CAPÍTULO 9 / TEMA 4

Conservación y áreas protegidas

Las áreas protegidas han demostrado ser claves para la conservación de la biodiversidad. Pueden adoptar diversas formas, como parques nacionales, áreas silvestres, áreas conservadas por la comunidad, reservas naturales y reservas privadas.

¿QUÉ SON LAS AREAS PROTEGIDAS?

Las áreas protegidas son regiones o zonas de tierra o mar que se reservan para conservar la naturaleza y la biodiversidad.

Las áreas protegidas no sólo aseguran la conservación de la biodiversidad, sino que también aseguran el bienestar de la humanidad.

¿Por qué son importantes las áreas protegidas?

Las áreas protegidas cumplen una amplia gama de funciones que incluyen investigación científica, protección de las especies y de las áreas silvestres, conservación de la biodiversidad, protección de servicios ambientales como cuencas hidrográficas, mantenimiento de sitios culturales, educación, turismo y recreación.

Más que instrumentos para conservar la naturaleza, son vitales para hacer frente a algunos de los desafíos de la actualidad, como la seguridad alimentaria, la escasez de agua, los problemas de salud, la reducción del riesgo de desastres y el cambio climático.

¿Sabías qué?
Las áreas protegidas proporcionan medios de vida a casi 1.100 millones de personas y son la principal fuente de agua potable para más de un tercio de las grandes ciudades del mundo.

Las áreas protegidas bien administradas que albergan mecanismos de gobernanza participativos y equitativos producen beneficios significativos que se pueden traducir en ventajas acumulativas en una economía nacional, y la contribución a la reducción de la pobreza y al desarrollo sostenible.

¿QUÉ ES UNA RESERVA NATURAL?

Una reserva natural es un área de tierra que está protegida y gestionada por diversas razones ecológicas. Podría designarse para proteger y preservar la vida silvestre, la flora, la fauna, las características geológicas u otros intereses especiales que desempeñan un papel en el ecosistema y la biodiversidad de la Tierra.

Origen

El origen de las reservas naturales modernas se encuentra en la época medieval, cuando los terratenientes establecieron cotos de caza para la protección de los animales que cazaban. La idea de proteger a los animales para evitar que se extingan surgió en el siglo XIX.

Los hábitats de muchos animales y plantas que se encuentran en alguna categoría de amenaza a menudo están protegidos y conservados en reservas naturales para evitar que se extingan y también para brindar oportunidades de estudio, investigación y apreciación de la naturaleza.

Clasificación de las reservas naturales

Las reservas naturales se pueden clasificar en diferentes categorías. Muchos países han adoptado el sistema de categorización de la Unión Internacional para la Conservación de la Naturaleza (UICN) para clasificar sus áreas protegidas de acuerdo con sus objetivos de manejo:

  • Estricta reserva natural.
  • Área silvestre.
  • Parque Nacional.
  • Monumento Natural.
  • Área de Manejo de Hábitat / Especies.
  • Paisaje protegido / paisaje marino.
  • Área protegida con uso sostenible de los recursos naturales.
Las reservas naturales están establecidas para:

  • Proporcionar áreas adecuadas para la investigación científica y la educación.
  • Proteger ejemplos representativos de ecosistemas naturales.
  • Proporcionar ejemplos de ecosistemas que han sido modificados por los seres humanos y ofrecer una oportunidad para estudiar la recuperación natural de los ecosistemas a partir de la modificación.
  • Proteger plantas y animales endémicos y/o en peligro de extinción en sus hábitats naturales.

ÁREAS NATURALES PROTEGIDAS DE AMÉRICA LATINA

Ver infografía

En América Latina, la superficie que se encuentra bajo protección es de más de 211 millones de hectáreas, lo que representa el 10,4 %. Por su parte, 29 millones de hectáreas de espacios marinos están protegidos, lo que equivale al  2,1 %.

América Latina posee maravillosas extensiones de tierra de importancia mundial, como por ejemplo:

Reserva de la Biosfera Mariposa Monarca

Ubicada en Michoacán, México, cuenta con apenas 560 km² y es famosa porque forma parte de la migración que realiza cada año la mariposa monarca procedente de Canadá.

La mariposa monarca elige el centro de México como lugar para entrar a su período de inactividad.

Parque Nacional Iguazú

Ver infografía

Es un área protegida de más de 67.720 hectáreas en la frontera norte de la provincia de Misiones, Argentina. El parque comprende una serie de 275 cascadas, está ubicado a 17 km del río Iguazú, donde se encuentran las fronteras de Argentina, Brasil y Paraguay.

Parque Nacional Nahuel Huapi

Ubicado en las provincias de Río Negro y Neuquén, en el suroeste de Argentina; cuenta con una superficie de 710.000 hectáreas.

¿Sabías qué?
El Parque Nacional Nahuel Huapi se convirtió en el primer parque nacional de Argentina en 1934.

Parque Nacional Canaima

Ver infografía

Con 30.000 km2, Canaima es el segundo parque nacional más grande de Venezuela y el sexto más grande del mundo. Se encuentra en el estado de Bolívar y llega a las fronteras del país con Brasil y Guyana. Aproximadamente el 65 % del parque está ocupado por mesetas de roca gruesa que se conocen como tepuyes.

El Salto Ángel en el Parque Nacional Canaima, en Venezuela, es la cascada más alta del mundo.

Parque Nacional Henri Pittier

Es el más antiguo de Sudamérica y cubre un área de 1.078 km². Fue establecido en 1937 como Rancho Grande, pero pasó a llamarse Henri Pittier en 1953 en honor al distinguido geógrafo, etnólogo y botánico suizo. Se encuentra en el estado Aragua, Venezuela.

Santuario de aves

Es un área importante para las aves, cuenta con 582 especies, lo que representa el 43 % de las aves en Venezuela y el 6 % en todo el mundo. Tiene una de las densidades de aves más altas del mundo, de 54 especies por cada 10 km2.

Parque Nacional Cotopaxi

Es uno de los parques más impresionantes de Ecuador, donde se encuentra el famoso volcán Cotopaxi. Una reserva ecológica rodea el volcán, ubicado en la frontera entre las provincias de Pichincha y Cotopaxi.

El Cotopaxi es un volcán activo y es el segundo punto más alto de Ecuador.

Islas Galápagos

Ver infografía

Es un grupo de islas del océano Pacífico oriental en Ecuador. Las Galápagos consisten en 13 islas grandesº, 6 islas más pequeñas y decenas de islotes y rocas. Su área total de tierra de 8.010 km2 está dispersa sobre 59.500 km2 de océano.

Parque Nacional Toro Toro

Se ubica al norte del departamento de Potosí, provincia Charcas en Ecuador, a una altitud de entre 1.600 y 3.600 msnm. Cuenta con hermosos paisajes, cañones profundos y grandes cuevas formadas por estalactitas y estalagmitas.

RECURSOS PARA DOCENTES

Artículo “Desarrollo sustentable hoy”

Cuando hablamos de desarrollo sustentable nos referimos a un proceso integral que conjuga a la sociedad, la economía y al planeta tierra con su naturaleza.

VER

Infografía “Deforestación y reforestación”

Un método para revertir el daño causado por la deforestación es la reforestación.

VER

Artículo “Los ecosistemas”

En el siguiente artículo encontrará cuáles son las características fundamentales de los ecosistemas y cómo estos son modificados por el hombre.

VER

 

CAPÍTULO 7 / TEMA 5

Eucariotas: dominio Eukarya, reino Fungi

El reino Fungi incluye un grupo diverso de seres que no pueden ser catalogados como animales ni como plantas. Se caracterizan por ser heterótrofos y descomponer la materia orgánica, por eso también son llamados descomponedores.

CARACTERÍSTICAS GENERALES

Ver infografía

  • Son eucariotas, lo que significa que tienen células complejas con núcleo y orgánulos definidos.
  • Poseen pared celular rígida formada por quitina y glucanos, polímeros de glucosa.
La quitina es una molécula de azúcar que también se encuentra en el exoesqueleto de los artrópodos, como los insectos y los cangrejos.
  • Son en su mayoría organismos sésiles.
  • Pueden ser unicelulares microscópicos o ser pluricelulares macroscópicos.
  • Los hongos pluricelulares no forman verdaderos tejidos, sino pseudotejidos o estructuras filamentosas llamadas hifas.
Organismos esponjosos

Las hifas se agrupan para formar un conglomerado llamado micelio. Al cortar un hongo se puede notar que es esponjoso; esto se debe a que en realidad está formado por una masa de hifas muy compactas y, por lo tanto, no es exactamente sólido.

  • Son heterótrofos. Los hongos se alimentan de otros organismos o de materia en descomposición por absorción de nutrientes.
  • Viven en lugares húmedos y sombríos, no necesitan luz para desarrollarse.
  • Tienen variadas formas de nutrición, entre ellas la saprofita, se alimentan de la materia en descomposición, y la parásita, se alimentan de otros organismos sin llevar a la muerte al hospedador.
El quitridio Batrachochytrium dendrobatidis causa enfermedades de la piel en muchas especies de anfibios, lo que resulta en el declive y la extinción de las especies.

Zygomycota

  • Presentan micelio cenocítico sin tabiques o divisiones.
  • Tienen esporas sexuales que se conocen como zygosporas.
  • La reproducción sexual ocurre a través de la cópula o conjugación gametangial. Debido a esto, los zigomicetos también se llaman hongos de conjugación.
  • La mayoría de las especies son saprófitas y algunos son parásitos de amebas, nemátodos y artrópodos.
  • Incluyen el conocido moho negro del pan, Rhizopus stolonifer, que se propaga rápidamente en las superficies de panes, frutas y verduras.
Los esporangios de los zigomicetos crecen al final de los tallos y aparecen como una pelusa blanca.

Ascomycota

  • Los ascomicetos también se conocen como micetos de saco por presentar las esporas sexuales dentro de un saco llamado ascus.
  • Las esporas sexuales se llaman ascosporas.
  • La reproducción asexual se produce por conidios unicelulares o multicelulares.
  • Las hifas son generalmente septadas.
  • Es el grupo de hongos verdaderos con mayor número de especies. Entre ellos se destacan muchos hongos fitopatógenos, hongos parásitos de humanos y hongos comestibles.
¿Sabías qué?
Los ascomicetos son una clase de hongos diversos que cuentan con más de 30.000 especies.

Basidiomycota

  • Presentan micelio tabicado con células con dos núcleos o dicarióticas.
  • A este grupo pertenecen los típicos hongos de sombreros que forman setas.
  • La mayoría de ellos son saprófitos, otros son fitoparásitos.
  • Algunos son comestibles y otros producen toxinas que pueden causar la muerte.
  • Producen esporas llamadas basiodiosporas en esporangios.

Glomeromycota

  • Phyllum de reciente creación que comprende alrededor de 230 especies.
  • Viven en estrecha asociación con las raíces de los árboles.
  • Aquí pueden hallarse hongos tan importantes para la biósfera como los formadores de micorrizas vesículo-arbusculares.

IMPORTANCIA BIÓLÓGICA

Los hongos producen naturalmente antibióticos que inhiben el crecimiento de bacterias. Antibióticos importantes, como la penicilina y las cefalosporinas, pueden ser aisladas desde los hongos.

Como simples organismos eucariotas, los hongos son importantes en la investigación. Muchos avances en la genética moderna se lograron con el uso del moho rojo del pan Neurospora crassa. Además, muchos genes importantes descubiertos originalmente en Saccharomyces cerevisiae sirvieron como punto de partida para descubrir genes humanos análogos.

Hongos y otros organismos

Los hongos tienen una relación muy importante con las plantas. Sus hifas se unen junto a las raíces de las plantas para formar las micorrizas. En esta relación simbiótica, las plantas dan azúcares a los hongos y los hongos le proporcionan otros nutrientes a las plantas.

Al igual que las bacterias, las levaduras crecen fácilmente en cultivo, tienen un tiempo de generación corto y son susceptibles a la modificación genética.

IMPORTANCIA SANITARIA  

Al ser saprófitos, las levaduras atacan diversos productos alimenticios, incluidos los productos de tomate, los alimentos que contienen ácido láctico y las bebidas carbonatadas. Algunos hongos causan enfermedades, como la micosis en los seres humanos, o excretan compuestos tóxicos (micotoxinas).

¿Sabías qué?
Las esporas fúngicas pueden causar alergias graves en los seres humanos.

UTILIDAD INDUSTRIAL

Industria de panadería 

La harina amasada se inocula con la levadura de panadero Saccharomyces cerevisiae, la cual produce dióxido de carbono y alcohol. Éstos se evaporan durante la cocción para hacer la masa suave y esponjosa.

Industria cervecera

En condiciones anaeróbicas, las soluciones azucaradas inoculadas con levaduras se convierten en bebidas alcohólicas, por ejemplo: cerveza, vino y sidra. Se concentran aún más para producir ron y whisky.

QUIERO SABER SOBRE…

La fermentación es un proceso químico mediante el cual las moléculas de glucosa son descompuestas en ausencia de oxígeno, este proceso es de suma importancia en la producción de alimentos como el pan, el yogurt y las bebidas alcohólicas.

RECURSOS PARA DOCENTES

Video “Reino Fungi”

Descubre el quinto reino de los seres vivos en el siguiente video.

VER

Artículo “El reino de los Protistas”

Este recurso le permitirá obtener más información acerca de este grupo de seres vivos que no son ni plantas, ni animales, ni hongos.

VER

Artículo “Hongos unicelulares”

¿Cuáles son los hongos unicelulares? ¿Qué importancia tienen? Descúbrelo en el siguiente artículo.

VER

CAPÍTULO 8 / TEMA 3

Las comunidades y sus relaciones

En ecología existen diferentes niveles de organización con respecto a los factores bióticos en el ecosistema. Un individuo es un solo organismo; una población es un grupo de organismos de la misma especie en un área particular al mismo tiempo. El grupo de varias poblaciones forma una comunidad.

¿QUÉ ES UNA COMUNIDAD?

La comunidad es el grupo de varias poblaciones, ya sea de plantas, animales o microorganismos, que viven en un área determinada e interactúan entre sí.

Por ejemplo, todos los organismos que viven en el tronco de un árbol muerto pueden considerarse una comunidad. Varias especies de gusanos, insectos, musgos y hongos residirán allí y llevarán a cabo varios nichos.

Los hongos, como los saprófitos, se encargan de descomponer la materia orgánica.

Características de una comunidad

Al igual que una población, una comunidad tiene una serie de características:

1. Organización trófica

Cada organismo dentro de una comunidad se puede clasificar dentro de un nivel trófico específico que se relaciona con la forma en que obtiene los nutrientes. Estos niveles tróficos se pueden dividir en tres grupos principales que son los productores o autótrofos, los consumidores o heterótrofos y los descomponedores.

Las comunidades pueden describirse por la forma en que la energía se transfiere a través de estos niveles tróficos.

Las flechas indican la relación “es comido por”.

 

2. Dominio de especies

Generalmente hay una o dos especies en cada nivel trófico que ejercen una influencia más dominante sobre la función y estructura de la comunidad que las otras.

¿Sabías qué?
Las plantas generalmente dominan las comunidades terrestres, por lo que el nombre de la comunidad a menudo se basa en la vegetación ecológicamente dominante.

3. Interdependencia

Las comunidades no son sólo una mezcla aleatoria de plantas, animales y microorganismos. Cada uno de los organismos dentro de una comunidad interactúa con otros, e incluso pueden necesitar el uno del otro para sobrevivir.

TIPOS DE INTERDEPENDENCIA

Interdependencia nutricional

Algunos insectos sólo pueden alimentarse de una especie de planta.

Interdependencia reproductiva

Para el polinizador, la interacción proporciona una fuente alimenticia de néctar; para la planta, la interacción es esencial para su éxito reproductivo.

Interdependencia protectora

Los insectos que viven en un árbol dependen de las hojas y ramas para protegerse de la depredación de las aves.

4. Estructura comunitaria

Las descripciones de la estructura de la comunidad se relacionan tanto con la riqueza de especies como con la diversidad de especies. Como regla general, las comunidades que tienen más diversidad de especies son más resistentes al daño del ecosistema.

5. Forma de crecimiento y sucesión

Una comunidad se puede describir por las categorías principales de su forma de crecimiento. Por ejemplo, musgos, plantas herbáceas, arbustos y árboles. También puede caracterizarse por su etapa de sucesión, que es el reemplazo progresivo y predecible de un tipo de comunidad por otra a lo largo del tiempo.

COMUNIDADES DE ACUERDO AL TIPO DE SUCESIÓN

Comunidad pionera

Es la primera comunidad que se forma dentro de un paisaje desnudo una vez que sus semillas o esporas migran de las áreas circundantes y germinan con éxito. Está formada por plantas resistentes, de rápido crecimiento y que requieren muy pocos nutrientes.

Comunidad serial

Se desarrolla en el área después de la comunidad pionera. Es una comunidad de transición que incluye especies de tamaño intermedio, que tienen alta biomasa y alto contenido nutricional.

Comunidad clímax

Es la comunidad biótica estable y autorregulada que se establece después de muchos años. Contiene especies más longevas y más grandes, con alta especialización de nicho y redes alimenticias complejas.

6. Estratificación

Las comunidades clímax naturales generalmente exhiben alguna forma de estratificación, donde las poblaciones que conforman la comunidad se distribuyen en estratos verticales u horizontales definidos.

Por ejemplo, la estratificación ascendente de una comunidad forestal podría dividirse en:

  • La capa subterránea.
  • El suelo del bosque.
  • La vegetación herbácea.
  • La capa de arbusto.
  • La capa de dosel.

COMUNIDADES EN LOS ECOSISTEMAS AEROTERRESTRES

Comunidades del desierto

Son aquellas que se desarrollan en condiciones secas y en un amplio rango de temperaturas, desde el congelamiento nocturno hasta altísimas temperaturas durante el día.

Las plantas en este bioma han desarrollado una serie de adaptaciones, como tallos suculentos y hojas pequeñas, espinosas o ausentes, para conservar el agua y lidiar con estas temperaturas extremas.

Comunidades del pastizal

Se encuentran en zonas templadas y tropicales, con precipitaciones reducidas o estaciones secas prolongadas. Las praderas carecen casi por completo de árboles y pueden soportar grandes manadas de animales de pastoreo.

Las hierbas son las plantas dominantes, mientras que las especies de pastoreo y madriguera son los animales característicos.

¿Sabías qué?
Los pastizales naturales alguna vez cubrieron más del 40 % de la superficie terrestre.

Selvas tropicales

Las comunidades que se desarrollan en este ambiente están adaptadas al clima cálido de entre 20 y 25 °C, con abundantes lluvias. Es el bioma más rico, tanto en diversidad como en biomasa total.

Los insectos son abundantes, las aves tienen colores brillantes y los anfibios, reptiles y mamíferos están bien representados.

Entre las plantas que más abundan en la selva tropical se encuentran las epifitas, que crecen sobre otras plantas. Tienen sus propias raíces para absorber la humedad y los minerales, pero usan la otra planta para su desarrollo.

COMUNIDADES EN LOS ECOSISTEMAS ACUÁTICOS

Comunidades de agua dulce

Son aquellas que se desarrollan en ríos, arroyos, lagos y estanques. Se puede encontrar una variedad de plantas y animales en estas comunidades de agua dulce, como algas, cianobacterias, hongos y también una gran variedad de especies de peces.

Estuarios

En estas áreas, las corrientes o ríos de agua dulce se encuentran con el océano. Estas regiones altamente productivas contienen vida vegetal y animal muy diversa. Los estuarios son zonas de alimentación y reproducción para una variedad de animales, incluidas aves acuáticas, reptiles, mamíferos y anfibios.

Comunidades marinas

Los océanos cubren aproximadamente el 70 % de la superficie terrestre. Las comunidades marinas son difíciles de dividir en distintos tipos, pero se pueden clasificar según el grado de penetración de la luz.

  • Zona fótica: es la zona o área de luz desde la superficie del agua hasta las profundidades a las cuales la intensidad de la luz logra penetrar. La fotosíntesis ocurre en esta zona, por lo que en ella se desarrolla la gran mayoría de la vida marina.
  • Zona afótica: es un área que recibe poca o ninguna cantidad de luz solar. El ambiente en esta zona es extremadamente oscuro y frío. Los organismos que viven aquí a menudo son bioluminiscentes o extremófilos, capaces de vivir en ambientes extremos.

RELACIONES QUE SE ESTABLECEN EN LAS COMUNIDADES

En las comunidades las especies participan en interacciones bióticas directas e indirectas, como las de depredador-presa, herbivoría, parasitismo, competencia y mutualismo.

Depredación

Un depredador es un organismo que se come a otro. La presa es el organismo que es comido por el depredador.  Algunos ejemplos de depredadores y presas son:

  • Leones y cebras.
  • Osos y peces.
  • Zorros y conejos.
Las palabras “depredador y presa” por lo general se emplean para referirse a animales que se comen a otros animales.

Herbivoría

Es el consumo de material vegetal por los animales. Los herbívoros son los animales adaptados para comer plantas.

Adaptaciones a la herbivoría

Para reducir el daño causado por los herbívoros, las plantas han desarrollado ciertos mecanismos de defensa, como la presencia de espinas y sustancias químicas.

Parasitismo

En esta relación, un organismo llamado parásito consume nutrientes de otro organismo que se conoce como huésped. El resultado de esta interacción es la disminución de la aptitud del huésped.

Hay casos donde el parásito puede causar enfermedades en el organismo huésped y entonces pasa a llamarse organismo patógeno.

¿Sabías qué?
En la mayoría de las situaciones los parásitos no matan a sus anfitriones, pero existen los parasitoides, que difuminan la línea entre el parasitismo y la depredación.

Competencia

Es la interacción de individuos que compiten por un recurso común y que tienen un suministro limitado. El resultado generalmente tiene efectos negativos en los competidores más débiles.

La competencia puede ocurrir dentro de una especie o entre especies diferentes.

Mutualismo

Una relación mutualista se da cuando dos organismos de diferentes especies “trabajan juntos”, y cada uno se beneficia de esta relación.

Un ejemplo de una relación mutualista es la del picabueyes o garcita bueyera y el rinoceronte. El picabueyes aterriza en el rinoceronte y se alimenta de las garrapatas u otros parásitos que viven en su piel. El ave obtiene comida y el rinoceronte obtiene el control de plagas.

RECURSOS PARA DOCENTES

Video “Los individuos, las especies, las poblaciones y las comunidades”

Con este vídeo podrá conocer las características de los diferentes niveles de organización que exceden al individuo.

VER

Vídeo “Hábitat, población, comunidad, ecosistema y ecología”

Este recurso audiovisual le permitirá mostrar cómo es el hábitat de los diferentes animales y las interacciones que ocurren dentro del ecosistema.

VER

Artículo Cadenas Tróficas: ¿quién come a quién?

Con este recurso podrá adquirir conocimientos acerca de las cadenas y redes tróficas del ecosistema.

VER 

 

CAPÍTULO 8 / TEMA 6

Flujos de materia y energía

La vida en un ecosistema a menudo implica competencia por recursos limitados. Los organismos compiten por alimentos, agua, luz solar, espacio y nutrientes. Estos recursos proporcionan la energía para los procesos metabólicos y la materia para formar las estructuras físicas de los organismos.

Ver infografía

PIRÁMIDES ECOLÓGICAS

La estructura de los ecosistemas se puede representar a través de las pirámides ecológicas, que fueron descritas por primera vez en los estudios pioneros de Charles Elton en la década de 1920.

Las pirámides ecológicas muestran las cantidades relativas de varios parámetros, como el número de organismos, la energía y la biomasa, a través de los niveles tróficos. Este tipo de esquemas también se pueden llamar pirámides tróficas o pirámides energéticas.

Todos los tipos de pirámides ecológicas son útiles para caracterizar la estructura del ecosistema.

FLUJO DE MATERIA A TRAVÉS DE LA TRAMA TRÓFICA

En temas anteriores hemos estudiado la fotosíntesis, mediante la cual las plantas convierten la energía de la luz solar en glucosa. Pero esa glucosa está hecha de algo más que energía pura: también contiene materia.

Ver infografía

La fotosíntesis requiere energía luminosa, dióxido de carbono y agua. El dióxido de carbono se absorbe en el envés de las hojas y el agua a través de las raíces. El dióxido de carbono y el agua están compuestas por materia, que se transforma en glucosa a través de reacciones químicas complejas.

La materia que forma esta glucosa pasa por la cadena alimentaria de la misma manera que lo hace la energía, de organismo a organismo mientras se comen entre sí. Una red alimentaria muestra cómo la energía y la materia se mueven dentro de los ecosistemas.

Productividad primaria

  • Productividad primaria bruta: es la cantidad total de materia orgánica que se produce a través de la fotosíntesis.
  • Productividad primaria neta: es la cantidad de energía que permanece disponible para el crecimiento de las plantas después de restar la fracción que las plantas usan para la respiración.

La productividad en los ecosistemas terrestres generalmente aumenta con la temperatura hasta aproximadamente 30 °C (después de lo cual disminuye) y se correlaciona positivamente con la humedad.

La productividad primaria es más alta en zonas cálidas y húmedas de los trópicos, donde se encuentran los biomas de bosques tropicales.

¿Sabías qué?
Los ecosistemas de matorrales desérticos tienen la productividad más baja porque sus climas son extremadamente cálidos y secos.

En los océanos, la luz y los nutrientes son importantes factores de control para la productividad. La luz penetra sólo en el nivel superior de los océanos, por lo que la fotosíntesis ocurre en aguas superficiales y cercanas a la superficie. La productividad primaria marina es alta cerca de las costas lo que promueve el crecimiento del plancton.

Entre los ecosistemas acuáticos, los lechos de las algas y los arrecifes de coral tienen la producción primaria neta más alta, mientras que las tasas más bajas se producen al aire libre debido a la falta de nutrientes en las capas superficiales iluminadas.

FLUJO DE ENERGÍA A TRAVÉS DE LA TRAMA TRÓFICA

Todos los seres vivos requieren energía, ya que la mayoría de las vías metabólicas complejas la demandan, por lo que la vida misma es un proceso impulsado por la energía. Los organismos no podrían ensamblar macromoléculas como proteínas, lípidos, ácidos nucleicos y carbohidratos complejos, de sus subunidades monoméricas sin un aporte constante de energía.

Las redes alimentarias ilustran cómo la energía fluye direccionalmente a través de los ecosistemas, incluida la eficacia con que los organismos la adquieren, la usan y cuánto queda para ser utilizada por otros organismos. En una cadena alimentaria, los nutrientes y la energía pasan a medida que un organismo se come a otro.

Los seres vivos adquieren energía de tres maneras: la fotosíntesis, la quimiosíntesis y el consumo de otros organismos vivos.

Los niveles en la cadena alimentaria son los productores, los consumidores primarios, los consumidores de nivel superior y los descomponedores. Estos niveles se utilizan para describir la estructura y la dinámica del ecosistema.

Factor limitante

La energía se pierde en cada nivel trófico como calor y en la transferencia a los descomponedores. Por lo tanto, después de un número limitado de transferencias de energía, la cantidad de energía restante en la cadena alimentaria puede no ser lo suficientemente grande como para soportar poblaciones viables a un nivel trófico aún mayor.

ABUNDANCIA DE ESLABONES EN LAS TRAMAS TRÓFICAS

La energía pasa a través de una cadena o red alimentaria desde niveles tróficos inferiores a los superiores.

¿Sabías qué?
Por lo general, sólo el 10 % de la energía en un nivel está disponible para el siguiente. El otro 90 % se utiliza para procesos metabólicos o se emite al medio ambiente como calor.

La pérdida de energía explica por qué rara vez hay más de cuatro niveles tróficos en una cadena o red alimentaria. A veces puede haber un quinto nivel trófico, pero generalmente no queda suficiente energía para soportar un nivel adicional.

Con menos energía en niveles tróficos más altos, generalmente también hay menos organismos. Los organismos tienden a ser de mayor tamaño en los niveles tróficos más altos, pero resultan en menos biomasa por la poca cantidad que hay de estos.

La disminución en la biomasa de niveles inferiores a superiores también se representa en la pirámide ecológica.

Consecuencias de las redes alimentarias: aumento biológico

Una de las consecuencias ambientales más importantes de la dinámica del ecosistema es la biomagnificación, que es la creciente concentración de sustancias tóxicas persistentes en los organismos en cada nivel trófico, desde los productores hasta los consumidores.

Un ejemplo de estas sustancias tóxicas que se bioacumulan es el DDT o dicloro difenil tricloroetano, que fue un pesticida de uso común antes de que se conocieran sus peligros. Otros ejemplos son los bifenilos policlorados (PCB), que se usaban en líquidos refrigerantes hasta que se prohibió su uso en 1979, y los metales pesados, como mercurio, plomo y cadmio.

Estos contaminantes se estudiaron en ecosistemas acuáticos donde las especies de peces, en diferentes niveles tróficos, acumulan esas sustancias a través del consumo de los productores. Es decir, que el consumidor final va a presentar niveles más altos de estas sustancias tóxicas que el organismo productor.

¿Qué son los agroquímicos?

Los agroquímicos son sustancias que, si bien son efectivas para controlar plagas, eliminar malezas y evitar la propagación de hongos y algas en los cultivos, contaminan el medioambiente y son perjudiciales para los organismos dentro de las cadenas tróficas.

Ver infografía

RECURSOS PARA DOCENTES

Video “Redes y cadenas alimentarias. Productores, consumidores y descomponedores”

En este recurso audiovisual encontrará la cadena alimentaria, qué es, cómo se forma y cuáles son los organismos que la componen.

VER

Vídeo “Nutrición de los seres vivos”

Este recurso audiovisual le permitirá mostrar cómo es la nutrición de todos los seres vivos y su influencia en el ecosistema.

VER

Artículo Cadenas Tróficas: ¿quién come a quién?

Con este recurso podrá adquirir conocimientos acerca de las cadenas y redes tróficas del ecosistema.

VER

CAPÍTULO 7 / REVISIÓN

DIVERSIDAD Y CLASIFICACIÓN DE LOS SERES VIVOS | ¿qué aprendimos?

Clasificación de los seres vivos

La clasificación de los seres vivos comenzó como un sistema jerárquico que dividió a todos los organismos conocidos en plantas y animales. Este modelo fue reemplazado en el siglo XVIII por Carlos Linneo, quien realizó una división en reinos y los estructuró en cinco niveles: clase, orden, género, especie y variedad. Luego se empleó el sistema de clasificación binomial para nombrar a los organismos, pero fue Robert H. Whittaker quien postuló una clasificación de cinco reinos llamados Monera, Protista, Fungi, Plantae y Animalia. El sistema de cinco reinos no está en uso en la actualidad, en cambio, lo que ahora se emplea es un sistema de seis reinos: Animalia, Plantae, Fungi, Protista, Monera y Archaea.

La complejidad de la estructura celular fue uno de los criterios que Whittaker tuvo en cuenta para la clasificación.

Procariotas: dominio Bacteria, reino Monera

Las bacterias son los organismos procarióticos más simples, y presentan características como: ausencia de membrana nuclear, cromosoma único y circular, carencia de organelos celulares y reproducción por formación de esporas o fisión binaria. Inicialmente, las bacterias fueron consideradas animales, plantas y hongos. Se clasifican de varias maneras, pero la más importante consta de dos grupos principales: Archaebacteria y Eubacteria. Las primeras son organismos que viven en condiciones extremas y carecen de pared celular; las segundas son las llamadas bacterias verdaderas. Su rasgo característico es la presencia de pared celular rígida.

La bacteria que naturalmente forma parte de la flora intestinal es muy importante para una digestión adecuada.

Procariotas: dominio Archaea, reino Archaebacteria

Las arqueobacterias surgieron cuando la Tierra se encontraba en sus primeros años de existencia y las condiciones reinantes eran extremas. Tienen una estructura más parecida a la de los eucariotas que a la de las bacterias. Tienen un solo cromosoma redondo, como las bacterias, pero su transcripción genética es similar a la que ocurre en los núcleos de las células eucariotas. Hay tres tipos principales: Crenarchaeota, que son organismos extremadamente tolerantes al calor y a ambientes muy ácidos; Euryarchaeota, que son organismos que pueden sobrevivir ambientes con 10 veces la concentración de sal del mar y que reducen el CO2; y Korarchaeota, que es el linaje más antiguo pero menos comprendido, y que presenta genes diferentes a los de los grupos anteriores.

Organismos como Methanobacterium ruminantium están presentes en el sistema digestivo de los animales rumiantes y ayudan a la digestión de la celulosa.

Eucariotas: dominio Eukarya, reino Protista o Protoctista

El término protista fue introducido por Ernst Haeckel. Este reino forma un vínculo entre otros reinos de plantas, animales y hongos. Son generalmente organismos eucariotas simples, unicelulares, aunque algunos son coloniales y otros multicelulares. Principalmente son de naturaleza acuática y realizan el movimiento mediante flagelos o cilios. Algunos protistas son semejantes a los animales y se conocen como protozoos; otros, son similares a plantas, y tienen clorofila. Entre estos últimos se encuentran las algas verdes, rojas, pardas, doradas y fuego. Por último, los protistas con aspecto de hongos son unicelulares, saprófitos y viven en suelo húmedo, plantas y árboles en descomposición.

Por su condición de parásitos, algunos protistas pueden causar muchas enfermedades en plantas, en animales e incluso en el hombre.

Eucariotas: dominio Eukarya, reino Fungi

El Reino Fungi incluye un grupo diverso de seres que no pueden ser catalogados como animales ni como plantas. Se caracterizan por ser heterótrofos y descomponer la materia orgánica. Poseen una pared celular rígida y pueden ser unicelulares o pluricelulares. Los hongos pluricelulares presentan estructuras filamentosas llamadas hifas y viven en lugares húmedos y sombríos. Este reino contiene cinco filos principales: Chytridiomycota, Zygomycota, Ascomycota, Basidiomycota y Glomeromycota.

Los hongos producen naturalmente antibióticos que permiten inhibir el crecimiento de bacterias.

Eucariotas: dominio Eukarya, reino Animalia

El Reino Animalia está compuesto por todos los animales, vivos o extintos, del planeta. Son eucariotas, ya que el ADN se encuentra dentro del núcleo celular. No tienen paredes celulares. Son multicelulares, heterótrofos y tienen la capacidad de moverse y responder a su entorno. Todos los animales se pueden dividir en los grupos vertebrados e invertebrados. Además, cada reino se divide en categorías más pequeñas llamadas phylum (filo): Porifera, Coelenterata, Plathelminthes, Nematoda, Annelida, Arthropoda, Mollusca, Echinodermata, Protochordata y Vertebrata.

Los animales extintos también forman parte del reino Animalia.

Eucariotas: dominio Eukarya, reino Plantae

Este reino incluye a los diferentes tipos de plantas que se encuentran en el planeta. Cada grupo tiene características especiales y únicas, como la presencia de pared celular, nutrición autótrofa, clorofila, ausencia de sistema locomotor y reproducción sexual o asexual. Se clasifican en Briophyta, las cuales carecen de un sistema vascular y se desarrollan en dos fases, gametofito y esporofito; y Cormophyta, que es un grupo de plantas vasculares que tienen raíz, tallo y hojas. Éstas, a su vez se dividen en Pteridophyta y Spermatophyta. Además, éstas últimas se clasifican en gimnospermas y angiospermas.

La fotosíntesis de las plantas proporciona oxígeno a la atmósfera de nuestro planeta.

 

Anorexia y bulimia

La anorexia y la bulimia son trastornos alimenticios que pueden tener síntomas similares, como por ejemplo, una imagen corporal distorsionada. Sin embargo, se caracterizan por diferentes comportamientos relacionados con la ingesta de los alimentos.

Anorexia Bulimia
¿Qué es? Trastorno alimenticio. Trastorno alimenticio.
¿En qué se basa? Restricción de la ingesta de alimentos. Implica comer grandes cantidades de alimentos durante los atracones y compensar con comportamientos como el vómito para reducir el aumento de peso.
¿Afecta la salud mental y física ? Sí. Sí.
Signos conductuales y psicológicos
  • Miedo intenso a aumentar de peso o “estar gordo”.
  • Capacidad defectuosa para ver con precisión su cuerpo.
  • Baja de autoestima.
  • Relaciones inconsistentes o indeseables, la persona sólo se centra en el peso, la dieta y las calorías.
  • Alejamiento de los amigos y las oportunidades sociales.
  • Ejercicio compulsivo, depresión y ansiedad.
  • Obsesión con la comida, el peso y una imagen corporal delgada.
  • Falta total de control durante el período de atracones.
  • Abuso de laxantes o diuréticos.
  • Vómito.
  • Ejercicio excesivo.
  • Baja autoestima.
  • Consumo de una cantidad grande de alimentos durante un período específico.
  • Relaciones inconsistentes o indeseables, la persona sólo se centra en el peso, la dieta y las calorías.
  • La persona tiende a ser reservada o está muy concentrada en la comida.
  • Desaparece después de las comidas.
Síntomas físicos
  • Figura corporal extremadamente baja de peso y poco saludable.
  • Deterioro y disfunción orgánica.
  • Ausencia de menstruación.
  • Pérdida de la memoria.
  • Sensación de desmayo.
  • Deterioro y disfunción orgánica.
  • Dolor de garganta.
  • Ausencia de menstruación.
  • Pérdida de la memoria.
  • Sensación de desmayo.
  • Deterioro oral perceptible.
Relación con la comida Se basa en un control fuerte y completo. La persona es metódica y meticulosa cuando se trata de lo que come, cuándo come y cuánto come. A veces construyen rituales y rutinas al comer sólo un determinado alimento en ciertos momentos. Se basa en la falta de control. Durante un atracón, la persona puede sentirse incapaz de dejar de comer. Después de los atracones, generalmente se avergüenza y se culpa por lo que hizo, lo que alimenta el deseo de purgar nuevamente.
Efectos secundarios
  • Delgadez extrema.
  • Huesos debilitados y con menor densidad ósea.
  • Cabello fino y uñas quebradizas.
  • Piel que parece seca o amarilla.
  • Estreñimiento.
  • Baja temperatura corporal.
  • Energía baja.
  • Cambios menstruales.
  • Respiración lenta.
  • Daño cardíaco, con presión arterial y frecuencia cardíaca bajas.
  • Daño cerebral.
  • Otras fallas de órganos.
  • Dolor de garganta.
  • Glándulas agrandadas en el cuello y la mandíbula.
  • Caries dental.
  • Numerosos problemas gastrointestinales como el reflujo ácido.
  • Deshidratación.
  • Desequilibrio de electrolitos que podría provocar un derrame cerebral o un ataque cardíaco.
Edad de inicio Generalmente comienzan durante la adolescencia tardía o la edad adulta temprana. La edad promedio para el inicio de la anorexia es de 18 años. Generalmente comienzan durante la adolescencia tardía o la edad adulta temprana. La edad promedio para el inicio de la anorexia es de 18 años.
Tasa de mortalidad Mayor, alrededor del 5 %. Menor, alrededor del 2 %.

 

Células, tejidos y órganos

Estos tres términos se pueden agrupar como una jerarquía, donde cada elemento es un bloque de construcción para el siguiente nivel. La unidad más pequeña es la célula y a partir de los billones que hay en el cuerpo humano se forman los tejidos, y un grupo de tejidos forman un órgano.

Células Tejidos Órganos
Definición Unidad básica y funcional de todos los seres vivos. Conjunto de células con el mismo origen embrionario que se encargan de realizar funciones especializadas. Unidad estructural formada por un grupo de tejidos que realizan una función determinada.
¿Qué forman? Tejidos. Órganos. Sistemas.
Ejemplos Neuronas, gametos, miocitos, leucocitos, osteocitos y eritrocitos, entre otros. Epiteliales, nerviosos, musculares y conectivos, entre otros. Estómago, cerebro, corazón y pulmones, entre otros.

 

Anabolismo y catabolismo

El metabolismo es un proceso bioquímico que permite que un organismo viva, crezca, se reproduzca, sane y se adapte a su entorno. El anabolismo y el catabolismo son dos procesos o fases metabólicas, uno construye moléculas que el cuerpo necesita y el otro transforma las moléculas complejas en moléculas más pequeñas mediante la liberación de energía.

Anabolismo Catabolismo
Definición Los procesos anabólicos usan moléculas simples dentro del organismo para crear compuestos más complejos y especializados. Los procesos catabólicos descomponen compuestos complejos y moléculas para liberar energía.
Moléculas Las construye. Transforma las moléculas más complejas en otras más pequeñas.
Energía Requiere energía. Libera energía.
Conversión de la energía La energía cinética se convierte en energía potencial. La energía potencial se transforma en energía cinética.
Hormonas Estrógeno, testosterona, insulina y la hormona del crecimiento. Adrenalina, cortisol, glucagón y citosinas.
Oxígeno No utiliza oxígeno. Utiliza oxígeno.
Importancia Apoya el crecimiento de nuevas células, el almacenamiento de energía y el mantenimiento de tejidos corporales. Proporciona energía para el anabolismo, calienta el cuerpo y permite la contracción muscular.
Efecto sobre el ejercicio Los ejercicios anabólicos generalmente desarrollan masa muscular. Los ejercicios catabólicos suelen ser buenos para quemar grasas y calorías.
Ejemplos Asimilación en los animales y fotosíntesis en las plantas. Respiración celular, digestión y excreción.

 

Anfibios y reptiles

Dentro del grupo de los vertebrados se encuentran los reptiles y los anfibios, los cuales en sus orígenes estuvieron bastante relacionados entre sí, pero actualmente aunque tienen algunas similitudes, se pueden distinguir, entre otras cosas, por su apariencia física y las diferentes etapas de vida.

Anfibios Reptiles
Reino Animal. Animal.
Rama de la Biología Herpetología. Herpetología.
Clase Amphibia. Reptilia.
Órdenes Anura, Caudata y Gymnophiona. Crocodylia, Squamata, Testudines y Sphenodontia.
Tipo de fecundación Externa. Interna.
Respiración A través de branquias, piel  y pulmones. A través de pulmones.
Escamas No poseen. Sí poseen.
Metamorfosis Sí. No.
Significado del nombre Doble vida. Animal que se arrastra.
Extremidades Las anteriores cortas y las posteriores largas. Las cecilias no tienen extremidades. Las anteriores y las posteriores por lo general son del mismo tamaño. Las serpientes no tienen extremidades.
Modalidad de reproducción Ovíparos. Ovíparos.
¿Dónde colocan los huevos? En lugares húmedos. En tierra firme.
Representante más grande Salamandra gigante china (Andrias davidianus) 1,5 m de largo y 11,3 kg. Cocodrilo de agua salada (Crocodylus porosus) 7 m de largo y 1.200 kg.
Representante más pequeño Ranita diminuta (Paedophryne amauensis) 7,7 mm de largo.

 

Gecko enano (Sphaerodactylus parthenopion) 16-18 mm de largo y 0,117 g.
Ejemplos

 

Monocotiledóneas y dicotiledóneas

Las plantas se pueden separar en dos categorías distintas: monocotiledóneas y dicotiledóneas. Estas difieren en cuatro características estructurales distintas: las hojas, los tallos, las raíces y las flores. Sin embargo, las diferencias más estrictas comienzan desde el inicio del ciclo de vida de la planta, en la semilla.

Monocotildóneas Dicotiledóneas
Cotiledón 1 2
Tipo Angiospermas. Angiospermas.
Tipos de raíz Fasciculada. Pivotante.
¿El tallo está ramificado? No. Sí.
Haces vasculares del tallo Numerosos y dispersos. Pocos y dispuestos en anillos.
Estructuras florales 3 sépalos y 3 pétalos o múltiplos de 3. 4 o 5 pétalos o múltiplos de 4 o 5.
Polen El tubo de polen contiene un solo poro o surco (monocolpado). El tubo de polen tiene tres o más poros o surcos (tricolpado).
¿Cómo son las venas de las hojas? Paralelas. Ramificadas.
Crecimiento secundario Ausente Presente
Ejemplos Caña de azúcar, maíz y trigo, entre otras. Mango, neem y girasol, entre otras.