CAPÍTULO 3 / TEMA 4

LA CAPACIDAD

LA CAPACIDAD SURGE CON LA NECESIDAD DE ESTABLECER UNA MEDIDA DE “LO QUE CABE” DENTRO DE UN OBJETO. POR EJEMPLO, EN UNA LLAVE NO CABE NINGUNA SUSTANCIA, PERO DENTRO DE UN VASO SÍ CABEN OBJETOS Y LÍQUIDOS, COMO AGUA O JUGO. LA UNIDAD DE MEDIDA DE LA CAPACIDAD ES EL LITRO. A CONTINUACIÓN APRENDERÁS CÓMO EMPLEARLA.

¿QUÉ ES LA CAPACIDAD?

OBSERVA ESTOS VASOS, ¿EN CUÁL HAY MÁS AGUA?

HAY MÁS AGUA EN EL VASO B.

AHORA OBSERVA ESTOS VASOS, ¿EN CUÁL CABE MÁS AGUA?

CABE MÁS AGUA EN EL VASO C. 

LA CAPACIDAD ES UNA MAGNITUD QUE SE CARACTERIZA POR CONTENER UNA CIERTA CANTIDAD DE SUSTANCIA. GENERALMENTE SE UTILIZA PARA ESTABLECER LA CANTIDAD DE LÍQUIDO QUE TIENE UN RECIPIENTE.

OBSERVA DE NUEVO LOS VASOS DE ARRIBA, ¿CUALES TIENEN MAYOR CAPACIDAD?

EN EL PRIMER EJEMPLO, LOS DOS VASOS TIENEN LA MISMA CAPACIDAD, PERO EN EL SEGUNDO EJEMPLO, EL VASO C TIENE MAYOR CAPACIDAD QUE EL VASO D.

LA CAPACIDAD INDICA CUÁNTO LÍQUIDO PUEDE CONTENER UN RECIPIENTE Y SU UNIDAD DE MEDIDA ES EL LITRO. NO DEBE CONFUNDIRSE CON EL VOLUMEN, QUE ES EL ESPACIO OCUPADO POR EL LÍQUIDO Y SU UNIDAD ES EL METRO CÚBICO. EN LA IMAGEN VEMOS DOS VASOS, ¿CUÁL TIENE MAYOR CAPACIDAD? ¡LOS DOS TIENEN LA MISMA CAPACIDAD PORQUE PUEDEN CONTENER EL MISMO VOLUMEN!

¿SABÍAS QUÉ?
TODOS LOS CUERPOS OCUPAN UN VOLUMEN EN TRES DIMENSIONES: LARGO, ANCHO Y ALTO.

¡COMPAREMOS CAPACIDADES!

¿DÓNDE CABE MÁS AGUA?, ¿CUÁL RECIPIENTE TIENE MAYOR CAPACIDAD?

EN EL BOTELLÓN CABE MÁS AGUA QUE EN LA LATA. EL BOTELLÓN TIENE MAYOR CAPACIDAD.


EN EL BARRIL CABE MÁS AGUA QUE EN LA JARRA. EL BARRIL TIENE MAYOR CAPACIDAD.


EN LA PISCINA CABE MÁS AGUA QUE EN LA PIPA. LAS PISCINA TIENE MAYOR CAPACIDAD.


¡ES TU TURNO!

SOLUCIÓN
EN LA JARRA CABE MÁS AGUA QUE EN EL CARTÓN DE JUGO. LA JARRA TIENE MAYOR CAPACIDAD.

SOLUCIÓN
EN LA CISTERNA CABE MÁS AGUA QUE EN LA BOTELLA. LA CISTERNA TIENE MAYOR CAPACIDAD.

¿CÓMO SE MIDE LA CAPACIDAD?

LA CAPACIDAD SE PUEDE MEDIR CON VARIOS INSTRUMENTOS, COMO JARRAS MEDIDORAS, GOTEROS Y CUCHARAS. EN OTROS CASOS ENCONTRAMOS ENVASES CON SU CAPACIDAD YA DELIMITADA, POR EJEMPLO UNA BOTELLA DE 1 LITRO Y MEDIO DE AGUA, O UNA CAJA DE 1 LITRO DE LECHE.

LAS JARRAS MEDIDORAS SON TRANSPARENTES, FABRICADAS DE PLÁSTICO O VIDRIO; Y TIENEN RAYAS O MARCAS QUE REPRESENTAN LA MEDIDA DE CAPACIDAD HASTA ESE PUNTO. ES POSIBLE QUE TENGAS UNA EN CASA PORQUE SON DE GRAN AYUDA CUANDO PREPARAMOS RECETAS. ALGUNAS TIENEN LAS MEDIDAS EN MILILITROS (mL), LITROS (L) O CENTÍMETRO CÚBICO (cm3 O cc).

PRINCIPALES UNIDADES DE CAPACIDAD

LA UNIDAD PRINCIPAL DE LA CAPACIDAD ES EL LITRO, PERO NO ES LA ÚNICA. TAMBIÉN EXISTEN SUS MÚLTIPLOS, QUE REPRESENTAN UNA CANTIDAD MAYOR QUE EL LITRO, Y SUS SUBMÚLTIPLOS, QUE REPRESENTAN UNA CANTIDAD MENOR QUE EL LITRO. POR EJEMPLO:

UNA JARRA TIENE CAPACIDAD DE 1 LITRO.

ALGUNAS BOTELLAS TIENEN CAPACIDAD DE 500 MILILITROS.

 UN CARTÓN PEQUEÑO DE JUGO TIENE CAPACIDAD DE 250 MILILITROS.


OBSERVA LAS EQUIVALENCIAS:

EN 1 LITRO HAY DOS ½ LITROS.

EN UN LITRO HAY CUATRO ¼ DE LITRO.

¡MUY IMPORTANTE!

1 LITRO = 1.000 MILILITROS

½ LITRO = 500 MILILITROS

¼ DE LITRO = 250 MILILITROS

 

1 L = ½ L + ½ L

1 L = ¼ L + ¼ L + ¼ L + ¼ L

– EJEMPLO:

OBSERVA LA TAZA MEDIDORA, ¿QUÉ CAPACIDAD TIENE?, ¿CUÁNTA AGUA HAY?

ESTA TAZA MEDIDORA TIENE CAPACIDAD PARA 1 LITRO.

 

NO ESTÁ LLENA DE AGUA HASTA LA MARCA DE 1 LITRO.

 

SI CONTAMOS LAS MARCAS, HAY AGUA HASTA LA MITAD DE 1 LITRO, ES DECIR, ½ LITRO.

 

POR LO TANTO, LA TAZA MEDIDORA TIENE ½ LITRO O 500 MILILITROS DE AGUA. 

TODOS LOS RECIPIENTES DE LOS PRODUCTOS QUE CONSEGUIMOS EN UN SUPERMERCADO VIENEN CON ETIQUETAS QUE INDICAN LA CAPACIDAD O VOLUMEN. ALGUNOS TIENEN LAS UNIDADES DE CAPACIDAD DEL ENVASE Y OTROS TIENEN LAS UNIDADES DE VOLUMEN DE LAS SUSTANCIAS CONTENIDAS. ¡BUSCA EN TU CASA ALGÚN RECIPIENTE Y LEE SUS UNIDADES DE MEDIDA!

RELACIÓN ENTRE centímetro CÚBICO Y miliLITRO

AUNQUE LA CAPACIDAD Y EL VOLUMEN NO SON LO MISMO, TIENEN MUCHA RELACIÓN ENTRE SÍ. CUANDO NOS REFERIMOS A LA CAPACIDAD HABLAMOS DEL ESPACIO VACÍO QUE TIENE UN RECIPIENTE PARA SER LLENADO, MIENTRAS QUE EL VOLUMEN ES EL ESPACIO OCUPADO POR EL CUERPO.

DE ESTE MODO, UN OBJETO QUE TENGA CAPACIDAD PARA 1 MILILITRO SERÁ OCUPADO POR UN VOLUMEN DE 1 CENTÍMETRO CÚBICO. ASÍ QUE:

1 MILILITRO (mL) = 1 CENTÍMETRO CÚBICO (cm3)

¡A PRACTICAR!

1. ESTOS RECIPIENTES TIENEN DEBAJO SU CAPACIDAD. CONVIÉRTELA EN LITROS O MILILITROS SEGÚN SEA EL CASO.

SOLUCIÓN

A) 5 LITROS = 5.000 MILILITROS

B) ¼ LITRO = 250 MILILITROS

C) 1.000 MILILITROS = 1 LITRO

 

2. COMPLETAR LA TABLA TENIENDO EN CUENTA LA EQUIVALENCIA 1 cm3 = 1 mL.

2 cm3 = ____ mL

SOLUCIÓN
2

____ cm3 = 6 mL

SOLUCIÓN
6

____ cm3 = 42 mL

SOLUCIÓN
42

96 cm3 = ____ mL

SOLUCIÓN
96
RECURSOS PARA DOCENTES

Artículo: “Volumen y capacidad: aplicaciones”

En el siguiente artículo podrás encontrar un trabajo sobre la relación entre volumen y capacidad y varias estrategias de enseñanza.

VER

CAPÍTULO 3 / TEMA 2

LA LONGITUD

ENTRE NUESTRA CASA Y LA CASA DE UN AMIGO HAY UNA DISTANCIA QUE LAS SEPARA, ESTA DISTANCIA LA PODEMOS MEDIR EN METROS: UNIDAD QUE NOS PERMITE SABER LA LONGITUD DE LAS COSAS, PERO NO ES LA ÚNICA UNIDAD. TAMBIÉN ESTÁN LOS MILÍMETROS Y LOS CENTÍMETROS. LOS INSTRUMENTOS PARA MEDIR LONGITUD SON MÁS COMUNES DE LO QUE CREES Y SEGURO TIENES ALGUNO EN CASA.

¿QUÉ ES LA LONGITUD?

OBSERVA ESTAS CINTAS, ¿CUÁL ES LA MÁS LARGA?, ¿CUÁL CINTA ES MÁS CORTA?

LA CINTA ROJA OCUPA 4 CUADROS Y LA CINTA AZUL OCUPA 7 CUADROS. ASÍ QUE:

  • LA CINTA AZUL ES MÁS LARGA QUE LA CINTA ROJA.
  • LA CINTA ROJA ES MÁS CORTA QUE LA CINTA AZUL.

 

LA LONGITUD ES UNA MAGNITUD QUE DETERMINA LA DISTANCIA ENTRE DOS PUNTOS. GRACIAS A ELLA SABEMOS QUÉ TAN LARGO O ALTO ES UN OBJETO. LA UNIDAD DE MEDIDA PRINCIPAL ES EL METRO.

LA CINTA MÉTRICA ES UNA HERRAMIENTA UTILIZADA PARA MEDIR LA LONGITUD DE PAREDES Y CERCAS. LOS ALBAÑILES Y CARPINTEROS LA USAN TODO EL TIEMPO PARA HACER SU TRABAJO, YA QUE LES PERMITE SABER EL LARGO O EL ANCHO DE UNA TABLA, CAJA O PISO. LA MAYORÍA VIENE CON MEDIDAS EN CENTÍMETROS Y CON MARCAS MÁS PEQUEÑAS QUE REPRESENTAN LOS MILÍMETROS.

UNIDADES PARA MEDIR LONGITUD

PODEMOS MEDIR LONGITUDES CON UNIDADES ARBITRARIAS Y CONVENCIONALES.

  • LAS UNIDADES DE MEDIDA ARBITRARIAS SON LA CUARTA, EL PIE O LOS PASOS. ESTAS MEDIDAS NO SON EXACTAS PORQUE LAS PARTES DEL CUERPO NO SON IGUALES EN TODAS LAS PERSONAS.
  • LAS UNIDADES CONVENCIONALES SON LAS ACEPTADAS EN LA MAYORÍA DE LOS PAÍSES. PARA LA LONGITUD EL SISTEMA INTERNACIONAL DE MEDIDA ACEPTA AL METRO Y SUS SUBMÚLTIPLOS.

EL METRO Y SUS SUBMÚLTIPLOS

EL METRO ES LA UNIDAD PRINCIPAL PARA MEDIR LONGITUDES. GRACIAS A ESTA UNIDAD SABEMOS QUE TAN ALTOS SOMOS.

LOS SUBMÚLTIPLOS DEL METRO SON LAS UNIDADES MENORES QUE ÉL; ES DECIR, QUE PARA MEDIR LONGITUDES MENORES AL METRO USAMOS LOS SUBMÚLTIPLOS: EL DECÍMETRO, EL CENTÍMETRO Y EL MILÍMETRO.

VEAMOS CÓMO SE COMPONE UN METRO DE LONGITUD EN UNA CINTA MÉTRICA:

  • DENTRO DE 1 METRO TENEMOS 10 DECÍMETROS.

  • DENTRO DE 1 METRO TENEMOS 100 CENTÍMETROS.

 

  • DENTRO DE 1 METRO TENEMOS 1.000 MILÍMETROS.

EQUIVALENCIAS DE INTERÉS

1 METRO = 10 DECÍMETROS

1 METRO = 100 CENTÍMETROS

1 METRO = 1.000 MILÍMETROS

¿SABÍAS QUÉ?
TAMBIÉN EXISTEN UNIDADES MAYORES AL METRO, COMO EL KILÓMETRO, QUE ES IGUAL A 1.000 METROS.

INSTRUMENTOS USADOS PARA MEDIR LA LONGITUD

LOS INSTRUMENTOS UTILIZADOS PARA MEDIR LA LONGITUD SON:

INSTRUMENTO CARACTERÍSTICAS
REGLA GRADUADA ES UN INSTRUMENTO CORTO Y PLANO. SE UTILIZA PARA TRAZAR FIGURAS GEOMÉTRICAS O PARA SUBRAYAR.
ESCUADRA ES UN INSTRUMENTO DE FORMA TRIANGULAR Y SE UTILIZA EN GEOMETRÍA. ES MUY ÚTIL PARA TRAZAR RECTAS PARALELAS.
FLEXÓMETRO
ES UN INSTRUMENTO FLEXIBLE QUE MIDE 1,5 METROS. ES MUY USADO POR LOS COSTUREROS PARA LOS CORTES Y CONFECCIONES.
CINTA MÉTRICA ES UN INSTRUMENTO METÁLICO CON UNA CINTA FLEXIBLE QUE PUEDE ENROLLARSE. POR LO GENERAL TIENE 5 METROS.
LAS MEDIDAS DE LONGITUD, ASÍ COMO SUS INSTRUMENTOS DE MEDICIÓN, SON DE GRAN IMPORTANCIA EN TODAS LAS ÁREAS DE CONOCIMIENTO Y OFICIOS. LAS REGLAS, ESCUADRAS Y CINTAS MÉTRICAS SON NECESARIAS PARA LOS INGENIEROS, ARQUITECTOS Y DISEÑADORES. TODOS LOS PLANOS Y FIGURAS DE CUALQUIER TAMAÑO SE CONSTRUYEN GRACIAS A ESTOS INSTRUMENTOS DE MEDICIÓN.

¿cómo medir con la regla graduada?

LAS REGLAS GRADUADAS TIENEN MEDIDAS EN CENTÍMETROS MARCADAS CON NÚMEROS. ENTRE LOS CENTÍMETROS HAY UNIDADES MÁS PEQUEÑAS QUE VEMOS CON RAYAS. SI DESEAMOS MEDIR UN OBJETO PEQUEÑO EN CENTÍMETROS CON UNA REGLA SEGUIMOS ESTOS PASOS:

1. COLOCAMOS UN EXTREMO DEL OBJETO EN CERO.

2. LEEMOS EL NÚMERO QUE ESTÁ EN EL OTRO EXTREMO.

LA CINTA AZUL MIDE 10 CENTÍMETROS.

¡COMPAREMOS LONGITUDES!

OBSERVA LA CUADRÍCULA Y LOS OBJETOS. CADA CUADRO MIDE 1 CENTÍMETRO. LUEGO RESPONDE:

¿CUÁL OBJETO TIENE MAYOR LONGITUD?

  • EL CLIP OCUPA 2 CUADROS. MIDE 2 CENTÍMETROS.
  • LA GOMA DE BORRAR OCUPA 4 CUADROS. MIDE 4 CENTÍMETROS.

LA GOMA DE BORRAR TIENE MAYOR LONGITUD QUE EL CLIP.


¿CUÁL OBJETO TIENE MAYOR LONGITUD?

  • EL MARCADOR OCUPA 9 CUADROS. MIDE 9 CENTÍMETROS.
  • EL LÁPIZ OCUPA 6 CUADROS. MIDE 6 CENTÍMETROS.

EL MARCADOR TIENE MAYOR LONGITUD QUE EL LÁPIZ.

¡A PRACTICAR!

1. ¿CUÁNTO MIDE EL LÁPIZ?

SOLUCIÓN
EL LÁPIZ MIDE 11 CENTÍMETROS.

2. ¿CUÁNTO MIDE EL PINCEL?

SOLUCIÓN
EL PINCEL MIDE 15 CENTÍMETROS.

3. RESPONDE LAS SIGUIENTES PREGUNTAS:

  • ¿CUÁL UNIDAD USARÍAS PARA MEDIR EL CUELLO DE UNA JIRAFA?
SOLUCIÓN
LOS METROS.
  • ¿CUÁL UNIDAD USARÍAS PARA MEDIR EL TAMAÑO DE UN HORMIGA?
SOLUCIÓN
LOS MILÍMETROS.
  • ¿CUÁL UNIDAD USARÍAS PARA MEDIR EL LARGO DE UN DEDO?
SOLUCIÓN
LOS CENTÍMETROS.
  • ¿CUÁL UNIDAD USARÍAS PARA MEDIR EL ANCHO DE UNA MESA?
SOLUCIÓN
LOS METROS.
  • ¿CUÁL UNIDAD USARÍAS PARA MEDIR UN GRANO DE ARROZ?
SOLUCIÓN
LOS MILÍMETROS.
RECURSOS PARA DOCENTES

Artículo “Conversión de unidades de longitud”

Con este recurso ampliaras la información relacionada a los múltiplos y submúltiplo de las unidades de longitud.

VER

 

CAPÍTULO 3 / TEMA 3

MASA

UNA DE LAS PROPIEDADES QUE SE PUEDEN MEDIR DE LOS CUERPOS ES LA MASA. UN ESCRITORIO, UN GATO, UN GLOBO, UN JUGO O UNA HORMIGA SON CUERPOS CON MASA. LA MANERA MÁS SENCILLA DE MEDIRLA ES CON UNA BALANZA Y ES PROBABLE QUE TENGAS UNA EN CASA PORQUE TAMBIÉN SON NECESARIAS PARA SABER NUESTRO PESO A MEDIDA QUE CRECEMOS.

¿QUÉ ES LA MASA?

LA MASA ES LA CANTIDAD DE MATERIA QUE CONTIENE UN CUERPO. TODOS LOS OBJETOS O CUERPOS TIENEN MASA, YA SEA EN ESTADO SÓLIDO, LÍQUIDO O GASEOSO. POR EJEMPLO, UN LÁPIZ, EL AGUA Y EL AIRE TIENEN MASA.

TODOS LOS CUERPOS ESTÁN HECHOS DE MATERIA Y ALGUNOS TIENEN MÁS O MENOS QUE OTROS. POR EJEMPLO, UN CARRO TIENE MÁS MASA QUE UNA PELOTA, O UN HOMBRE ADULTO TIENE MÁS MASA QUE UN BEBÉ RECIÉN NACIDO. NO SIEMPRE PODEMOS SABER QUÉ CUERPO ES MÁS PESADO POR OBSERVACIÓN, EN ESOS CASOS USAMOS INSTRUMENTOS COMO LA BALANZA O LA BÁSCULA.

CUANDO ALGUIEN PREGUNTA CUÁL ES EL PESO DE UNA PERSONA, ESTE SE EXPRESA EN KILOGRAMOS. ESTO SUCEDE PORQUE LA ACCIÓN DE DETERMINAR LA MASA DE UN CUERPO EN UNA BALANZA SE LLAMA “PESAR”.

¿SABÍAS QUÉ?
EL PESO Y LA MASA NO SON LO MISMO. LA MASA ES INDEPENDIENTE DEL LUGAR DONDE LA MIDAMOS, SIN EMBARGO, EL PESO NO. CUANTO MÁS ALEJADOS DEL CENTRO DE LA TIERRA NOS ENCONTREMOS, MENOR SERÁ NUESTRO PESO.

¿CON QUÉ SE MIDE LA MASA?

LA MASA SE MIDE CON UN INSTRUMENTO LLAMADO BALANZA. LA BALANZA MIDE LA MASA DE CUERPOS Y OBJETOS. TAMBIÉN SE UTILIZAN OTROS INSTRUMENTOS COMO LOS PLATILLOS EN LOS LABORATORIOS O LAS BALANZAS ELECTRÓNICAS PARA PESAR ALIMENTOS.

LAS BALANZAS SE UTILIZAN PARA PESAR LOS ALIMENTOS QUE SE VENDEN EN LOS COMERCIOS, YA SEA CARNE, PESCADO O FRUTAS. TAMBIÉN SE EMPLEAN EN LOS LABORATORIOS PARA PESAR PEQUEÑAS CANTIDADES SUSTANCIAS, Y EN LOS HOGARES PARA PESAR LOS ALIMENTOS QUE COMPONEN UNA RECETA. HAY MUCHOS TIPOS DE BALANZA, UNAS MÁS PRECISAS QUE OTRAS.

 

LAS BALANZAS DE DOS PLATILLOS SON DE MUCHA AYUDA PARA COMPARAR MASAS, POR EJEMPLO:

  • LAS DOS MACETAS TIENEN IGUAL MASA PORQUE LA BALANZA ESTÁ EN EQUILIBRIO.

  • LA PIÑA TIENE MAYOR MASA QUE LA FRESA PORQUE LA BALANZA ESTÁ INCLINADA HACIA SU LADO.

  • LA CALABAZA TIENE MAYOR MASA QUE EL LIMÓN PORQUE LA BALANZA ESTÁ INCLINADA HACIA SU LADO.

 

TIPOS DE BALANZA

LA BALANZA ES UN INSTRUMENTO QUE PODEMOS VER EN LOS COMERCIOS, EN LOS CONSULTORIOS MÉDICOS, EN LOS LABORATORIOS O HASTA EN NUESTRAS CASAS. HAY MUCHOS TIPOS, PERO LAS MÁS COMUNES SON LAS MECÁNICAS, CON PLATILLOS Y ESFERAS O REGLAS CON MARCAS; Y LAS ELECTRÓNICAS CON PANTALLAS QUE MUESTRAN DIRECTAMENTE EL VALOR DE LA MASA.

KILOGRAMO Y GRAMO

EL SISTEMA INTERNACIONAL DE MEDIDAS SOSTIENE QUE LA UNIDAD DE MEDIDA PRINCIPAL DE LA MASA ES EL KILOGRAMO. EN ALGUNOS CASOS TAMBIÉN SE UTILIZAN SUS UNIDADES DERIVADAS MENORES, COMO LO SON EL GRAMO O EL MILIGRAMO.

¿SABÍAS QUÉ?
LA ABREVIATURA DEL KILOGRAMO ES “kg” Y LA DE LOS GRAMOS ES “g”.

UN PERRO PUEDE PESAR 20 KILOGRAMOS.

UNA BANANA PUEDE PESAR 150 GRAMOS.

UNA HORMIGA PUEDE PESAR 3 MILIGRAMOS.

ALGUNAS EQUIVALENCIAS DE INTERÉS SON LAS SIGUIENTES:

  • 1 KILOGRAMOS ES IGUAL A DOS MEDIOS KILOS.

  • 1 KILOGRAMO ES IGUAL A CUATRO CUARTOS DE KILO.

OTRAS EQUIVALENCIAS

  • 1 KILOGRAMO = 1.000 GRAMOS
  • ½ KILOGRAMOS = 500 GRAMOS
  • ¼ KILOGRAMOS = 250 GRAMOS

¿CÓMO CONVERTIR KILOGRAMOS A GRAMOS?

LA MASA DE MUCHOS PRODUCTOS DEL MERCADO PUEDEN ESTAR MEDIDAS EN KILOGRAMOS, POR EJEMPLO, 2 KILOGRAMOS DE HARINA. PERO SI NECESITAMOS LA MASA EN GRAMOS PARA PREPARAR UNA RECETA, ¿CÓMO HACEMOS?

CAMBIAR UNA MISMA CANTIDAD A OTRA UNIDAD ES MUY FÁCIL. PARA CONVERTIR KILOGRAMOS A GRAMOS SOLO TIENES QUE AGREGAR TRES CEROS A LA CIFRA DE LOS KILOGRAMOS. POR EJEMPLO:

1 KILOGRAMO = 1.000 GRAMOS

2 KILOGRAMOS = 2.000 GRAMOS

3 KILOGRAMOS = 3.000 GRAMOS

 

OBSERVA ESTAS CAJAS, ¿CUÁNTOS GRAMOS PESAN EN TOTAL?

A) 

HAY DOS CAJAS. CADA CAJA PESA 1 KILOGRAMO.

YA SABEMOS QUE:

1 KILOGRAMO = 1.000 GRAMOS

 

ASÍ QUE:

2 KILOGRAMOS = 2.000 GRAMOS

 

RESPUESTA: EN TOTAL LAS CAJAS PESAN 2 KILOGRAMOS.

 


B) 

HAY DOS CAJAS. UNA CAJA PESA 1 KILOGRAMO Y LA OTRA PESA ½ KILOGRAMO.

YA SABEMOS QUE:

1 KILOGRAMO = 1.000 GRAMOS

½ KILOGRAMO = 500 GRAMOS

 

ASÍ QUE:

1.000 GRAMOS + 500 GRAMOS = 1.500 GRAMOS

 

RESPUESTA: EN TOTAL LAS CAJAS PESAN 1.500 GRAMOS.


C) 

HAY TRES CAJAS. UNA CAJA PESA 1 KILOGRAMO Y LAS OTRAS DOS PESAN ¼ DE KILOGRAMO CADA UNA.

YA SABEMOS QUE:

1 KILOGRAMOS = 1.000 GRAMOS

¼ DE KILOGRAMO = 250 GRAMOS

 

ASÍ QUE:

1.000 GRAMOS + 250 GRAMOS + 250 GRAMOS = 1.500 GRAMOS

 

RESPUESTA: EN TOTAL LAS CAJAS PESAN 1.500 GRAMOS.

 

¡A PRACTICAR!

1. ¿CUÁNTOS GRAMOS PESAN EN TOTAL ESTAS CAJAS?

SOLUCIÓN

HAY TRES CAJAS.

1 CAJA DE 1 KILOGRAMO = 1.000 GRAMOS

1 CAJA DE ½ KILOGRAMO = 500 GRAMOS

1 CAJA DE ¼ DE KILOGRAMO = 250 GRAMOS

ASÍ QUE:

1.000 GRAMOS + 500 GRAMOS + 250 GRAMOS = 1.750 GRAMOS

EN TOTAL LAS CAJAS PESAN 1.750 GRAMOS. 

 

2. CONVIERTE LOS KILOGRAMOS A GRAMOS:

  • 7 KILOGRAMOS Y MEDIO = _____ GRAMOS

SOLUCIÓN
7.500
  • 8 KILOGRAMOS = _____ GRAMOS

SOLUCIÓN
8.000
  • 9 KILOGRAMOS = _____ GRAMOS

SOLUCIÓN
9.000
  • 9 KILOGRAMOS Y MEDIO = ____ GRAMOS

SOLUCIÓN
9.500

CAPÍTULO 1 / TEMA 5

SERIES NUMÉRICAS

CADA VEZ QUE ORGANIZAMOS OBJETOS LO HACEMOS SEGÚN UN CRITERIO. PUEDE SER POR TAMAÑO, COLOR O FORMA. ESTO SE CONOCE COMO SERIE Y TAMBIÉN APLICA A LOS NÚMEROS, YA QUE CUANDO HACEMOS CUENTAS DE DOS EN DOS O DE TRES EN TRES, SEGUIMOS UN PATRÓN NUMÉRICO. TAMBIÉN PODEMOS CREAR NUESTROS PROPIOS PATRONES Y HACER UNA GRAN VARIEDAD DE SERIES.

¿QUÉ ES UNA SERIE NUMÉRICA?

UNA SERIE NUMÉRICA ES UNA CONJUNTO DE NÚMEROS ORDENADOS QUE SIGUEN UN PATRÓN O UNA REGLA DETERMINADA.

POR EJEMPLO, ESTOS NÚMEROS FORMAN UNA SERIE Y CADA UNO ES TRES UNIDADES MAYOR AL ANTERIOR.

 

EL PATRÓN ES: +3. POR LO TANTO, ESTA SERIE NUMÉRICA VA DE 3 EN 3.

LAS SERIES NO SOLO PUEDEN TENER NÚMEROS, TAMBIÉN EXISTEN SERIES DE OBJETOS O ELEMENTOS. TODAS TIENEN ALGO EN COMÚN Y ES QUE SIGUEN UN PATRÓN. POR EJEMPLO, EN ESTA IMAGEN VEMOS UNA SERIE DE ENVASES CON PINTURA QUE SIGUEN UN PATRÓN POR COLORES: UN ENVASE CON PINTURA AMARILLA, UN ENVASE CON PINTURA ROJA Y UN ENVASE CON PINTURA AZUL.

CARACTERÍSTICAS DE LAS SERIES NUMÉRICAS

LAS SERIES NUMÉRICAS PUEDEN SER PROGRESIVAS O REGRESIVAS. EN LAS SERIES PROGRESIVAS LOS NÚMEROS VAN DE MENOR A MAYOR, MIENTRAS QUE EN LAS SERIES REGRESIVAS LOS NÚMEROS VAN DE MAYOR A MENOR.

 

SERIE PROGRESIVA

DE 2 EN 2:

PATRÓN: + 2

 

DE 5 EN 5:

PATRÓN: + 5

 

DE 10 EN 10:

PATRÓN: + 10

 

SERIE REGRESIVA

DE 2 EN 2:

PATRÓN: − 2

 

DE 5 EN 5:

PATRÓN: − 5

 

DE 10 EN 10:

PATRÓN: − 10

 

¿SABÍAS QUÉ?

LAS SERIES PROGRESIVAS TAMBIÉN SON LLAMADAS SERIES ASCENDENTES, Y LAS SERIES REGRESIVAS SON CONOCIDAS COMO SERIES DESCENDENTES.

IDENTIFICAR EL PATRÓN EN UNA SERIE NUMÉRICA

PARA PODER IDENTIFICAR EL PATRÓN DE LA SERIE NUMÉRICA ES NECESARIO:

  • OBSERVAR LA SERIE.
  • IDENTIFICAR LA RELACIÓN ENTRE LOS NÚMERO.

OBSERVA ESTA SERIE, ¿QUÉ TIPO DE SERIE ES?, ¿CUÁL ES EL PATRÓN?

ESTA SERIE ES PROGRESIVA PORQUE VA DE MENOR A MAYOR. VA DE 7 EN 7. EL PATRÓN ES: + 7.

 

– OTRO EJEMPLO:

 

LA SERIE ES REGRESIVA PORQUE VA DE MAYOR A MENOR. VA DE 12 EN 12. EL PATRÓN ES: − 12.

¡A PRACTICAR!

1. ¿CUAL ES EL PATRÓN DE LAS SIGUIENTES SERIES NUMÉRICAS?

  • 9, 18, 27, 36, 45, 54
SOLUCIÓN

LA SERIE ES ASCENDENTE DE 9 EN 9. EL PATRÓN ES: + 9.

  • 100, 75, 50, 25
SOLUCIÓN

LA SERIE ES DESCENDENTE DE 25 EN 25. EL PATRÓN ES: − 25.

  • 80, 60, 40, 20
SOLUCIÓN

LA SERIE ES DESCENDENTE DE 20 EN 20. EL PATRÓN ES: − 20.

  • 14, 21, 28, 35
SOLUCIÓN

LA SERIE ES ASCENDENTE DE 7 EN 7. EL PATRÓN ES: + 7.

CONSTRUCCIÓN DE SERIES

PARA PODER CONSTRUIR SERIES NUMÉRICAS ASCENDENTES PODEMOS UTILIZAR LAS TABLAS DE MULTIPLICAR, ESTAS SON UN RECURSO MUY ÚTIL QUE AYUDARÁ A ESTABLECER UNA RELACIÓN CON LOS TÉRMINOS DE LA SUCESIÓN. POR EJEMPLO, SI QUEREMOS EMPLEAR LAS TABLAS DEL 6, PODEMOS CONSTRUIR UNA SERIE ASCENDENTE DE 6 EN 6 Y LA MISMA SERÁ ASÍ: 6, 12, 18, 24, 30, 36, 42, 48, 54.

PARA CONSTRUIR SERIES ES NECESARIO ESTABLECER LO SIGUIENTE:

  • SI ES ASCENDENTE O DESCENDENTE.
  • EL PATRÓN.
  • UN INICIO Y UN FINAL.

– EJEMPLO:

CONSTRUYE UNA SERIE NUMÉRICA ASCENDENTE DE 15 EN 15, DESDE EL 15 HASTA EL 90.

ACTIVIDAD

1. ESCRIBIR UNA SERIE NUMÉRICA PARA CADA RELACIÓN:

  • ASCENDENTE DE 2 EN 2. DESDE 22 Y HASTA 32.
SOLUCIÓN
22, 24, 26, 28, 30, 32
  • DESCENDENTE DE 10 EN 10. DESDE 80 Y HASTA 20.
SOLUCIÓN
80, 70, 60, 50, 40, 30, 20
  • ASCENDENTE DE 5 EN 5. DESDE 5 HASTA 35.
RESPUESTAS
5, 10, 15, 20, 25, 30, 35
  • DESCENDENTE DE 2 EN 2. DESDE 20 HASTA 10.
SOLUCIÓN
20, 18, 16, 14, 12, 10

 

2. COMPLETA LAS SIGUIENTES SERIES:

  • 44, ___, 56, 62, 68, 74, ___
SOLUCIÓN
44, 50, 56, 62, 68, 74, 80
  • 10, ___, 20, 25, 30, ___, ___
RESPUESTAS
10, 15, 20, 25, 30, 35, 40
  • 83, 80, ___, 74, ___. 68, ___
RESPUESTAS
83, 80, 77, 74, 71, 68, 65
RECURSOS PARA DOCENTES

Artículo “Sucesiones y series”

En el siguiente artículo encontraras un desarrollo de teoría más avanzado de las series numéricas y la sucesión de términos.

VER

 

CAPÍTULO 3 / TEMA 1

UNIDADES DE MEDIDA

CASI TODO LO QUE NOS RODEA PUEDE SER MEDIDO, INCLUSO NUESTRO PROPIO CUERPO, POR EJEMPLO, ¿QUÉ TAN ALTO ERES?, ¿CUÁNTO PESAS?, ¿CUÁNTA AGUA BEBES AL DÍA? TODAS ESTAS SON PREGUNTAS QUE PODEMOS RESPONDER CON UNIDADES DE MEDIDA COMO EL METRO, EL KILOGRAMO O EL LITRO. ¡APRENDAMOS LAS UNIDADES DE MEDIDA!

¿QUÉ ES UNA UNIDAD DE MEDIDA?

¿PUEDES MEDIR TU ESTATURA? ¡CLARO! SABEMOS QUÉ TAN ALTOS SOMOS GRACIAS A UNA UNIDAD LLAMADA METRO. PERO TAMBIÉN SABEMOS QUE TAN PESADOS SOMOS POR UNIDAD LLAMADA KILOGRAMO.

LAS UNIDADES DE MEDIDA SON LAS CANTIDADES ESTABLECIDAS PARA UNA MAGNITUD, ES DECIR, LAS MEDIDAS ACEPTADAS EN TU PAÍS PARA SABER LA LONGITUD, LA MASA, LA CAPACIDAD O EL TIEMPO DE ALGO.

¿SABÍAS QUÉ?
UNA MAGNITUD ES UNA CANTIDAD QUE PUEDE SER MEDIDA, COMO LA LONGITUD, LA MASA O EL TIEMPO.
LA UNIDAD DE MEDIDA PRINCIPAL DE LA LONGITUD ES EL METRO. EXISTEN UNIDADES DE MEDIDA MAYORES, COMO EL KILÓMETRO, O MENORES, COMO EL CENTÍMETRO. LA REGLA ES UN INSTRUMENTO QUE SIRVE PARA MEDIR DISTANCIAS CORTAS DESDE UN PUNTO A OTRO O LA LONGITUD DE LOS OBJETOS PEQUEÑOS, COMO LA DE UN LÁPIZ. POR LO GENERAL LAS REGLAS MIDEN HASTA 30 CENTÍMETROS.

¿POR QUÉ MEDIMOS LAS COSAS?

MEDIR ES IMPORTANTE PORQUE NOS PERMITE COMPRENDER CÓMO FUNCIONA EL MUNDO QUE NOS RODEA. GRACIAS A LAS MEDIDAS HACEMOS COMPARACIONES PARA SABER QUÉ TAN ALTO, LARGO O PESADO ES UN OBJETO. DEL MISMO MODO, PODEMOS SABER A QUÉ DISTANCIA NOS ENCONTRAMOS DE UN LUGAR O CUÁNTOS LITROS DE PINTURA SE NECESITAN PARA PINTAR UNA CASA. LA FACILIDAD DE HACER COSAS HA LLEGADO CON LAS UNIDADES DE MEDIDA Y SU APLICACIÓN.

CUANDO VAMOS AL MERCADO, ¿CÓMO PEDIMOS LAS FRUTAS, EL QUESO O LA CARNE? ¡EN KILOGRAMOS! POR EJEMPLO, PODEMOS PEDIR 1 KILOGRAMO DE CARNE, 1/2 KILOGRAMO DE QUESO O 300 GRAMOS DE FRESAS. PARA ESTO, LAS PERSONAS UTILIZAN UN INSTRUMENTO LLAMADO BALANZA. LA BALANZA SIRVE PARA MEDIR LA MASA DE LOS ALIMENTOS Y DE CUALQUIER OBJETO.

UNIDADes CONVENCIONALes

LAS UNIDADES CONVENCIONALES SON AQUELLAS RECONOCIDAS EN LA MAYORÍA DE LOS PAÍSES. LAS CUATRO MAGNITUDES MÁS CONOCIDAS SON LA LONGITUD, LA MASA, LA CAPACIDAD Y EL TIEMPO.

EL SISTEMA INTERNACIONAL DE UNIDADES, TAMBIÉN CONOCIDO COMO “SI”, ES EL CONJUNTO DE UNIDADES DE MEDIDAS ACEPTADAS EN CASI TODOS LOS PAÍSES DEL MUNDO. ESTE SISTEMA ESTABLECE LAS UNIDADES PARA SIETE MAGNITUDES, ENTRE ESAS, EL SEGUNDO PARA EL TIEMPO; EL METRO PARA LA LONGITUD, EL KILOGRAMO PARA LA MASA; Y EL KELVIN PARA LA TEMPERATURA.

LONGITUD

SE UTILIZA PARA MEDIR LA DISTANCIA ENTRE DOS CUERPOS. CUANDO ESTAS DISTANCIAS SON GRANDES, USAMOS LOS METROS, PERO SI SON MUY PEQUEÑAS USAMOS LOS CENTÍMETROS.

POR EJEMPLO, UN NIÑO PUEDE MEDIR MÁS DE 1 METRO DE ALTURA Y UN BEBÉ PUEDE MEDIR UNOS 60 CENTÍMETROS.

MASA

SE UTILIZA PARA MEDIR LA CANTIDAD DE MATERIA DE UN CUERPO. CUÁNDO LA MASA ES GRANDE USAMOS LOS KILOGRAMOS, PERO SI SON PEQUEÑAS USAMOS LOS GRAMOS.

POR EJEMPLO, UN BEBÉ PUEDE PESAR DE 3 A 4 KILOGRAMOS Y UNA MANZANA PUEDE LLEGAR A PESAR 250 GRAMOS.

CAPACIDAD

SE UTILIZA PARA ESTABLECER LA CANTIDAD DE LÍQUIDO QUE TIENE UN RECIPIENTE. CUANDO LA CANTIDAD ES GRANDE USAMOS LOS LITROS, PERO SI ES PEQUEÑA USAMOS LOS MILILITROS.

POR EJEMPLO, UNA JARRA TIENE CAPACIDAD PARA UN LITRO DE LECHE Y UNA CUCHARADITA TIENE CAPACIDAD PARA 5 MILILITROS.

TIEMPO

SE UTILIZA PARA ORDENAR SECUENCIAS DE SUCESOS. PARA TIEMPOS MENORES A UN DÍA USAMOS LAS HORAS, LOS MINUTOS Y LOS SEGUNDOS, PERO CUANDO SON MAYORES A UN DÍA USAMOS LOS DÍAS, LAS SEMANAS, LOS MESES Y LOS AÑOS.

POR EJEMPLO, CON EL RELOJ MEDIMOS LOS MINUTOS DE UN DÍA Y CON UNA CALENDARIO MEDIMOS LOS DÍAS DE LA SEMANA Y DEL MES.

¡ES TU TURNO!

RESPONDE:

  • ¿QUÉ UNIDAD DE MEDIDA USARÍAS PARA MEDIR CANTIDAD DE HARINA?
    SOLUCIÓN
    LOS KILOGRAMOS.
  • ¿QUÉ UNIDAD DE MEDIDA USARÍAS PARA MEDIR EL JUGO EN UNA JARRA?
    SOLUCIÓN
    LOS LITROS.
  • ¿QUÉ UNIDAD DE MEDIDA USARÍAS PARA MEDIR LA DISTANCIAS ENTRE UNA MESA Y UNA SILLA?
    SOLUCIÓN
    LOS METROS.
  • ¿QUÉ UNIDAD DE MEDIDA USARÍAS PARA MEDIR CUÁNTO DURA EL RECREO?
    SOLUCIÓN
    LOS MINUTOS.

UNIDAD NO CONVENCIONAL

LAS UNIDADES DE MEDIDAS NO CONVENCIONALES SON LAS QUE NO PERTENECEN AL SISTEMA INTERNACIONAL DE UNIDADES Y SON INFORMALES. POR EJEMPLO, SI SE QUIERE MEDIR EL LARGO DE UNA PARCELA DE TIERRA PODEMOS USAR EL LARGO DE LOS PIES. ESTO NO PERMITÍA QUE SEA UNA MEDIDA UNIVERSAL Y EXACTA YA QUE LOS PIES DE LAS PERSONAS NO SON TODOS IGUALES.

¿SABÍAS QUÉ?
OTRAS MEDIDAS NO CONVENCIONALES SON LOS PALMOS DE LA MANO O LOS PASOS.

LAS UNIDADES DE MEDIDA EN LA VIDA COTIDIANA

USAMOS LAS MEDIDAS DE LONGITUD CUANDO MEDIMOS EL LARGO DE UN PANTALÓN, EL ANCHO DE UNA VENTANA O LA PROFUNDIDAD DE UNA CAJA. LAS MEDIDAS DE CAPACIDAD SON USADAS CADA VEZ QUE COMPRAMOS UNA BOTELLA DE AGUA O CUANDO LLENAMOS UNA BAÑERA O PISCINA. LAS MEDIDAS DE MASA SON APLICADAS CUANDO PESAMOS NUESTRO CUERPO O CUANDO PEDIMOS COMIDA POR KILO.

POR OTRO LADO, LAS MEDIDAS DE TIEMPO SON PROBABLEMENTE LAS MÁS USADAS DIARIAMENTE, PUES CADA VEZ QUE VEMOS EL RELOJ PARA SABER LA HORA DE IR A CLASES LAS USAMOS. TAMBIÉN SE APLICAN CUANDO CONTAMOS LOS SEGUNDOS PARA FIN DE AÑO O LOS DÍAS PARA QUE INICIE EL VERANO.

LOS DÍAS Y LOS AÑOS

EL TIEMPO ESTÁ RELACIONADO CON EL MOVIMIENTO DE NUESTRO PLANETA TIERRA. CUANDO LA TIERRA GIRA SOBRE SU PROPIO EJE PRODUCE EL DÍA Y LA NOCHE. EN CAMBIO, TRAS EL GIRO QUE HACE EL PLANETA ALREDEDOR DEL SOL SE PRODUCE UN AÑO.

¡A PRACTICAR!

RESPONDE LAS SIGUIENTES PREGUNTAS:

  • ¿QUÉ ES MAYOR? ¿UN KILOGRAMO DE HARINA O UN KILOGRAMO DE LIBROS?
    SOLUCIÓN
    AMBOS PESAN LO MISMO, 1 KILOGRAMO.
  • ¿CON CUÁL UNIDAD MEDIRÍAS EL LARGO DE UN LÁPIZ?
    SOLUCIÓN
    CON LOS CENTÍMETROS.
  • SI TENEMOS UNA BOTELLA DE 1 LITRO DE AGUA Y UNA JARRA CON 2 LITROS DE JUGO. ¿CUÁL ALMACENA MÁS LÍQUIDO?
    SOLUCIÓN
    LA JARRA.
  • ¿CON CUÁL UNIDAD MEDIRÍAS LA MASA DE UNAS PAPAS?
    SOLUCIÓN
    CON LOS KILOGRAMOS.
  • SI EL TERRENO DE PEDRO MIDE 45 METROS Y EL DE JOSÉ MIDE 26 METROS. ¿CUÁL TERRENO ES EL MÁS GRANDE?
    SOLUCIÓN
    EL TERRENO DE PEDRO.
  • ¿CON CUÁL UNIDAD MEDIRÍAS LA DISTANCIA DE TU CASA A LA ESCUELA?
    SOLUCIÓN
    CON LOS KILÓMETROS.

RECURSOS PARA DOCENTES

Artículo: Sistema Internacional de Unidades

En el siguiente artículo podrás ampliar tus conocimientos sobre el Sistema Internacional de Medidas.

VER

CAPÍTULO 2 / TEMA 5 (REVISIÓN)

OPERACIONES CON NATURALES | ¿QUÉ APRENDIMOS?

ADICIÓN

LA ADICIÓN ES UNA OPERACIÓN MATEMÁTICA QUE UNE O AGRUPA DOS O MÁS CANTIDADES. EN DICHA UNIÓN SE FORMA OTRA CANTIDAD QUE ES DENOMINADA SUMA O RESULTADO. LOS ELEMENTOS DE LA ADICIÓN SON LOS SUMANDOS Y LA SUMA. LA ADICIÓN ES UNA DE LAS CUATRO OPERACIONES BÁSICAS DE LAS MATEMÁTICAS.

EL SIGNO USADO PARA LA SUMA ES + Y SE LEE “MÁS”. EN LA IMAGEN VEMOS QUE “UNO MÁS TRES ES IGUAL A CUATRO”.

SUSTRACCIÓN

LA RESTA, TAMBIÉN LLAMADA SUSTRACCIÓN, ES UNA OPERACIÓN MATEMÁTICA EN LA QUE QUITAMOS UNA CANTIDAD LLAMADA SUSTRAENDO A OTRA LLAMADA MINUENDO. SIEMPRE EL SUSTRAENDO DEBE SER MENOR AL MINUENDO Y EL RESULTADO QUE SE OBTIENE SE DENOMINA RESTA. LA RESTA ES UNA DE LAS CUATRO OPERACIONES MATEMÁTICAS MÁS IMPORTANTES.

UNA MANERA SENCILLA DE RESTAR CANTIDADES PEQUEÑAS ES CON LOS DEDOS. CUENTA 4 DEDOS Y LUEGO QUITA 3 DEDOS, ¿CUÁNTOS QUEDAN? ¡1! ES DECIR: 4 V 3 = 1.

¿QUÉ ES LA MULTIPLICACIÓN?

LA MULTIPLICACIÓN ES UNA SUMA REPETIDA. ESTA OPERACIÓN CONSISTE EN SUMAR UN NÚMERO TANTAS VECES COMO INDICA OTRO NÚMERO, POR EJEMPLO, 3 × 5 ES IGUAL A SUMAR 3 VECES EL NÚMERO 5, ASÍ QUE 5 + 5 + 5 = 15 Y POR LO TANTO 3 × 5 = 15. SUS ELEMENTOS SE DENOMINAN FACTORES, Y EL RESULTADO OBTENIDO PRODUCTO.

LA MULTIPLICACIÓN SIRVE PARA ABREVIAR SUMAS REPETIDAS CON IGUALES CANTIDADES. 2 × 2 ES IGUAL A 2 VECES 2 QUE ES IGUAL A 4.

FRACCIONES

CADA VEZ QUE CONTAMOS OBJETOS USAMOS LOS NÚMEROS NATURALES: 1, 2, 3, 4,… PERO NO SIEMPRE ES POSIBLE USARLOS, PUES SI TENEMOS UNA PARTE DE UN ENTERO TENEMOS QUE USAR UN TIPO ESPECIAL DE NÚMERO LLAMADO FRACCIÓN. LAS FRACCIONES REPRESENTAN UNA PARTE DE UN TODO QUE SE HA DIVIDIDO EN PARTES IGUALES Y TIENEN DOS ELEMENTOS: UN NUMERADOR Y UN DENOMINADOR.

EL REPARTO ES LA BASE DE LAS FRACCIONES Y SURGE DE LA NECESIDAD DE PARTIR ALIMENTOS.

CAPÍTULO 2 / TEMA 4

fracciones

SI TIENES UN ALFAJOR Y DESEAS COMPARTIRLO CON UN AMIGO ¿CÓMO LO REPARTES? LO PARTES A LA MITAD ¿CIERTO? ES NORMAL QUE DIVIDAMOS ALIMENTOS PARA COMPARTIR Y PARA ESTOS CASOS USAMOS UN TIPO ESPECIAL DE NÚMEROS: LAS FRACCIONES. SON MÁS COMUNES DE LO QUE PIENSAS Y HOY APRENDERÁS A REPRESENTARLAS.

¿EN CUÁNTOS PEDAZOS ESTÁ CORTADO ESTE PASTEL? PARA RESPONDER ESTA PREGUNTA SOLO TENEMOS QUE CONTAR DE 1 EN 1: 1, 2, 3, …¡ESTÁ CORTADA EN 10 PEDAZOS! ESOS SON NÚMEROS NATURALES. PERO SI COMEMOS UNA DE ESAS PARTES ¿CÓMO REPRESENTARÍAS ESA CANTIDAD? EN ESTE CASO TENEMOS QUE USAR FRACCIONES: NÚMEROS QUE NOS AYUDAN A EXPRESAR PARTES DE UN TODO.

LA FRACCIÓN Y SUS ELEMENTOS

UNA FRACCIÓN ES UN NÚMERO QUE REPRESENTA LA PARTE O LAS PARTES QUE SE HAN TOMADO DE UN TODO CUANDO EL TODO ESTÁ DIVIDIDO EN PARTES IGUALES.

– EJEMPLO 1:

¿EN CUÁNTAS PARTES ESTÁ DIVIDIDA ESTA FIGURA?, ¿CUÁNTAS PARTES ESTÁN PINTADAS?

ESTE CUADRADO ESTÁ DIVIDIDO EN 4 PARTES IGUALES. UNA SOLA PARTE ESTÁ PINTADA.

¿QUÉ NÚMERO USARÍAS PARA REPRESENTAR QUE UNA PARTE SE HA TOMADO DE 4 PARTES IGUALES? PARA ESO ESTÁN LAS FRACCIONES, LAS CUALES SIEMPRE TIENEN DOS ELEMENTOS: UN NUMERADOR Y UN DENOMINADOR.

  • EL NUMERADOR ES IGUAL A LA CANTIDAD DE PARTES QUE SE TOMARON DEL TODO.
  • EL DENOMINADOR ES IGUAL A LA CANTIDAD DE PARTES EN LAS QUE SE HA DIVIDO EL ENTERO.

AMBOS ELEMENTOS SE COLOCAN UNO SOBRE OTRO CON UNA RAYA EN EL MEDIO, OBSERVA:

EN ESTE EJEMPLO, EL 1 ES EL NUMERADOR PORQUE REPRESENTA LA CANTIDAD DE PARTES QUE SE TOMARON DEL TODO Y EL 4 ES EL DENOMINADOR PORQUE REPRESENTA LA CANTIDAD DE PARTES EN LA QUE SE DIVIDIÓ AL TODO.


– EJEMPLO 2:

¿EN CUÁNTAS PARTES SE DIVIDIÓ EL CÍRCULO?

EN 5 PARTES. EL DENOMINADOR ES 5.

 

¿CUÁNTAS PARTES ESTÁN PINTADAS?

2 PARTES ESTÁN PINTADAS. EL NUMERADOR ES 2.

 

¿QUÉ FRACCIÓN REPRESENTA ESTE GRÁFICO?

\boldsymbol{\frac{2}{5}}

 


– EJEMPLO 3:

¿EN CUÁNTAS PARTES SE DIVIDIÓ EL RECTÁNGULO?

EN 8 PARTES. EL DENOMINADOR ES 8.

 

¿CUÁNTAS PARTES ESTÁN PINTADAS?

3 PARTES ESTÁN PINTADAS. EL NUMERADOR ES 3.

 

¿QUÉ FRACCIÓN REPRESENTA ESTE GRÁFICO?

\boldsymbol{\frac{3}{8}}


LAS FRACCIONES SON MUY UTILIZADAS EN LA VIDA COTIDIANA. EXISTEN SITUACIONES COMUNES DONDE PODEMOS ENCONTRARLAS, POR EJEMPLO, CUANDO PEDIMOS MEDIO KILOGRAMO DE PAN O CUANDO COMEMOS PIZZA. IMAGINA QUE LA PIZZA ES EL TODO Y ESTÁ PICADA EN 4 PARTES IGUALES; SI NOS COMEMOS UN TROZO ES IGUAL A DECIR QUE NOS COMIMOS 1/4 DE PIZZA.
¿SABÍAS QUÉ?
LAS FRACCIONES TAMBIÉN SE PUEDEN REPRESENTAR CON UNA DIAGONAL, ES DECIR, \boldsymbol{\frac{1}{4}} ES IGUAL A 1/4.

¿CÓMO GRAFICAR FRACCIONES?

SI QUEREMOS GRAFICAR UNA FRACCIÓN COMO \boldsymbol{\frac{5}{6}} DEBEMOS SEGUIR ESTOS PASOS:

1. DIBUJAMOS UNA FIGURA GEOMÉTRICA. POR EJEMPLO, UN RECTÁNGULO.

2. DIVIDIMOS EL RECTÁNGULO EN TANTAS PARTES COMO INDIQUE EL DENOMINADOR. EN ESTE CASO EL DENOMINADOR ES 6, ASÍ QUE LO DIVIDIMOS EN 6 PARTES IGUALES.

3. PINTAMOS LA CANTIDAD DE PARTES QUE INDIQUE EL NUMERADOR. AQUÍ PINTAMOS 5 PARTES. ¡ESE SERÁ EL GRÁFICO DE LA FRACCIÓN!

¡ES TU TURNO!

GRAFICA ESTAS FRACCIONES. DIBUJA UN CÍRCULO COMO EL TODO.

  • \boldsymbol{\frac{1}{3}}
SOLUCIÓN

  • \boldsymbol{\frac{3}{4}}
SOLUCIÓN

  • \boldsymbol{\frac{4}{6}}
SOLUCIÓN

FRACCIONES IGUALES A LA UNIDAD

TODA FRACCIÓN QUE TENGA EL NUMERADOR IGUAL A SU DENOMINADOR SERÁ IGUAL A 1. EJEMPLO:

ESTE GRÁFICO REPRESENTA A LA FRACCIÓN \boldsymbol{\frac{3}{3}} QUE ES IGUAL A 1.

ESTE GRÁFICO REPRESENTA A LA FRACCIÓN \boldsymbol{\frac{6}{6}} QUE ES IGUAL A 1.

¿CÓMO LEER FRACCIONES?

LAS FRACCIONES SE LEEN DIFERENTES A LOS NÚMEROS NATURALES. ES IMPORTANTE QUE SIGAMOS ESTOS PASOS:

  1. LEEMOS EL NUMERADOR COMO CUALQUIER NÚMERO NATURAL.
  2. LEEMOS EL DENOMINADOR DE ACUERDO A LA SIGUIENTE TABLA:
DENOMINADOR SE LEE
2 MEDIOS
3 TERCIOS
4 CUARTOS
5 QUINTOS
6 SEXTOS
7 SÉPTIMOS
8 OCTAVOS
9 NOVENOS
10 DÉCIMOS

– EJEMPLOS:

\boldsymbol{\frac{2}{3}} SE LEE “DOS CUARTOS”.

 

\boldsymbol{\frac{4}{10}} SE LEE “CUATRO DÉCIMOS”.

 

\boldsymbol{\frac{5}{7}} SE LEE “CINCO SÉPTIMOS”.

 

\boldsymbol{\frac{1}{8}} SE LEE “UN OCTAVO”.

LAS PARTES DE UN TODO

CADA PARTE DE UN TODO SE PUEDE REPRESENTAR POR MEDIO DE UNA FRACCIÓN. SEGÚN EL DENOMINADOR CADA PORCIÓN TENDRÁ UN NOMBRE DISTINTO. OBSERVA ESTA IMAGEN CON UN TODO DIVIDIDO DE 1 A 10 PARTES IGUALES.

¡A PRACTICAR!

1. ¿QUÉ FRACCIÓN REPRESENTAN ESTOS GRÁFICOS?

A. 

SOLUCIÓN
 

B. 

SOLUCIÓN
 

C. 

SOLUCIÓN
 

D. 

SOLUCIÓN

2. ¿CÓMO SE LEEN LAS SIGUIENTES FRACCIONES:

  • \frac{2}{10}
SOLUCIÓN
DOS DÉCIMOS.
  • \frac{1}{10}
SOLUCIÓN
UN DÉCIMO.
  • \frac{1}{4}
SOLUCIÓN
UN CUARTO.
  • \frac{4}{5}
SOLUCIÓN
CUATRO QUINTOS.
  • \frac{3}{6}
SOLUCIÓN
TRES SEXTOS.
RECURSOS PARA DOCENTES

Artículo “Fracciones”

En el siguiente artículo podrás encontrar un abordaje de las fracciones con diferentes estrategias didácticas.

VER

CAPÍTULO 1 / TEMA 4

NÚMEROS ROMANOS

DESDE QUE EXISTE EL SER HUMANO, TAMBIÉN EXISTE LA NECESIDAD DE CONTAR. DISTINTAS CIVILIZACIONES CREARON SUS PROPIOS SISTEMAS DE NUMERACIÓN, ESTE ES EL CASO DE LA CIVILIZACIÓN ROMANA. LOS NÚMEROS ROMANOS SOLO CUENTAN CON SIETE SÍMBOLOS, PERO CON ELLOS PUEDES FORMAR INFINIDAD DE NÚMEROS.

HISTORIA DE LOS NÚMEROS ROMANOS

HACE MUCHOS AÑOS ATRÁS, LOS ROMANOS EMPLEARON UN SISTEMA DE NUMERACIÓN EN EL CUAL SUS SIGNOS ERAN LETRAS: LOS NÚMEROS ROMANOS. CADA LETRA DE ESTE SISTEMA TIENE UN VALOR PROPIO SEA CUAL SEA LA POSICIÓN DEL NÚMERO. EN LA ACTUALIDAD PODEMOS ENCONTRARLOS CAPÍTULOS DE LIBROS O EN ALGÚN RELOJ ANTIGUO.

 

EL SISTEMA DE NUMERACIÓN ROMANO TIENE SUS ORÍGENES EN LOS ETRUSCOS, UN ANTIGUO PUEBLO UBICADO EN LA ACTUAL ITALIA CENTRAL. LOS SÍMBOLOS DE ESTE SISTEMA SURGIERON EN LA ANTIGUA ROMA Y SE MANTUVIERON DURANTE TODO EL IMPERIO ROMANO.

SI BIEN SU USO DISMINUYÓ TRAS LA CAÍDA DEL IMPERIO, AÚN ERAN EMPLEADOS EN MUCHAS OCASIONES. CON EL TIEMPO, EL SISTEMA DE NUMERACIÓN ROMANO FUE SUSTITUIDO POR EL SISTEMA DECIMAL, EL CUAL USAMOS DÍA A DÍA Y CONSTA DE DIEZ CIFRAS: 1, 2, 3, 4, 5, 6, 7, 8, 9 Y 10.

¿QUÉ SON LOS NÚMEROS ROMANOS?

LOS NÚMEROS ROMANOS SON NÚMEROS EXPRESADOS EN LETRAS QUE INDICAN UNA CANTIDAD. ESTE SISTEMA DE NUMERACIÓN SOLO TIENE SIETE SÍMBOLOS:

NÚMERO ROMANO VALOR
I 1
V 5
X 10
L 50
C 100
D 500
M 1.000

¿SABÍAS QUÉ?

EN EL SISTEMA DE NUMERACIÓN ROMANO EL 1 SIEMPRE VALDRÁ UNO 1,  YA SEA QUE LO SUMEMOS O LO RESTEMOS. EN CAMBIO, EN NUESTRO SISTEMA DE NUMERACIÓN DECIMAL, EL UNO 1 PUEDE TENER VALORES DISTINTOS SEGÚN EL LUGAR QUE OCUPE EN EL NÚMERO, POR EJEMPLO, EN 21, EL 1 ES UNIDAD Y VALE 1, PERO EN 15, ESE 1 NO VALE 1, VALE 10.

ESCRITURA Y LECTURA DE LOS NÚMEROS ROMANOS

PARA LEER Y ESCRIBIR NÚMEROS ROMANOS DEBEMOS SEGUIR LAS SIGUIENTES REGLAS:

 

  • LOS SÍMBOLOS SE ESCRIBEN DE IZQUIERDA A DERECHA. SI UN NÚMERO UBICADO A LA DERECHA DE OTRO ES IGUAL O MENOR A ESTE, SE SUMAN.

XVII = 10 + 5 + 1 + 1 = 17

VIII = 5 + 1 + 1 + 1 = 8

 

  • SI UN SÍMBOLO DE MENOR VALOR ESTÁ A LA IZQUIERDA DE UNO DE MAYOR VALOR, ENTONCES SE RESTAN.

IV = 5 − 1 = 4

IX = 10 − 1 = 9

¿SABÍAS QUÉ?

LOS SÍMBOLOS I (1) Y X (10) SÓLO PUEDEN RESTAR A SUS DOS SÍMBOLOS INMEDIATAMENTE SUPERIORES, ES DECIR:

I SÓLO PUEDE RESTAR A V Y X.

X SÓLO PUEDE RESTAR A L Y A C.

  • LOS SÍMBOLOS V (5) Y L (50) SIEMPRE SUMAN Y NUNCA PUEDEN ESTAR A LA IZQUIERDA PARA RESTAR A UN VALOR MAYOR:

XCV = 100 − 10 + 5 = 95

XLV = 50 − 10 + 5 = 45

  • LOS SÍMBOLOS PUEDEN REPETIRSE TRES VECES DE MANERA CONSECUTIVA COMO MÁXIMO. V Y L NO SE REPITEN.

III = 1 + 1 + 1 = 3

XXX = 10 + 10 + 10 = 30

 

  • UN SÍMBOLO QUE RESTA NO PUEDE REPETIRSE DE MANERA CONSECUTIVA.

 

¡A PRACTICAR!

EXPRESA LOS SIGUIENTES NÚMEROS ARÁBIGOS EN NÚMEROS ROMANOS:

  • 58
SOLUCIÓN
LVIII
  • 86
SOLUCIÓN
LXXXVI
  • 73
SOLUCIÓN
LXXIII
  • 61
SOLUCIÓN
LXI
  • 48
SOLUCIÓN
XLVIII
  • 36
SOLUCIÓN
XXXVI

APLICACIÓN DE LA NUMERACIÓN ROMANA

HOY DÍA AÚN USAMOS LOS NÚMEROS ROMANOS EN DIVERSAS CIRCUNSTANCIA. ESTOS SON ALGUNOS EJEMPLOS:

  • PARA DAR LA HORA EN ALGUNOS TIPOS RELOJES.
  • PARA NOMBRAR PAPAS, POR EJEMPLO, EL PAPA BENEDICTO XVI.
  • PARA NOMBRAR REYES, POR EJEMPLO, LA REINA ISABEL II.
  • PARA NOMBRAR SIGLOS, POR EJEMPLO, EL SIGLO XXI.
  • PARA NOMBRAR EVENTOS, POR EJEMPLO, LA V EDICIÓN DEL FESTIVAL DE MÚSICA.

 

A PESAR DE QUE NUESTRO SISTEMA DE NUMERACIÓN DECIMAL ES EL MÁS USADO EN TODO EL MUNDO, EL SISTEMA DE NUMERACIÓN ROMANO TODAVÍA SE APLICA. NOMBRES DE PAPAS, DE REYES, DE SIGLOS Y DE EVENTOS SON SOLO ALGUNOS EJEMPLOS. TAMBIÉN SE LOS PUEDE VER EN TALLADOS O PLACAS CONMEMORATIVAS.

ACTIVIDADES

1. ORDENA LOS SIGUIENTES NÚMEROS ROMANOS DE MENOR A MAYOR:

XIII – LXX – XXIV – IV – VIII – XXXI

SOLUCIÓN
IV (4)- VIII (8)- XIII (13)- XXIV (24)- XXXI (31) – LXX (70)

2. EXPRESAR LOS SIGUIENTES NÚMEROS ROMANOS EN NÚMEROS CARDINALES:

III – IX – XII – XXII – LXXIX – LXV – LIII

SOLUCIÓN
3 – 9 – 12 – 22 – 79 – 65 – 53
RECURSOS PARA DOCENTES

Artículos “Números romanos”

En el siguiente artículo hay más estrategias de enseñanza para ampliar los conocimientos acerca del sistema de numeración romana.

VER

CAPÍTULO 1 / TEMA 3

NÚMEROS ORDINALES

LOS NÚMEROS ORDINALES NOS INDICAN EL ORDEN O POSICIÓN DE LOS OBJETOS, LAS PERSONAS O LAS COSAS. ESTOS SON MUY UTILIZADOS EN LA VIDA COTIDIANA, POR EJEMPLO, CUANDO SUBIMOS AL ASCENSOR DE UN EDIFICIO Y TENEMOS QUE REFERIRNOS AL PRIMERO, SEGUNDO O TERCER PISO.

TODOS LOS EDIFICIOS CUENTAN CON UNA PLANTA BAJA, VARIOS PISOS HACIA ARRIBA Y POSIBLEMENTE UNO O MÁS PISOS EN EL SUBSUELO. PODEMOS INGRESAR A UN EDIFICIO POR LA PLANTA BAJA, PERO TAMBIÉN PODEMOS HACERLO POR EL SUBSUELO. PARA SUBIR Y BAJAR USAMOS EL ASCENSOR, ESTE TIENE NÚMEROS QUE NOS MUESTRAN LA POSICIÓN DE LOS PISOS.

NÚMEROS ORDINALES

LOS NÚMEROS ORDINALES ESTABLECEN UN ORDEN. LOS PODEMOS NOMBRAR TANTO EN FEMENINO COMO EN MASCULINO, SEGÚN LO NECESITEMOS. VEAMOS CÓMO SE ESCRIBEN LOS PRIMEROS VEINTE NÚMEROS ORDINALES.

FEMENINO MASCULINO
PRIMERA PRIMERO
SEGUNDA SEGUNDO
TERCERA TERCERO
CUARTA CUARTO
QUINTA QUINTO
SEXTA SEXTO
SÉPTIMA SÉPTIMO
OCTAVA OCTAVO
NOVENA NOVENO
DÉCIMA DÉCIMO
DECIMOPRIMERA DECIMOPRIMERO
DECIMOSEGUNDA DECIMOSEGUNDO
DECIMOTERCERA DECIMOTERCERO
DECIMOCUARTA DECIMOCUARTO
DECIMOQUINTA DECIMOQUINTO
DECIMOSEXTA DECIMOSEXTO
DECIMOSÉPTIMA DECIMOSÉPTIMO
DECIMOCTAVA DECIMOOCTAVO
DECIMONOVENA DECIMONOVENO
VIGÉSIMA VIGÉSIMA

 

LAS PALABRAS USADAS PARA NOMBRAR A LOS NÚMEROS ORDINALES PUEDEN TENER GÉNERO, ES DECIR, PODEMOS USARLAS PARA REFERIRNOS TANTO A CANTIDADES MASCULINAS COMO FEMENINAS. POR EJEMPLO, PODEMOS DECIR “MARTÍN LLEGÓ PRIMERO” Y “CARLA LLEGÓ SEGUNDA”.

¿SABÍAS QUÉ?
LOS NÚMEROS ORDINALES INDICAN UN ORDEN Y LOS NÚMEROS CARDINALES INDICAN UNA CANTIDAD. A AMBOS LOS UTILIZAMOS MUCHO EN SITUACIONES COTIDIANAS.
EN LA DIVISIÓN DE GRADOS DE LA ESCUELA SE UTILIZAN LOS NÚMEROS ORDINALES. LA ESCUELA PRIMARIA COMIENZA CON PRIMER GRADO, LUEGO SEGUNDO, TERCERO, CUARTO, QUINTO Y SEXTO. EN EL NIVEL SECUNDARIO TAMBIÉN SE CLASIFICAN LOS GRADOS DE LA MISMA MANERA. ESTA SECUENCIA PERMITE DETERMINAR EL NIVEL DE ESCOLARIDAD DE UN NIÑO. SI ESTÁ EN PRIMERO SIGNFICA QUE RECIÉN COMIENZA LA ETAPA ESCOLAR.

 

VEAMOS DOS EJEMPLOS DONDE PODEMOS UTILIZAR ESTOS NÚMEROS:

1. EN UNA ESCUELA PRIMARIA LOS GRADOS SE DIVIDEN CON NÚMERO ORDINALES. POR EJEMPLO:

MARÍA ESTE AÑO VA A SEGUNDO GRADO, EL AÑO QUE VIENE IRÁ A TERCERO.

 

2. EN UNA CARRERA. POR EJEMPLO:

JUAN SALIÓ PRIMERO Y EL QUE LLEGÓ DETRÁS DE ÉL SALIÓ SEGUNDO.

 

¡A PRACTICAR!

PIENSA Y RESPONDE.

1. CARLOS TIENE QUE SUBIR LAS ESCALERAS DE SU CASA. SI TIENE 15 ESCALONES, ¿EN QUÉ POSICIÓN ESTÁ EL ÚLTIMO ESCALÓN?

SOLUCIÓN
DECIMOQUINTO.

2. LA FILA DE NIÑOS DE SEGUNDO GRADO TIENE 20 ALUMNOS, LARA ESTÁ EN LA POSICIÓN 4, ELENA EN LA POSICIÓN 12 Y JULIO EN LA POSICIÓN 19. ¿EN QUÉ ORDEN SE ENCUENTRAN?

SOLUCIÓN

LARA: CUARTA

ELENA: DECIMOSEGUNDA

JULIO: DECIMONOVENO

3. MILENA SE COMIÓ OCHO CHOCOLATES. LOS PRIMEROS 4 ERAN CON MANÍ Y LOS OTROS 4 ERAN CON LECHE.

A) ¿DESDE Y HASTA QUÉ ORDEN LOS CHOCOLATES ERAN CON MANÍ?

SOLUCIÓN
DESDE EL PRIMERO HASTA EL CUARTO.

B) ¿DESDE Y HASTA QUÉ ORDEN LOS CHOCOLATES ERAN CON LECHE?

SOLUCIÓN
DESDE EL CUARTO HASTA EL OCTAVO.

APLICACIÓN EN LA VIDA COTIDIANA

LOS NÚMEROS ORDINALES SON MUY ÚTILES A LA HORA DE ORDENAR DIFERENTES ELEMENTOS O SITUACIONES QUE ESTÁN PRESENTES EN NUESTRA VIDA COTIDIANA. PODEMOS ENCONTRAR MUCHAS SITUACIONES DONDE SE UTILIZAN ESTOS NÚMEROS. NOMBRAMOS ALGUNOS EJEMPLOS:

  • ALGUNOS LIBROS ESTÁN DIVIDIDOS EN CAPÍTULOS CON NÚMEROS ORDINALES.

POR EJEMPLO: CAPÍTULO PRIMERO, CAPÍTULO SEGUNDO Y CAPÍTULO TERCERO.

  • EN LA COMPETENCIA DE ALGÚN DEPORTE SUS PUESTOS SE POSICIONAN CON NÚMEROS ORDINALES.

POR EJEMPLO: PRIMER PUESTO, SEGUNDO PUESTO Y TERCER PUESTO.

  • CUANDO QUEREMOS COCINAR UNA TORTA, LOS PASOS A SEGUIR TIENEN UN ORDEN.

POR EJEMPLO: PRIMER PASO, SEGUNDO PASO Y TERCER PASO.

LAS COMPETENCIAS ORDENAN A LOS CONCURSANTES POR UN MÉRITO. EL QUE MEJOR SE DESEMPEÑA EN LA ACTIVIDAD ES EL GANADOR. ESTE SALE PRIMERO, DETRÁS, UN PARTICIPANTE SALE SEGUNDO Y LUEGO EL QUE SIGUE, TERCERO. TODAS LAS COMPETENCIAS UTILIZAN EL ORDEN DE MENOR A MAYOR, DESDE EL PRIMER PUESTO HASTA EL ÚLTIMO, SEGÚN CUÁNTOS CONCURSANTES SEAN.

ABREVIATURA DE LOS NÚMEROS ORDINALES

EN LA ESCRITURA DE ESTOS NÚMEROS EXISTE UNA MANERA ABREVIADA DE EXPRESARLOS. SE UTILIZA EL NÚMERO CARDINAL CON UNA LETRA PEQUEÑA A SU LADO DERECHO SUPERIOR: “º” PARA EL GÉNERO MASCULINO Y “ª” PARA EL GÉNERO FEMENINO. OBSERVA EL SIGUIENTE CUADRO:

ABREVIATURA NÚMERO ORDINAL
FEMENINO MASCULINO FEMENINO MASCULINO
1.ª 1.º PRIMERA PRIMERO
2.ª 2.º SEGUNDA SEGUNDO
3.ª 3.º TERCERA TERCERO
4.ª 4.º CUARTA CUARTO
5.ª 5.º QUINTA QUINTO
6.ª 6.º SEXTA SEXTO
7.ª 7.º SÉPTIMA SÉPTIMO
8.ª 8.º OCTAVA OCTAVO
9.ª 9.º NOVENA NOVENO
10.ª 10.º DÉCIMA DÉCIMO
11.ª 11.º DECIMOPRIMERA DECIMOPRIMERO
12.ª 12.º DECIMOSEGUNDA DECIMOSEGUNDO
13.ª 13.º DECIMOTERCERA DECIMOTERCERO
14.ª 14.º DECIMOCUARTA DECIMOCUARTO
15.ª 15.º DECIMOQUINTA DECIMOQUINTO
16.ª 16.º DECIMOSEXTA DECIMOSEXTO
17.ª 17.º DECIMOSÉPTIMA DECIMOSÉPTIMO
18.ª 18.º DECIMOCTAVA DECIMOCTAVO
19.ª 19.º DECIMONOVENA DECIMONOVENO
20.ª 20.º VIGÉSIMA VIGÉSIMO

 

¿CUÁLES SON SUS POSICIONES?

OBSERVA LA IMAGEN Y RESPONDE.

                                                IZQUIERDA                                                     DERECHA

EXPRESA LOS NÚMEROS ORDINALES CON SU ESCRITURA Y ABREVIATURA.

1. DESDE LA IZQUIERDA, ¿EN QUÉ POSICIÓN ESTÁ MARA?

SOLUCIÓN
MARA ESTÁ EN LA TERCERA POSICIÓN O MARA ESTÁ EN LA 3ª POSICIÓN.

2. DESDE LA IZQUIERDA, ¿EN QUÉ POSICIÓN ESTÁ LIS?

SOLUCIÓN
LIS ESTÁ EN LA SEXTA POSICIÓN O LIS ESTÁ EN LA 6ª POSICIÓN.

3. DESDE LA IZQUIERDA, ¿EN QUÉ POSICIÓN ESTÁ ALAN?

SOLUCIÓN
ALAN ESTÁ EN LA OCTAVA POSICIÓN O ALAN ESTÁ EN LA 8ª POSICIÓN.

4. DESDE LA IZQUIERDA, ¿EN QUÉ POSICIÓN ESTÁ LEO?

SOLUCIÓN
LEO ESTÁ EN LA DECIMOPRIMERA POSICIÓN O LEO ESTÁ EN LA 11ª POSICIÓN.

 

CAPÍTULO 2 / TEMA 3

¿QUÉ ES LA MULTIPLICACIÓN?

CUANDO UNA CANTIDAD SE REPITE VARIAS VECES PODEMOS ACUDIR A UNA OPERACIÓN BÁSICA DE LAS MATEMÁTICAS: LA MULTIPLICACIÓN. ESTA ES IGUAL A UNA SUMA RESUMIDA Y LA USAMOS CADA VEZ COMPRAMOS VARIOS PRODUCTOS IGUALES, POR EJEMPLO, 4 HELADOS A $ 2 ES IGUAL A 4 × 2 Y SE LEE “CUATRO POR DOS”.

TANTA VECES TANTO

SI TENEMOS LA MISMA CANTIDAD DE ELEMENTOS EN VARIOS GRUPOS PODEMOS SABER LA CANTIDAD TOTAL SI CONTAMOS CUÁNTOS GRUPOS HAY Y LUEGO CONTAMOS CUÁNTO HAY EN CADA GRUPO.

– EJEMPLO 1:

¿CUÁNTOS GRUPOS HAY?, ¿CUÁNTAS CEREZAS HAY EN CADA GRUPOS?, ¿CUÁNTAS CEREZAS HAY EN TOTAL?

  • HAY 3 GRUPOS.
  • HAY 2 CEREZAS EN CADA GRUPO.
  • HAY 6 CEREZAS EN TOTAL PORQUE 2 + 2 + 2 = 6

PODEMOS DECIR QUE:

3 VECES 2 ES IGUAL A 6


– EJEMPLO 2:

¿CUÁNTOS GRUPOS HAY?, ¿CUÁNTAS PALETAS HAY EN CADA GRUPO?, ¿CUÁNTAS PALETAS HAY EN TOTAL?

  • HAY 2 GRUPOS.
  • HAY 4 PALETAS EN CADA GRUPO.
  • HAY 8 PALETAS EN TOTAL PORQUE 4 + 4 = 8

PODEMOS DECIR QUE:

2 VECES 4 ES IGUAL A 8

¡ES TU TURNO!

¿CUÁNTOS GRUPOS HAY?, ¿CUÁNTAS BANANAS HAY EN CADA GRUPO?, ¿CUÁNTAS BANANAS HAY EN TOTAL?

SOLUCIÓN
  • HAY 3 GRUPOS.
  • HAY 3 BANANAS EN CADA GRUPO.
  • HAY 9 BANANAS EN TOTAL PORQUE 3 + 3 + 3 = 9

ASÍ QUE:

3 VECES 3 ES IGUAL A 9

LA MULTIPLICACIÓN Y SUS ELEMENTOS

CUANDO SABEMOS LA CANTIDAD DE GRUPOS Y LA CANTIDAD DE ELEMENTOS EN CADA GRUPO PODEMOS HACER UNA OPERACIÓN LLAMADA MULTIPLICACIÓN. LA USAMOS CADA VEZ QUE LA CANTIDAD DENTRO DE CADA GRUPO SEA LA MISMA. LA MULTIPLICACIÓN ESTÁ FORMADA POR FACTORES Y UN PRODUCTO.

¿SABÍAS QUÉ?
EL SIGNO DE MULTIPLICACIÓN ES × Y SE LEE “POR”.

– EJEMPLO 1:

¿CUÁNTAS FRESAS HAY EN TOTAL?

LA CANTIDAD TOTAL DE FRESAS EN ESTA IMAGEN LA PODEMOS REPRESENTAR ASÍ:

3 + 3 + 3 + 3 = 12

4 VECES 3 ES IGUAL A 12

O COMO UNA MULTIPLICACIÓN:

4 × 3 = 12

  • EL 4 REPRESENTA LA CANTIDAD DE GRUPOS. ES UN FACTOR.
  • EL 3 REPRESENTA LA CANTIDAD DE FRESAS EN CADA GRUPO. ES UNA FACTOR.
  • EL 12 REPRESENTA EL TOTAL DE FRESAS. ES EL PRODUCTO O RESULTADO.

RESPUESTA: HAY 12 FRESAS.


– EJEMPLO 2:

¿CUÁNTAS LAZOS HAY EN TOTAL?

4 + 4 + 4 + 4 = 16

4 VECES 4 ES IGUAL A 16

4 × 4 = 16

RESPUESTA: HAY 16 LAZOS.

LA MULTIPLICACIÓN ES UNA OPERACIÓN QUE SE UTILIZA PARA ABREVIAR SUMAS REPETIDAS. LA SUMA 4 + 4 ES IGUAL QUE 2 × 4, YA QUE SON 2 VECES LAS QUE SE REPITE EL 4. POR EJEMPLO, SI TENEMOS 5 CAJAS DE ALFAJORES CON 9 EN CADA UNA. LA SUMA REPETIDA SERÍA: 9 + 9 + 9 + 9 + 9 Y EN MULTIPLICACIÓN 9 × 5. AMBAS EXPRESIONES DARÁN EL MISMO RESULTADO: 45 ALFAJORES EN TOTAL.

EL ORDEN DE LOS FACTORES NO MODIFICA EL PRODUCTO

NO IMPORTA EN QUÉ ORDEN ESCRIBAS LOS FACTORES EN UNA MULTIPLICACIÓN, EL RESULTADO SIEMPRE SERÁ EL MISMO. EJEMPLO:

3 × 4 = 12 PORQUE 4 + 4 + 4 = 12

4 × 3 = 12 PORQUE 3 + 3 + 3 + 3 = 12

EL DOBLE

EL DOBLE DE UNA CANTIDAD ES IGUAL A ESA CANTIDAD MULTIPLICADA POR 2.

– EJEMPLO 1:

SI TENEMOS 5 MANZANAS, ¿CUÁL ES EL DOBLE?

PRIMERO DIBUJAMOS LAS 5 MANZANAS:

COMO DEBEMOS SABER EL DOBLE, REPETIMOS EL CONJUNTO PARA TENERLO 2 VECES:

CONTAMOS LAS MANZANAS O REPRESENTAMOS COMO UNA MULTIPLICACIÓN:

5 + 5 = 10

2 VECES 5 ES IGUAL A 10

2 × 5 = 10

LUEGO RESPONDEMOS:

EL DOBLE DE 5 MANZANAS SON 10 MANZANAS.


– EJEMPLO 2:

¿CUÁL ES EL DOBLE DE 8?

COMO YA SABEMOS EL PROCESO, BASTA CON QUE SUMEMOS DOS VECES EL MISMO NÚMERO (8) O QUE MULTIPLIQUEMOS 8 POR 2.

8 + 8 = 16

2 × 8 = 16

EL DOBLE DE 8 ES 16.


– EJEMPLO 3:

¿CUÁL ES EL DOBLE DE 7?

7 + 7 = 14

2 × 7 = 14

EL DOBLE DE 7 ES 14.

LAS TABLAS DE MULTIPLICAR

SON UN RECURSO EXPRESADO EN UNA CUADRÍCULA DONDE PODEMOS VER LA RELACIÓN DE LOS PRODUCTOS ENTRE DOS FACTORES. LAS TABLAS DE MULTIPLICAR MUESTRAN DE FORMA RESUMIDA EL RESULTADO DE LAS MULTIPLICACIONES.

¡CONSTRUYAMOS LA TABLA DEL 2!

EN CADA CUADRO HAY 2 PELOTAS.

2 × 1 = 2
2 × 2 = 4
2 × 3 = 6
2 × 4 = 8
2 × 5 = 10
2 × 6 = 12
2 × 7 = 14
2 × 8 = 16
2 × 9 = 18

OBSERVA LOS PRODUCTOS (2, 4, 6, 8, 10, …). TODOS AUMENTAN DE 2 EN 2.

¡ES TU TURNO!

CONSTRUYE LA TABLA DE MULTIPLICAR DEL 3.

EN CADA CUADRO HAY 3 NUECES.

3 × 1 = 3
SOLUCIÓN
3 × 1 = 3
3 × 2 = 6
3 × 3 = 9
3 × 4 = 12
3 × 5 = 15
3 × 6 = 18
3 × 7 = 21
3 × 8 = 24
3 × 9 = 27

UNA GRAN HERRAMIENTA

PARA HACER CÁLCULOS DE MULTIPLICACIONES SE IDEARON LAS TABLAS DE MULTIPLICAR, QUE NO SON MÁS QUE UN ATAJO PARA REALIZAR SUMAS LARGAS DE FORMA RÁPIDA. LA FORMA MÁS COMÚN DE REPRESENTAR LAS TABLAS DE MULTIPLICACIÓN ES, COMO SU NOMBRE LO INDICA, A TRAVÉS DE TABLAS. NORMALMENTE SE MUESTRAN LAS TABLAS DEL 1 AL 10 Y CADA UNA DE ELLAS INDICA LAS MULTIPLICACIONES DEL NÚMERO QUE REPRESENTAN DEL 1 AL 10 O DEL 0 AL 10.

 

¡A PRACTICAR!

1. OBSERVA LOS GRUPOS. RESUELVE COMO SUMA REPETIDA, TANTAS VECES TANTO Y MULTIPLICACIÓN.

SOLUCIÓN

5 + 5 + 5 = 15

3 VECES 5 ES IGUAL A 15

3 × 5 = 15

SOLUCIÓN

2 + 2 + 2 + 2 = 8

4 VECES 2 ES IGUAL A 8

4 × 2 = 8

SOLUCIÓN

4 + 4 + 4 + 4 = 16

4 VECES 4 ES IGUAL A 16

4 × 4 = 16

 

2. RESPONDE:

  • ¿CUÁL ES EL DOBLE DE 9?
SOLUCIÓN
18
  • ¿CUÁL ES EL DOBLE DE 2?
SOLUCIÓN
4
  • ¿CUÁL ES EL DOBLE DE 6?
SOLUCIÓN
12
RECURSOS PARA DOCENTES

Artículo “Trucos para aprender las tablas de multiplicar”

En el siguiente artículo encontrarás un conjuntos de consejos para aprender las tablas de multiplicar.

VER