Balanceo por método algebraico

La materia se transforma constantemente a nuestro alrededor sin que exista una pérdida en la masa. Es por ello que al estudiar las reacciones químicas es necesario balancear o igualar la cantidad de átomos de los reactantes y productos involucrados en la misma.

El balanceo por método algebraico consiste en asignar literales o letras a las especies químicas involucradas en una determinada reacción a fin de obtener un sistema de ecuaciones, cuya resolución permite hallar los valores de los coeficientes estequiométricos.

PARTES DE UNA REACCIÓN

¿Por qué se deben balancear las reacciones químicas?

Las reacciones químicas se deben balancear para cumplir con la ley de la conservación de la masa, cuyo postulado indica que durante un cambio químico la masa es constante. Esto significa que cuando ocurre una reacción química la masa de los productos obtenidos será igual a la de los reactantes.

Pasos para balancear una reacción por método algebraico

  1. Asignar letras a cada uno de los reactantes y productos involucrados en las reacciones, además, se debe considerar la flecha como una igualdad.
  2. Plantear una ecuación para cada elemento químico de la reacción.
  3. Asignar un valor al elemento más repetido en las ecuaciones.
  4. Resolver las ecuaciones.

Ejemplo: balancear por el método algebraico la siguiente ecuación.

Paso 1: asignar letras a los reactantes y productos de la reacción.


Paso 2: plantear ecuaciones para cada una de las especies químicas involucradas.


Paso 3: asignar un valor a la letra que más se repite en las ecuaciones, en este caso C.

Paso 4: hallar el valor de A.

Paso 5: hallar el valor de C.

Paso 6: escribir la ecuación balanceada.

Membrana plasmática: transporte activo

La membrana celular o membrana plasmática es una delgada capa semipermeable que rodea el citoplasma celular. Su función es proteger la integridad del interior de la célula y regular el paso de las sustancias.

¿Qué es el transporte celular?

Se define como transporte celular al movimiento a través del cual las sustancias entran o salen de las células, este movimiento es regulado por la membrana plasmática. Al ser la membrana una estructura semipermeable, tiene un control sobre todo aquello que puede entrar o salir de las células.

La membrana plasmática es una estructura semipermeable.

La membrana plasmática de cualquier célula contiene una variedad de estructuras que le ayudan a mantener el equilibrio interno de las mismas, estas estructuras participan en alguno de los dos tipos de transporte celular, sean el pasivo o el activo.

El transporte celular es un mecanismo sumamente importante para la célula porque le permite expulsar de su interior todas las sustancias de desecho provenientes del metabolismo o incorporar aquellas que sean necesarias para la nutrición.

¿Cuáles son los tipos de transporte celular?

Son dos los mecanismos principales que le permiten a la célula mover sustancias a través de la membrana plasmática: el transporte pasivo y el transporte activo. La diferencia principal entre ambos procesos radica en el gasto de energía, mientras que en uno es necesario el gasto de moléculas de ATP, en el otro no hacen falta.

En el transporte activo es necesario el gasto de moléculas de ATP.

¿Qué es el transporte activo?

Definimos el transporte activo como aquel proceso de intercambio de sustancias a través de la membrana celular en el que es necesario el uso de energía en forma de adenosin trifosfato (ATP). El gasto de energía es necesario ya que, a diferencia del transporte pasivo, este se realiza en contra de un gradiente de concentración, es decir, la concentración de la sustancia dentro de la célula es mayor que en el medio extracelular o viceversa.

¿Sabías qué...?
Cuando las moléculas son muy grandes y de alto peso molecular, las células crean vesículas membranosas que les permiten englobar las sustancias nutritivas o de desecho, para incluirlas o eliminarlas, este mecanismo también requiere el uso de energía y se divide en dos: endocitosis y exocitosis.

A través de la membrana y en contra del gradiente de concentración, se pueden mover desde pequeños iones y moléculas, hasta grandes sustancias de desecho que necesitan ser eliminadas. Algunas células son incluso capaces de engullir microorganismos unicelulares enteros.

¿Qué es un gradiente electroquímico?

Un gradiente electroquímico es una diferencia eléctrica entre el medio intracelular y extracelular. Se produce a causa de que las células contienen proteínas, en su mayoría cargadas negativamente e iones que entran y salen, lo que provoca que haya una diferencia de carga entre ambas zonas.

Movimiento a través de un gradiente: tipos de transporte activo

Para mover sustancias en contra de un gradiente electroquímico, la célula debe usar energía en forma de ATP y complejos enzimáticos encargados de realizar dichos procesos, dentro de ellos se encuentran las bombas sodio potasio y las proteínas transportadoras.

El transporte activo mantiene equilibrada las concentraciones de iones y otras sustancias necesarias para la supervivencia de las células.

Transporte activo primario

  • Bomba Na+/K+: es un conjunto de proteínas situadas en la membrana que se encargan de transportar iones en contra de un gradiente de concentración. En el interior de las células la concentración de sodio (Na+) es baja en comparación con el medio extracelular, y la concentración de potasio (K+) es más alta que en el medio extracelular.

Lo que hace la bomba de Na+/K+ es regular estos iones y permite el intercambio entre el medio extracelular e intracelular, es decir, bombea Na+ al medio extracelular y K+ al medio intracelular, el número de iones que bombea es tres iones de sodio por cada dos de potasio.

Bomba sodio potasio en acción.
  • Bomba Ca+: es un conjunto de proteínas que se encarga de transportar los iones de Ca2+ hacia el exterior de la célula con el fin de mantener el medio intracelular con una concentración baja.

Transporte activo secundario

Se conoce también como cotransporte, para llevar a cabo el transporte las proteínas utilizan la energía proveniente del potencial electroquímico creado por las bombas de iones con el fin de intercambiar una molécula de un lado a otro, es decir, una molécula entra y arrastra consigo una molécula hacia afuera. Los cotransportadores son:

  • Antiporte: es una proteína de membrana integral que se encarga de mover un ión o molécula en una dirección mientras mueve otra en dirección contraria, es decir una hacia fuera y otra hacia adentro de la célula. El anti en antiporte significa “en contra”.
    Transporte activo de tipo antiporte.
  • Simporte: es una proteína de membrana integral que mueve dos iones en la misma dirección. Sim de simporte significa “lo mismo”, es decir, dos sustancias que se mueven en la misma dirección.
Transporte activo de tipo simporte.
ATPasa

Son un complejo multienzimático que se localiza en la membrana plasmática y que tiene como función principal la formación del ATP. Pueden ser muy diversas y se clasifican según su función, sea catabólica, anabólica o de ósmosis, un ejemplo común de estas enzimas es la bomba Na+/ K+.

Ciclo de Krebs: respiración celular

Después de la glucólisis, sigue otro mecanismo de la respiración celular que consta de múltiples etapas: el ciclo de Krebs, también conocido como el ciclo del ácido cítrico o el ciclo de ácido tricarboxílico.

¿Qué es el ciclo de Krebs?

Ciclo de ácido tricarboxílico, también conocido como ciclo de Krebs o ciclo de ácido cítrico, es la segunda etapa del proceso de respiración celular, mecanismo mediante el cual las células vivas descomponen moléculas de combustible orgánico en presencia de oxígeno para recoger la energía que necesitan para crecer y dividirse.

 

Se lleva a cabo en las mitocondrias, específicamente en la matriz, a excepción de las bacterias.

El ciclo de Krebs desempeña un papel central en la descomposición o catabolismo de moléculas de combustible orgánico, es decir, la glucosa, los ácidos grasos y algunos aminoácidos. Antes de que estas moléculas puedan entrar en el ciclo, deben ser degradadas en un compuesto de dos carbonos llamado acetil coenzima A (acetil CoA).

El ciclo de Krebs se produce en la mayoría de los organismos, tanto animales como vegetales.

¿Qué es el acetil CoA?

Es una molécula sintetizada a partir del piruvato e imprescindible para la síntesis de sustancias como ácidos grasos, colesterol y acetilcolina. Está formado por un grupo acetil unido a la coenzima A, el cual finalmente es degradado en CO2 H2O a través del ciclo de Krebs, la síntesis de ácidos grados o la fosforilación oxidativa.

El acetil CoA, es una molécula sumamente energética.

Etapas del ciclo de Krebs

El ciclo de Krebs consiste en ocho etapas catalizadas por ocho enzimas diferentes. Se inicia cuando el acetil CoA reacciona con un compuesto denominado oxaloacetato para formar citrato y liberar coenzima A (CoA-SH).

¿Sabías qué...?
El ciclo de Krebs en total forma 1 molécula de GTP, NADH y FADH2, las cuales en su paso por la cadena transportadora de electrones, realizada en la mitocondria, serán transformadas por ATP sumamente energética. 

Luego, el citrato se reordena para formar isocitrato; el cual posteriormente pierde una molécula de dióxido de carbono y sufre oxidación para formar alfa-cetoglutarato; seguidamente este pierde una molécula de dióxido de carbono y se oxida para formar succinil CoA; el succinil-CoA se convierte en succinato y se oxida a fumarato, el cual se hidrata para producir malato, finalmente el malato se oxida a oxaloacetato.

Reacciones del ciclo de Krebs.

Reacción 1: citrato sintasa

La primera reacción del ciclo de Krebs es catalizada por la enzima citrato sintasa, durante esta etapa, el oxaloacetato, un intermediario metabólico, se une con el acetil-CoA para formar ácido cítrico. Una vez unidas las dos moléculas, una de agua ataca al acetilo para provocar la liberación de la coenzima A.

Reacción 2: acontinasa

La siguiente reacción del ciclo del ácido cítrico es catalizada por la enzima acontinasa. En esta reacción, una molécula de agua se retira del ácido cítrico y se coloca en otra ubicación. El efecto de esta conversión es que el grupo -OH se mueve de la posición 3′ a la posición 4′ sobre la molécula, esto trae como consecuencia la transformación de citrato a isocitrato.

Reacción 3: Isocitrato deshidrogenasa

En esta etapa ocurren dos eventos dependientes de la enzima isocitrato deshidrogenasa, localizada en la mitocondria. En la primera fase dicha enzima cataliza la oxidación del isocitrato, el cual se transforma en oxalsuccinato (un intermediario), lo que libera una molécula de NADH formada a partir de NAD.

Seguidamente, se produce la descarboxilación (liberación del CO2) del oxalsuccinato, lo que conlleva a la formación de alfa-cetoglutarato, una molécula compuesta por dos grupos carboxilos en los extremos y una cetona en posición alfa a uno de los carboxilos.

Reacción 4: alfa-cetoglutarato deshidrogenasa

Durante esta reacción se produce otra descarboxilación, el alfa-cetoglutarato es quien pierde la molécula de dióxido de carbono y en su lugar se añade la coenzima A. Esta descarboxilación se produce con la ayuda de NAD, quien es transformado durante el proceso en NADH.

La enzima catalizadora de esta reacción es la alfa-cetoglutarato deshidrogenasa u oxoglutarato deshidrogenasa, como resultado de esta etapa se forma la molécula succinil CoA.

Reacción 5: succinil CoA sintetasa

La enzima succinil-CoA sintetasa es la protagonista de esta reacción y se encarga de catalizar la síntesis de trifosfato de guanosina o GTP. El GTP es una molécula muy similar en estructura y propiedades energéticas al ATP, por lo que puede ser utilizado por las células de la misma manera.

El GTP es formado por la adición de un grupo fosfato libre a una molécula de GDP. En esta reacción, el grupo fosfato libre ataca primero a la molécula de succinil-CoA lo que provoca la liberación de la coenzima A. Después de que el fosfato se une a la molécula, se transfiere al GDP para formar GTP, el producto final es una molécula denominada succinato.

Reacción 6: succinato deshidrogenasa

La enzima succinato deshidrogenasa cataliza la eliminación de dos hidrógenos del succinato en la sexta reacción del ciclo del ácido cítrico. En esta etapa, una molécula de FAD, se reduce a FADH2 debido a que recibe los hidrógenos provenientes del succinato, de esta reacción se genera el fumarato.

Reacción 7: fumarasa

Esta reacción se produce gracias a la catálisis de la enzima fumarasa, la cual genera la adición de una molécula de agua en forma de OH al fumarato para dar lugar a la molécula L-malato.

Reacción 8: malato deshidrogenasa

Es la reacción final del ciclo, en ella es regenerado el oxaloacetato mediante la oxidación del L-malato, se utiliza otra molécula de NAD como aceptor de hidrógeno y se forma un NADH.

Energía en los alimentos

La mayor parte de nuestra energía la obtenemos de nuestros alimentos, los cuales por varias reacciones metabólicas nos permiten obtener moléculas energéticas como el ATP, FADH2 y el NADH, por ejemplo, el ciclo de Krebs logra aprovechar el 62 % de la energía contenida en la glucosa.

 

Fecundación In Vitro

La fecundación en el ser humano ocurre internamente mediante la unión de un óvulo y un espermatozoide, si esto no se puede dar de manera natural por problemas de fertilidad o genéticos, se realiza una serie de procedimientos, entre los que se encuentra la fecundación in vitro.

La fecundación in vitro implica la combinación de óvulos y espermatozoides fuera del cuerpo de la mujer, en un laboratorio. Una vez que un embrión o embriones se forman, se colocan en el útero.

La FIV es una forma eficaz de tecnología de reproducción asistida.

Procedimiento

Durante la fertilización in vitro (FIV), los huevos y los espermatozoides se reúnen en un plato de vidrio de laboratorio para permitir que el esperma fertilice un óvulo.

Pasos para la fertilización in vitro

Ovulación y recuperación de óvulos

Los medicamentos de fertilidad se prescriben para estimular la producción de óvulos. Lo ideal es contar con varios óvulos porque algunos de ellos no se desarrollan o fertilizan después de la recuperación. Se utiliza un ultrasonido transvaginal para examinar los ovarios y se toman muestras de sangre para verificar los niveles hormonales.

Los óvulos se extraen a través de un procedimiento quirúrgico menor que utiliza imágenes de ultrasonido para guiar una aguja hueca a través de la cavidad pélvica.

Colecta de esperma

Los espermatozoides se recogen mediante la masturbación o la obtención de semen de un testículo a través de una pequeña incisión; este último se realiza si un bloqueo impide que se expulse el esperma o si hay un problema con el desarrollo del mismo.

Fertilización y transferencia de embriones

Los óvulos y los espermatozoides se colocan en un plato de vidrio y se incuban a una temperatura adecuada, como medida de control atmosférico y control de infección durante 48 a 120 horas.

Los óvulos son monitoreados para confirmar que la fertilización y la división celular ocurran. Una vez que esto sucede, los huevos fertilizados se consideran embriones.

Embriones congelados vs embriones frescos

Los embriones congelados por donante de un ciclo de FIV anterior, tienen menos probabilidades de resultar en un nacimiento vivo que los embriones de FIV recién fecundados; sin embargo, los congelados son menos costosos y menos invasivos, porque la superovulación y la recuperación de óvulos no son necesarios.

Aproximadamente 2 a 5 días después de la fertilización, se seleccionan los mejores óvulos fertilizados. Uno a tres de estos se colocan en el útero mediante el uso de un tubo flexible delgado, llamado catéter, que se inserta a través del cuello uterino. Los restantes pueden ser congelados para futuros intentos.

Embarazo y nacimiento

Cualquier embrión que se implante en el útero puede resultar en el embarazo y el nacimiento de uno o más infantes.

La FIV es un procedimiento complejo y costoso, sólo alrededor del 5 % de las parejas con infertilidad lo buscan.

¿Por qué se hace la FIV?

La fertilización in vitro puede ser una opción de tratamiento si:

  • Las trompas de Falopio de una mujer faltan o están bloqueadas.
  • Una mujer tiene endometriosis severa.
  • Un hombre tiene un bajo recuento de espermatozoides.
  • La inseminación artificial o intrauterina no ha tenido éxito.
  • La infertilidad inexplicada ha continuado durante mucho tiempo.

La FIV puede realizarse incluso si:

  • La mujer ha tenido una cirugía de reversión de ligadura de trompas que no tuvo éxito.
  • La mujer no tiene trompas de Falopio.
  • La FIV se puede hacer mediante el uso de óvulos donados para las mujeres que no pueden producir sus propios óvulos debido a la edad avanzada u otras causas.

¿Qué esperar después del tratamiento?

En general, la fertilización in vitro es emocional y físicamente exigente para la pareja. La superovulación con hormonas requiere análisis de sangre regulares, inyecciones diarias, control frecuente por parte de su médico y recolección de óvulos.

Estos procedimientos se realizan de forma ambulatoria y requieren sólo un corto tiempo de recuperación.

Riesgos

  • La fertilización in vitro (FIV) aumenta los riesgos del síndrome de hiperestimulación ovárica y del embarazo múltiple.
¿Sabías qué...?
Louise Brown fue el primer bebé de FIV en el mundo, nació en julio de 1978 en Inglaterra; a los 28 años ella tuvo su propio bebé sin FIV.
  • La superovulación con tratamiento hormonal puede causar síndrome de hiperestimulación ovárica severa. El médico puede minimizar este riesgo mediante la supervisión de cerca los ovarios y los niveles hormonales durante el tratamiento.
  • El riesgo de concebir un embarazo múltiple está directamente relacionado con el número de embriones transferidos al útero de una mujer.

 

Los embarazos múltiples son de alto riesgo tanto para la madre como para los fetos.
  • Puede haber un mayor riesgo de defectos de nacimiento para los bebés concebidos por ciertas técnicas de reproducción asistida, como la fecundación in vitro.

¿Qué tan exitosa es la fertilización in vitro?

La tasa de éxito de las clínicas de FIV depende de una serie de factores, que incluyen la historia reproductiva, la edad materna, la causa de la infertilidad y los factores de estilo de vida. También es importante entender que las tasas de embarazo no son las mismas que las tasas de nacidos vivos.

Diferencias entre inseminación artificial y fertilización in vitro

INSEMINACIÓN ARTIFICIAL FERTILIZACIÓN EN VITRO
Introduce el semen previamente seleccionado en el útero de la mujer que ha sido preparado por la estimulación de la ovulación. Consiste en recuperar los óvulos de una mujer para ser fertilizados en el laboratorio y posteriormente introducir los embriones obtenidos dentro del útero.
La fecundación ocurre dentro de la mujer, específicamente en la trompa de Falopio. La fecundación ocurre fuera de la mujer, en el laboratorio.
Es una técnica más simple ya que no requiere la recuperación de óvulos. Es una técnica compleja que requiere un procedimiento quirúrgico para obtener los óvulos y ser fertilizados en el laboratorio.
La estimulación ovárica debe ser mínima para evitar el riesgo de embarazos múltiples. La estimulación ovárica tiene como objetivo obtener un número adecuado de óvulos, que oscila entre 6 y 15.
Es más asequible si se tiene en cuenta el costo por tratamiento. La carga financiera es más alta, aunque es más asequible si se tiene en cuenta el costo por nacimiento vivo.
Las posibilidades de éxito son menores, alrededor del 15 % por intento. Es el tratamiento con las mayores tasas de éxito por intento. En ciertos casos, las posibilidades de lograr el embarazo son hasta el 60%.
No proporciona ninguna posibilidad de éxito en casos de bloqueo de las trompas de Falopio o factor masculino severo. Las posibilidades de éxito, excepto en casos extremos, no están necesariamente afectadas por el bloqueo de las trompas de Falopio o por el factor masculino severo.
Ofrece resultados muy pobres cuando el tiempo de esterilidad es de más de 3 años, se debe a un factor masculino moderado o la mujer tiene endometriosis. Esta podría ser la primera opción para parejas con un tiempo prolongado de esterilidad, factores masculinos moderados o mujeres con endometriosis.
Ofrece información limitada durante el tratamiento. Se obtiene información valiosa durante el tratamiento, ya que se evalúan factores importantes como la respuesta ovárica a la estimulación, la calidad de los óvulos, la fertilización y el desarrollo del embrión.
Es una buena opción para parejas jóvenes que no han tratado de concebir durante mucho tiempo sin alteraciones significativas del semen, bloqueo de las trompas de Falopio o endometriosis. Es el tratamiento con las mayores posibilidades de éxito en la reproducción asistida y es la primera opción en muchos casos.

 

La inseminación artificial es una técnica simple realizada en parejas con problemas específicos de fertilidad.

 

Reino animal: vertebrados e invertebrados

El reino Animalia está formado por un grupo de organismos eucariotas, heterotróficos y multicelulares que carecen de pared celular y dependen directa o indirectamente de las plantas para su alimento. Son sumamente variados y pueden clasificarse en vertebrados e invertebrados.

Sistemas biológicos de los invertebrados

Sistema digestivo

El tracto digestivo en invertebrados varía de acuerdo al grado de complejidad del organismo, va desde estar completamente ausente a estar parcial o totalmente formado. En el caso de que esté presente, se encuentra dorsal al cordón nervioso, y se extiende desde la boca hasta el ano.

Por otro lado, la digestión puede ocurrir dentro de la célula (digestión intracelular) o fuera de ella (digestión extracelular). En las esponjas, por ejemplo, la digestión la llevan a cabo unas células conocidas como coanocitos, que se encuentran localizados en la pared de dichos organismos.

El reino Animalia está formado por un grupo de organismos eucariotas, heterotróficos y multicelulares que carecen de pared celular y dependen directa o indirectamente de las plantas para su alimento. Son sumamente variados y pueden clasificarse en vertebrados e invertebrados.

La mayoría de los invertebrados exhiben digestión extracelular y en los más desarrollados incluso tienen un intestino bien definido.

Sistema circulatorio

El sistema vascular va desde muy simple hasta muy desarrollado, en algunos grupos, como el de los artrópodos y los moluscos, el sistema circulatorio es abierto o lagunar, es decir, la sangre no siempre está encerrada, es transportada por vasos abiertos que desembocan en algún lugar del cuerpo. El corazón se encuentra siempre dorsal al intestino y el sistema portal hepático, que transporta sangre del intestino al hígado, está ausente.

Sistema respiratorio

El intercambio gaseoso se realiza a través de la piel en muchos invertebrados inferiores, en grupos superiores como los moluscos y los artrópodos acuáticos las branquias son más comunes. Sin embargo, también existen grupos que pueden respirar a través de tráqueas e incluso pulmones.

Pulmones en libro

También conocidos como pulmones laminares o filotráqueas, son los órganos respiratorios de los escorpiones y las arañas, reciben ese nombre porque están formados por cavidades de tejido que se organizan como la página de un libro.

Los protozoarios, las esponjas y muchos gusanos tienen respiración cutánea.

La respiración pulmonar es uno de los tipos más raros de intercambio gaseoso dentro de los invertebrados y sólo se da en pocos organismos, principalmente moluscos.

 

En los insectos, el sistema traqueal está adaptado para la respiración aérea.

Sistema excretor

La mayoría de los invertebrados no cuenta con estructuras que le permitan excretar los desechos, por lo que realizan la difusión a través de las membranas celulares, sin embargo, otros poseen estructuras más complejas como protonefridios (platelmintos), metanefridios (anélidos), glándulas verdes (crustáceos) o túbulos de Malpighi (insectos).

Sistema nervioso

En invertebrados con simetría radial como los equinodermos, la cabeza está ausente y el sistema nervioso central está representado por un anillo de tejido nervioso que rodea el cuerpo.

En los invertebrados con simetría bilateral, como los moluscos, anélidos o artrópodos, el sistema nervioso central está formado por un par de cuerdas nerviosas que se extienden a lo largo de la línea media ventral del cuerpo.

El anillo nervioso y las cuerdas nerviosas tienen ganglios, en los invertebrados más complejos, los ganglios de la cabeza forman el cerebro.

Sistemas biológicos de los vertebrados

Sistema digestivo

De manera general, el sistema digestivo de los vertebrados tiene la misma secuencia, el alimento entra a través de la boca y se rompe generalmente en pedazos más pequeños por los dientes. Muchos vertebrados tienen una lengua que ayuda a manipular los alimentos en la boca y glándulas salivales que los lubrican.

El sistema digestivo de los vertebrados tiene la misma estructura general, sin embargo, presenta adaptaciones de acuerdo al tipo de alimentación.

Poseen un esófago que conecta la faringe y el estómago, también intestinos donde se produce la absorción de los nutrientes y además tienen glándulas digestivas accesorias como el hígado o el páncreas.

Tienen dientes adaptados a su dieta, por ejemplo, los herbívoros tienen dientes cortantes para morder y cortar las hojas y tallos. Los carnívoros tienen incisivos caninos para rasgar y triturar, mientras que los omnívoros tienen características compartidas entre los herbívoros y carnívoros.

Sistema circulatorio

Es de tipo cerrado, es decir, la sangre siempre circula por una red de vasos sanguíneos que conecta con todas las partes del cuerpo.

Todos los vertebrados tienen un corazón muscular que varía en el número de aurículas y ventrículos, por ejemplo, los peces poseen un corazón con dos cámaras con una aurícula y un ventrículo; mientras que los cocodrilos, aves y mamíferos tienen un corazón de cuatro cámaras con dos aurículas y dos ventrículos.

La circulación puede ser simple, doble incompleta o doble, esto va a depender de si la sangre oxigenada y la desoxigenada están completamente separadas o no.

Sistema respiratorio

Tienen dos tipos de respiración: unidireccional y bidireccional. En la unidireccional, el oxígeno se mueve a través de los tejidos en una dirección, los peces y las aves tienen este tipo de respiración.

¿Sabías qué...?
Los cetáceos a pesar de vivir en el agua respiran a través de pulmones, por lo que cada cierto tiempo necesitan subir a la superficie para tomar oxígeno, sin embargo, no deben sacar todo su cuerpo ya que para eso tienen el espiráculo.

El segundo tipo es la respiración bidireccional, lo que implica que el medio (aire) entra y sale por el mismo canal. En este caso, el medio contiene más residuos porque el aire que se inhala y se exhala entra y sale por el mismo canal.

La respiración bidireccional es característica de los mamíferos.

La respiración cutánea también es posible y se produce a través de la piel. La respiración cutánea es única porque puede ocurrir en el aire o en el agua.

Los anfibios utilizan la respiración cutánea para obtener oxígeno.

Sistema excretor

Presentan órganos específicos para la eliminación de sustancias cargadas de nitrógeno, además de la regulación de otras sustancias que podrían ser dañinas para el cuerpo. El órgano encargado de llevar a cabo estas funciones es el riñón, en total son dos, formados por túbulos renales y estructuras filtradoras (pronefros, mesonefros y metanefros).

Sistema nervioso

En los vertebrados, el tejido nervioso se concentra en el extremo anterior del cuerpo, dando origen al cerebro. El sistema nervioso de los vertebrados se caracteriza por esta centralización bien marcada y por la presencia de grandes cantidades de tejido nervioso, los cuales controlan los típicos patrones de comportamiento de los vertebrados.

 

Propiedades y nomenclatura de aminas

Las aminas son compuestos orgánicos nitrogenados conocidos por su importancia a nivel biológico y medicinal. Ejemplo de ello es la serotonina, un neurotransmisor involucrado en diversos procesos de tipo afectivo a nivel del sistema nervioso central.

Las aminas son compuestos orgánicos derivados del amoniaco, conformados por uno o más grupos alquilo o arilo enlazados al átomo de hidrógeno mediante un enlace simple.


En función del número de grupos alquilo o arilo unido al nitrógeno las aminas se clasifican en:

Amina primaria: están constituidas por un grupo amino unido a un sustituyente alquilo o arilo (R- NH2).

Amina secundaria: están formadas por dos grupos alquilo o arilo (R-NH-R´) unidos al átomo de hidrógeno.


Amina terciaria: tienen tres grupos alquilo o arilo unidos al nitrógeno (NR3).


IMPORTANCIA BIOLÓGICA DE LAS AMINAS

En el cuerpo humano hay diferentes aminas que cumplen funciones vitales en el organismo, entre las cuales se encuentran:

Histamina: es la sustancia responsable de las reacciones típicas de la alergia como la dilatación de los vasos sanguíneos, también es un importante neurotransmisor.

Niacina: es una vitamina que ayuda al buen funcionamiento de órganos como la piel, además interviene en procesos del sistema digestivo y nervioso.

Dopamina: es un neurotransmisor del sistema nervioso central y periférico.

PROPIEDADES DE LAS AMINAS

Las propiedades de las aminas están asociadas a su estructura química y la forma en que ésta determina las interacciones moleculares. En general, las aminas son polares y presentan interacciones del tipo dipolo-dipolo, además, aquellas que contienen enlaces de N-H pueden interactuar mediante enlaces de hidrógeno. Debido a que el nitrógeno es menos electronegativo que el oxígeno presente en los alcoholes (R-OH), los puentes de hidrógeno en las aminas son más débiles y por tanto sus puntos de ebullición suelen ser menores a los de los alcoholes de igual masa molecular.

¿Sabías que incluso las aminas terciarias pueden interaccionar con otras moléculas que formen enlaces de hidrógeno? Esto debido al par de electrones libre del nitrógeno.

En cuanto a la solubilidad, las aminas con menos de siete átomos de carbono son solubles en agua, propiedad que disminuye al aumentar el número de carbonos.

Las aminas se comportan como bases débiles en presencia de un ácido, tal como muestra el siguiente ejemplo:


AMINAS MEDICINALES

En la medicina hay drogas o fármacos que pertenecen al grupo de las aminas, como son los antihistamínicos recetados en los casos de alergias y gripes, también la morfina administrada en dosis pequeñas a pacientes que sufren dolor crónico y agudo.

Sin embargo, algunas aminas como la cocaína, la nicotina y la metanfetamina generan adicción y demás efectos negativos sobre el sistema nervioso central y la salud en general.

¿Sabías que el nombre de vitaminas se debe a que inicialmente se creía dichas biomoléculas eran todas aminas?

NOMENCLATURA DE AMINAS

Las aminas se nombran como alcanoaminas o alquilaminas, es decir, se nombran utilizando el nombre del alcano o sustituyente alquilo, respectivamente. En ambos casos se utiliza la terminación –amina.


En aquellos casos donde hay más de un sustituyente se deben nombrar en orden alfabético, así mismo, si alguno de estos se repite varias veces se utilizan los prefijos de cantidad: di, tri y tetra, entre otros.


También es posible nombrar los sustituyentes empleando la letra N como localizador, siempre que los sustituyentes estén unidos al átomo de nitrógeno.


En compuestos donde la prioridad corresponde a otra función química, las aminas se nombran empleando el término amino- precedido por el localizador.


SALES CUATERNARIAS

Las sales cuaternarias se forman cuando una amina reacciona con un ácido. Se utilizan como producto de limpieza y en medicamentos, ya que son más estables y resistentes que las aminas de las cuales provienen.



¡Aplica lo aprendido!

Indica el nombre del siguiente compuesto.


  1. Enumera la cadena carbonada más larga.

  1. Identificar los sustituyentes.

  1. Nombrar el compuesto.

Estructuras de Lewis

Estudiar cómo se combinan los elementos químicos en la naturaleza es primordial para la química aplicada, es por ello que a lo largo de los años se han planteado diversas teorías y formas de representación que facilitan el entendimiento de los compuestos químicos.

Los átomos se combinan entre sí para formar diversos compuestos o sustancias químicas, esto implica la formación de enlaces químicos entre los átomos involucrados en las reacciones químicas. En función de la naturaleza química se conocen tres tipos de enlace:

  • Enlace iónico: se forma como resultado de las fuerzas electrostáticas existentes entre iones de carga opuesta. Este tipo de enlace implica la transferencia de electrones de un átomo a otro.
  • Enlace covalente: es aquel donde dos átomos comparten electrones, en función del número de electrones compartidos se distinguen tres tipos de enlaces covalente: simple (2 e), doble (4 e) y triple (6 e).
  • Enlace metálico: en este tipo de enlaces los electrones se mueven dentro de la red tridimensional del metal, lo que le confiere al mismo su propiedad característica, la conductividad eléctrica.

Los electrones que participan en un enlace químico se denominan electrones de valencia y son aquellos que se encuentran en la capa más externa de los átomos.

 

Átomo de nitrógeno.

Estructuras de Lewis

Lewis fue un químico estadounidense que propuso simbolizar los electrones de valencia mediante el uso de puntos que se ubican arriba, abajo y a los lados del símbolo químico de cada elemento, esta forma de representación se conoce como símbolos de Lewis.


Los símbolos punto-electrón para construir las denominadas estructuras de Lewis de diversas moléculas o compuestos son una herramienta útil al momento de estudiar los enlaces químicos, formación y tipos.

Regla del octeto

Cuando se forma un enlace químico los átomos pierden, ganan o comparten electrones con la finalidad de emular la configuración electrónica del gas noble más cercano a ellos, los cuales deben su estabilidad al número de electrones que contienen en su capa de valencia.

Símbolos de Lewis de los gases nobles.

 

Con excepción del helio, todos los gases nobles poseen ocho electrones en la capa de valencia, hecho en el que se fundamenta la denominada regla del octeto: los átomos tienden a ganar, perder o compartir electrones hasta estar rodeados por ocho electrones de valencia.

A continuación se muestran algunos ejemplos de estructuras de Lewis:

  • Metano
    • Fórmula química: CH4
    • Tipo de enlace: covalente
    • Configuración electrónica:


  • Estructura de Lewis:


  • Dióxido de carbono
    • Fórmula química: CO2
    • Tipo de enlace: covalente
    • Configuración electrónica:


  • Estructura de Lewis:


  • Agua
    • Fórmula química: H2O
    • Tipo de enlace: covalente
    • Configuración electrónica:


  • Estructura de Lewis:


Estructura de Lewis en compuestos iónicos

Uno de los compuestos iónicos más utilizados es la sal de mesa, compuesta por cloruro de sodio dibujar su estructura de Lewis sigue el siguiente procedimiento:

  1. Escribir la formula química: NaCl
  2. Conocer el tipo de enlace: iónico.
  3. Realizar la configuración electrónica, considerando el efecto de las cargas en el anión y catión.

 

  1. Realizar la estructura de Lewis.


Excepciones de la regla del octeto

La regla del octeto no se cumple para todos los compuestos químicos, las excepciones se pueden resumir en tres casos:

  • Moléculas que tienen un número impar de electrones

La presencia de un número de electrones impar hace imposible que los mismos se apareen totalmente y por tanto al menos uno de los átomos involucrados no alcanza el octeto. Por ejemplo el monóxido de nitrógeno (NO).

Estructura de Lewis del monóxido de nitrógeno.

 

  • Moléculas con menos de ocho electrones

Son aquellas moléculas donde un átomo o ion de la misma no puede alcanzar el octeto, un caso emblemático es el trifloruro de boro (BF3).

Estructura de Lewis del trifloruro de boro.

 

  • Moléculas con más de ocho electrones

Son compuestos químicos donde al menos uno de los átomos o iones sobrepasa los ocho electrones en la capa de valencia. Algunos ejemplos representativos son el pentacloruro de fosforo (PCl5).

Estructura de Lewis del pentacloruro de fosforo.

¿Qué debes saber para dibujar estructuras de Lewis?

Para dibujar una estructura de Lewis es necesario dominar los conceptos básicos de la química y sus elementos. Algunas de las consideraciones a tener en cuenta son:

  1. Determinar los electrones de valencia de los elementos involucrados, para ello se puede usar una tabla periódica. También es importante recordar que en el caso de los iones se deben sumar o restar electrones en la capa de valencia; para los aniones cada carga negativa significa que se debe sumar un electrón, en tanto, para los cationes una carga positiva implica que se debe restar un electrón.
  2. Escribir los símbolos químicos e indicar que tipo de enlace los une. Por lo general, las fórmulas químicas indican el orden de unión de los átomos mientras que la naturaleza del enlace está determinada por la diferencia de electronegatividad que existe entre los mismos.
  3. Completar primero los octetos de los elementos unidos al átomo central.
  4. Colocar los electrones faltantes en el átomo central aun si no cumplen con la regla del octeto.
  5. Cuando el átomo central no cumple con el octeto es recomendable probar con enlaces múltiples.
  6. Conocer las excepciones de la regla del octeto.

Números romanos (sistemas de numeración)

Antes de implementarse la numeración arábiga existieron cientos de sistemas de numeración desarrollados por diferentes poblaciones. A pesar de que actualmente la mayoría de estos sistemas han sido eliminados, los números romanos aún están en vigencia y son utilizados en casos esenciales.

SISTEMA DE ADICIÓN Y SUSTRACCIÓN

La numeración romana es un sistema basado en el uso de letras mayúsculas, las cuales poseen un valor designado. Este sistema fue implementado por el Imperio romano y los números se representan mediante combinaciones de letras y métodos de adición y sustracción para la creación de cifras.

Los primeros pobladores en utilizar el sistema de numeración romano fueron los etruscos, una comunidad que habitó en Italia entre los siglos VII y IV antes de Cristo. Posteriormente, los romanos comenzaron a implementar este sistema mediante métodos de adición y sustracción.

La numeración romana se representa mediante letras mayúsculas.

Usos de los números romanos

Actualmente, los números romanos son poco utilizados debido a su dificultad en cuanto a lectura y escritura. Sin embargo, aún son utilizados en los siguientes casos:

  • En los nombres de personas de la realeza como reyes, emperadores y papas.

Ejemplo

El papa Juan Pablo II

Actualmente los números romanos son utilizados para designar nombres de personas de la realeza, como se observa en el monumento de la Puerta de Alcalá en Madrid, España.
  • En los números de capítulos y tomos de un libro u obra literaria.

Ejemplo

Capítulo II tomo I

  • En los actos y escenas de una representación teatral.

Ejemplo

Acto número V

  • En la designación de los nombres de congresos, olimpiadas, certámenes, etc.

Ejemplo

IX Congreso Nacional

Reglas de la numeración romana

  1. La representación de la numeración romana se basa en las siguientes siete letras mayúsculas:

I → 1

V → 5

X → 10

L → 50

C → 100

D → 500

M → 1.000

  1. Si a la derecha de un número romano dentro de una cifra se escribe otro número igual o menor se aplica el método de adición y se suma su valor a la cifra anterior.

Ejemplo

XVI → 16

XVII → 17

  1. El método de sustracción se aplica en los siguientes casos:
  • Cuando la I va a la izquierda de la V → IV = 4
  • Cuando la I va a la izquierda de la X → IX = 9
  • Cuando la X va a la izquierda de la L → XL = 40
  • Cuando la X va a la izquierda de la C → XC = 90
  • Cuando la C va a la izquierda de la D → CD = 400
  • Cuando la C va a la izquierda de la M → CM = 900
  1. Ningún número romano puede repetirse más de tres veces dentro de una misma cifra.
  1. Las letras V, L y D no pueden repetirse ya que otras letras representan su valor duplicado.
  1. Al colocar una línea horizontal sobre un número romano, este multiplica su valor por 1.000 tantas veces como líneas tenga el mismo.

Ejemplo

\overline{M} → 1.000.000

Números romanos Equivalencia en números arábigos Escritura en letras
I 1 Uno
II 2 Dos
III 3 Tres
IV 4 Cuatro
V 5 Cinco
VI 6 Seis
VII 7 Siete
VIII 8 Ocho
IX 9 Nueve
X 10 Diez
XI 11 Once
XII 12 Doce
XIII 13 Trece
XIV 14 Catorce
XV 15 Quince
XVI 16 Dieciseis
XVII 17 Diecisiete
XVIII 18 Dieciocho
XIX 19 Diecinueve
XX 20 Veinte
XXI 21 Veintiuno
XXII 22 Veintidos
XXIII 23 Veintitres
XXIV 24 Veinticuatro
XXV 25 Veinticinco
XVI 26 Veintiseis
XVII 27 Veintisiete
XVIII 28 Veintiocho
XXIX 29 Veintinueve
XXX 30 Treinta
XXXI 31 Treinta y uno
XXXII 32 Treinta y dos
XXXIII 33 Treinta y tres
XXXIV 34 Treinta y cuatro
XXXV 35 Treinta y cinco
XXXVI 36 Treinta y seis
XXXVII 37 Treinta y siete
XXXVIII 38 Treinta y ocho
XXXIX 39 Treinta y nueve
XL 40 Cuarenta
XLI 41 Cuarenta y uno
XLII 42 Cuarenta y dos
XLIII 43 Cuarenta y tres
XLIV 44 Cuarenta y cuatro
XLV 45 Cuarenta y cinco
XLVI 46 Cuarenta y seis
XLVII 47 Cuarenta y siete
XLVIII 48 Cuarenta y ocho
XLIX 49 Cuarenta y nueve
L 50 Cincuenta
LI 51 Cincuenta y uno
LII 52 Cincuenta y dos
LIII 53 Cincuenta y tres
LIV 54 Cincuenta y cuatro
LV 55 Cincuenta y cinco
LVI 56 Cincuenta y seis
LVII 57 Cincuenta y siete
LVIII 58 Cincuenta y ocho
LVIX 59 Cincuenta y nueve
LX 60 Sesenta
LXI 61 Sesenta y uno
LXII 62 Sesenta y dos
LXIII 63 Sesenta y tres
LXIV 64 Sesenta y cuatro
LXV 65 Sesenta y cinco
LXVI 66 Sesenta y seis
LXVII 67 Sesenta y siete
LXVIII 68 Sesenta y ocho
LXIX 69 Sesenta y nueve
LXX 70 Setenta
LXXI 71 Setenta y uno
LXXII 72 Setenta y dos
LXXIII 73 Setenta y tres
LXXIV 74 Setenta y cuatro
LXXV 75 Setenta y cinco
LXXVI 76 Setenta y seis
LXXVII 77 Setenta y siete
LXXVIII 78 Setenta y ocho
LXXIX 79 Setenta y nueve
LXXX 80 Ochenta
LXXXI 81 Ochenta y uno
LXXXII 82 Ochenta y dos
LXXXIII 83 Ochenta y tres
LXXXIV 84 Ochenta y cuatro
LXXXV 85 Ochenta y cinco
LXXXVI 86 Ochenta y seis
LXXXVII 87 Ochenta y siete
LXXXVIII 88 Ochenta y ocho
LXXXIX 89 Ochenta y nueve
XC 90 Noventa
XCI 91 Noventa y uno
XCII 92 Noventa y dos
XCIII 93 Noventa y tres
XCIV 94 Noventa y cuatro
XCV 95 Noventa y cinco
XCVI 96 Noventa y seis
XCVII 97 Noventa y siete
XCVIII 98 Noventa y ocho
XCIX 99 Noventa y nueve
C 100 Cien
CC 200 Doscientos
CCC 300 Trescientos
CD 400 Cuatrocientos
D 500 Quinientos
DC 600 Seiscientos
DCC 700 Setecientos
DCCC 800 Ochocientos
CM 900 Novecientos
M 1.000 Mil
¿Sabías qué...?
Actualmente, muchos diseñadores utilizan números romanos para la creación de piezas decorativas como relojes.

 Describing people

Al estudiar un idioma nuevo, como el inglés, una de las cosas primordiales que se deben aprender es cómo describir personas, animales y objetos. A continuación veremos cómo realizar estas descripciones de forma detallada, tanto física como personalmente.

Para describir objetos, animales o personas en inglés se utilizan diferentes estructuras gramaticales según lo que vayamos a describir. Existen dos tipos de preguntas:

  1. What + do/does + subject + look like? → Para preguntar el aspecto físico.
  1. What + verb to be + subject + like? → Para preguntar la personalidad.

A continuación, veremos los aspectos que pueden describirse con su respectiva estructura gramatical.

Describing people / Describiendo personas

Utilizando el verbo to be

Subject + verb to be + adjective / Sujeto + verbo to be (ser, estar) + adjetivo

Age / Edad Examples / Ejemplos
Young / Joven She is young / Ella es joven
A teenager / Un adolescente He is a teenager / Él es un adolescente
Middle aged / De mediana edad My cousin is middle aged / Mi prima es de edad mediana
Old / Viejo Mike is old / Mike es viejo
Elderly / Anciano My grandfather is elderly / Mi abuelo es anciano
40 years old / 40 años de edad I am 40 years old / Yo tengo 40 años
In his thirties / En sus treinta They are in their thirties / Ellos están en sus treinta
Body / Cuerpo Examples / Ejemplos
Tall / Alto He is tall / Él es alto
Short / Bajo She is short / Ella es baja
Fat / Gordo Lily is fat / Lily es gorda
Thin / Delgado You are thin / Tú eres delgado
Strong / Fuerte My father is strong / Mi padre es fuerte
Weak / Débil They are weak / Ellos son débiles
Average height / Estatura media I am average height / Yo soy de estatura media
Personality / Personalidad Examples / Ejemplos
Intelligent / Inteligente She is intelligent / Ella es inteligente
Funny / Divertido My brother is funny / Mi hermano es divertido
Serious / Serio He is serious / Él es serio
Nice / Simpático You are nice / Tú eres simpático
Lazy / Flojo They are lazy / Ellos son flojos
Friendly / Amigable I am friendly / Yo soy amigable
Dumb / Tonto Robert is dumb / Robert es tonto

Utilizando el verbo to have

Subject + verb to have + adjective / Sujeto + verbo to have (tener) + adjetivo

Hair / Cabello Examples / Ejemplos
Black hair / Cabello negro She has black hair / Ella tiene cabello negro
Brown hair / Cabello marrón I have brown hair / Yo tengo cabello marrón
Red hair / Cabello rojo o pelirrojo He has red hair / Él tiene cabello rojo
Blonde hair / Cabello rubio My mother has blonde hair / Mi madre tiene cabello rubio
Gray hair / Cabello canoso My father has gray hair / Mi padre tiene cabello canoso
Long hair / Cabello largo They have long hair / Ellos tienen cabello largo
Short hair / Cabello corto You have short hair / Tú tienes cabello corto
Straight hair / Cabello liso She has straight hair / Ella tiene cabello liso
Wavy hair / Cabello ondulado I have wavy hair / Yo tengo cabello ondulado
Curly hair / Cabello rizado He has curly hair / Él tiene cabello rizado
Face / Cara Examples / Ejemplos
A beard / Una barba He has a beard / Él tiene una barba
A mustache / Un bigote My father has a mustache / Mi padre tiene un bigote
Freckles / Pecas I have freckles / Yo tengo pecas
Wrinkles / Arrugas My mother has wrinkles / Mi madre tiene arrugas
Para decir que una persona usa lentes se emplea el verbo wear de la siguiente forma: She wears glasses.
¿Sabías qué...?
Existen excepciones en el uso del verbo to have cuando se habla de cabello. Utilizamos el verbo to be para decir que alguien es calvo, por ejemplo: He is bald / Él es calvo.

También se puede utilizar el verbo to be para la expresión: She is blonde / Ella es rubia.

Describing animals / Describiendo animales

La estructura de las oraciones para describir animales es la misma que se utiliza para describir personas. La diferencia radica en el vocabulario.

Subject (It) + verb to be or to have + adjective / Sujeto (It) + verbo to be o to have + adjetivo

Utilizando el verbo to be Utilizando el verbo to have
Adjectives / Adjetivos Parts of the body / Partes del cuerpo
Furry / Peludo Fur / piel de animales peludos
Ferocious / Feroz Mane / Melena
Dangerous / Peligroso Hooves / Pezuñas
Poisonous / Venenoso Tail / Cola
Tame / Manso Claws / Garras
Agile / Ágil Beak / Pico
Aggressive / Agresivo Wings / Alas
Domestic / Doméstico Feathers / Plumas
Wild / Salvaje Scales / Escamas
Herbivorous / Herbívoro Horn / Cuerno
Carnivorous / Carnívoro Paw / Pata
Para describir animales se puede agregar el lugar en donde habitan, por ejemplo: They live in Africa.

Describing objects / Describiendo objetos

La estructura de las oraciones para describir el color, el estampado y la forma de los objetos es la misma que se utiliza para describir personas y animales. Sin embargo, para referirnos al material del cual están hechos se utiliza una expresión diferente.

Subject (It) + verb to be + adjective / Sujeto (It) + verbo to be + adjetivo

Subject (It) + verb to be + made of + material / Sujeto (It) + verbo to be + made of (está hecho de) + material

Utilizando el verbo to be Utilizando made of
Sharp / Afilado Acrylic / Acrílico
Wide / Ancho Cotton / Algodón
Soft / Blando Bronze / Bronce
Curved / Curvo Cardboard / Cartón
Square / Cuadrado Card / Cartulina
Hard / Duro Ceramic / Cerámica
Big / Grande Leather / Cuero
Little / Pequeño Rubber / Goma o caucho
Flat / Plano Wool / Lana
Round / Redondo Wood / Madera
Straight / Recto Metal / Metal
Cylindrical / Cilíndrico Nylon / Nailon
Hot / Caliente Gold / Oro
Cold / Frío Paper / Papel
White / Blanco Stone / Piedra
Dark / Oscuro Plastic / Plástico
Pale / Pálido Silver / Plata
Flowered / Floreado Silk / Seda
Para describir objetos comúnmente se indica el material con el cual están realizados, por ejemplo: It is made of wood.

Problemas fronterizos entre Venezuela y Guyana

Venezuela ha reclamado durante mucho tiempo una enorme extensión de tierra conocida como el Esequibo o Guayana Esequiba, que comprende el 40 % del territorio actual de Guyana. La región es rica en minerales y recursos naturales, y es una de las razones por las que representa un gran interés para las dos naciones.

En la actualidad, los funcionarios de la ONU esperan alivianar el altercado mediante un acuerdo entre el presidente de Venezuela, Nicolás Maduro, y el presidente de Guyana, David Granger.

¿Sabías qué...?
Guyana es una nación caribeña que limita con Venezuela, tiene una población de menos de 1 millón de personas y es el tercer país más pobre de América Latina.
El Esequibo es una región poco desarrollada, escasamente poblada pero rica en recursos naturales, casi el 60 % de la moderna Guyana.

Comienzo de la disputa entre Guyana y Venezuela

Hacia mediados del siglo XIX, el Gobierno británico consideró necesario demarcar las fronteras de Guyana. En 1840, el gobierno británico envió a Robert Schomburgk a una misión para examinar y marcar los límites de la Guayana británica. La intención de ese gobierno, una vez terminada la labor, era comunicar a los gobiernos de Venezuela y Brasil las opiniones del gobierno británico sobre la verdadera frontera de la colonia y luego resolver por negociación cualquier detalle.

En la realización de esta comisión, Schomburgk investigó personalmente casi todo el país al oeste del Esequibo y no descubrió ni pautó nuevos límites. Procuró basar sus informes en la exploración real y la información obtenida de los pueblos originarios, así como de la evidencia de los restos holandeses en Barima y en el Cuyuní; con lo que pudo determinar los límites de la posesión holandesa y la zona de la cual todo el rastro de la influencia española estaba ausente.

Con el fin de facilitar las negociaciones para el ajuste de la frontera, trazó la línea divisoria que se hizo famosa desde entonces como la Línea Schomburgk, que incluía mucho menos territorio que el reclamado por Gran Bretaña.

La posición de Guyana está basada en la defensa de la tierra que ha sido parte de su país durante casi 200 años.

Fue en este período que comenzaron las discusiones con Venezuela sobre el límite. El primer planteamiento del gobierno venezolano fue en enero de 1841 que, en respuesta al anuncio británico de la frontera, propuso la negociación de un tratado de límites y expresó el deseo de que éste precediera al levantamiento y la demarcación de la frontera.

Más tarde, el gobierno venezolano renovó la propuesta de negociación de un acuerdo y, al mismo tiempo, protestó contra los procedimientos de Schomburgk para colocar puestos fronterizos en ciertos puntos.

El embajador venezolano en Londres, Alejo Fortique, renovó sus protestas, por lo que el secretario de Estado de Asuntos Exteriores en enero de 1842 envió instrucciones para la remoción de los puestos fronterizos que habían sido colocados por Schomburgk cerca del Orinoco. Sin embargo, al mismo tiempo, se declaró claramente que el gobierno británico no abandonaba ninguna parte de sus derechos sobre el territorio que antes era propiedad de los holandeses.

En 1843, Fortique, solicitó la pronta conclusión de un convenio para definir la frontera entre Venezuela y la Guayana Británica. Luego, en una nota del 31 de enero de 1844, presentó la primera declaración formal de la afirmación venezolana de que el territorio de la República se extendía al río Esequibo.

Motivos en los que se basó esta alegación

  1. España fue el primer ocupante del Nuevo Mundo.
  2. Los españoles habían explorado y ocupado muy pronto el Orinoco y los ríos Barima, Moruca y Pomeroon.
  3. En el momento del Tratado de Münster, los holandeses no tenían posesiones en Guayana, al menos en el lado norte y oeste del Esequibo.
  4. El dominio español se extendió hasta el Esequibo y toda posesión de los holandeses al oeste de ese río era una usurpación, que no había sido aprobada por España.

Conclusión de la declaración

La declaración concluyó con la insistencia de que el Esequibo era la frontera natural entre Venezuela y la Guayana Británica, y que los colonos británicos poseían poco o nada más allá de ese río.

Este reclamo recibió una pronta respuesta por Lord Aberdeen, en la cual, si bien se admitió que los españoles fueron los primeros europeos en ocupar el sur del continente americano, se observó que tal hecho no podía tener relación con el asunto en discusión. La respuesta señalaba además que si Venezuela no disponía de ningún tipo de arreglo en el territorio en cuestión, la concesión del Esequibo como frontera supondría la entrega inmediata por Gran Bretaña de la mitad de la Guayana Británica.

Lord Aberdeen también declaró que Gran Bretaña estaba dispuesta a conceder por amistosa consideración a Venezuela, una parte de la reivindicación británica extrema en el área superior del Cuyuní, con la condición de que las tribus amerindias que viven allí estuvieran debidamente protegidas.

La propuesta de Lord Aberdeen, comunicada un tiempo después al Gobierno de la Guayana Británica, resultó ser extremadamente desfavorable para la colonia.

Por su parte, el gobierno venezolano no apreció la gran concesión de los derechos británicos y no se envió ninguna respuesta a la nota de Lord Aberdeen y, en consecuencia, el gobierno británico decidió en 1850 que, como la propuesta había permanecido durante seis años y aún no se había aceptado, podía considerarse que había caducado.

Posición actual

Hasta principios de 2015, el gobierno de Guyana no había formulado ninguna propuesta de solución a la controversia desde 1982, cuando ambos países solicitaron al Secretario General de la ONU que decidiera un método de solución. Sin embargo, el Acuerdo de Ginebra de 1966 ha ayudado, al menos a los ojos de los venezolanos, a elevar la reclamación renovada de Venezuela. Las sucesivas administraciones venezolanas han interpretado desde entonces que el acuerdo significaba que debían seguirse discusiones para revisar la frontera basándose en la reclamación de su país sobre toda la parte occidental del Esequibo.

El 7 de agosto del año 2000, Oliver Jackman, representante personal del Secretario General de la ONU, en una reunión con el ministro de Relaciones Exteriores de Guyana en Georgetown declaró que durante una visita a Caracas unos días antes de preguntarle al presidente Chávez, éste dijo que Guyana no tenía que ceder todo el territorio y que una solución a la disputa implicaría la cesión de Guyana de una parte de la región de Esequibo.

Sin embargo, en los últimos tiempos, las señales conflictivas que salen de Venezuela dan la impresión de que el gobierno venezolano no está demasiado confiado con la demanda.

Economía de Guayana

La principal actividad económica es la agricultura, específicamente el arroz y el azúcar, que representa más del 30 % de los ingresos de exportación. A pesar de estar rodeada de vastas reservas de petróleo y gas en la vecina Venezuela, hasta hace poco Guyana no tenía reservas de petróleo dentro de sus límites territoriales.