CAPÍTULO 1 / TEMA 5

SUCESIONES

Hacemos uso de las sucesiones al contar los días de la semana, del mes o del año. También al contar las horas del día o simplemente al contar los pasos para llegar a casa. Las sucesiones no son más que un conjunto de números organizados de un forma determinada. No solo las podemos encontrar con números, sino también con figuras.

Las primeras nociones sobre las sucesiones fueron propuestas por Fibonacci. A él se le ocurrió estudiar este concepto por medio de la relación que tenía con la reproducción de los conejos. ¡Sí! Los conejos se reproducen de forma sucesiva. Cada mes una hembra puede dar a luz, y por lo tanto, puede tener cientos de hijos al año.

¿QUÉ SON SUCESIONES?

Una sucesión es un conjunto de elementos ordenados de forma ascendente o descendente. Los elementos de este conjunto se denominan términos y estos siguen una regla, la cual permite calcular cada uno de ellos.

Las sucesiones pueden ser finitas o infinitas. Las sucesiones finitas tienen un número determinado de términos y las infinitas no tienen término final. Por ejemplo:

  • Sucesión finita = \boldsymbol{\left \{ 2,4,6,8,10 \right \}}
  • Sucesión infinita = \boldsymbol{\left \{ 3,6,9,12,15,18... \right \}}
¿Sabías qué?
Los puntos suspensivos (…) indican que la sucesión continua hasta el infinito.

Términos de una sucesión

Los términos de una sucesión se expresan con subíndices: a1, a2, a3, a4, a5, los cuales indican la posición de cada uno dentro de la secuencia, por ejemplo, el término a1 ocupa la primera posición de la secuencia, el término a2 corresponde al segundo lugar y así sucesivamente con cada uno.

Podemos calcular cada término de una sucesión de acuerdo a esta relación:

an = a0 + nr

Donde:

a0: término anterior al primero.

r: regla de la sucesión.

n: número de término.

– Ejemplo:

Podemos representar una sucesión por un término general o enésimo. En este caso su fórmula es:

an = −1 + n · (+3)

an = −1 + 3n

Observa que la regla de sucesión (r) es +3, por lo tanto, el término anterior al primero (t0) es igual a −1. Si queremos hallar el término a8 solo aplicamos la fórmula anterior:

a8 = −1 + 3 · 8 ⇒ a8 = −1 + 24 ⇒ a8 = 23

¿Cuáles son los términos?

Emplea la fórmula y determina cuáles son los términos a10, a12 y a15 de la secuencia anterior.

Solución

a10 = −1 + 3 · 10 ⇒ a10 = −1 + 30 ⇒ a10 = 29

a12 = −1 + 3 · 12 ⇒ a12 = −1 + 36 ⇒ a12 = 35

a15 = −1 + 3 · 15 ⇒ a15 = −1 + 45 ⇒ a15 = 44

Sucesión de Fibonacci

Una de las sucesiones conocidas más importantes es la de Fibonacci. Este tipo de secuencia lleva su nombre en honor al matemático italiano Leonardo Fibonacci y se caracteriza por el hecho de que cada número resulta de sumar los dos números anteriores a este. El término general de la misma es a_{n}= a_{n-1} + a_{n-2} y la forma más básica de este tipo de sucesión es: 1,1,2,3,5,8,13,21,34,55,89,144,233...

VER INFOGRAFÍA

SUCESIONES CON FIGURAS

No solo podemos encontrar sucesiones de números, también es posible encontrar sucesiones con diferentes figuras. Por ejemplo:

En ella se puede ver que las figuras están en orden ascendente con respecto a sus lados. Cada figura tiene un lado más que la anterior.

– Ejemplo 2:

También es posible conseguir sucesiones con figuras en distintas posiciones, como este ejemplo:

Como puedes ver en la imagen, todas las flechas tienen una dirección y sentido diferente, pero si te fijas con atención, el movimiento es igual al de las agujas del reloj, es decir, van en sentido horario. Este patrón nos permite saber cuál será la próxima figura en la sucesión:

Uno de los campeonatos más vistos es el Mundial de fútbol de la FIFA. En este, se clasifican 32 selecciones y, a medida que transcurre el torneo, se eliminan la mitad de los equipos en encuentros entre ellos. Así, comienzan 32, luego 16, 8, 4, 2, hasta que solo queda 1, el equipo campeón. Como ves, esta es una sucesión descendente en la que cada término es igual a la mitad del anterior.

SUCESIONES CON SUMAS Y RESTAS

Podemos construir sucesiones por medio de sumas, restas o la combinación de ambas operaciones. Por ejemplo:

– Otro ejemplo:

En la sucesión anterior, a medida que disminuye el número en cada término, la resta entre el término siguiente y el anterior aumenta.

Algunas aplicaciones

Debido a lo práctico que resulta expresar en forma general una secuencia ordenada de números, las sucesiones matemáticas han sido aplicadas en muchas disciplinas además de la matemática. Por ejemplo, la sucesión de Fibonacci se ha aplicado en la arquitectura, el arte y la informática.

Las progresiones son un tipo de sucesiones que se utilizan para realizar diversos cálculos como la determinación del interés compuesto. Las progresiones aritméticas también se usan en las interpolaciones, que consisten en calcular valores que se encuentran entre dos dados.

¡A practicar!

1. Consigue la regla de la sucesión en cada caso.

  • {2, 4, 6, 8, 10, 12, 14}
Solución

  • {45, 44, 42, 39, 35, 30, 24, 17, 9} 
Solución

2. ¿Cuál es la imagen que falta?

Solución

3. ¿Cuáles son las figuras que deben ir en los espacios en gris?

Solución

4. Selecciona cuál de las imágenes del segundo bloque es la que corresponde al cuadrado que falta en el primer bloque.

Solución

5. Calcula el término a25 de la siguiente sucesión:

{23, 27, 31, 35, 39}

Solución
  • Datos:

a0 = 19

r = +4

  • Término enésimo:

an = 19 + n · (+4)

an = 19 + 4n

  • Resultado:

a25 = 19 + 4 · 25

a25 = 19 + 100

a25 = 119  

RECURSOS PARA DOCENTES

Artículo “Sucesiones”

Este artículo lo ayudará a complementar la información sobre las sucesiones.

VER

Artículo “Sucesiones y series”

Con este artículo podrá ampliar los conocimiento sobre las series y sucesiones.

VER

 

CAPÍTULO 3 / TEMA 3

capacidad

Si tenemos un vaso de vidrio y una taza pequeña de té, ¿en cuál cabe más agua? En el vaso, ¿cierto? La propiedad que indica lo que cabe dentro de un recipiente se llama capacidad, y la vemos en todos los envases de gaseosas, aceites y jugos. A continuación aprenderás cuáles son sus unidades de medida y cómo convertirlas.

Las unidades de medida de capacidad nos permiten conocer y comparar la cantidad de líquido que contiene un envase con la que contiene otro. El litro y el mililitro son las unidades principales y las usamos a diario. Por ejemplo, podemos tomarnos 2 litros de agua en un día, pero si estamos enfermos, el doctor nos puede recetar 5 mililitros de un jarabe.

el litro y el mililitro

La capacidad nos permite conocer qué cabe dentro de un recipiente, por ejemplo, en uno de leche, perfume o champú. Estas cantidades se expresan con unidades de medida y las más usadas son el litro y el mililitro.

Capacidad y volumen: ¿son lo mismo?

No, la capacidad es la cantidad que cabe dentro de un recipiente, mientras que el volumen es la cantidad de espacio que ocupa un cuerpo. La unidad de medida del volumen es el metro cúbico, mientras que la unidad de medida de la capacidad es el litro.

El litro es la unidad principal de las medidas de capacidad y en forma abreviada se representa con la letra L. Al litro lo podemos dividir en medios litro y cuartos de litro. Observa:

 

– Ejemplo:

Esta jarra tiene capacidad para 1 litro de jugo. Si solo tenemos vasos de ½ litro, ¿cuántos vasos podríamos llenar? ¿y si son de ¼ de litro?

 

Si dividimos un litro en dos partes iguales, cada parte es igual a ½ litro o 0,5 L, es decir, que si tenemos vasos de ½ litro podemos llenar solo 2 vasos.

1 litro = ½ litro + ½ litro

 

Si dividimos un litro en cuatro partes iguales, cada parte es ¼ de litro o 0,25 L, entonces, si tenemos vasos de ¼ de litro podemos llenar solo 4 vasos.

1 litro = ¼ de litro + ¼ de litro + ¼ de litro + ¼ de litro

¡Es tu turno!

  • Susana llenó su termo con ocho vasos de ¼ de litro. ¿Qué capacidad tiene el termo?
Solución
2 litros.
  • Una pecera tiene una capacidad de 4 litros. ¿Cuántas botellas de medio litro son necesarias para llenarla?
Solución
8 botellas.

El litro tiene submúltiplos y con ellos podemos expresar cantidades pequeñas de capacidad, estos son el decilitro (dL), centilitro (cL) y el mililitro (mL). Las equivalencias son las siguientes:

  • 1 decilitro (dL) = 0,1 litros (L)
  • 1 centilitro (cL) = 0,01 litros (L)
  • 1 mililitro (mL) = 0,001 litros (L)

Además de los submúltiplos, el litro tiene múltiplos, es decir, unidades que nos permiten expresar cantidades grandes de capacidad. Estos son el kilolitro (kL), el hectolitro (hL) y el decalitro (daL).

Sus equivalencias son:

  • 1 kilolitro (kL) = 1.000 litros (L)
  • 1 hectolitro (hL) = 100 litros (L)
  • 1 decalitro (dL) = 10 litros (L)

Para que tengas una idea acerca de las unidades de capacidad veamos algunos ejemplos:

 

El mililitro es un submúltiplo del litro y se representa con las letras mL. Se utiliza a menudo para medir pequeñas cantidades de líquidos.

En las antiguas civilizaciones se usaban envases de cerámica de medida estándar para medir el volumen, estas se llamaban ánforas y eran empleadas en todos los territorios griegos. Tenían diferentes tamaños y formas que variaban de acuerdo a su uso y capacidad, había desde 2 litros hasta 26 litros.

conversión de las unidades de capacidad

Las principales unidades de capacidad son el litro y el mililitro. Si queremos comparar dos capacidades, la de un tanque y la de una botella, y una está en litros y la otra en mililitros, lo primero que debemos hacer es convertir las unidades. De esta manera las dos tendrán la misma unidad y podrás compararlas.

Con este esquema podemos convertir litros a sus submúltiplos y viceversa:

Para convertir unidades de capacidad existen dos métodos:

  • El primero consiste en mover a la derecha o a la izquierda la coma del número tantos lugares como casillas sean necesarias para llegar a la unidad deseada.
  • El segundo consiste en multiplicar o dividir por diez tantas veces como casillas se necesiten para llegar a la unidad deseada.

– Ejemplo:

  • Convierte 1,89 L a mL

Primer método

Dibuja el cuadro y mueve tantos lugares a la derecha como sean necesarios hasta llegar a la posición de los mililitros.

Como nos desplazamos tres lugares a la derecha, movemos la coma tres lugares a la derecha.

Observa que después del 9 agregamos un cero y al lado la coma.

Entonces, 1,89 L equivalen a 1.890 mL.

Segundo método

Multiplica tres veces seguidas por diez (10).

Observa que tres veces diez (10) es igual a 10 x 10 x 10 = 1.000. Así que puedes multiplicar de forma directa:

1,89 x 1.000 = 1.890

El resultado será el mismo, 1,89 L son equivalentes a 1.890 mL.

 

– Otro ejemplo:

  • Convierte 4.320 mL a L.

Primer método

Dibuja el cuadro y mueve tantos lugares a la izquierda como sean necesarios hasta llegar a la posición de los litros.

Como nos desplazamos tres lugares a la izquierda, movemos la coma tres lugares a la izquierda.

Entonces, 4.320 mL son equivalentes a 4,32 L.

Segundo método

Divide tres veces seguidas por diez (10).

Observa que tres veces diez (10) es igual a 10 x 10 x 10 = 1.000. Así que puedes dividir de forma directa:

4.320 ÷ 1.000 = 4,32

El resultado será el mismo, 4.320 mL son equivalentes a 4,32 L.

 

Otras medidas de capacidad

• El barril, que equivale a 159 litros, se utiliza para determinar la cantidad de petróleo y algunos de sus productos derivados como la gasolina.

• El galón, que equivale a 3,785 litros, se utiliza cuando compramos enormes cantidades de líquidos, por ejemplo la pintura para pintar la casa.

¿cómo medir la capacidad?

Muchos envases muestran con etiquetas o marcas la capacidad que tienen, y muchos otros sirven para medir el líquido contenido en ellos. En tu hogar puedes ver algunos como estos:

 

Este tipo de recipientes tienen una escala en litros o en mililitros que nos permite conocer la cantidad del líquido que se encuentra dentro de ellos.

– Ejemplo:

Si tenemos una botella llena de leche, pero no conocemos su capacidad, ¿cómo podemos saber cuántos mL de leche contiene la botella?

Para conocer la capacidad de la botella podemos usar un vaso graduado o jarra medidora como esta:

Como puedes ver, el vaso tiene marcas para indicar la medidas en mililitros (mL) hasta llegar a 1 litro (L), que es su capacidad máxima. Así que solo agregamos la leche de la botella en el vaso graduado para poder medir la cantidad de líquido.

 

Después de verter todo lo líquido, nos fijamos en qué marca quedó la leche. En este caso quedó en los 500 mL o ½ L.

Por lo tanto, la botella de leche tiene una capacidad de 500 mL o ½ L.

¡Es tu turno!

¿Cuánto jugo de naranja contiene el vaso graduado?

 

Solución
400 mL.
Usamos las unidades de medida de capacidad a diario. En el supermercado podemos encontrar diferentes productos como agua, jugo, leche, yogurt y aceite envasados en algún recipiente, el cual, sin importar la forma que tenga, tendrá un volumen determinado de ese líquido. Es decir, la forma del envase no tiene relación con su capacidad.

problemas de capacidad

1. Aurora compró 3 litros de jugo de naranja, 4 litros de jugo de manzana, 2 medios litros de jugo de fresa y 4 cuartos de litro de jugo de pera. ¿Cuántos litros de jugo compró en total?

  • Datos

Jugo de naranja: 3 L

Jugo de manzana: 4 L

Jugo de fresa: 2 veces ½ L

Jugo de pera: 4 veces ¼ L

  • Pregunta

¿Cuántos litros de jugo compró en total?

  • Piensa

Para saber la cantidad total de litros debes saber el total de litros por fruta. Así que primero suma los medios litros del jugo de fresa y los cuartos de litro del jugo de pera. Al final, suma con los litro de jugo de naranja y manzana.

  • Resuelve

Juego de fresa:

½ L + ½ L = 1 L

Compró 1 L de jugo de fresa.

Jugo de pera:

¼ L + ¼ L + ¼ L + ¼ L = 1 L

Compró 1 L de jugo de pera.

Todos lo sabores:

3 L + 4 L + 1 L + 1 L = 9 L

  • Solución

Aurora compró 9 litros de jugo en total.


2. Un balde de agua tiene 3,46 litros, si la capacidad total del balde es de 10.000 mililitros, ¿cuántos litros le falta al balde para llenarse?

  • Datos

Capacidad del balde: 10.000 mL

Volumen de agua en el balde: 3,46 L

  • Pregunta

¿Cuántos litros le falta al balde para llenarse?

  • Piensa

a. Tenemos que convertir los mililitros a litros para que los dos datos tengan las mimas unidades.

b. Hay que hacer una resta entre la capacidad total del balde y lo que ya tiene de agua.

  • Resuelve

a. Para convertir los mililitros a litros basta con dividir 10.000 ÷ 1.000.

10.000 ÷ 1.000 = 10

El balde tiene una capacidad total de 10 L.

b. Hacemos la resta:

10 L − 3,46 L = 6,54 L

  • Solución

Faltan 6,54 litros para llenar el balde.


3. Durante el día, Gloria se ha tomado 800 mililitros de jugo de naranja natural y Pedro se ha tomado 1,4 litros.  ¿Cuál de los dos ha tomado más jugo?

  • Datos

Jugo tomado por Gloria: 800 mL

Jugo tomado por Pedro: 1,4 L

  • Pregunta

¿Cuál de los dos ha tomado más jugo?

  • Piensa

Tenemos que convertir los mililitros a litros para que los dos datos tengan las mismas unidades, para eso solo dividimos 800 entre 1.000. Luego comparamos el resultado con 1,4 para saber cuál es la mayor.

  • Resuelve

División:

800 ÷ 1.000 = 0,8

800 mL son equivalentes a 0,8 L.

Comparación

1,4 > 0,8.

  • Solución

Pedro ha tomado más jugo que Gloria.


4. Pablo está enfermo y el doctor le ha indicado tomar 0,7 centilitros de la medicina, pero su jeringuilla dosificadora tiene una escala en mililitros. ¿Cuántos mililitros debe tomar de su medicina?

  • Datos

Medicina indicada: 0,7 centilitros

  • Pregunta

¿Cuántos mililitros debe tomar de su medicina?

  • Piensa

Hay que convertir los centilitros a mililitros para saber cuánto puede tomar.

  • Calcula

0,7 x 10 = 7

  • Solución

Pablo debe tomar 7 mL de su medicina.

¡A practicar!

Realiza las siguientes conversiones:

  • 2.000 mL a L
Solución
2 L
  • 4,8 L a mL
Solución
4.800 mL
  • 2.960 mL a L
Solución
2,96 L
  • 5,97 L a mL
Solución
5.970 mL
  • 500 mL a L
Solución
0,5 L
RECURSOS PARA DOCENTES

Artículo “Capacidad y volumen”

El siguiente material permitirá que trabajes con tus alumnos las unidades de capacidad y volumen y sus aplicaciones.

VER

CAPÍTULO 1 / TEMA 4

NÚMEROS DECIMALES

Los números decimales son todos aquellos que tienen una parte entera y una parte decimal, es decir, una cantidad menor que la unidad y mayor que cero. Estos números los podemos encontrar en todas partes, como en los precios de los productos del supermercado.

CARACTERÍSTICAS DE LOS NÚMEROS DECIMALES

Los números decimales están formados por dos partes separadas con una coma de la siguiente manera:

Los números decimales también son llamados números fraccionarios. Estos se utilizan para realizar mediciones con mayor precisión. Por ejemplo, al medir la estatura de una persona. Si decimos que alguien mide 1 m no sabríamos con exactitud la medida, en cambio, si usamos números decimales podemos decir que una persona mide 1,65 m o 165 cm.

Clasificación de números decimales

Números decimales exactos

Tienen un número limitado de cifras decimales. Por ejemplo:

1,25

Números decimales periódicos

Tienen una o más cifras decimales que se repiten de forma ilimitada o infinita. Podemos distinguir dos tipos de números decimales periódicos:

  • Números decimales periódicos puros: son aquellos números en los cuales la parte decimal periódica comienza inmediatamente después de la coma. La parte que se repite indefinidamente en estos números es señalada con una línea horizontal o arco en la parte superior. Por ejemplo:

0,66666 = 0, \widehat{6}

  • Números decimales periódicos mixtos: son los que están formados por dos partes decimales: una cifra que no se repite que está justo después de la coma, denominada ante-período; y la parte periódica. Por ejemplo:

3,233333 = 3,2\widehat{3}Números decimales no periódicos

No tienen cifras decimales con un patrón repetido indefinidamente. Un ejemplo de estos son los números irracionales, como el número pi.

\pi = 3,14159265...

¡A practicar!

Ya que conoces cómo están formados los números decimales, ¡consíguelos en este cuadro!

Solución

Número de Euler

Existen números decimales famosos y uno de ellos es el número de Euler, también denominado constante de Napier. Este número decimal fue utilizado por John Napier para introducir el concepto de logaritmo. No obstante, Leonhard Euler fue quien utilizó la letra e para representar dicha constante en el año 1727. El número es utilizado en cálculo, álgebra y números complejos.

e = 2,7182818284590452353602874713527 ...

LECTURA DE NÚMEROS DECIMALES

Podemos realizar la lectura de un número decimal de dos formas. Para ello, tomaremos como ejemplo el número 698,754980213, el cual podemos representarlo así de acuerdo a su valor posicional:

  • Primera forma de leer el número:
  1. Lee la parte entera de izquierda a derecha seguida de la palabra “enteros”.
  2. Lee toda la parte decimal como se lee la parte entera.
  3. Menciona la posición en la que se encuentra la última cifra decimal.

Entonces, el número 698,754980213 se lee “seiscientos noventa y ocho enteros setecientos cincuenta y cuatro millones novecientos ochenta mil doscientos trece milmillonésimas“.

  •  Segunda forma de leer el número:
  1. Lee la parte entera de izquierda a derecha seguida de la palabra “coma”.
  2. Lee toda la parte decimal como se lee la parte entera.

De este manera, el número 698,754980213 se lee “seiscientos noventa y ocho coma setecientos cincuenta y cuatro millones novecientos ochenta mil doscientos trece”.

¡Es tu turno!

Utiliza el primer método para leer estos números decimales:

  1. 456,268435 
    Solución
     456,268435 = cuatrocientos cincuenta y seis enteros doscientos sesenta y ocho mil cuatrocientos treinta y cinco millonésimas.
  2. 35.413,9346103 
    Solución
    35.413,9346103 = treinta y cinco mil cuatrocientos trece enteros nueve millones trescientos cuarenta y seis mil ciento tres diezmillonésimas.
  3. 58,79516428
    Solución
    58,79516428 = cincuenta y ocho enteros setenta y nueve millones quinientos dieciséis mil cuatrocientos veintiocho cienmillonésimas.

REDONDEO DE NÚMEROS DECIMALES

Todo número decimal puede ser redondeado. El redondeo se refiere a reducir la cantidad de cifras de un número para tener un valor similar. Las reglas son las siguientes:

  • Redondeo por defecto: si la última cifra del número que deseamos redondear es 1, 2, 3 o 4, la sustituimos por 0, y no variamos la penúltima cifra. Por ejemplo, el número 18,3.

  • Redondeo por exceso: si la última cifra es 5, 6, 7, 8 o 9, también sustituimos por 0, pero en este caso aumentamos la penúltima cifra en 1. Por ejemplo, el número 45,8.

El símbolo (≈) significa aproximado.

Todo número decimal puede ser redondeado. El redondeo se refiere a reducir la cantidad de cifras de un número para tener un valor similar. Saber esta práctica puede ser muy útil en nuestro día a día, pues cuando vamos a pagar una cuenta hacemos un redondeo de la cifra de forma mental para saber con qué billete vamos a pagar.

Redondeo por aproximación

Podemos aproximar los números decimales a la unidad más cercana, es decir, acercarlo a un número de la recta numérica que tenga menos decimales que este por medio de las mismas reglas. También los podemos aproximar a las décimas, centésimas, milésimas, etc., más cercanas. Por ejemplo, observa los siguientes números y redondéalos: 18,82653 y 45,73286.

El primer número lo aproximamos mediante la regla de redondeo por defecto, ya que la última cifra está entre 0 y 4. Aquí la cifra se aproximó a la diezmilésima más cercana.

 

Y para el segundo número seguimos la regla de exceso, ya que la última cifra está entre 5 y 9. Aquí la cifra se aproximó a la a la diezmilésima más cercana.

¡A practicar!

Convierte los siguientes números decimales a enteros por redondeo:

  • 465,568 
    Solución
    466
  • 84,91 
    Solución
    85
  • 14,3 
    Solución
    14
  • 9.214,12 
    Solución
    9.214

Aproxima estos números a las décimas, centésimas o milésimas más cercanas:

  • 326,3462 
    Solución
    326,346
  • 486,945  
    Solución
    486,95
  • 45,87
    Solución
    45,9 
RECURSOS PARA DOCENTES

Artículo “Números decimales”

Este artículo ayuda a complementar la información sobre los números decimales.

VER

Artículo “Operaciones con decimales”

Con este recurso podrá obtener conocimiento sobre las operaciones con los números decimales y profundizar al respecto.

VER

CAPÍTULO 3 / TEMA 1

longitud

Para determinar longitudes podemos utilizar distintas unidades de medida, la más conocida es el metro. Gracias a esta unidad sabemos qué tan altos somos, qué tan largo es nuestro cabello, o qué tan ancha es una piscina. Como verás a continuación, es posible medir todas las distancias. 

Las unidades de longitud nos permiten saber la distancia que existe entre dos puntos. Para medir esta distancia es necesario tener los instrumentos adecuados; ya conoces algunos como la regla graduada, la escuadra, la cinta métrica y el flexómetro. Con una regla graduada podemos medir distancia cortas y trazar rectas en nuestro cuaderno.

Comparación de longitudes

La longitud permite conocer la distancia que separa dos puntos entre sí, es decir, es la cantidad de espacio que hay entre dos puntos. Por ejemplo, el recorrido que hay desde el colegio hasta nuestra casa tiene una longitud específica, así como la tiene un lápiz, una mesa o un autobús.

Todos los días comparamos la longitud de los objetos y lo hacemos sin instrumentos de medición, por medio de la observación indicamos cuáles son más altos, más largos o más anchos.

Ejemplos:

  • ¿Cuál escalera es más alta?

  • ¿Cuál mesa es más ancha?

  • ¿Cuál crayón es más largo?

¿Cuál será la longitud de un autobús?

Una autobús puede tener hasta 8 metros de longitud, pero esto no podemos saberlo a simple vista. Es necesario que utilicemos instrumentos y unidades de medida.

El metro es la unidad básica y lo empleamos para medir distancias grandes, mientras que el centímetro lo empleamos para medir distancias pequeñas. Así, si queremos medir la altura de una casa, usamos el metro; pero si queremos medir el largo de un lápiz, usamos el centímetro.

 

¡Vamos a practicar!

1. ¿Cuál árbol es el más alto?, ¿con cuál unidad puedes medirlos?

Solución
El árbol A es más alto. Para saber su longitud debemos emplear el metro como unidad de medida.

2. ¿Cuál jirafa es la más alta?, ¿con cuál unidad puedes medirlas?

Solución
La jirafa B es más alta. Para saber su longitud debemos emplear el metro como unidad de medida.

3. ¿Cuál lápiz es más largo?, ¿con cuál unidad puedes medirlos?

Solución
El lápiz es más largo. Para saber su longitud debemos emplear los centímetros como unidad de medida.

El metro y sus SUBMÚLTIPLOS

La unidad principal para medir la longitud es el metro (m), aunque no es la única unidad que existe. Por ejemplo, una guitarra tiene 1 metro de longitud, pero ¿qué hacemos si queremos medir objetos más pequeños?

El metro (m) es la unidad principal de longitud, pero no es la única unidad. Los submúltiplos del metro son empleados para medir objetos pequeños, estos son el decímetro, el centímetro y el milímetro. También están los múltiplos que sirven para medir grandes distancias y grandes objetos, estos son el decámetro, el hectómetro y el kilómetro.

Para medir distancias pequeñas, como el ancho de una hoja de papel, se emplean unidades que son menores al metro, estas se denominan submúltiplos y son: el decímetro, el centímetro y el milímetro.

Submúltiplo Decímetro Centímetro Milímetros
Símbolos dm cm mm
Equivalencia 0,1 m 0,01 m 0,001 m

Para que tengas una idea aproximada de las longitudes que miden los submúltiplos del metro, vamos a ver algunos ejemplos:

Unidades arbitrarias de longitud

Las personas miden los objetos desde hace miles de años, y como antes no existían los instrumentos de medición, utilizaban partes de su cuerpo. Esto se conocía, y aún se conoce, como unidades arbitrarias porque no son exactas, pues cada cuerpo es diferente. Algunas unidades son el pie, la cuarta, la brazada y la pulgada.

¡Haz la prueba!

Intenta medir el largo de tu mesa. Usa “una cuarta” o “palmo” (abertura de la mano desde el dedo pulgar al meñique).

Conversión de metros a sus SUBMÚLTIPLOS

Existen muchos instrumentos para medir longitudes, uno de ellos es la cinta métrica. Con ella se pueden medir metros, decímetros, centímetros e incluso milímetros. Existen distintos tipos y sus longitudes van desde 1,5 metros hasta los 5 metros. Es probable que tengas una en casa, ¡intenta medir objetos con ella!

En lo que se refiere a medidas de longitud, es muy importante tener en cuenta las unidades que empleamos, pues no es lo mismo una longitud expresada en metros que una expresada en milímetros. Por ejemplo, si queremos comparar dos longitudes, la de un lápiz y la de un autobús, y una está en centímetros y la otra en metros, lo primero que debemos hacer es convertir las unidades para que las dos tengan las mismas.

Con este esquema podrás convertir metros a sus submúltiplos y viceversa:

 

Para convertir unidades de longitud existen dos métodos:

  • El primero consiste en mover a la derecha o a la izquierda la coma del número tantos lugares como casillas sean necesarias para llegar a la unidad deseada.
  • El segundo consiste en multiplicar o dividir por diez tantas veces como casillas sean necesarias para llegar a la unidad deseada.

Ejemplo:

– Convierte 2,52 m a cm.

1. Dibuja el cuadro y mueve tantos lugares a la derecha como sean necesarios hasta llegar a la posición de los centímetros.

2. Como nos desplazamos dos lugares a la derecha, movemos la coma dos lugares a la derecha.

Si usamos el segundo método, el procedimiento es este:

Observa que multiplicamos 2,52 por 10 dos veces y 10 x 10 = 100. Por lo tanto, también puedes multiplicar de forma directa: 2,52 x 100 = 252.

 

Otro ejemplo:

– Convierte 456 mm a dm.

Para pasar de milímetros a decímetros seguimos estos pasos:

1. Dibuja el cuadro y mueve tantos lugares a la izquierda como sean necesarios hasta llegar a la posición de los decímetros.

2. Como nos desplazamos dos lugares a la izquierda, movemos la coma dos lugares a la izquierda.

Si usamos el segundo método, entonces debemos dividir entre 10 dos veces, tal como se demuestra a continuación:

¡A practicar!

– Martina tiene 1,20 metros de estatura, ¿cuántos centímetros mide?

Solución

1,20 x 10 x 10 = 120 cm

Martina mide 120 centímetros.

¿Sabías qué?
La unidad de longitud tradicional en China es el li, suele estar precedida por la palabra shi y equivale a 500 metros.

empleo de reglas para medir segmentos

La regla es un instrumento de medición con forma de plancha delgada y rectangular; la escuadra, en cambio, es una plantilla triangular que nos permite medir segmentos y realizar trazados horizontales y verticales. Estos dos instrumentos incluyen una escala graduada dividida en unidades de longitud.

La regla graduada y la escuadra son instrumentos útiles para medir segmentos u objetos. Suelen venir con graduaciones de unidades de medida, como milímetros o centímetros.

La regla tiene espacios iguales con números, cada uno de estos espacios se denomina “centímetro” y el espacio más pequeño sin números se denomina “milímetro”. Por ejemplo, esta regla tiene una longitud de 1 decímetro o 10 centímetros.

Si acercamos objetos pequeños a la escala graduada podemos determinar cuál es su longitud. En el ejemplo vemos que una tira de papel mide 7 centímetros. Observa que la tira se coloca al nivel del cero y luego se anota el número final.

¿Cuánto mide este lápiz? 

Solución

El lápiz mide 5,5 centímetros.

Ejercicios

1. ¿Cuántos centímetros mide el borrador?

Solución
3 centímetros.

2. Realiza las siguientes conversiones de unidades.

  • 5,489 m a cm.
Solución
548,9 cm.
  • 259 cm a m.
Solución
2,59 m.
  • 3,369 m a mm.
Solución
3.369 mm.
  • 11,654 dm a m.
Solución
1,1654 m.

3. Juana la iguana mide 0,55 metros, ¿cuánto mide en centímetros?

Solución
55 centímetros.

4. Felipe tiene un gatito muy travieso al que le gusta trepar a los árboles. El gato subió a la rama de un árbol que está a 2,8 metros del suelo. Si Felipe tiene dos escaleras: una de 19 decímetros y otra de 28 decímetros, ¿cuál escalera debe usar para poder bajar a su gatito?

Solución
Felipe debe usar la escalera que mide 28 decímetros.

5. Juliana es la niña con el cabello más largo en la escuela, tiene una longitud de 4 decímetros, pero fue al salón de belleza y le cortaron 15 centímetros de su extensa melena. ¿Cuántos decímetros cortaron de su cabello? ¿Cuántos decímetros tiene de longitud su cabello ahora?

Solución
Cortaron 1,5 decímetros de su cabello y ahora tiene una longitud de 2,5 decímetros.
RECURSOS PARA DOCENTES

Artículo “Múltiplos y submúltiplos del: metro, gramo y litro”

El siguiente artículo destacado le permitirá trabajar con sus alumnos los diferentes sistemas de medición.

VER 

 

CAPÍTULO 3 / TEMA 2

MASA

Para determinar la masa de un cuerpo u objeto podemos utilizar distintas unidades de medida, la más conocida es el kilogramo. Gracias a esta unidad sabemos la masa de nuestro cuerpo y decimos qué tan pesados somos, o qué cantidad de ingredientes debemos utilizar para una receta. 

La masa es una propiedad que nos permite determinar la cantidad de materia que posee un cuerpo, esto podemos saberlo con exactitud si usamos una balanza. Las unidades principales para medir la masa son el kilogramo (kg) y el gramo (g).

El gramo y sus múltiplos

La masa es la cantidad de materia que contiene un cuerpo. Esta propiedad nos permite determinar el peso de cualquier persona, objeto, sustancia o material. Por ejemplo, cuando vamos al supermercado podemos pesar la cantidad productos que queremos comprar, como bananos, tomates y naranjas; también podemos determinar nuestro propio peso e incluso podemos saber cuánto pesa algo tan pequeño como un grano de arroz.

Las unidades principales para medir la masa son el gramo (g) y el kilogramo (kg).

El kilogramo lo empleamos para determinar la masa de cuerpos pesados o grandes, mientras que el gramo lo empleamos para determinar la masa de cuerpos livianos o pequeños. Así, si queremos conocer la masa de una sandía usamos el kilogramo y si queremos conocer la masa de una nuez usamos el gramo.

 

El kilogramo lo empleamos para determinar la masa de cuerpos pesados o grandes, mientras que el gramo lo empleamos para determinar la masa de cuerpos livianos o pequeños. La balanza es una herramienta de medición que nos permite conocer exactamente la masa de cualquier cuerpo, se usa de forma habitual en supermercados, fábricas y restaurantes.

Representamos el gramo con la letra g y sus múltiplos son el kilogramo (kg), el hectogramo (hg) y el decagramo (dag). Las equivalencias son las siguientes:

  • 1 kilogramo (kg) = 1.000 gramo (g)
  • 1 hectogramo (hg) = 100 gramos (g)
  • 1 decagramo (dag) = 10 gramos (g)

Unidad apropiada de acuerdo al tamaño del cuerpo

Además de lo múltiplos, el gramo tiene submúltiplos, es decir, unidades que nos permiten saber la masa de objetos muy pequeños. Estos son el decigramo (dg), el centigramo (cg) y el miligramo (mg). Sus equivalencias son las siguientes:

  • 1 decigramo (dg) = 0,1 gramos (g)
  • 1 centigramo (cg) = 0,01 gramos (g)
  • 1 miligramo (mg) = 0,001 gramos (g)

Veamos algunos ejemplos:

 

Por lo general, algunos productos del supermercado están en empaques de 1 kilogramo, pero también los hay de 1/2 kilogramo o 1/4 de kilogramo. Observa estos ejemplos:

– Dos empaques de 1/2 kilogramo de arroz son iguales a un empaque de 1 kilogramo de arroz.

– Cuatro empaques de 1/4 de kilogramo de arroz son iguales a 1 kilogramo de arroz.

 

Del mismo modo puede verlo aquí:

¡Es tu turno!

1. ¿Cuántos kilogramos de arroz podemos formar con cuatro empaques de ½ kilogramo?

Solución
2 kilogramos.

2. ¿Cuántos ¼ de kilogramo de arroz necesitamos para formar ½ kilogramo de arroz?

Solución
Dos ¼ de kilogramo.

Origen del kilogramo

El kilogramo es la única unidad básica que se ha definido por un objeto: una barra de aleación de platino e iridio fabricada en 1879. En 1889, el prototipo fue ratificado como la masa estándar del kilogramo en la primera Conferencia General de Pesas y Medidas y en la actualidad está ubicado en Sèvres, Francia. En 2019, la barra prototipo dejó de ser el patrón de referencia del kilogramo.

conversiones

Si queremos comparar la masa de una roca y una nuez, pero una está en kilogramos y la otra en gramos, lo primero que debemos hacer es convertir las unidades. De esta manera las dos tendrán la misma unidad y podremos hacer la comparación.

Con este esquema podrás convertir gramos a sus múltiplos y viceversa:

Para convertir unidades de masa existen dos métodos:

  • El primero consiste en mover a la derecha o a la izquierda la coma del número tantos lugares como casillas sean necesarias para llegar a la unidad deseada.
  • El segundo consiste en multiplicar o dividir por diez tantas veces como casillas se necesiten para llegar a la unidad deseada.

Ejemplo:

– Convierte 5,82 kg a g.

Primer método

Dibuja el cuadro y mueve tantos lugares a la derecha de los kilogramos como sean necesarios hasta llegar a la posición de los gramos.

Como nos desplazamos tres lugares a la derecha, movemos la coma del número tres lugares a la derecha.

Observa que después de dos (2) agregamos un cero y al lado la coma.

Entonces, 5,82 kg son equivalentes a 5.820 g.

 

Segundo método

Multiplica tres veces seguidas por diez (10).

Observa que tres veces diez (10) es igual a 10 x 10 x 10 = 1.000. Así que puedes multiplicar de forma directa:

5,82 x 1.000 = 5.820

El resultado será el mismo, 5,82 kg son equivalentes a 5.820 g.

Otro ejemplo:

– Convierte 953 g a kg.

Primer método

Dibuja el cuadro y mueve tantos lugares a la izquierda de los gramos como sean necesarios hasta llegar a la posición de los kilogramos.

Como nos desplazamos tres lugares a la izquierda, movemos la coma tres lugares a la izquierda.

Entonces, 953 g son equivalentes a 0,953 kg.

 

Segundo método

Divide tres veces seguidas por diez (10).

Observa que tres veces diez (10) es igual a 10 x 10 x 10 = 1.000. Así que puedes multiplicar de forma directa:

953 ÷ 1.000 = 0,953

El resultado será el mismo, 953 g son equivalentes a 0,953 kg.



¡A practicar!

Convierte las unidades:

  • 8 kg a g.
Solución
8.000 g.
  • 58 dag a g.
Solución
580 g.
  • 150 g a hg.
Solución
1,5 hg.

 

¿Sabías qué?

Muchos sistemas de medición estuvieron basados en el uso de las partes del cuerpo humano.

comparación de masas

Podemos comparar las masas de objetos por medio de expresiones como “mayor que”, “menor que” o “igual a”.

Todos los días comparamos la masa de los objetos por medio de la observación y consideramos su tamaño . Por ejemplo:

  • ¿Cuál vehículo tiene mayor masa?

  • ¿Cuál fruta tiene menor masa?

 

Aunque el tamaño de un objeto puede darnos una señal de su masa, no siempre indicará si es o no pesado, así que no podemos saber la masa de un cuerpo solo por observación. Para determinar la masa de un cuerpo con exactitud necesitamos un instrumento como la báscula o la balanza.

Por ejemplo:

  • ¿Cuál de los niños es más pesado?

Para comparar estas masa, lo primero que debemos hacer es convertir una de ellas para tener unidades iguales. En este caso, vamos a convertir los gramos a kilogramos. Como ya sabemos, solo debemos dividir por diez (10) tres veces seguidas o dividir directamente por 1.000.

Vemos que 24.000 g son equivalentes a 24 kg.

Ahora sí podemos compararlas y determinar cuál de las cantidades es la mayor.

Como 30 es mayor que 24 (30 > 24), decimos que Miguel es más pesado que Patricia.

Masa y peso: ¿son lo mismo?

No. La masa es la cantidad de materia que posee un cuerpo, en cambio, el peso es la fuerza que ejerce la gravedad sobre un cuerpo de determinada masa. Si una persona tiene una masa de 75 kg en la Tierra, también la tendrá en la Luna, pero su peso será distinto, ya que la aceleración de la gravedad es diferente.

¡A practicar!

  1. ¿Cuál animal tiene mayor masa?

Solución
El elefante tiene mayor masa.

2. ¿Cuál de los objetos tiene mayor masa?

Solución
1.500 gramos son equivalentes a 1,5 kilogramos, y como 1,5 es menor que 3 (1,5 < 3), decimos que el objeto A tiene mayor masa.

balanza analógica

Aunque suelen confundirse los términos “balanza” y “báscula” no son lo mismo. Ambos instrumentos se usan para medir masa, pero la báscula mide la fuerza ejercida por un objeto fijado a la fuerza de gravedad, en cambio, la balanza mide la masa de un objeto por comparación con otra ya conocida.

La balanza es un instrumento usado para pesar, operación en la que se determina la masa de un cuerpo por medio de la comparación de su masa con la de otro cuerpo con masa definida. Las balanzas son muy comunes en los laboratorios y supermercados. Sus tipos son muy variados.

VER INFOGRAFÍA

Las balanzas analógicas se caracterizan por no utilizar ningún componente electrónico y están provistas de una escala en kilogramos o en gramos. En este tipo de balanzas el peso será la cifra que indique la aguja. Observa esta:

 

 

La balanza de la imagen tiene una capacidad máxima de medida de 7 kilogramos, cada uno de los espacios grandes con números representan a los kilogramos, entre ellos hay espacios con líneas de tamaño mediano que representan 0,5 kg y espacios pequeños sin números que representan a los decimales de la balanza, cada espacio tiene un valor de 0,1 kg.

Ejemplo:

– ¿Cuánto pesa la sandía?

La aguja está después del 3 pero antes del 4, entonces son 3 kilogramos. Los decimales están a cinco espacios pequeños después del 3, cada espacio representa 0,1 kg. Entonces:

5 x 0,1 kg = 0,5 kg

Al final, sumamos los kilogramos con los decimales:

      3 kg + 0,5 kg = 3,5 kg

Por lo tanto, la sandía pesa 3,5 kilogramos.

 

¡A practicar!

¿Cuánto pesan las nueces?

RESPUESTAS
Las nueces pesan 1,2 kg.

problemas de masa

1. Fabián tiene dos cachorros, uno se llama Brando y el otro Manchas, Fabián quiere saber cuál de los dos cachorros es el más pesado, Brando pesa 2,5 kilogramos y Manchas pesa 2.800 gramos.

Solución

Primero convertimos los gramos a kilogramos. Para esto dividimos  2.800 entre 1.000:

2.800 ÷ 1.000 = 2,8

Como 2,8 es mayor que 2,5 (2,8 > 2,5) decimos que Mancha es más pesada que Brando.

 

2. Ana compró dos tartas, una de vainilla que pesa 2,3 kilogramos y una de chocolate que pesa 1.850 gramos. ¿Cuál de las dos tartas es más pesada?

Solución

Primero convertimos los gramos a kilogramos. Para esto dividimos 1.850 entre 1.000:

1.850 ÷ 1.000 = 1,85

Como 1,85 es menor que 2,3 (1,85 < 2,3) decimos que la torta de chocolate es menos pesada que la de vainilla.

 

3. Un albañil lleva una carretilla con 20 kilogramos de arena, si descarga 2.000 gramos en la obra ¿Cuántos kilos quedan en la carretilla?

Solución

Primero convertimos los gramos a kilogramos. Para esto dividimos 2.000 entre 1.000:

2.000 ÷ 1.000 = 2

Se descargaron 2 kilogramos.

Para saber la masa de arena que quedó debemos hacer una resta:

20 kg − 2 kg = 18 kg

Por lo tanto, quedaron 18 kilogramos de arena en la carretilla.

 

4. Mariana quiere hacer un pastel de chocolate, la receta le indica que debe utilizar 0,6 kg de harina y 0,14 kg de cacao, pero su balanza solo pesa en gramos, ¿cuáles son las conversiones que debe hacer Mariana para poder pesar los ingredientes en su balanza?

Solución

Primero convertimos los kilogramos a gramos. Para esto multiplicamos la masa deseada de harina y cacao por 1.000.

0,6 x 1.000 = 600

0,14 x 1.000 = 140

Mariana debe pesar 600 gramos de harina y 140 gramos de cacao.

RECURSOS PARA DOCENTES

Unidades de medida

El siguiente material le permitirá trabajar con sus alumnos las unidades de medida: longitud, peso, capacidad y tiempo.

VER

CAPÍTULO 1 / TEMA 3

NÚMEROS ENTEROS

¿Te has preguntado qué números utilizarías para representar temperaturas por debajo de 0 ºC? o ¿qué números utilizarías para indicar la altura del monte Everest? Para describir estas situaciones usamos los números enteros, un conjunto numérico que abarca desde los números negativos hasta los positivos.

Muchas situaciones de la vida cotidiana requieren el uso de los números enteros. Un ejemplo de ello es la economía a nivel mundial, la cual necesita de estos para poder registrar las entradas y salidas de dinero (las entradas serán enteros positivos y las salidas enteros negativos). Esto es con el fin de poder contabilizar las ganancias o las pérdidas.

¿QUÉ SON los NÚMEROS ENTEROS?

Los números enteros abarcan todos los números naturales \mathbb{N}, así como también el cero y los números negativos o menores que cero. Matemáticamente, el conjunto de números enteros es representado con la letra \mathbb{Z} y se expresa de la siguiente manera:

\mathbb{Z}=\left \{ ...,\, -3,\, -2,\, -1,\, 0,\, +1,\, +2,\, +3,...\right \}

Estos números continúan hasta infinito, tanto del lado de los positivos como del lado de los negativos.

Por lo general, los números enteros positivos \mathbb{Z}^{+} no requieren el uso del signo más (+) para resaltarlos, caso contrario ocurre con los enteros negativos \mathbb{Z}^{-}, que sí requieren el uso obligatorio del signo menos (−) para diferenciarlos.

Por ejemplo:

Los siguientes números enteros positivos+3.674 y +5.876.541 se pueden escribir de dos formas:

  • Con el signo positivo antes del número: +3.674 +5.876.541.
  • Sin el signo positivo antes del número: 3.674 y 5.876.541.

Por otra parte, los números enteros negativos 614 y 9.780 requieren el uso obligatorio del signo menos (−) antes de ellos. No colocar el signo negativo antes del número lo convierte en un número positivo.

 

LA RECTA NUMÉRICA

También es conocida como la recta real y se representa con una línea recta. Esta contiene todos los números reales \mathbb{R}.

¿Cómo dibujar una recta numérica?

Traza una línea de forma horizontal con flechas en ambos extremos como la siguiente:

Divide la línea en segmentos iguales con la misma distancia entre ellos:

Coloca el número cero (0) en el centro de la recta:Comienza a colocar los números en cada intervalo: del lado derecho del cero van los enteros positivos y del lado izquierdo van los enteros negativos.

Ubicación de los números en la recta numérica

La recta numérica puede contener:

    1. Enteros positivos y negativos como: −17 y +11.
    2. Números decimales o en forma de fracción como: −8/5 que es igual a −1,6 y 4/5 que es igual a 0,8.

¿Sabías qué?
La línea recta fue introducida por John Wallis, un matemático Inglés que alrededor del año 1670 la empleó para representar de modo gráfico los números naturales.

¡A practicar!

Ubica estos número en la recta numérica:

  • +150
Solución
  • −180
Solución
  • +19
Solución
  • 3/2
Solución

  • −0,5
Solución

APLICACIÓN DE NÚMEROS ENTEROS

Los números enteros son utilizados en muchas situaciones de nuestra vida, algunos ejemplos son los siguientes:

  • Para indicar la altitud o altura sobre el nivel del mar.

En todo nuestro planeta existen distintas altitudes, tal son los casos del monte Everest en el Himalaya, el cual posee una altitud de +8.848 msnm y la costa del mar Muerto que se encuentra a unos 417 msnm.

  • Para indicar los pisos de un edificio.

Al caminar por el centro de la ciudad habrás visto algún edificio, estos están divididos por pisos y cada piso corresponde a un número. El piso que se encuentra en el mismo nivel de la calle es la planta baja, le corresponde el número 0. Los niveles que están arriba de él se indican con enteros positivos y los que se encuentra debajo, llamados subterráneos o sótanos, se señalan con los negativos.

Otras aplicaciones

  • Para realizar mediciones de temperatura.

¿Has escuchado hablar del Polo Sur y el Polo Norte de nuestro planeta tierra? La temperatura en esos lugares puede variar entre los 89 ºC y los 0 ºC. A esos valores, por lo general se les llama temperaturas bajo 0.

Por otra parte, existen lugares como Kuwait con temperaturas que pueden llegar a los +63 ºC.

  • Para contabilizar pérdidas o ganancias.

Las cuentas bancarias realizan registros de entradas de dinero con números enteros positivos, y los retiros o pagos con los números enteros negativos.

Por ejemplo:

Una persona recibe 2.000 $ en su cuenta y luego realiza una transferencia de 1.000  $ para pagar una computadora. ¿Cuánto dinero tendrá en la cuenta luego de la transferencia?

Recibe dinero: +2.000 $

Transferencia de dinero: 1.000 $

Total de dinero en la cuenta: +2.000 $  1.000 $ = +1.000 $

Entonces, el dinero que la persona tendrá en su cuenta luego de realizar la transferencia será 1.000 $.

  • Para dibujar ejes de coordenadas o eje cartesiano se emplean los números enteros
Ejercicios

  • Juan se encuentra al nivel del mar y quiere escalar una montaña. Decide subir 50 m, luego desciende 25 m para tomar una herramienta que se le cayó. Al agarrar la herramienta decide terminar su escalada y sube 80 m. ¿A qué altura sobre el nivel del mar se encuentra?
Solución

Ubicación de Juan sobre el nivel del mar: 0 m

Juan sube: +50 m

Juan desciende: −25 m

Juan vuelve a subir: +80 m

Altura que escaló juan: 50 m − 25 m + 80 m = 105 m

Juan se encuentra a 105 metros sobre el nivel del mar.

  • Romina decide comprar un teléfono celular que cuesta 1.850 $, pero en su cuenta bancaria solo tiene 1.100 $. Decide decirle a su papá que le transfiera el dinero que le falta para comprar el teléfono y él le transfiere a su cuenta 1.350 $. ¿Cuánto dinero le quedó a Romina en su cuenta luego de comprar el teléfono?
Solución

Cuenta bancaria de Romina: +1.100 $

Transferencia del papá de Romina: +1.350 $

Compra del teléfono: −1.850 $

Total después de la compra: +1.100 $ + 1.350 $ − 1.850 $ = +600 $

A Romina le quedaron 600 $ en su cuenta luego de comprar el teléfono.

  • Felipe se encuentra parado en la posición +2 de una recta numérica, decide avanzar +6 posiciones y luego vuelve 11 posiciones atrás. ¿En qué posición quedó Felipe?
Solución

+2 + 6 − 11 = −3

Felipe quedó en la posición −3.

RECURSOS PARA DOCENTES

Artículo “La recta numérica”

Este artículo ayuda a complementar la información sobre la recta numérica.

VER

Artículo “La clasificación de los números”

Con este recurso se puede ampliar el conocimiento sobre la clasificación de los números.

VER

CAPÍTULO 1 / TEMA 2

DESCOMPOSICIÓN DE NÚMEROS

Usamos los números en muchas situaciones de la vida cotidiana, pero algunas veces necesitamos descomponerlos para que una operación matemática sea más sencilla. Estas separaciones de números se pueden hacer de diversas formas y por medio de sumas, multiplicaciones o combinaciones de estas.

DESCOMPOSICIÓN ADITIVA DE UN NÚMERO

Saber cómo formar números a partir de otros más pequeños puede resultar muy útil en nuestro día a día. Si, por ejemplo, necesitamos pagar una cuenta de $ 150, podemos pagar con un billete de $ 100 y otro billete de $ 50; también podríamos pagar con tres billetes de $ 50. Como verás a continuación, esto es una descomposición aditiva.

Un número se puede descomponer en una suma de varios números más pequeños, para ello existen dos formas de realizarlo:

1. Descomposición aditiva por medio de combinaciones básicas

Consiste en descomponer el número a través de una o más sumas que den como resultado el número original. Por ejemplo, el número 589.478,12 se puede descomponer de muchas maneras. Estas son algunas:

589.478,12 = 156.562,3 + 432.915,82

589.478,12 = 101.102 + 359.349,3 + 129.026,82

589.478,12 = 540.000 + 6.254 + 273,127 + 42.950,993

2. Descomposición aditiva por medio del valor posicional

Consiste en descomponer el número a través de la suma de los valores posicionales de cada cifra. De este modo, si queremos descomponer el número 54.268,2789, lo primero que debemos hacer es ubicar cada uno de sus valores en la tabla posicional. Observa:

Vemos en la tabla que:

  • 5 ocupa la posición de las decenas de mil → 50.000
  • 4 ocupa la posición de las unidades de mil → 4.000
  • 2 ocupa la posición de las centenas → 200
  • 6 ocupa la posición de las decenas → 60
  • 8 ocupa la posición de las unidades → 8
  • 2 ocupa la posición de las décimas → 0,2
  • 7 ocupa la posición de las centésimas → 0,07
  • 6 ocupa la posición de las milésimas → 0,006
  • 9 ocupa la posición de las diezmilésimas → 0,0009

Ahora solo debes sumar todos los valores posicionales:

54.268,2769 = 50.000 + 4.000 + 200 + 60 + 8 + 0,2 + 0,07 + 0,006 + 0,0009

Otro ejemplos:

  • 1.567.423,5916 = 1.000.000 + 500.000 + 60.000 + 7.000 + 400 + 20 + 3 + 0,5 + 0,09 + 0,001 + 0,0006
  • 200.874,95 = 200.000 + 800 + 70 + 4 0,9 + 0,05

Observa que no tomamos en cuenta el dígito cero (0) para la descomposición de números.

DESCOMPOSICIÓN POLINÓMICA DE UN NÚMERO

La descomposición polinómica se hace al combinar la suma y la multiplicación de potencias de base 10. Para descomponer de forma polinómica el número 452.328.465, los pasos son los siguientes:

1. Haz la descomposición aditiva del número. Puedes apoyarte en una tabla posicional como esta:

452.328.465 = 400.000.000 + 50.000.000 + 2.000.000 + 300.000 + 20.000 + 8.000 + 400 + 60 + 5

2. Convierte cada sumando en la multiplicación de la cifra respectiva por la unidad seguida de cero.

452.328.465 = 4 x 100.000.000 + 5 x 10.000.000 + 2 x 1.000.000 + 3 x 100.000 + 2 x 10.000 +       8 x 1.000 + 4 x 100 + 6 x 10 + 5

3. Transforma las unidades seguidas de cero a potencias de base 10.

452.328.465 = 4 x 108 + 5 x 107 + 2 x 106 + 3 x 105 + 2 x 104 + 8 x 103 + 4 x 102 + 6 x 10 + 5 x 100
Potencia de base 10

Potencia igual a la unidad seguida de tantos ceros como exprese el exponente. Estas potencias son muy usadas para representar números grandes.

  • 102 = 10 x 10 = 100
  • 103 = 10 x 10 x 10 = 1.000
  • 104 = 10 x 10 x 10 x 10 = 10.000

¿Sabías qué?
Los mayas utilizaban un sistema de numeración posicional de base 20, es decir, las cantidades se agrupaban de 20 en 20. Dichos valores permitían obtener sumas de números grandes.

DESCOMPOSICIÓN MULTIPLICATIVA DE UN NÚMERO

Las matemáticas han permitido que el ser humano resuelva situaciones de una manera más rápida y sencilla. Una de estas facilidades es expresar un número como una multiplicación de sus factores primos.

Un número se puede expresar de otra manera equivalente al utilizar la multiplicación de factores. Esta técnica matemática se realiza con el uso de los números primos.

¿Qué son los números primos?

Un número primo es aquel que solo puede dividirse por sí mismo y por el número uno. Es decir, que posee solo dos divisores. Los primeros 100 números primos son: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541.

Ejemplo: el número 60 puede descomponerse en distintas multiplicaciones.

60 = 6 x 10

60 = (2 x 3) x (2 x 5)

60 = 2 x 3 x 2 x 5

Observa que el número 6 se descompone en sus factores primos 2 y 3. Sucede lo mismo con el número 10 que se descompone en dos factores primos: 2 y 5. Otras maneras de descomponer el número 60 son estas:

  • 60 = 4 x 15 = 2 x 2 x 3 x 5
  • 60 = 20 x 3 = 2 x 2 x 5 x 3

Para números más grandes, observa estos ejemplos:

  • 221.269 = 409 x 541
  • 147.413.303 =521 523 x 541
  • 1.738.066 = 2 x 11 x 199 x 397
¡A practicar!

1. Escribe la descomposición aditiva por medio del valor posicional de estos números:

  • 4.856.912
Solución
4.856.912 = 4.000.000 + 800.000 + 50.000 + 6.000 + 900 + 10 + 2
  • 73.892.146,965
Solución
73.892.146,965 = 70.000.000 + 3.000.000 + 800.000 + 90.000 + 2.000 + 100 + 40 + 6 + 0,9 + 0,06 + 0,005
  • 5.198.762,4023
Solución
5.198.762,4023= 5.000.000 + 100.000 + 90.000 + 8.000 + 700 + 60 + 2 + 0,4 + 0,002 + 0,0003

2. Escribe la descomposición polinómica de estos números:

  • 20.279.531
Solución
2 x 107 + 2 x 105 + 7 x 104 + 9 x 103 + 5 x 102 + 3 x 101 + 1 x 100
  • 579.348.670
Solución
5 x 108 + 7 x 107 + 9 x 106 + 3 x 105 + 4 x 104 + 8 x 103 + 6 x 102 + 7 x 101
  • 8.671.690
Solución
8.671.690,5364 = 8 x 106 + 6 x 105 + 7 x 104 + 1 x 103 + 6 x 10 2 + 9 x 10

3. Escribe la descomposición multiplicativa de estos números:

  • 99.301
Solución
99.301 = 199 x 499

Hay más opciones, ¡descúbrelas!

  • 29.884.301
Solución
29.884.301 = 307 x 311 x 313

Hay más opciones, ¡descúbrelas!

  • 2.843.858
Solución
2.843.858 = 2 x 23 x 211 x 293

Hay más opciones, ¡descúbrelas!

  • 1.697.658
Solución
1.697.658 = 2 x 3 x 523 x 541

Hay más opciones, ¡descúbrelas!

RECURSOS PARA DOCENTES

Artículo “Descomposición de números”

En este artículo encontrarás mayor ayuda para la enseñanza de la descomposición y el valor posicional de los números.

VER

Artículo “Valores absolutos y relativos”

En este artículo encontrará apoyo para la identificación del valor de los números al descomponerlos.

VER

Tarjetas educativas “Números”

En estas tarjetas educativas podrás encontrar los números del 1 al 100 y sus descomposiciones aditivas y polinómicas.

VER

CAPÍTULO 1 / TEMA 1

LECTURA DE NÚMEROS

Los números pueden parecer muy difíciles si tienen muchas cifras, pero no son tan complicados cuando conoces la posición de los dígitos y el valor relativo de cada uno. Con unos pasos muy sencillos podrás leerlos, ya sea que pertenezcan a nuestro sistema de numeración decimal o al sistema de numeración romano.

Lectura de números naturales

Brasil es un país ubicado en América del Sur. Tiene una superficie total de 8.515.770 km2 y una población estimada de 210.385.000 habitantes. Se trata del segundo país más poblado de todo el continente americano. ¿Puedes leer esos números?, ¿cuántos habitantes hay en Brasil?, ¿cuál es su superficie? En este artículo, veremos los pasos para saber cómo leerlos.

Los números naturales son aquellos que usas para contar. Inician desde el cero (0) y siguen hasta el infinito. Este conjunto de números fue el primero que se utilizó para calcular y por definición matemática se representan así:

\mathbb{N} = \left \{0,\, 1,\, 2,\, 3,\, 4,\, 5,\, ... \right \}

Estos son los que más empleas día a día. Con ellos das la hora, tu fecha de cumpleaños o tu número de identificación. En cualquier caso, la ubicación de cada cifra cumple un valor relativo. Así, en el número 25.651, el 5 se ubica en dos posiciones: en las decenas y en las unidades de mil. El valor relativo de cada cifra es:

Y el número se lee: veinticinco mil seiscientos cincuenta y uno.

Las posiciones de cada cifra permiten la correcta lectura de los números, en especial, cuando los números son grandes. Para leer un número natural, lo primero que debes hacer es escribirlo correctamente. Esto se logra por medio de agrupación de dígitos. Para leer el número 123604785219, los pasos son los siguientes:

  1. Coloca un punto cada tres dígitos. Empieza de derecha a izquierda.
  2. Cada punto rojo, de derecha a izquierda, representará la palabra “mil”.
  3. Cada punto azul, de derecha a izquierda, representará en orden ascendente la secuencia: millones, billones, trillones, cuatrillones, quintillones, etc.

Por último, se lee el número de izquierda a derecha: ciento veintitrés mil seiscientos cuatro millones setecientos cincuenta y ocho mil doscientos diecinueve.

¿Cómo se leen estos números?

  • 121.568.265

Solución
Ciento veintiún millones quinientos sesenta y ocho mil doscientos sesenta y cinco.
  • 923.645.687.156

Solución
Novecientos veintitrés mil seiscientos cuarenta y cinco millones seiscientos ochenta y siete mil ciento cincuenta y seis.
  • 216.035.548.665.021

Solución
Doscientos dieciséis billones treinta y cinco mil quinientos cuarenta y ocho millones seiscientos sesenta y cinco mil veintiuno.

¿Sabías qué?
El número de Graham es el número más grande que se ha representado matemáticamente. Su símbolo es la letra G y requirió el uso de símbolos y la notación flecha de Knuth para su representación.

LECTURA DE NÚMEROS DECIMALES

Los números decimales se componen de una parte entera y una parte decimal que va separada por una coma. Estos números están presentes en nuestro día a día: en nuestro peso, cuando usamos el termómetro o en los precios de los productos.

Las partes de un número decimal están divididas por un separador. Aunque el Sistema Internacional de Unidades (SI) y la ISO aceptan el punto y la coma como separador decimal, la Real Academia Española aclara que la coma es “el signo igual al ortográfico que se emplea para separar la parte entera de la parte decimal en las expresiones numéricas”.

Para el número 325,086 el valor relativo de cada cifra se representa así:

Según el lugar que ocupe el decimal se representará en orden ascendente la secuencia: décima, centésima, milésima, diezmilésima, cienmilésima, milmilésima, etc. Todos estos son valores más pequeños que uno (1). Observa la tabla:

Décimas Centésimas Milésimas
La décima parte de la unidad es

\frac{1}{10}= 0,1

La centésima parte de la unidad es

\frac{1}{100}= 0,01

La milésima parte de la unidad es

\frac{1}{1000}= 0,001

1 U = 10 d 1 U = 100 c

1 d = 10 c

1 U = 1.000 m

1 d = 100 m

1 c = 10 m

Donde:

U: unidad

d: décimas

c: centésimas

m: milésimas

De centenas a milésimas

Para leer un número decimal debes seguir estos pasos:

  1. Lee la parte entera de izquierda a derecha seguida de la palabra “enteros”.
  2. Lee toda la parte decimal como se lee la parte entera.
  3. Menciona la posición en la que se encuentra la última cifra decimal.

Entonces, la lectura del número 122,96 es: ciento veintidós enteros noventa y seis centésimas.

Existe otra forma de leer números decimales, los pasos son los siguientes:

  1. Lee la parte entera de izquierda a derecha seguida de la palabra “coma”.
  2. Lee toda la parte decimal como se lee la parte entera.

De este modo, la lectura del número 122,96 también es: ciento veintidós coma noventa y seis.

¿Cómo se leen estos números?

  • 2,364

Solución
Dos enteros trescientos sesenta y cuatro milésimas.
  • 5.879.009,587

Solución
Cinco millones ochocientos setenta y nueve mil nueve enteros quinientos ochenta y siete milésimas.
  • 175.756,2

Solución
Ciento setenta y cinco mil setecientos cincuenta y seis enteros dos décimas.

¿Sabías qué?
El número pi (π) es un número con decimales infinitos y es una de las constantes matemáticas más utilizadas. Relaciona el perímetro de una circunferencia con la amplitud de su diámetro.

LECTURA DE NÚMEROS ROMANOS

La numeración romana tiene siete símbolos representados por siete letras del abecedario latino:

Número romano I V X L C D M
Número arábigo 1 5 10 50 100 500 1.000

Por ejemplo, el número XVI es igual a 16 porque:

XVI = 10 + 5 + 1 = 16

Si bien los números romanos están en desuso en la actualidad, es posible verlos en relojes, capítulos y tomos de libros, materias en programas académicos, leyes y reformas, sagas de películas, concursos, actos y escenas de obras de teatro, nombres de papas, nombres de reyes, y en lápidas y esculturas conmemorativas.

Para poder realizar la lectura de los números romanos de pocas o muchas cifras necesitas conocer las siguientes reglas:

1. Regla de la suma

Si a la derecha de una número romano tenemos otro de menor valor, entonces las cifras se suman.

CL = 100 + 50 = 150

XXIII = 10 + 10 + 3 = 23

2. Regla de la resta

  • I solo puede colocarse delante de V y X.

IV = 5 − 1 = 4

IX = 10 − 1 = 9

  • X solo puede restar a L y C.

XL = 50 − 10 = 40

XC = 100 − 10 = 90

  • C solo puede restar a D y M.

CD = 500 − 100 = 400

CM = 1.000 − 100 = 900

  • V, L y D nunca pueden usarse para restar otros números.

3. Regla de la repetición

Podemos repetir I, X, C y M un máximo de tres veces. En cambio, V, L y D no se pueden repetir.

III = 1 + 1 + 1 = 3

MMM = 1.000 + 1.000 + 1.000 = 3.000

4. Regla de la multiplicación

Después de 3.999 el sistema es diferente y se coloca una raya horizontal encima del número romano, esto significa que se ha multiplicado por 1.000. Si se colocan dos rayas, el número será multiplicado por 1.000.000.

\overline{V} = 5 \times 1.000 = 5.000

\overline{XLIV} = [(50 - 10)+(5-1)] \times 1.000 = 44 \times 1.000 = 44.000

\overline{MMCXC}= [(1.000+1.000)+(100)+(100-10)]=2.190\times1.000=2.190.000

VER INFOGRAFÍA

De número natural a número romano

Al descomponer un número natural puedes encontrar el equivalente a su número romano. Para ello, solo debes usar los números 1, 5, 10, 50, 100, 500 o 1.000 en la descomposición. Las sumas y restas están permitidas.

Por ejemplo, el número romano equivalente a 279 se encuentra por medio de esta descomposición:

¿Estos números romanos son correctos?

  • VIIII

Solución
No. El número romano I solo puede repetirse un máximo de tres veces. Si deseas escribir el número 9 en números romanos lo correcto es:

IX = 10 − 1 = 9

  • VX

Solución
No. El número romano X solo puede restar a L y C. Si deseas escribir el número 15 en número romano lo correcto es:

XV = 10 + 5 = 15 

  • DDD

Solución
No. El número romano D no puede repetirse. Si deseas escribir el número 1.500 en número romanos, lo correcto es:

MD = 1.000 + 500 = 1.500

VALOR POSICIONAL DE CIFRAS

El sistema de numeración decimal es el más usado en el mundo, se caracteriza por:

  • Estar conformado por 10 cifras: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9.
  • Ser posicional, es decir, cada cifra tiene un valor de acuerdo a su posición dentro del número.
Mismos números, distintas posiciones

Con tres dígitos, como 8, 3 y 5, se pueden formar varios números, sin embargo, no todos tendrán el mismo valor posicional.

Según la posición que ocupe un dígito en un número su valor será diferente. Por ejemplo, el dígito 3 ocupa distintos puestos en el número 53.412.130.004.322,18, y por lo tanto, cada uno tiene un valor diferente. Observa la tabla de valores posicionales:

En este número, el dígito 3 ocupa tres posiciones:

  • Unidad de billón, que equivale a 1.000.000.000.000 unidades, entonces:

3 x 1.000.000.000.000 = 3.000.000.000.000

  • Decena de millón, equivalente a 10.000.000 unidades, entonces:

3 x 10.000.000 = 30.000.000

  • Centena, que equivale a 100 unidades, entonces:

3 x 100 = 300

Este número se lee: cincuenta y tres billones cuatrocientos doce mil ciento treinta millones cuatro mil trescientos veintidós enteros dieciocho centésimas.

Tabla de equivalencias

 

1 unidad = 1 unidad

1 decena = 10 unidades

1 centena = 100 unidades

1 unidad de mil (millar) = 1.000 unidades

1 decena de mil (millar) = 10.000 unidades

1 centena de mil (millar) = 100.000 unidades

1 unidad de millón = 1.000.000 unidades

1 decena de millón = 10.000.000 unidades

1 centena de millón = 100.000.000 unidades

1 unidad de millar de millón = 1.000.000.000 unidades

1 decena de millar de millón = 10.000.000.000 unidades

1 centena de millar de millón = 100.000.000.000 unidades

1 unidad de billón = 1.000.000.000.000 unidades

1 decena de billón = 10.000.000.000.000 unidades

1 centena de billón = 100.000.000.000.000 unidades

¿Qué valor posicional tienen los números marcados en rojo?

587.124.687,7956

Solución
Decena.

8.147.561,115

Solución
Unidad de millón.

64.789,185948

Solución
Milésima.

189.547.963.004.279

Solución
Centena de billón.
Ejercicios

1. Lee y escribe en letras los siguientes números:

  • 3465268
Solución
3.465.268 = tres millones cuatrocientos sesenta y cinco mil doscientos sesenta y ocho.
  • 12563,158
Solución
12.563,158 = doce mil quinientos sesenta y tres enteros ciento cincuenta y ocho milésimas.
  • 684812313
Solución
684.812.313 = seiscientos ochenta y cuatro millones ochocientos doce mil trescientos trece.
  • \fn_cm \overline{LXV}
Solución
Sesenta y cinco mil.
  • MM
Solución
Dos mil.
  • 165,5346821
Solución
Ciento sesenta y cinco enteros cinco millones trescientos cuarenta y seis mil ochocientos veintiún diezmillonésimas.
  • \fn_cm \overline{MMMC}
Solución
Tres millones cien mil.
  • \fn_cm \overline{DXI}
Solución
Quinientos once mil.
RECURSOS PARA DOCENTES

Artículo “Números grandes: lectura y escritura”

El siguiente artículo le permitirá ampliar información sobre la lectura y escritura de números grandes.

VER