el agua.

Atmósfera: capa de gas que rodea la Tierra.

Hidrósfera: capas de agua que se encuentran debajo o cubriendo la superficie de la Tierra.

Geósfera: capa de rocas (sólidas o fluidas) que se encuentra en la Tierra.

La forma en la que principalmente se presenta el carbono es como dióxido de carbono (CO2).

El dióxido de carbono (CO2) que se encuentra en la atmósfera es utilizado por las plantas para realizar la fotosíntesis. De igual forma, durante la respiración éstas tomarán oxígeno para convertirlo en moléculas de CO2 que serán devueltas a la atmósfera.

La superficie terrestre, específicamente el suelo, presenta grandes cantidades de carbono producto de la descomposición de los desechos orgánicos de plantas y animales (excremento, hojas secas, etc.); de este proceso de descomposición realizado principalmente por bacterias, se produce CO2.

En el subsuelo, por su parte, existen los llamados combustibles fósiles, que no son más que yacimientos de carbón, gas natural y petróleo. Al extraerlos del suelo y realizar la combustión desprenden CO2 como un subproducto.

Las rocas, la acción de las industrias, los vehículos, las erupciones volcánicas y los incendios son fuentes de carbono, que es liberado a la atmósfera para que continúe el ciclo.

Ciclo del carbono.
En la naturaleza se presentan varios ciclos geoquímicos.

Ciclo del Oxígeno (O2): Este ciclo va de la mano del ciclo del carbono, ya que, producto de la fotosíntesis, a pesar de que se invierte CO2, se produce oxígeno que es liberado a la atmósfera. Caso contrario al proceso de respiración, donde se consume oxígeno por los animales y plantas.

¿Sabías qué...?
El dióxido de carbono representa el 0,03% de los compuestos gaseosos que están presentes en la atmósfera.

El oxígeno es indispensable para los seres vivos, debido a ello lo podemos encontrar como parte de las siguientes moléculas:

Ciclo del oxígeno.

Ciclo del agua o ciclo hidrológico: El 71 % de la superficie terrestre y el 65-75 % del peso corporal del hombre está formado por agua, por lo que la circulación de esta molécula es de gran importancia en los ecosistemas.

En la Tierra la podemos encontrar en forma líquida, sólida (glaciares, iceberg) o en forma de vapor, dependiendo de la fase del ciclo en la que se encuentre.

El ciclo del agua está condicionado principalmente por la energía emitida por el Sol y por la fuerza de gravedad.

En la atmósfera el agua se encuentra en forma de vapor (gas) proveniente de la transpiración de las plantas, animales y de la evaporación de esta en los océanos. Cuando desciende la temperatura, este vapor de agua se condensa y se forman las nubes, las cuales llegado el momento precipitan a la superficie terrestre (ríos, lagos, mares, suelo) en forma de granizo, nieve o lluvia.

En este punto el agua presente en la superficie se infiltra en el subsuelo, originando depósitos de aguas subterráneas, también puede evaporarse por el calor generado por acción del sol a medida que sigue su trayectoria hacia los océanos.

Ciclo del Nitrógeno (N): El nitrógeno es uno de los componentes principales de los aminoácidos, constituyentes de las proteínas de todos los seres vivientes; aunque este elemento se encuentra en gran abundancia en la atmósfera no es tan sencillo de aprovechar por los organismos vivos, debido a su carácter inerte (no es químicamente reactivo puesto que posee sus capas de valencia saturadas).

Ciclo del nitrógeno.

Sin embargo, para poder emplearlo, la naturaleza ha evolucionado de tal forma que el nitrógeno atmosférico debe fijarse en el suelo con otros elementos, ya sea por acción de un grupo de bacterias especializadas (de vida libre o asociadas a raíces de las plantas) o en menor medida por acción de los relámpagos.

Para esto las bacterias presentes en el suelo convierten parte del nitrógeno que se encuentra en los desechos de los animales y plantas (excremento, hojas secas, etc.) en proteínas, y los restos de nitrógeno lo liberan al suelo en forma de amoniaco (NH3) o amonio (NH4+), proceso conocido como amonificación; o como nitrato (NO3) , generando la nitrificación.

En dicho caso, el nitrato es absorbido por las plantas para formar las proteínas que servirán de alimento a los animales. Posteriormente este nitrógeno regresa al suelo a través de los desechos de los animales o al morir éstos, y vuelven a la atmósfera producto de la desnitrificación, proceso en el que las bacterias transforman el nitrato en nitrógeno gaseoso.

Bacterias como Enterobacter, Rhizobium y Klebsiella transforman el nitrógeno para que este pueda ser aprovechado por plantas y animales.

Ciclo del Fósforo (P): El fósforo a diferencia de los elementos químicos anteriores, no se encuentra en la atmósfera sino más bien en el suelo, específicamente en las rocas o sedimentos en forma de fosfato inorgánico (Pi). Allí, como producto de la erosión por el agua, es liberado y tomado por los productores primarios (plantas, bacterias) para formar biomoléculas, las cuales servirán de alimento para organismos superiores, que podrán incorporar de esta forma el fósforo a su sistema, el cual posteriormente regresará al suelo cuando estos organismos mueran.

La degradación y transporte del suelo (erosión) proporciona el medio ideal para la movilización del fosfato inorgánico (Pi) a los diferentes ecosistemas.
Sedimento: partículas de rocas o suelo que son arrastrados por el agua y que tienden a depositarse en ríos, lagos, mares, océanos.

En la naturaleza, los nutrientes nunca se encuentran distribuidos de forma homogénea ni se encuentran presentes en la misma forma química en todo el ecosistema; he aquí donde radica la importancia de los ciclos para el ecosistema y para los seres vivos que lo componen.

Actualmente los avances en las actividades humanas han generado desequilibrios en la proporción de estos elementos y sus diferentes formas químicas presentes en los ecosistemas, trayendo como consecuencia el calentamiento global, que no es más que el aumento de la temperatura de la Tierra.

¿Sabías qué...?
La mayor cantidad de agua en la Tierra se encuentra en los mares y océanos (95 %).

Las actividades humanas que contribuyen con el desequilibrio en la dinámica de los ciclos biogeoquímicos son: la deforestación, algunas actividades agrícolas (principalmente por el uso de fertilizantes), emanación de gases por las industrias y los automóviles, vertidos de aguas contaminadas (sin tratamiento) a los ecosistemas acuáticos, entre otras.

Una de las mayores consecuencias del aumento de la temperatura es el derretimiento acelerado de los glaciares y icebergs, lo que genera un aumento del nivel del mar.
Los productos químicos (fertilizantes) utilizados en la agricultura aceleran y alteran el flujo del carbono y el nitrógeno a la atmósfera.

Estas actividades no sólo causan variaciones en los ciclos, sino también en los organismos (plantas, animales, bacterias) que los necesitan para realizar sus funciones vitales.

Los animales dependen de los ciclos biogeoquímicos para realizar sus funciones vitales.

Afinidad y valencia química

Los elementos químicos son sustancias que no pueden descomponerse en sustancias más simples mediante procesos químicos ordinarios. Los elementos son los materiales fundamentales de los que se compone toda la materia.

Valencia y afinidad química

El concepto de afinidad química hace referencia a la tendencia de un átomo o de una molécula a reaccionar o combinarse con otros átomos u otras moléculas distintas. Definido en términos parecidos, el concepto ya fue introducido en la química en el s. XVIII. Pero para que un concepto tenga realmente carácter científico debe estar asociado a una magnitud medible y de ahí que en el s. XIX se explorasen posibles maneras de medir la afinidad. Se asoció finalmente con la disminución de la energía libre (función de estado de un sistema que depende de la concentración de las sustancias, la presión y la temperatura). Sin embargo, nosotros utilizaremos aquí el concepto de afinidad de un modo laxo, como un recurso de lenguaje para expresar la tendencia a reaccionar de dos sustancias, dos moléculas o dos átomos.

¿Sabías qué...?
El 6 de marzo de 1869 fue presentada por el científico ruso Dimitri Mendeleev la primera tabla periódica. El elemento radioactivo mendelevium es un homenaje a él.

Si dos elementos son afines, en condiciones adecuadas reaccionarán para formar un compuesto. Esos dos elementos se combinarán en determinada proporción, lo que sugiere el concepto de valencia química, que puede definirse como un número entero que expresa la capacidad de combinación de un átomo con otros para formar un compuesto. Aclararemos y ampliaremos esta definición con un ejemplo: el hidrógeno y el oxígeno se combinan para dar agua según la reacción

Hidrógeno + oxígeno = agua

La fórmula del agua es H2O, lo que significa que la molécula de agua está formada por tres átomos: dos de hidrógeno y uno de oxígeno. Así pues, el oxígeno y el hidrógeno se combinan en la proporción 1:2, es decir, que el oxígeno “vale” o tiene valencia doble que la del hidrógeno. Si damos el valor 1 a la valencia del hidrógeno, la valencia del oxígeno será 2.

Las valencias son el número de enlaces que puede formar un elemento químico.

Análogamente a como hemos razonado la valencia del oxígeno se razona la valencia de otros no metales. Así, para el cloro, puesto que se une al hidrógeno para formar cloruro de hidrógeno (HCl) en la proporción 1:1, la valencia será 1; para el nitrógeno, que se une al hidrógeno para formar amoníaco (NH3) en la proporción 1:3, la valencia será 3; y para el carbono, que se une al hidrógeno para formar metano (CH4) en la proporción 1:4, la valencia será 4.

En el caso de los metales, la valencia se computa a partir del número de átomos de hidrógeno que el metal sustituye en un compuesto. Así, en el cloruro de sodio (sal común, NaCl) el átomo de sodio, Na, sustituye a un átomo de hidrógeno (ya que el ácido del que deriva la sal es HCl), por lo tanto la valencia del sodio es 1. En el carbonato de calcio (caliza, CaCO3), el átomo de calcio sustituye a dos átomos de hidrógeno, por lo tanto la valencia del calcio es 2.

Existen muchos elementos que presentan valencias de valores distintos; así el nitrógeno es trivalente en el amoníaco, pero forma óxidos con las valencias 2, 3, 4 y 5.

Teoría del enlace de valencia

Es una teoría química que explica que un átomo central de una molécula tiende a formar pares de electrones, de acuerdo con las restricciones geométricas, definidas por la regla del octeto.