CAPÍTULO 4 / TEMA 3

Propiedades de la potencia

Cada vez que necesitamos hacer una multiplicación del mismo número repetidas veces, recurrimos a la potenciación. Esta operación, así como muchas otras, cumple con ciertas propiedades. ¿Cuál es la manera correcta de aplicarlas?, ¿cuáles son los beneficios? A continuación, aprenderás cuáles son y sus aplicaciones prácticas.

La potencia o potenciación es una operación matemática que consiste en multiplicar varias veces un mismo número. Consta de una base, que es el número que se multiplica, y de un exponente, que es el número que señala la cantidad de veces que se multiplica la base por sí misma. Es decir, la potenciación no es más que una multiplicación abreviada.

principales propiedades de la potencia

Las propiedades de potenciación tienen una gran cantidad de aplicaciones, pero también tienen ciertas restricciones y es importante conocerlas para no cometer errores en su resolución. Entonces, siempre que apliquemos las propiedades será a las operaciones de multiplicación y división, nunca será a las operaciones de suma y resta.

En verde están las operaciones a las que aplicaremos las propiedades de potenciación, y en rojo, las operaciones a las que no podremos aplicarlas nunca.

En la siguiente tabla podrás observar las propiedades de la potenciación:

Propiedades de la potenciación
Producto de potencia de igual base a· a= a(m + n)
Cociente de potencia de igual base a/ a= a(m − n)
Potencia de potencia (am)= an · m
Producto de potencias con bases diferentes y exponentes iguales a· bn = (a · b)n
Cociente de potencias con bases diferentes y exponentes iguales a/ b= (a / b)n
Exponente negativo a−n = 1 / an

¿Sabías qué?
Cuando el exponente es negativo, mientras mayor sea su valor más pequeño será el resultado.

Notación científica

La notación científica es una forma de expresar cantidades muy grandes o muy pequeñas que le ha permitido a los científicos simplificar sus cálculos. Es conocida también como notación o patrón exponencial porque emplea potencias de base 10 dentro de su expresión. Las potencias de base 10 son iguales a la unidad seguida de tantos ceros como indique el exponente. Un ejemplo de notación científica lo vemos en las masas de los objetos astronómicos, por ejemplo, la masa de la Luna es de aproximadamente 735 × 1020 kg.

Ejemplos prácticos

Aplicación a la suma y resta

La aplicación de las propiedades corresponde a varias operaciones matemáticas pero no a la suma y la resta. Sin embargo, eso no significa que no pueda aplicarse a ejercicios donde existan muchos términos que se suman o se restan. Cuando esto sucede, se aplican las propiedades solo a los términos por separado.

Producto de una potencia de igual base

Cuando existe una multiplicación entre dos potencias con igual base, el resultado final será la misma base elevada a la suma de los exponente de potencias que se multiplicaron. Por ejemplo:

  • 5· 52 = 5(3 + 2) = 55
  • 4· 40 = 4(2 + 0) = 42
  • 68 · 62 · 63 = 6(8 + 2 + 3) = 613

Cociente de una potencia de igual base

Cuando dividimos dos potencias con igual base el procedimiento es similar al de la multiplicación, con la diferencia de que aquí restamos los exponentes de las potencias. Por ejemplo:

  • 53 / 52 = 5(3 − 2) = 51
  • 42 / 40 = 4(2 − 0) = 42

Potencia de una potencia

Cuando tenemos una base elevada a un exponente n, y esta a su vez está elevada a otro exponente m, el resultado final lo obtenemos al multiplicar ambos exponentes (n · m). Por ejemplo:

  • (42)4 = 42 · 4 = 48
  • (33)3 = 33 · 3 = 39

Producto de potencias con bases diferentes y exponentes iguales

Si multiplicamos dos potencias con igual exponente y bases distintas, el resultado será igual a mantener el exponente y solo multiplicar las bases. Por ejemplo:

  • 53 · 43 = (5 · 4)3
  • 32 · 22 = (3 · 2)2

Cociente de potencias con bases diferentes y exponentes iguales

De igual manera que en el caso anterior, el resultado será el cociente de las bases elevadas al exponente. Por ejemplo:

  • 53 43 = (5/4)3
  • 32 / 22 = (3/2)2

Exponente negativo

Cuando el exponente es negativo, la potencia será igual a la inversa de su base y el mismo exponente con signo positivo. Por ejemplo:

  • (2)2 = (1/2)2 = 1/22 = 1/4
  • (1/2)−1 = 2
Los átomos son las unidades básicas de toda la materia. En conjunto crean las moléculas y son microscópicos. Para poder medir las distancias entre ellos se usa una unidad de longitud llamada angstrom (Å = 1 x 10−10 metros). El exponente igual a −10 nos indica que el valor en metros es equivalente a 0,0000000001 m.

Potencia de decimales y fracciones

Cuando las bases son decimales o fracciones, las propiedades se mantienen sin distinción. Por ejemplo:

  • (0,1)2 = (0,1) · (0,1) = 0,01

Observa que 0,1 = 1 · 10−1 , y aquí se puede aplicar la propiedad de potencia de potencia. 

  • (0,1)2 = (1 · 10(−1))2 = 10(−1) · 2 = 102 = 0,01

De la misma manera, si sabemos que 0,1 = 1/10:

  • (0,1)2 = (1/10)2 = 1/102 = 1/100 = 0,01

Cualquiera sea la expresión que se elija para resolver la operación se debe llegar al mismo resultado.

¡A practicar!

Aplica la propiedad correspondiente en cada caso:

  • 34 · 3· 33

Solución
34 · 31 · 33 = 3(4 + 1 + 3) = 38 = 6.561
  • 62 / 62

Solución
62 / 62 = 6(2 − 2) = 60 = 1
  • (7−1)−3

Solución
(7−1)−3 = 7(−1) · (−3) = 73 = 343
  • 63 · 83

Solución
63 · 83 = (6 · 8)3 = 483 = 110.592
  • (−1/2)−2

Solución
(−1/2)−2 = (−2)2 = (−2) · (−2) = 4 
  • 83 / 43

Solución
83 / 43 = (8/4)3 = 23 = 8
RECURSOS PARA DOCENTES

Artículo “Ejercicios de propiedades de la potencia”

En el artículo podrá reforzar las propiedades de potenciación vistas a partir de ejemplos y ejercicios. También se explica la importancia de la correcta aplicación de las propiedades en cada término al sumar o restar.

VER

CAPÍTULO 2 / TEMA 2

OPERACIONES COMBINADAS

En ocasiones necesitamos efectuar cálculos que combinan varios tipos de números y, por lo tanto, diferentes tipos de operaciones. Para estos casos lo más importante es saber las jerarquías o el orden en el que debemos resolverlos, y para eso están los signos de agrupación. Aprendamos cuáles son y cómo usarlos.

SIGNOS DE AGRUPACIÓN

En matemática, los signos de agrupación hacen referencia a los paréntesis “( )”, corchetes “[ ]” y llaves “{ }” que empleamos para saber el orden o prioridad en el que realizamos las operaciones. En este sentido, existe una convención respecto a la jerarquía de estos signos:

  • En primer lugar, resolvemos los cálculos que se encuentran entre paréntesis “( )”.
  • En segundo lugar, realizamos los cálculos que están agrupados dentro de los corchetes “[ ]”.
  • Finalmente, hacemos las operaciones que están dentro de las llaves “{ }”.

¿Sabías qué?

En una ecuación no deberían aparecer corchetes sin la presencia de paréntesis, ya que los paréntesis tienen la prioridad en el orden de operaciones.

Operaciones combinadas en la calculadora

Muchas calculadoras u hojas de cálculo no utilizan los corchetes ni las llaves para jerarquizar el orden de operaciones combinadas y solo aplican los paréntesis para indicar qué operaciones se realizan primero. Por ejemplo, si deseamos resolver la operación:

\sqrt{\frac{\left ( 27-15 \right )\times 8}{\left [ (11+39)-(47-19) \right ]\times 6}}

El modo de introducir esta operación en algunas calculadoras (con entrada de datos SVPAM) sería:

Como observamos, hay diferentes niveles de jerarquía en los paréntesis, que en este caso, los denotamos por colores.

En las calculadoras también debemos emplear los signos de agrupación para indicar el orden de las operaciones. El uso incorrecto de los paréntesis, o su omisión cuando se necesiten, arrojará resultados erróneos. Por ejemplo, la operación (12 − 10) / 4 da como resultado 0,5; sin embargo, si obviamos los paréntesis y solo escribimos 12 − 10 / 4, el resultado será 9,5.

METODOLOGÍA PARA RESOLVER PROBLEMAS COMBINADOS

Cuando se presentan ejercicios que combinan diversas operaciones, así como diferentes tipos de números, es recomendable que sigamos los siguientes pasos:

1. Identificamos los signos de agrupación que aparecen en el ejercicio para saber el orden en el que vamos a resolver los términos. En este ejemplo tenemos paréntesis, corchetes y llaves.

\frac{1}{12}\times \left \{ -36\times \left [ \frac{5}{3}\times \left ( -\frac{9}{4}\times 7,81+22,06 \right ) \right ] \right \}=

2. Realizamos primero las operaciones que se encuentran dentro del paréntesis.

\frac{1}{12}\times \left \{ -36\times \left [ \frac{5}{3}\times \left ( {\color{Red} -\frac{9}{4}\times 7,81+22,06} \right ) \right ] \right \}=

Multiplicación y división primero

Si en una operación tenemos dos o más términos que se suman o restan y no hay paréntesis, pero a su vez cada término tiene una multiplicación o una división, primero hacemos la multiplicación o la división antes de hacer la suma o la resta.

Multiplicamos la fracción por 7,81 ya que esta operación tiene prioridad sobre la suma. Las multiplicaciones se resuelven de manera lineal, así que basta con multiplicar −9 × 7,81, y dividir el producto de esta multiplicación entre el denominador de la fracción (4).

-9\times 7,81 = -70,29

-70,29\div 4=-17,5725

Luego realizamos la suma de este resultado con 22,06. Como se trata de una suma de números con signos diferentes, empleamos una regla de los signos: ambos números se restan y se mantiene el signo del número con mayor valor absoluto.

(-17.5725)+ (22,06)=4,4875

3. Una vez que realizamos todas las operaciones dentro del paréntesis, lo eliminamos y agregamos el resultado obtenido. Luego seguimos con las operaciones dentro de los corchetes:

\frac{1}{12}\times \left \{ -36\times \left [ {\color{Blue} \frac{5}{3}}{\color{Blue} \times 4,4875} \right ] \right \}=

Multiplicamos el número decimal por 5 y el producto lo dividimos entre 3.

5\times 4,4875=22,4375

22,4375\div 3\approx 7,48

4. Eliminamos los corchetes y colocamos el resultado obtenido. A continuación, realizamos la operación dentro de las llaves:

\frac{1}{12}\times \left \{{\color{Green} -36\times 7,48} \right \}=

Multiplicamos el número negativo por el número decimal. Aplicamos la regla de los signo para la multiplicación: (−)(+)=(−).

-36\times 7,48 = -269,28

5. Por último, resolvemos la multiplicación. En este caso solo tenemos que multiplicar el resultado anterior por la fracción 1/12, lo que es igual a solo dividir entre 12 el número −269,28.

1\times -269,28=-269,28

-269,28\div 12=-22,44

6. Escribimos el resultado:

\frac{1}{12}\times \left \{ -36\times \left [ \frac{5}{3}\times \left ( -\frac{9}{4}\times 7,81+22,06 \right ) \right ] \right \}=\boldsymbol{-22,44}

En ocasiones no se utilizan todos los signos de agrupación y se trabaja solo con paréntesis que tienen diferentes jerarquías como podemos ver en la parte superior de la imagen. En este caso, debemos resolver primero las operaciones que están dentro de los paréntesis más internos hasta terminar con los paréntesis externos.

EJERCICIOS COMBINADOS

Los ejercicios combinados pueden involucrar diferentes tipos de números y además varias operaciones, y de ser necesario, el orden para realizarlos viene determinado por los signos de agrupación.

Si los términos dentro de un signo de agrupación contienen diferentes tipos de números, por ejemplo, fracciones, decimales, potencias o radicales; será necesario que realicemos primero una transformación para unificar el tipo de número antes de resolver.

– Ejemplo:

\left \{ \frac{8}{12}\left [ 5^{3}-\left ( \frac{9}{7}-\frac{2}{3} \right ) \right ]+\sqrt{4} \right \}=

  • Primero resolvemos la operación dentro de los paréntesis:

\left \{ \frac{8}{12}\left [ 5^{3}-\left ({\color{Red} \frac{9}{7}-\frac{2}{3} }\right ) \right ]+\sqrt{4} \right \}=

En este caso, es una resta de fracciones:

\frac{9}{7}-\frac{2}{3}=\frac{27-14}{21}=\frac{13}{21}

  • Eliminamos los paréntesis y colocamos el resultado. Luego resolvemos la operación dentro de los corchetes:

\left \{ \frac{8}{12}\left [ {\color{Blue} 5^{3}-\frac{13}{21}} \right ]+\sqrt{4} \right \}=

Resolvemos la potencia:

5^{3}=5\times 5\times 5 = 125

Después resolvemos la resta:

\frac{125}{1}-\frac{13}{21}=\frac{2.625-13}{21}=\frac{2.612}{21}

Expresamos la fracción como su número decimal equivalente por medio de una división entre su numerador y denominador:

2.612\div 21=124,38

  • Eliminamos lo corchetes y escribimos el nuevo resultado. Ahora, resolvemos las operaciones dentro de las llaves:

\left \{ {\color{Green} \frac{8}{12}\times 124,38} +\sqrt{4}\right \}=

Tenemos dos operaciones dentro de las llaves, y como las multiplicaciones tienen prioridad sobre las sumas, hacemos la multiplicación de la fracción con el número decimal primero:

8\times 124,38=995,04

995,04\div 12=82,92

Después realizamos la suma con el radical:

\left \{ 82,92+\sqrt{4} \right \}=

Resolvemos la raíz cuadrada. En este caso, es un cuadrado perfecto y la raíz es exacta.

\sqrt{4}=2

Finalmente sumamos:

82,92+2=84,92

  • Por último, escribimos el resultado:

\left \{ \frac{8}{12}\left [ 5^{3}-\left ( \frac{9}{7}-\frac{2}{3} \right ) \right ]+\sqrt{4} \right \}=\boldsymbol{84,92}

Las operaciones básicas utilizadas en aritmética son la suma, la resta, la multiplicación y la división. Sin embargo, podemos encontrar otras operaciones, como la potenciación, que en esencia es una multiplicación sucesiva de factores iguales. Por ejemplo, si queremos conocer el resultado de 23, solo efectuamos la operación 2 x 2 x 2 = 8.

¡A practicar!

Determina la solución de los siguientes ejercicios combinados.

  • \frac{8}{9}\left \{ -14,7+\frac{6^{3}}{4}\left [ 3^{2}+\sqrt{9}\times \left ( 6,5-\frac{13}{4} \right ) \right ] \right \}=
Solución

\frac{8}{9}\left \{ -14,7+\frac{6^{3}}{4}\left [ 3^{2}+\sqrt{9}\times \left ( 6,5-\frac{13}{4} \right ) \right ] \right \}=\boldsymbol{886,9\widehat{3}}

  • \left \{ \frac{1}{3}\times \frac{7}{8}+\sqrt{4}\left [ 2^{3}-\frac{21}{9}\left ( 0,75+\frac{3}{2} \right ) \right ] \right \}=
Solución

\left \{ \frac{1}{3}\times \frac{7}{8}+\sqrt{4}\left [ 2^{3}-\frac{21}{9}\left ( 0,75+\frac{3}{2} \right ) \right ] \right \}=\boldsymbol{5,79}

  • 2\left \{5^{3} \left [ \frac{1}{5}\left ( 8,36-\sqrt{25} \right )+3 \right ] \right \}=
Solución

2\left \{5^{3} \left [ \frac{1}{5}\left ( 8,36-\sqrt{25} \right )+3 \right ] \right \}=\boldsymbol{918}

RECURSOS PARA DOCENTES

Artículo “¿Cómo realizar ejercicios combinados con fracciones?”

Este recurso describe por medio de ejemplos el procedimiento para realizar operaciones combinadas entre números naturales, fracciones y potencias.

VER

Artículo “Los números irracionales”

El enlace que se presenta explica las características y propiedades de los números irracionales, así como ejemplos de esta categoría de números.

VER

Artículo “Resolución de cálculos combinados con paréntesis, corchetes y llaves”

Con este material podrá expandir la práctica sobre las operaciones combinadas y sus respectivos signos de agrupación.

VER

 

CAPÍTULO 3 / TEMA 1

Las fracciones y sus usos

En diversas situaciones cotidianas usamos números naturales para expresar la hora, nuestra edad o un número de teléfono. Sin embargo, si queremos indicar las partes de algo debemos recurrir a los números racionales, también conocidos como fracciones. Usamos estos números frecuentemente: por ejemplo, cuando hacemos una receta o al comprar una bebida.

¿Qué es una fracción?

Una fracción es una parte de un número entero y se representa como una división o un cociente. Está formada por un numerador y un denominador, ambos separados por una raya fraccionaria.

El denominador nos indica en cuántas partes hemos dividido el entero, mientras que el numerador nos muestra cuántas de esas partes hemos tomado.

 

– Ejemplo:

Compramos una barra de chocolate muy grande, entonces decidimos dividirla en tres partes iguales y comernos solo dos de esas porciones, ¿cómo representamos esa cantidad?

Primero consideramos la barra como un todo.

Luego, dividimos el todo en tres partes. Esto significa que el denominador es igual a 3.

Sombreamos o pintamos las dos partes que no comimos. Esto significa que el numerador es 2.

Este último gráfico representa a la fracción 2/3. Es decir, nos comimos 2/3 de chocolate.

¿Sabías qué?

Además de la raya fraccionaria, podemos representar números fraccionarios con diagonales o como divisiones. Por ejemplo:

\boldsymbol{\frac{1}{2}=1/2 =1\div 2}

VER INFOGRAFÍA

Imagina que estás con tres amigos y debes repartir una pizza para todos, ¿cómo harías el reparto? ¡Muy sencillo! Solo debes cortarla en cuatro partes iguales y cada uno podrá comer una rebanada, es decir, cada quien tomará 1/4 de la pizza. Observa que el pedazo que comes es igual al numerador y la cantidad total de pedazos es igual al denominador.

¿Cómo se leen las fracciones?

Cada vez que dividimos un entero, este recibe un nombre diferente. Observa esta tabla:

Partes en la que dividimos al entero ¿Cómo se lee?
2 Medios
3 Tercios
4 Cuartos
5 Quintos
6 Sextos
7 Séptimos
8 Octavos
9 Novenos
10 Décimos
11 Onceavos
12 Doceavos
13 Treceavos
14 Catorceavos
15 Quinceavos
16 Dieciseisavos
17 Diecisieteavos
18 Dieciochoavos
19 Diecinueveavos
20 Veinteavos
30 Treintavos
40 Cuarentavos
50 Cincuentavos
60 Sesentavos
70 Setentavos
80 Ochentavos
90 Noventavos
100 Centavo

Así que para la lectura de fracciones seguimos estos pasos:

  1. Lee el número del numerador.
  2. Lee el número del denominador, es decir, las partes en las que se dividió el entero según la tabla.

– Ejemplos:

 

  • \frac{2}{8}  se lee “dos octavos”.

 

  • \frac{1}{2}  se lee “un medio”.

 

  • \frac{13}{40}  se lee “trece cuarentavos”.

 

  • \frac{1}{10}  se lee “un décimo”.

 

  • \frac{7}{15}  se lee “siete quinceavos”.

 

  • \frac{25}{100}  se lee “veinticinco centavos”.

 

Observa que cuando el numerador es 1, decimos “un” en lugar de “uno”.



Una fracción es una parte del número entero y se representa como una división o un cociente. Es un tipo de número muy usado en la cocina. Por ejemplo, cuando desayunamos podemos agregar a nuestro cereal 1/2 taza de leche o yogurt, también podemos añadir 1/4 de taza de frutas.

¿Sabías qué?
Una fracción con denominador 1 es igual a un número entero, por eso es común no escribir el denominador en estos casos. Por ejemplo, 8/1 = 8.

Tipos de Fracciones

Las fracciones pueden ser propiasimpropias o aparentes.

Fracciones propias

Son aquellas fracciones en las que el numerador es menor que el denominador. Estas fracciones siempre son menores que 1. Por ejemplo:

\frac{2}{3},  \frac{1}{4} y \frac{7}{10}

Fracciones impropias

Son aquellas fracciones en las que el numerador es mayor que el numerador. Estas fracciones siempre son mayores que 1. Por ejemplo:

\frac{4}{3},  \frac{5}{2} y \frac{8}{6}

Fracciones aparentes

Son aquellas fracciones cuyo numerador es múltiplo del denominador. Por ejemplo:

\frac{6}{3}=2

\frac{10}{2}=5

 

¿Qué tipo de fracción es?

Clasifica las siguientes fracciones en propias, impropias o aparentes:

  • \frac{8}{2}
Solución
Fracción aparente.
  • \frac{3}{5}
Solución
Fracción propia.
  • \frac{9}{4}
Solución
Fracción impropia.

 

Gráfico de Fracciones

De acuerdo al tipo de fracción, podemos graficar un entero o más de uno. Si es una fracción propia, usaremos un entero; sin embargo, si se trata de una fracción impropia, utilizaremos más de un entero.

Gráfico de fracciones propias

Este tipo de fracciones tiene el numerador menor que el denominador y siempre son menores que 1. Para graficarlas solo dibujamos cualquier figura (será el entero) y la dividimos en tantas partes como indique el denominador. Luego, pintamos las partes que señale el numerador.

– Ejemplo:

Realiza el gráfico de la fracción \frac{5}{8}

1. Dibujamos una figura, esta será el entero o “el todo”. En este caso es un rectángulo.

2. Dividimos el entero en 8 partes iguales porque el denominador de la fracción es 8.

3. Pintamos 5 partes del entero porque el numerador de la fracción es 5. Este será el gráfico de la fracción.

Gráfico de fracciones impropias

Estas fracciones tienen el numerador mayor al denominador y siempre son mayores que 1. Para realizar sus gráficos debemos dibujar una figura (será el entero) y dividirla en tantas partes como señale el denominador. Como el numerador es mayor, repetimos la figura la cantidad de veces necesaria para poder pintar la partes que exprese el numerador.

– Ejemplo:

Realiza el gráfico de la fracción \frac{9}{4}

1. Dibujamos una figura que represente al entero, por ejemplo, un cuadrado.

 

2. Dividimos el entero en 4 partes iguales porque el denominador de la fracción es 4.

 

3. Pintamos 9 partes del entero, pero como el entero solo tiene 4, repetimos la misma figura hasta que podamos tener las nueve partes para pintar. Este será el gráfico de la fracción.

Gráfico de una fracción aparente

En las fracciones aparentes el numerador es múltiplo del denominador. Para graficar estas fracciones podemos seguir los pasos anteriores. Como resultado, los gráficos tendrán siempre todas sus partes pintadas.

– Ejemplo:

Realiza el gráfico de la fracción \frac{6}{3}

Observa que, si bien el numerador es mayor que el denominador, 6 es múltiplo de 3, por lo tanto, 6 ÷ 3 = 2.

Si tomamos un rectángulo como entero, lo dividimos en 3 partes iguales (por el denominador) y repetimos la figura para poder pintar 6 partes (por el numerador); observaremos que el gráfico es igual a dos enteros completos.

Usos de Fracciones

Sin darnos cuenta, hacemos uso de las fracciones a diario. Por ejemplo, en las instrucciones para una receta que necesite 1/4 de taza de azúcar; en el supermercado cuando pedimos 1/2 kilogramo de fresas; cuando hablamos de distancias y decimos que nuestras casa está a 1/2 cuadra del kiosco; o al medir el tiempo y decir que en 1/2 hora empieza una serie de televisión. Cada vez que dividamos un valor entero en partes iguales empleamos fracciones.

Toda fracción indica que un todo se ha dividido en partes iguales. Cada vez que repartimos alimentos tratamos de hacerlo de esta forma. Por ejemplo, podemos comernos “medio trozo de pan” cuya fracción es 1/2, lo que quiere decir que dividimos la unidad (el pan) en dos partes iguales (el denominador) y tomamos una (el numerador).

Equivalencias de interés

Este cuadro muestra las fracciones que están contenidas en una unidad.

De otro modo:

1 = \frac{1}{2}+\frac{1}{2}

1 = \frac{1}{4}+ \frac{1}{4}+ \frac{1}{4}+ \frac{1}{4}

\frac{1}{2}=\frac{1}{4}+\frac{1}{4}

\frac{1}{2} = \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}

¡A practicar!

1. En la panadería venden el pan rallado en bolsitas de 1 kg, 1/2 kg y 1/4 kg. Si José quiere comprar 2 kg de pan rallado…

a) ¿Cuántas bolsitas de 1/4 de kilo necesita?

Solución
 8 bolsitas de 1/4 de kg.

b) ¿Cuántas bolsitas de 1/2 kilo necesita?

Solución
4 bolsitas de 1/2 kg.

c) Si quiere llevar llevar 5 bolsitas para completar los 2 kg, ¿cuáles puede tomar?

Solución
1 bolsita de 1 kg y 4 bolsas de 1/4 de kg.

d) Si quiere llevar 3 bolsitas, ¿cuáles puede tomar?

Solución
1 bolsita de 1 kg y 2 bolsitas de 1/2 kg.

e) ¿Cuál es la menor cantidad de bolsitas que puede tomar? ¿y la mayor cantidad?

Solución
Puede tomar la menor cantidad de bolsitas si escoge las de mayor peso, es decir, las de 1 kg. Entonces, solo tomaría 2 bolsitas de 1 kg.

Para tomar la mayor cantidad de bolsita, debe escoger las de menor peso, que serían las de 1/4 de kg. En ese caso, llevaría 8 bolsitas de 1/4 de kg.

[/su_spoiler]

2. ¿Qué fracción representa cada gráfico?

Solución

Partes en las que dividimos el entero: 16

Partes sombreada: 10

Solución

\frac{4}{4}=1

Partes en las que dividimos el entero: 4

Partes sombreada: 4

Solución

\frac{6}{10}

Partes en las que dividimos el entero: 10

Partes sombreada: 6

 

RECURSOS PARA DOCENTES

Artículo “Fracciones”

Este artículo te permitirá acceder a más ejemplos sobre las fracciones y sus tipos.

VER

Artículo “Clasificación de las fracciones”

El siguiente recurso proporciona más información sobre los tipo de fracciones y sus gráficos.

VER

CAPÍTULO 2 / TEMA 5 (REVISIÓN)

OPERACIONES CON NATURALES | ¿QUÉ APRENDIMOS?

ADICIÓN

LA ADICIÓN ES UNA OPERACIÓN MATEMÁTICA QUE UNE O AGRUPA DOS O MÁS CANTIDADES. EN DICHA UNIÓN SE FORMA OTRA CANTIDAD QUE ES DENOMINADA SUMA O RESULTADO. LOS ELEMENTOS DE LA ADICIÓN SON LOS SUMANDOS Y LA SUMA. LA ADICIÓN ES UNA DE LAS CUATRO OPERACIONES BÁSICAS DE LAS MATEMÁTICAS.

EL SIGNO USADO PARA LA SUMA ES + Y SE LEE “MÁS”. EN LA IMAGEN VEMOS QUE “UNO MÁS TRES ES IGUAL A CUATRO”.

SUSTRACCIÓN

LA RESTA, TAMBIÉN LLAMADA SUSTRACCIÓN, ES UNA OPERACIÓN MATEMÁTICA EN LA QUE QUITAMOS UNA CANTIDAD LLAMADA SUSTRAENDO A OTRA LLAMADA MINUENDO. SIEMPRE EL SUSTRAENDO DEBE SER MENOR AL MINUENDO Y EL RESULTADO QUE SE OBTIENE SE DENOMINA RESTA. LA RESTA ES UNA DE LAS CUATRO OPERACIONES MATEMÁTICAS MÁS IMPORTANTES.

UNA MANERA SENCILLA DE RESTAR CANTIDADES PEQUEÑAS ES CON LOS DEDOS. CUENTA 4 DEDOS Y LUEGO QUITA 3 DEDOS, ¿CUÁNTOS QUEDAN? ¡1! ES DECIR: 4 V 3 = 1.

¿QUÉ ES LA MULTIPLICACIÓN?

LA MULTIPLICACIÓN ES UNA SUMA REPETIDA. ESTA OPERACIÓN CONSISTE EN SUMAR UN NÚMERO TANTAS VECES COMO INDICA OTRO NÚMERO, POR EJEMPLO, 3 × 5 ES IGUAL A SUMAR 3 VECES EL NÚMERO 5, ASÍ QUE 5 + 5 + 5 = 15 Y POR LO TANTO 3 × 5 = 15. SUS ELEMENTOS SE DENOMINAN FACTORES, Y EL RESULTADO OBTENIDO PRODUCTO.

LA MULTIPLICACIÓN SIRVE PARA ABREVIAR SUMAS REPETIDAS CON IGUALES CANTIDADES. 2 × 2 ES IGUAL A 2 VECES 2 QUE ES IGUAL A 4.

FRACCIONES

CADA VEZ QUE CONTAMOS OBJETOS USAMOS LOS NÚMEROS NATURALES: 1, 2, 3, 4,… PERO NO SIEMPRE ES POSIBLE USARLOS, PUES SI TENEMOS UNA PARTE DE UN ENTERO TENEMOS QUE USAR UN TIPO ESPECIAL DE NÚMERO LLAMADO FRACCIÓN. LAS FRACCIONES REPRESENTAN UNA PARTE DE UN TODO QUE SE HA DIVIDIDO EN PARTES IGUALES Y TIENEN DOS ELEMENTOS: UN NUMERADOR Y UN DENOMINADOR.

EL REPARTO ES LA BASE DE LAS FRACCIONES Y SURGE DE LA NECESIDAD DE PARTIR ALIMENTOS.

CAPÍTULO 2 / TEMA 4

fracciones

SI TIENES UN ALFAJOR Y DESEAS COMPARTIRLO CON UN AMIGO ¿CÓMO LO REPARTES? LO PARTES A LA MITAD ¿CIERTO? ES NORMAL QUE DIVIDAMOS ALIMENTOS PARA COMPARTIR Y PARA ESTOS CASOS USAMOS UN TIPO ESPECIAL DE NÚMEROS: LAS FRACCIONES. SON MÁS COMUNES DE LO QUE PIENSAS Y HOY APRENDERÁS A REPRESENTARLAS.

¿EN CUÁNTOS PEDAZOS ESTÁ CORTADO ESTE PASTEL? PARA RESPONDER ESTA PREGUNTA SOLO TENEMOS QUE CONTAR DE 1 EN 1: 1, 2, 3, …¡ESTÁ CORTADA EN 10 PEDAZOS! ESOS SON NÚMEROS NATURALES. PERO SI COMEMOS UNA DE ESAS PARTES ¿CÓMO REPRESENTARÍAS ESA CANTIDAD? EN ESTE CASO TENEMOS QUE USAR FRACCIONES: NÚMEROS QUE NOS AYUDAN A EXPRESAR PARTES DE UN TODO.

LA FRACCIÓN Y SUS ELEMENTOS

UNA FRACCIÓN ES UN NÚMERO QUE REPRESENTA LA PARTE O LAS PARTES QUE SE HAN TOMADO DE UN TODO CUANDO EL TODO ESTÁ DIVIDIDO EN PARTES IGUALES.

– EJEMPLO 1:

¿EN CUÁNTAS PARTES ESTÁ DIVIDIDA ESTA FIGURA?, ¿CUÁNTAS PARTES ESTÁN PINTADAS?

ESTE CUADRADO ESTÁ DIVIDIDO EN 4 PARTES IGUALES. UNA SOLA PARTE ESTÁ PINTADA.

¿QUÉ NÚMERO USARÍAS PARA REPRESENTAR QUE UNA PARTE SE HA TOMADO DE 4 PARTES IGUALES? PARA ESO ESTÁN LAS FRACCIONES, LAS CUALES SIEMPRE TIENEN DOS ELEMENTOS: UN NUMERADOR Y UN DENOMINADOR.

  • EL NUMERADOR ES IGUAL A LA CANTIDAD DE PARTES QUE SE TOMARON DEL TODO.
  • EL DENOMINADOR ES IGUAL A LA CANTIDAD DE PARTES EN LAS QUE SE HA DIVIDO EL ENTERO.

AMBOS ELEMENTOS SE COLOCAN UNO SOBRE OTRO CON UNA RAYA EN EL MEDIO, OBSERVA:

EN ESTE EJEMPLO, EL 1 ES EL NUMERADOR PORQUE REPRESENTA LA CANTIDAD DE PARTES QUE SE TOMARON DEL TODO Y EL 4 ES EL DENOMINADOR PORQUE REPRESENTA LA CANTIDAD DE PARTES EN LA QUE SE DIVIDIÓ AL TODO.


– EJEMPLO 2:

¿EN CUÁNTAS PARTES SE DIVIDIÓ EL CÍRCULO?

EN 5 PARTES. EL DENOMINADOR ES 5.

 

¿CUÁNTAS PARTES ESTÁN PINTADAS?

2 PARTES ESTÁN PINTADAS. EL NUMERADOR ES 2.

 

¿QUÉ FRACCIÓN REPRESENTA ESTE GRÁFICO?

\boldsymbol{\frac{2}{5}}

 


– EJEMPLO 3:

¿EN CUÁNTAS PARTES SE DIVIDIÓ EL RECTÁNGULO?

EN 8 PARTES. EL DENOMINADOR ES 8.

 

¿CUÁNTAS PARTES ESTÁN PINTADAS?

3 PARTES ESTÁN PINTADAS. EL NUMERADOR ES 3.

 

¿QUÉ FRACCIÓN REPRESENTA ESTE GRÁFICO?

\boldsymbol{\frac{3}{8}}


LAS FRACCIONES SON MUY UTILIZADAS EN LA VIDA COTIDIANA. EXISTEN SITUACIONES COMUNES DONDE PODEMOS ENCONTRARLAS, POR EJEMPLO, CUANDO PEDIMOS MEDIO KILOGRAMO DE PAN O CUANDO COMEMOS PIZZA. IMAGINA QUE LA PIZZA ES EL TODO Y ESTÁ PICADA EN 4 PARTES IGUALES; SI NOS COMEMOS UN TROZO ES IGUAL A DECIR QUE NOS COMIMOS 1/4 DE PIZZA.
¿SABÍAS QUÉ?
LAS FRACCIONES TAMBIÉN SE PUEDEN REPRESENTAR CON UNA DIAGONAL, ES DECIR, \boldsymbol{\frac{1}{4}} ES IGUAL A 1/4.

¿CÓMO GRAFICAR FRACCIONES?

SI QUEREMOS GRAFICAR UNA FRACCIÓN COMO \boldsymbol{\frac{5}{6}} DEBEMOS SEGUIR ESTOS PASOS:

1. DIBUJAMOS UNA FIGURA GEOMÉTRICA. POR EJEMPLO, UN RECTÁNGULO.

2. DIVIDIMOS EL RECTÁNGULO EN TANTAS PARTES COMO INDIQUE EL DENOMINADOR. EN ESTE CASO EL DENOMINADOR ES 6, ASÍ QUE LO DIVIDIMOS EN 6 PARTES IGUALES.

3. PINTAMOS LA CANTIDAD DE PARTES QUE INDIQUE EL NUMERADOR. AQUÍ PINTAMOS 5 PARTES. ¡ESE SERÁ EL GRÁFICO DE LA FRACCIÓN!

¡ES TU TURNO!

GRAFICA ESTAS FRACCIONES. DIBUJA UN CÍRCULO COMO EL TODO.

  • \boldsymbol{\frac{1}{3}}
SOLUCIÓN

  • \boldsymbol{\frac{3}{4}}
SOLUCIÓN

  • \boldsymbol{\frac{4}{6}}
SOLUCIÓN

FRACCIONES IGUALES A LA UNIDAD

TODA FRACCIÓN QUE TENGA EL NUMERADOR IGUAL A SU DENOMINADOR SERÁ IGUAL A 1. EJEMPLO:

ESTE GRÁFICO REPRESENTA A LA FRACCIÓN \boldsymbol{\frac{3}{3}} QUE ES IGUAL A 1.

ESTE GRÁFICO REPRESENTA A LA FRACCIÓN \boldsymbol{\frac{6}{6}} QUE ES IGUAL A 1.

¿CÓMO LEER FRACCIONES?

LAS FRACCIONES SE LEEN DIFERENTES A LOS NÚMEROS NATURALES. ES IMPORTANTE QUE SIGAMOS ESTOS PASOS:

  1. LEEMOS EL NUMERADOR COMO CUALQUIER NÚMERO NATURAL.
  2. LEEMOS EL DENOMINADOR DE ACUERDO A LA SIGUIENTE TABLA:
DENOMINADOR SE LEE
2 MEDIOS
3 TERCIOS
4 CUARTOS
5 QUINTOS
6 SEXTOS
7 SÉPTIMOS
8 OCTAVOS
9 NOVENOS
10 DÉCIMOS

– EJEMPLOS:

\boldsymbol{\frac{2}{3}} SE LEE “DOS CUARTOS”.

 

\boldsymbol{\frac{4}{10}} SE LEE “CUATRO DÉCIMOS”.

 

\boldsymbol{\frac{5}{7}} SE LEE “CINCO SÉPTIMOS”.

 

\boldsymbol{\frac{1}{8}} SE LEE “UN OCTAVO”.

LAS PARTES DE UN TODO

CADA PARTE DE UN TODO SE PUEDE REPRESENTAR POR MEDIO DE UNA FRACCIÓN. SEGÚN EL DENOMINADOR CADA PORCIÓN TENDRÁ UN NOMBRE DISTINTO. OBSERVA ESTA IMAGEN CON UN TODO DIVIDIDO DE 1 A 10 PARTES IGUALES.

¡A PRACTICAR!

1. ¿QUÉ FRACCIÓN REPRESENTAN ESTOS GRÁFICOS?

A. 

SOLUCIÓN
 

B. 

SOLUCIÓN
 

C. 

SOLUCIÓN
 

D. 

SOLUCIÓN

2. ¿CÓMO SE LEEN LAS SIGUIENTES FRACCIONES:

  • \frac{2}{10}
SOLUCIÓN
DOS DÉCIMOS.
  • \frac{1}{10}
SOLUCIÓN
UN DÉCIMO.
  • \frac{1}{4}
SOLUCIÓN
UN CUARTO.
  • \frac{4}{5}
SOLUCIÓN
CUATRO QUINTOS.
  • \frac{3}{6}
SOLUCIÓN
TRES SEXTOS.
RECURSOS PARA DOCENTES

Artículo “Fracciones”

En el siguiente artículo podrás encontrar un abordaje de las fracciones con diferentes estrategias didácticas.

VER

CAPÍTULO 1 / TEMA 2

Números primos y compuestos

Los números naturales son usados comúnmente para contar y se clasifican según sus divisores. Aquellos que solo pueden dividirse de forma exacta entre ellos mismos y entre el 1, es decir, tienen solo dos divisores, se denominan números primos; mientras que los que tienen más de dos divisores se denominan números compuestos.

Divisores de un número

Antes de abordar el tema de los números primos y números compuestos, es indispensable comprender el concepto de divisor. Este es un número natural que al dividir a otro natural da como resultado una división con cociente entero y resto igual a cero.

¿Sabías qué?
El divisor de un número siempre lo divide en partes exactas, por eso el resto siempre es igual a cero.

En este sentido, si deseas saber si un número es o no divisor de otro, debes realizar una división entre el número en cuestión y el posible divisor. Si el resultado es un cociente entero (no decimal) y si el resto es igual a cero (división exacta) entonces decimos que efectivamente es divisor de dicho número.

Por ejemplo:

– Para determinar si el número 2 es divisor del número 6:

Lo primero es dividir 6 entre 2.

En este caso, el número 2 es divisor del número 6 porque el cociente de la división es un número entero (no es decimal) y la división es exacta con el resto igual a cero.

Otro ejemplo:

– Para determinar si el número 3 es divisor del número 14:

 

 

 

Aunque la división es exacta, el número 4 no es divisor del número 14, porque el cociente de la división es un número decimal, en este caso se dice que el número 14 no es divisible entre 4.

Criterios de divisibilidad

Son simples reglas que permiten determinar de manera rápida si un número es divisor o no de otro sin necesidad de realizar la división. Algunos de estos criterios son:

– Un número es divisible entre 2 si es un número par o termina en 0.
Por ejemplo: 20, 54, 12, 1.050, 76 y 80.

– Un número es divisible entre 5 si termina en 5 o en 0.
Por ejemplo: 15, 225, 3.110 y 400.

– Un número es divisible entre 10 si termina en 0.
Por ejemplo: 10, 500, 3.410 y 780.

¡A practicar!

  1. ¿Cuáles de los siguientes números es divisor del número 12?
    a) 5
    b) 2
    c)10
    RESPUESTAS
    2
  2. ¿Cuáles de los siguientes números es divisor del número 25?
    a) 3
    b) 7
    c) 5
    RESPUESTAS
    5
  3. ¿Cuáles de los siguientes números es divisor del número 200?
    a) 10
    b) 3
    c) 6
    RESPUESTAS
    10
  4. ¿Cuáles de los siguientes números es divisor del número 16?
    a) 5
    b) 4
    c) 9
    RESPUESTAS
    4

Números primos

Son números que poseen únicamente dos divisores: ellos mismos y el 1.

Por ejemplo, el número 2 es un número primo porque solamente es divisible entre 2 y entre 1.

 

VER INFOGRAFÍA

¿Sabías qué?
El número uno es divisor de todos los números enteros pero solo es divisible por sí mismo.

Números compuestos

Los números compuestos son números divisibles por ellos mismos, por el uno (1) y por otros números, es decir, tienen más de dos divisores y son más frecuentes que los números primos.

Por ejemplo, el número 24 es un número compuesto, ya que es divisible entre 1, 2, 3, 4, 6, 8, 12 y 24. En total tiene 8 números divisores.

Números especiales

Los números 1 y 0 son números muy particulares. En el caso del 1, su único divisor es él mismo y en el caso del número 0, aunque puede ser dividido entre infinitos números, no puede dividirse entre sí mismo porque la división entre cero no esta determinada. Por estas razones, los números 1 y 0 no se consideran números primos ni compuestos.

Tabla de los números primos y compuestos

Existe un simple procedimiento que permite determinar con facilidad los conjuntos de números primos y compuestos; se conoce como Criba de Eratóstenes y aunque su nombre parezca complicado, su procedimiento no lo es.

1. Lo primero que hay que hacer es realizar una tabla con los números del 1 al 100 y se deberán tachar los números que no son primos. El primer número que se tacha es el 1 al no ser considerado número primo.
2. Luego, el siguiente número es el 2, al ser un número primo no se tacha pero a partir de él se empieza a contar de dos en dos al mismo tiempo que se tachan los números que resulten de dicho conteo.

3. Luego del 2, el siguiente número que no se ha tachado es el 3, a partir de él se empieza a contar de 3 en 3 y se tachan los números al mismo tiempo.

4. El siguiente número sin tachar es el 5, se deja sin tachar y se empieza a contar de 5 en 5 mientras se tachan los números.

5. El siguiente número sin marcar el el 7, se mantiene en la tabla sin tachar y se empieza a contar de 7 en 7 mientras se tachan los números.

Los números que no fueron tachados corresponden a números primos, y los números tachados son los compuestos, es una manera gráfica de identificar estos tipos de números del 1 al 100.

La Criba de Eratóstenes es una herramienta muy práctica para tener una visión general de los números primos y compuestos, sin embargo; en la vida cotidiana no es necesario ni aconsejable memorizarlos para resolver los ejercicios, por el contrario; al entender los elementos de cada número se podrá determinar con mayor rapidez si es primo o no.

 

¡A practicar!

1. ¿Qué número tiene infinitos divisores?

RESPUESTAS
El número cero.

2. ¿Cómo se llaman los números que solo tienen dos divisores?

RESPUESTAS
Números primos.

3. ¿Qué números no son considerados ni primos ni compuestos?

RESPUESTAS
El cero y el uno.

4. Un número es divisible entre dos si es par o termina en __________.

RESPUESTAS
cero

5. ¿Cuáles de estos números no es primo?
a) 7
b) 19
c) 25
d) 2

RESPUESTAS
25

6. El número 32 es un número _________.

a) impar
b) primo
c) compuesto

RESPUESTAS
compuesto

7. Clasifica cada uno de los siguientes números como “primo” o “compuesto”:

a) 21
b) 59
c) 18
d) 13

RESPUESTAS
a) Compuesto.
b) Primo.
c) Compuesto.
d) Primo.
RECURSOS PARA DOCENTES

Artículo “Números primos y compuestos”

En el siguiente artículo se desarrolla el tema de números primos y compuestos. Además se explica qué son los coprimos, y se señalan algunos números especiales.

VER

Artículo “Criterios de divisibilidad”

Este recurso ayuda a conocer los criterios de divisibilidad, ampliados para más números de los que se mencionaron en este artículo.

VER