CAPÍTULO 2 / TEMA 2

MULTIPLICACIÓN

Si queremos comprar 8 chocolates y cada uno cuesta $ 6, ¿cuánto dinero tenemos que pagar? Para responder esta pregunta debemos hacer una multiplicación. Esta es una operación que simplifica la tarea de sumar varias veces un mismo número. Así que, en lugar de contar 8 veces 6, lo podemos representar como 8 × 6 = 48. A continuación aprenderás cómo hacer estos cálculos con números grandes.

¿Qué es la multiplicación?

La multiplicación es una operación matemática que consiste en sumar varias veces un mismo número.

Los elementos de la multiplicación son:

  • Factores: son los números que se multiplican o suman reiteradas veces.
  • Producto: es el resultado de la multiplicación. Cuando las multiplicaciones son largas el producto final se obtiene por la suma de los productos parciales.

Multiplicaciones en la Fórmula 1

Las multiplicaciones se utilizan en una gran variedad de situaciones y las carreras de automóviles son un ejemplo. Supongamos que una vuelta completa a la pista de carrera es de 4 kilómetros y para realizar toda carrera el vehículo tiene que dar 52 vueltas. Si multiplicamos la cantidad de vueltas por los kilómetros de cada vuelta sabremos la distancia total recorrida por el vehículo, es decir, 52 × 4 = 208. Entonces, el vehículo recorre 208 kilómetros en toda la carrera.

multiplicación sin reagrupación

Es un método que consiste en multiplicar las unidades, las decenas y las centenas de 2 factores entre sí cuando ninguno de los productos formados supera la decena.

– Ejemplo: 234 × 21

Lo primero que tenemos que hacer es ubicar los factores uno arriba del otro, de manera tal que las unidades estén sobre las unidades, las decenas sobre las decenas y las centenas sobre las centenas.

Luego multiplicamos las unidades del factor de abajo por todas las cifras del factor de arriba (1 × 324 = 324). Colocamos el resultado en la fila inferior desde la derecha hacia la izquierda.

Después multiplicamos las decenas del factor de abajo por cada cifra del factor de arriba (2 × 324 = 648). Escribimos este resultado debajo del obtenido anteriormente y dejamos un espacio a la derecha.

Finalmente realizamos una suma de los productos parciales.

 

– Ejemplo: 122 × 332

Ubicamos los factores uno sobre otro.

Multiplicamos las unidades del segundo factor por todas las cifras del primer factor (2 x 122 = 244) y escribimos el resultado en la última fila.

Multiplicamos las decenas del segundo factor por cada cifra del primer factor (3 × 122 = 366). Escribimos el resultado y dejamos un espacio a la derecha.

Repetimos el procedimiento anterior, esta vez con las centenas del segundo factor (3 × 122 = 366).

Al final sumamos las tres filas. Ese será el resultado de nuestra multiplicación.

 

El área de un rectángulo es igual a una multiplicación de dos de sus lados. Por ejemplo, un campo de fútbol puede llegar a tener 120 metros de largo y 90 metros de ancho. Para saber el área del campo solo tenemos que multiplicar ambas medidas, es decir, 120 m x 90 m = 10.800 m2. Por lo tanto, el campo tiene un área de 10.800 metros cuadrados.
¡A practicar!

Realiza las siguientes multiplicaciones:

  • 231 × 32
Solución

  • 321 x 123
Solución

MULTIPLICACIÓN CON REAGRUPACIÓN

Es un procedimiento que podemos utilizar cuando algún producto es igual o mayor a 10. Aquí reagrupamos decenas o centenas según sea el caso.

– Ejemplo: 469 x 73

Al igual que en el caso anterior, colocamos los factores uno sobre otros y nos aseguramos de que las unidades, decenas y centenas de cada factor estén en las mismas columnas.

Multiplicamos las unidades del factor ubicado debajo por todas las cifras del factor de arriba. En este caso comenzamos con 3 y lo multiplicamos por 9. Como 3 × 9 = 27, colocamos el 7 en la fila de los resultados y el 2 lo ubicamos en la columna de las decenas de los factores.

Ahora multiplicamos 3 x 6 = 18, pero debemos agrupar este resultado con el 2 que colocamos antes. Entonces, el resultado es 18 + 2 = 20. Escribimos el 0 en la fila del resultado y colocamos el 2 en la columna de las centenas.

El siguiente producto es 3 x 4 = 12 y agrupamos con el 2 de las centenas. Así que 12 + 2 = 14. En la fila del resultado colocamos las dos cifras del número.

 

Repetimos el mismo procedimiento con las decenas del factor de abajo y lo multiplicamos por cada cifra del primer factor (7 × 469 = 3.283).

Luego sumamos las dos filas y obtenemos el resultado de la multiplicación.

Tabla pitagórica

Es otro modelo de tabla de multiplicar. Fue construida por Pitágoras, filósofo y matemático griego del siglo V a. C., para enseñarles a multiplicar a los más pequeños. La primera columna y fila dispone de los números que van ser multiplicados, y cada una de las celdas internas de la tabla representa la multiplicación entre los números de la primera fila y columna.

– Ejemplo: 423 x 514

Cuando los dos factores tienen tres cifras el procedimiento es el mismo. Ubicamos los factores uno sobre otro, y multiplicamos las unidades del segundo factor por el primero (4 × 423 = 1.692). 

Multiplicamos las decenas del segundo factor por cada cifra del primer factor (1 × 423 = 423).

Repetimos el procedimiento con las centenas del factor de abajo (5 × 423 = 2.115).

Sumamos las filas con los productos parciales.

¡A practicar!

Realiza esta multiplicación:

  • 721 × 166
Solución
721 × 166 = 119.686

MULTIPLICACIÓN DE UN NÚMERO NATURAL POR 10, 100 Y 1.000

Veamos estas 3 multiplicaciones:

  1. 473 × 10 = 4.730
  2. 473 × 100 = 47.300
  3. 473 × 1.000 = 473.000

Como ves, cuando se multiplica un número natural por 10, 100 y 1.000 basta con agregar ceros al número original como se resume en la siguiente tabla:

Para multiplicar un número natural por… Agregamos… Ejemplo
10 un cero 912 × 10 = 9.120
100 dos ceros 411 × 100 = 41.100
1.000 tres ceros 746 × 1.000 = 746.000

LA MULTIPLICACIÓN Y LA PROPIEDAD DISTRIBUTIVA

La propiedad distributiva establece que si multiplicamos un número por una suma es igual a multiplicar ese número por cada sumando y luego sumar los productos finales.

– Ejemplo:

Esta propiedad también se cumple en la resta:

¿Sabías qué?
Puedes resolver primero la suma o resta que esté dentro de los paréntesis y luego hacer la multiplicación. El resultado será el mismo. 
Las multiplicaciones forman parte de nuestro día a día. Las usamos cada vez que hacemos compras, contamos las butacas de un cine o jugamos con nuestros amigos. Por lo general hacemos esta operación cuando manejamos dinero, pues si tenemos 6 billetes de $ 100 es más fácil solo multiplicar 6 x 100 = 600 en lugar de contar de 100 en 100 hasta llegar a 600.

¡A practicar!

1. Resuelve las siguientes multiplicaciones:

  • 414 x 24 =
    Solución
    414 x 24 = 9.936
  • 121 x 38 =
    Solución
    121 x 38 = 4.598
  • 741 x 51 =
    Solución
    741 x 51 = 37.791
  • 620 x 324 =
    Solución
    620 x 324 = 200.880
  • 496 x 531 =
    Solución
    496 x 531 = 263.376
  • 589 x 10 = 
    Solución
    589 x 10= 5.890
  • 144 x 100 =
    Solución
    144 x 100 = 14.400
  • 378 x 1.000 = 
    Solución
    378 x 1.000 = 378.000

2. Usa la propiedad distributiva para resolver estas operaciones:

  • (25 + 30) x 2 = 
    Solución
    (25 + 30) x 2 = 110
  • (10 + 9) x 4 = 
    Solución
    (10 + 9) x 4 = 76
  • (15 − 8 ) x 100 = 
    Solución
    (15 − 8) × 100 = 700
  • (24 − 22) × 5 = 
    Solución
    (24 − 22) × 5 = 10
RECURSOS PARA DOCENTES

Artículo “Multiplicación por dos o más cifras”

En este artículo podrás acceder a información complementaria sobre algunos métodos de multiplicación

VER

Artículo “Trucos para aprender las tablas de multiplicar”

Este artículo brinda los recursos necesarios para estudiar las tablas de multiplicar.

VER

 

CAPÍTULO 5 / TEMA 2

TIPOS DE LÍNEAS

Cuando los puntos están ubicados uno junto al otro generan un trazo continuo, es decir, generan una línea. Ahora, si los puntos están orientados en una misma dirección forman una línea recta. Este tipo de líneas son continuas e infinitas, no tienen ni principio ni final y las podemos clasificar según la forma en que interaccionan entre ellas.

LÍNEAS PARALELAS

Las líneas paralelas son aquellas líneas rectas que sostienen una distancia determinada entre sí y, a pesar de extender su trayectoria, no se encuentran ni se tocan en ningún punto.

Un ejemplo de líneas rectas paralelas en la vida cotidiana son las vías de un ferrocarril. Las vías no son ni más ni menos que dos líneas rectas paralelas. En ellas se observa cómo a pesar de que la trayectoria de ambas se extiende a lo largo de todo el recorrido, estas rectas jamás se tocan. Sostienen la misma distancia entre ellas durante todo el trayecto.

Las líneas rectas paralelas se encuentran en un mismo plano y recorren trayectorias similares pero mantienen siempre la misma distancia una de la otra y en ningún momento se cruzan o se cortan. Entonces, las rectas paralelas no comparten ningún punto entre sí.

¿Sabías qué?
También se consideran rectas paralelas a las rectas coincidentes, es decir, a aquellas que comparten todos sus puntos. Esto es posible cuando dos rectas similares se superponen y ocupan el mismo espacio en el plano.

Propiedades de las rectas paralelas

  • Reflexiva: toda recta es paralela a sí misma.

La recta AB es paralela a sí misma.

 

  • Simétrica: si una recta es paralela a otra, esa otra será paralela a la primera.

La recta AB es paralela a la recta CD, así como la recta CD es paralela a la recta AB.

 

  • Transitiva: si una recta es paralela a otra y esta a su vez es paralela a una tercera, la primera será paralela a la tercera recta. Entonces, dos rectas paralelas a una tercera serán paralelas entre sí y todas las rectas paralelas presentan la misma dirección en su trayectoria.

La recta AB es paralela a la recta CD. La recta CD es paralela a la recta EF. Entonces, la recta AB también es paralela a la recta EF.[/su_note]

LÍNEAS PERPENDICULARES

Se llama líneas rectas perpendiculares a aquellas líneas que dentro de un mismo plano se cortan en un único punto y forman ángulos de 90°. 

El tablero de ajedrez es cuadrado y consta de 64 casillas del mismo tamaño. Estas casillas están dispuestas en 8 líneas de 8 casilleros cada una, y alternan entre blancas y negras. Todas las líneas están dispuestas de manera perpendicular, de modo que al unirse una casilla de una letra con la de un número se forma un ángulo de 90 grados.

 

Cuando dos líneas que recorren el plano en diferente dirección se cruzan de forma perpendicular generan cuatro ángulos de 90°, o cuatro ángulos rectos. Es decir, el plano queda dividido en cuatro partes a las que llamamos cuadrantes.

Rectas secantes: rectas que también se cruzan en el plano

No todas las rectas que se cruzan en un plano tiene una relación de perpendicularidad. Observa:

 

En este caso, las rectas AB y CD se cortan de manera perpendicular, puedes confirmar esto al observar la medida del ángulo α = 90°; es decir, es un ángulo recto.

 

En cambio, en este caso puedes ver que si bien las rectas AB y CD están en el mismo plano y se cortan en un punto, el ángulo α no es un ángulo recto. A estas rectas que se cortan, pero no forman ángulos rectos, se las llama rectas secantes.

Propiedades de las líneas rectas perpendiculares

  • Reflexiva: las rectas perpendiculares no cumplen con la característica reflexiva, es decir, no son perpendiculares a sí mismas.

 

  • Simétrica: si una recta es perpendicular a otra, esta es perpendicular a la primera.

Como podrás observar, no es posible que la recta AB sea perpendicular a sí misma, así como no es posible que la recta CD sea perpendicular a sí misma. En cambio, las rectas AB y CD son perpendiculares entre sí.

 

  • Transitiva: las rectas perpendiculares no cumplen con la propiedad transitiva. Entonces, que dos rectas sean perpendiculares entre sí, y la segunda sea perpendicular a una tercera, no hace que esa tercera recta sea perpendicular a la primera.Aquí puedes ver que si bien la recta EF es perpendicular a la recta AB y a la recta CD, las rectas CD y AB no son perpendiculares entre sí, ya que no se cortan en ningún punto. Por el contrario, puedes observar que las rectas AB y CD son paralelas entre sí. [/su_note]

LÍNEAS SECANTES E INTERSECANTES

Las líneas rectas intersecantes son aquellas líneas rectas que existen en el mismo plano y comparten un punto en común, es decir, se cortan en algún punto.

Esta señal de tránsito indica que te encontrarás con una intersección. Una intersección no es otra cosa que el punto en el que dos o más rutas se tocan. Es decir, se trata de líneas que coinciden, o se cortan, en un mismo punto. Si observas el cartel, verás que al tocarse estas líneas no generan cuatro ángulos rectos, por lo tanto podemos decir que estas líneas son líneas rectas secantes oblicuas.

Clasificación de las líneas secantes

Las líneas rectas secantes se clasifican de acuerdo a la medida de los ángulos que generan con su corte.

  • Las líneas rectas secantes oblicuas son aquellas que al coincidir en algún punto generan ángulos distintos a 90°, es decir, no generan ángulos rectos. Por ejemplo, la recta EF es una recta secante oblicua con respecto a la recta AB.
  • Las líneas rectas secantes perpendiculares, tal como lo vimos anteriormente, son aquellas que al coincidir generan cuatro ángulos de 90°. Por ejemplo la recta CD es una recta secante perpendicular con respecto a la recta AB.

¿Sabías qué?
También existen las rectas concurrentes o convergentes que son las que, a pesar de que a simple vista no se observe, al extender su trayectoria se unen entre sí.
¡A practicar!

Observa con atención la imagen e identifica qué relación existe entre las rectas señaladas:

Recta Relación
AB y CD Paralelas
AB y GH
GH y EF
CD y IJ
KL y AB
Solución
Recta Relación
AB y CD Paralelas
AB y GH Perpendiculares
GH y EF Paralelas
CD y IJ Secante oblicua
KL y AB Secante oblicua

LÍNEAS EN NUESTRA VIDA COTIDIANA

Las líneas están presente en todo lo que nos rodea. Una línea puede ser una sucesión infinita de puntos interrelacionados y puedes verla graficada, pero también puede ser imaginaria; por ejemplo, cuando pensamos en qué dirección patear el balón para que logre entrar en el arco y hacer un gol, nos imaginamos una línea desde el balón hasta el arco que nos ayuda a orientarnos. Esto quiere decir que las líneas pueden ser visibles, pero también invisibles, ya que nuestro cerebro utiliza esquemas mentales.

Las líneas también se utilizan para describir la distancia entre dos puntos, y por eso se las ve en los mapas, o en el recorrido que indica el GPS. Por otro lado, las líneas están en los contornos de los objetos, figuras e imágenes.

Usos de las líneas

Tal como en los casos de las vías del ferrocarril, el tablero de ajedrez o la señal de intersección, en todas las imágenes y objetos que te rodean puedes identificar líneas.

Este es un templo de Acrópolis, si lo observas detalladamente verás que su techo y su piso establecen líneas paralelas, y así como las bellísimas estatuas que funcionan como columnas resultan paralelas entre sí, también resultan perpendiculares con respecto al suelo y al techo.

Otro gran ejemplo de las líneas imaginarias son las constelaciones, que se han usado durante mucho tiempo para orientarnos geográficamente. Las mismas son un conjunto de líneas imaginarias que unen determinadas estrellas y dan una forma específica.

VER INFOGRAFÍA

RECURSOS PARA DOCENTES

Artículo “Rectas”

Este artículo sobre las rectas brindará información clara y sistematizada para su definición.

VER

CAPÍTULO 1 / TEMA 2

NÚMEROS PRIMOS Y COMPUESTOS

Podemos clasificar los números según distintos criterios, y uno de esos es la cantidad de divisores que tengan. Si un número tiene solo dos divisores, el uno y él mismo, decimos que ese número es primo; en cambio, si el número tiene más de dos divisores, a ese número lo llamamos compuesto.

CARACTERÍSTICAS DE LOS NÚMEROS PRIMOS Y COMPUESTOS

Números primos

Los números primos son aquellos que solo son divisibles por el número uno y por sí mismos. Por ejemplo, el número 13 es un número primo porque solo es divisible por el número 1 y por el número 13.

Además, los números primos no pueden formarse como producto de la multiplicación de otros dos factores que no sean el 1 y el mismo número. Por ejemplo, el número 7 solo puede formarse al multiplicar 7 × 1 = 7.

Divisibilidad

Un número es divisible por otro cuando al efectuar la operación de división entre ellos el resto es cero.

  • El 12 es divisible por 2 porque el resto de la división en 0.
  • El 13 no es divisible por 2 porque el resto de la división no es 0.

El número 12 es divisible por 1, 2, 3, 4, 6 y 12.

Números compuestos

Los números compuestos son aquellos que aparte de ser divisibles por el uno y por sí mismos, también son divisibles por otro u otros números. Por ejemplo, el número 4 es un número compuesto porque tiene tres divisores: 1, 2 y 4.

A su vez, los números compuestos pueden ser formados como productos de la multiplicación de otros dos factores. Por ejemplo, el número 10 puede ser formado por la multiplicación de 5 x 2 = 10.

¿Sabías qué?
El número 1 no es primo ni compuesto ya que solo puede dividirse por sí mismo.
Los números primos solo son divisibles por el uno y por sí mismos, mientras que los números compuestos, además de ser divisibles por uno y por sí mismos, también pueden ser divididos por otro u otros números. No obstante, hay un número que no cumple con estas características: el uno. El número 1 no es primo ni compuesto.

CRIBA DE ERATÓSTENES

Es un procedimiento para identificar los números primos. La podemos elaborar de la siguiente manera:

  1. Comenzamos desde el número 2, que es el primer número primo, por lo tanto no lo vamos a tachar. Pero sí eliminamos todos los siguientes múltiplos de 2: 4, 6, 8, 10, 12,…
  2. El siguiente primo es el 3, así que debemos tachar todos los múltiplos de este número: 6, 9, 12, 15…
  3. En esta instancia, ya tenemos gran parte de los números eliminados. Podemos observar que el siguiente número que aparece sin tachar es el 5, que sería el siguiente primo. Entonces, tachamos los múltiplos de 5 que aparecen a continuación: 5, 10, 15, 20…
  4. Del mismo modo procedemos con el 7.
  5. El siguiente número que aparece sin eliminar es el 11, pero… ¡Todos sus múltiplos están tachados! Por ello, aquellos números que han quedado sin descartar en esta instancia son los primos.

Observa que los números resaltados son los primos y los tachados son los compuestos.

¿Sabías qué?
El 2 es el único número primo que es par.
¡A practicar!

Marca con una circunferencia los números que sean primos:

Solución

EXPRESIÓN DE NÚMEROS EN FACTORES PRIMOS

Todos los números compuestos pueden representarse como producto de una multiplicación de 2 o más factores primos. Esto se conoce comúnmente como factorización en números primos, o factorización de números compuestos.

Así como podemos representar cualquier número como una suma (por ejemplo: 5 = 2 + 3) o como una resta (por ejemplo 5 = 7 − 2), también podemos descomponer un número compuesto por medio de una multiplicación de sus números primos.

Recuerda que:

  • Factor: es el número que multiplica.
  • Producto: es el resultado de una multiplicación.

Pasos para factorizar en números primos

  1. Escribe el número compuesto que se quiere expresar en factores primos y a su derecha traza una semirrecta vertical.
  2. Pon a la derecha de la semirrecta el número primo más pequeño que sea divisor, es decir, que pueda dividir de forma exacta el número compuesto elegido.
  3. Escribe el cociente de la división anterior debajo del número compuesto elegido y a su derecha, del otro lado de la semirrecta, escribe el número primo más pequeño que sea divisor de este último.
  4. Repite el procedimiento la cantidad de veces que sean necesarias hasta obtener el número 1 como cociente.

– Ejemplo:

Expresa el número 36 como producto de sus factores primos.

El número compuesto 36 se expresa como producto de factores primos así: 2 x 2 x 3 x 3.

Observa que también podemos expresar los factores primos como una potencia, de este modo, 2 × 2 = 22 y 3 × 3 = 32.

¡A practicar!

Expresa los siguientes números como productos de factores primos:

  • 12
  • 40
  • 64
Solución

CRITERIOS DE DIVISIBILIDAD

Los criterios de divisibilidad son reglas que nos permiten reconocer si un número es divisible por otro sin necesidad de hacer la división. Es decir, por medio de la observación de las características de un número podemos darnos cuenta si se puede dividir o no por otro número determinado.

Todo número tiene sus múltiplos, de la misma manera, también tiene sus divisores; estos son números que lo dividen de forma exacta, es decir, que al hacer la operación el cociente es un número exacto y el resto es cero. Por ejemplo, 2 es divisor de 8 y 3 es divisor de 6 porque al calcular 2 : 8 = 4 y 6 : 3 = 2, el resto es cero en ambos casos.

 

Cada número tiene un criterio de divisibilidad distinto. En la siguiente tabla están desde el 2 hasta el 10:

Número Criterio Ejemplos
2 Un número es divisible por 2 si es un número par. 6

8

125.972

Son números pares.

3 Un número es divisible por 3 si la suma de sus cifras da como resultado un número múltiplo de 3. 93 porque 9 + 3 = 12 y 12 es múltiplo de 3.

 

123 porque 1 + 2 + 3 = 6 y 6 es múltiplo de 3.

4 Un número es divisible por 4 si las 2 últimas cifras del número forman un múltiplo de 4 o si son dos ceros. 140 porque 40 es múltiplo de 4.

 

33.624 porque 24 es múltiplo de 4.

 

700 porque termina con dos ceros.

5 Un número es divisible por 5 si su última cifra es un 0 o un 5. 495 porque termina en 5.

 

874.280 porque termina en 0.

6 Un número es divisible por 6 si es divisible por 2 y por 3 a la vez. 12 porque es divisible por 2 y por 3 a la vez.

 

150 porque es divisible por 2 y por 3 a la vez.

7 Un número es divisible por 7 si al restar el doble de la unidad a el resto de la cantidad sin la última cifra el resultado es 0 o un múltiplo de 7. 91 porque 9 −2 = 7 y 7 es múltiplo de 7.

 

105 porque 10 − 10 = 0.

 

182 porque 18 − 4 = 14 y 14 es múltiplo de 7.

8 Un número es divisible por 8 si sus 3 últimas cifras forman un múltiplo de 8 o son tres ceros. 25.200 porque 200 es múltiplo de 8.

 

9.000 porque sus últimas 3 cifras son tres ceros.

9 Un número es divisible por 9 si la suma de sus cifras da como resultado un número múltiplo de 9. 99 porque 9 + 9 = 18 y 18 es múltiplo de 9.

 

207 porque 2 + 0 + 7 = 9 y 9 es múltiplo de 9.

10 Un número es divisible por 10 si su última cifra es un 0. 1.235.250 porque termina en 0.

 

2.000 porque termina en 0.

 

¡A practicar!

1. Expresa los siguientes números como productos de factores primos:

  • 98
  • 60
  • 18
  • 36
Solución

2. Indica si las siguientes afirmaciones son verdaderas o falsas.

  • 161 es divisible por 7.
Solución
Verdadero.
  • 222 es divisible por 3.
Solución
Verdadero.
  • 523 es divisible por 5.
Solución
Falso.
  • 234 es divisible por 9.
Solución
Verdadero.
  • 10.001 es divisible por 10.
Solución
Falso.
  • 32 es divisible por 6.
Solución
Falso.
  • 500 es divisible por 4.
Solución
Verdadero.
RECURSOS PARA DOCENTES

Artículo destacado “Números primos y compuestos”

El siguiente artículo te permitirá ampliar la noción de números primos y compuestos.

VER

Artículo destacado “Criterios de divisibilidad”

El siguiente artículo profundiza en las explicaciones sobre los criterios de divisibilidad.

VER

CAPÍTULO 4 / TEMA 1

RECTA NUMÉRICA

Todos los números representan una determinada cantidad. Por ejemplo, con $ 100 no compramos lo mismo que podemos comprar con $ 1.000, porque esas cantidades de dinero son distintas. Por ese motivo es de gran importancia saber cómo comparar cifras, y una herramienta muy útil para hacerlo es la recta numérica: una línea recta que tiene puntos con valores específicos.

¿Qué es la recta numérica?

La recta numérica es una herramienta en la que podemos representar de manera gráfica distintos números. Consiste en una línea recta marcada a intervalos regulares, a los cuales se le asigna un número. Estos intervalos no son más que las separaciones entre un número y otro.

Las rectas numéricas pueden incluir cualquier número que pertenezca al conjunto de los números reales (\mathbb{R}). En este ejemplo, la recta numérica abarca los números enteros (\mathbb{Z}) desde el −7 hasta el +7, incluido el cero (0).

¿Sabías qué?
El primero en utilizar una recta numérica fue el matemático inglés John Wallis. Él la utilizó para representar gráficamente los números naturales (\mathbb{N}). 
Una regla graduada es muy parecida a una recta numérica. Este instrumento de medición tiene divisiones con valores asignados en centímetros o pulgadas. Gracias a ella sabemos la longitud de objetos pequeños, como la de un lápiz o un borrador. Además nos ayuda a dibujar líneas rectas.

¿Cómo construir una RECTA NUMÉRICA?

Para construir una recta numérica lo primero que debemos hacer es trazar una línea recta con flechas en sus extremos.

Luego colocamos los intervalos y marcamos sus extremos con un punto o con una pequeña línea vertical. Es importante que todos los intervalos sean del mismo tamaño para conservar la escala.

Una vez trazada la línea recta y los intervalos, colocamos los números sobre cada una de las pequeñas líneas verticales. Los números irán de menor a mayor, de izquierda a derecha.

Intervalos en la recta numérica

Los intervalos utilizados para construir una recta numérica deben ser siempre iguales entre un número y su consecutivo, pero pueden variar en cuanto a su valor.

Por ejemplo, podemos construir una recta numérica en la que cada intervalo entre un número y su consecutivo corresponda a un entero, es decir, de 1 en 1:

Pero también podemos construir rectas numéricas en las que cada intervalo corresponda a dos enteros, es decir, de 2 en 2:

¿Qué números se pueden incluir en una recta numérica?

Si bien, en un principio solo se ubicaban números naturales en la recta numérica (desde el cero hasta el infinito positivo), hoy día todos los números reales \mathbb{R} pueden representarse en ella. Estos incluyen a los números naturales (\mathbb{N}), los números enteros (\mathbb{Z}), los números racionales (\mathbb{Q}) y los números irracionales (\mathbb{I}).

Representación de decimales y fracciones en la recta numérica

Los números decimales son aquellos formados por una parte entera y una parte menor a la unidad, y también pueden ser mostrados como fracciones. En la recta numérica podemos representar este tipo de números si subdividimos los enteros ya ubicados. Por ejemplo, entre 1 y 2 hay pequeños intervalos más pequeños que señalan a los decimales desde el 0,1 hasta el 0,9. También podemos mostrarlos en escalas de 2 en 2 décimas. Observa esta recta:

Dado que para cada fracción hay un número decimal equivalente, podemos representar ambas cantidades en una recta numérica. Por ejemplo, las fracción 1/5 = 0,2 y 8/5 = 1,6. 

¡A practicar!

Realiza una recta numérica y luego marca en la misma los siguientes números:

  • 0
  • 2
  • 2,8
  • 4/5
Solución

SÍMBOLOS DE RELACIÓN

Los números de la recta numérica tienen relaciones entre sí. Los distintos tipos de relaciones que existen son los siguientes.

TIPO DE RELACIÓN SIGNIFICADO SÍMBOLO
“Mayor que” Se utiliza para indicar que un número es mayor que otro. >
“Igual a” Se utiliza para indicar que un número es igual a otro. =
“Menor que” Se utiliza para indicar que un número es menor que otro. <

Veamos algunos ejemplos:

  • Para indicar que el 3 es mayor que el 2, escribimos: 3 > 2
  • Para indicar que el 4 es igual que el 4, escribimos: 4 = 4
  • Para indicar que el 5 es menor que el 8, escribimos: 5 < 8

 

Todos los números tienen algún otro número mayor que él y otro menor. Todos los números guardan una relación con los demás. Para compararlos podemos utilizar los símbolos de relación, los cuales muestran cuando entre dos cantidades la primera es mayor que la segunda (>), menor que la segunda (<) o igual a la segunda (=).

 

Relaciones entre los números de la recta numérica

Si prestamos atención, notaremos que en una recta numérica siempre ocurre lo siguiente: entre dos números, el que se encuentra más a la derecha en la recta numérica será el mayor.

Por ejemplo, entre el 3 y el −5, el 3 se encuentra más a la derecha, entonces, podemos afirmar que 3 > −5. O al encontrarse el −5 más a la derecha que el −7, podemos afirmar que −5 > −7.

¡A practicar!

Coloca el símbolo de relación que corresponda en cada caso:

  • 3,5 ____ 5,3
  • 4,0 ____ 0,4
  • 1 ____ −1
  • 2 ____ 2
  • 2,2 ____ 2,02
  • 8,001 ____ 8,01
Solución
  • 3,5 < 5,3
  • 4,0 > 0,4
  • > −1
  • 2 = 2
  • 2,2 > 2,02
  • 8,001 < 8,01

RECURSOS PARA DOCENTES

Artículo “La recta numérica”

Este artículo te permitirá profundizar sobre el concepto de recta numérica y los conjuntos numéricos que pueden ser representados en la misma.

VER

Artículo “Recta numérica”

En este artículo podrás detallar el procedimiento a realizar para poder ubicar números decimales y fracciones en la recta numérica.

VER

CAPÍTULO 2 / TEMA 1

adición y sustracción

La adición y la sustracción son dos operaciones muy usadas en la cotidianidad. La primera consiste en combinar o agrupar números; y la segunda, en cambio, consiste en quitar números a un grupo. Saber los valores posicionales de cada cifra nos ayudan a hacer sumas y restas con números grandes por reagrupación de sus unidades, decenas y centenas. 

Las primeras operaciones básicas que todos aprendemos son la adición y la sustracción. Estas nos ayudan día a día en cálculos cotidianos, como saber cuántos juguetes tenemos en total, cuánto dinero gastamos en el desayuno, cuánta tarea nos falta por hacer o cuántas horas faltan para ver nuestro programa favorito.

ADICIÓN POR REAGRUPACIÓN

La adición es una operación básica en la que combinamos dos o más números para obtener una cantidad final o total. El símbolo empleado para hacer esta operación es “+“.

Toda adición consta de dos partes:

  • Sumandos: son los números que vamos a sumar.
  • Suma: es el resultado de la suma.

La adición por reagrupación es un método que consiste en agrupar las unidades, decenas y centenas del número. Para sumar dos números como 12.468 y 147.314, los pasos son los siguientes:

1. Ubica los sumandos uno arriba del otro de tal manera que los valores posicionales estén en una misma columna, es decir, unidades con unidades, decenas con decenas, centenas con centenas, y así sucesivamente.

2. Suma cada columna a partir de las unidades. Escribe en la parte inferior de la columna el resultado. Si el resultado de la suma en una columna es de dos cifras, coloca el número de la unidad de dicho número en la parte inferior y la decena la sumanos a la columna siguiente.

Propiedades de la adición

Propiedad conmutativa

Esta propiedad indica que el orden de los números no afecta el resultado de la suma.

– Ejemplo:

  • 12.046 + 71 = 71 + 12.046

 

Observa que sin importar la ubicación de los sumandos, el resultado es el mismo.

¡Hay otra solución! 

Podemos representar la propiedad conmutativa de otra manera. Para la suma anterior es así:

Propiedad asociativa

Esta propiedad indica que la forma en la que agrupemos los sumandos no afecta el resultado.

– Ejemplo:

  • (856.127 + 12.713) + 82.311 = 951.151

Primero resolvemos la suma que está dentro de los paréntesis y al final sumamos 82.311.

  • 856.127 + (12.713 + 82.311) = 951.151

Primero resolvemos las sumas que están dentro de los paréntesis y al final sumamos 856.127.

En ambas ocasiones el resultado es el mismo sin importar la manera en la que se agruparon.

¡Hay otra solución!

Podemos representar la propiedad asociativa de otra manera. Para la suma anterior es así:

Elemento neutro

Esta propiedad indica que si a cualquier número le sumamos cero el resultado será el mismo número.

– Ejemplo:

  • 148.583 + 0 = 148.583

Ábaco: una herramienta para contar

El ábaco es una herramienta o instrumento que se utiliza para realizar cálculos manuales a través de contadores o marcadores que representan ciertas cantidades. Es uno de los objetos más antiguos utilizados por el hombre para realizar sus operaciones matemáticas y quizás el de mayor distribución a nivel mundial.

sustracción por reagrupación

La sustracción, al igual que la adición, es una operación básica. Es considerada una operación opuesta a la adición, ya que consiste en quitar una cantidad a otra. Se representa con el símbolo ““.

Las partes de esta operación son:

  • Minuendo: es el número al cual le quitamos una cantidad.
  • Sustraendo: es el número que resta al minuendo.
  • Diferencia: es el resultado de la operación.

La sustracción por reagrupación es un método que consiste en agrupar las unidades, decenas y centenas del número. Para restar dos números como 549.763 y 95.126, los pasos son los siguientes:

1. Ubica el minuendo sobre el sustraendo y verifica que los valores posicionales de cada cifra coincidan en la misma columna.

2. Comienza a restar desde la columna de las unidades, de derecha a izquierda. Cuando en una columna una cifra del minuendo es menor que la del sustraendo, esta toma una decena del minuendo de la izquierda. En estos casos, el minuendo que prestó una decena se reduce y debemos considerar el valor de la nueva cifra.

¿Sabías qué?
En la sustracción no existen las mismas propiedades que en la adición.

Propiedades de la sustracción

Elemento neutro

Si a un número se le resta 0, el resultado es el mismo número.

– Ejemplo:

  • 245.630 − 0 = 245.630

Elemento simétrico

Si dos números iguales se restan, el resultado siempre es 0.

– Ejemplo:

  • 983.124 − 983.124 = 0

En una ciudad se recolectaron 55.879 botellas de plástico para reciclar. Si solo se han reciclado 48.250 botellas, ¿cuántas botellas faltan para terminar la tarea? Responder esta pregunta es fácil cuando sabemos las restas por reagrupación. Así que restamos: 55.879 – 49.250 = 6.629. Entonces, aún faltan 6.629 botellas por reciclar.

Problemas de adición y sustracción

Para resolver problemas matemáticos debemos seguir una serie de pasos. Observa estos ejemplos:

1. Juan tenía en el banco $ 132.798 y le pagaron por la venta de su vehículo $ 369.000. ¿Cuánto dinero tiene Juan ahora?

  • Datos

Dinero en el banco: $ 132.798

Pago por el vehículo: $ 369.000

  • Pregunta

¿Cuánto dinero tiene Juan ahora?

  • Piensa

Para saber la cantidad total de dinero que Juan tiene ahora debemos sumar el dinero que tenía en el banco y el dinero que le pagaron.

  • Calcula

  • Solución

Juan tiene $ 501.798 en el banco.


2. Gabriel jugaba un videojuego. En un día obtuvo 412.312 puntos en el primer partido, 469.142 puntos en el segundo partido y 111.222 en el tercero. ¿Cuántos puntos obtuvo en total ese día?

  • Datos

Puntos en el primer partido: 412.312

Puntos en el segundo partido: 469.142

Puntos en el tercer partido: 111.222

  • Pregunta

¿Cuántos puntos obtuvo en total?

  • Piensa

Para hallar la cantidad total de puntos solo debemos sumar todos los puntos que obtuve en los tres partidos. Según la propiedad asociativa, no importa cómo se agrupen los números, el resultado siempre será el mismo.

  • Calcula

  • Solución

Gabriel obtuvo 992.676 puntos ese día en el videojuego.


3. Carla y Pedro tomaban fotografías en el parque. Carla tomó 2.546 fotografía y Pedro tomó 620 fotografía menos que ella. ¿Cuántas fotografía tomaron los dos?

  • Datos

Fotografía tomadas por Carla: 2.546

Fotografía tomadas por Pedro: 620 menos que Carla

  • Pregunta

¿Cuántas fotografía tomaron los dos?

  • Piensa
  1. Hay que hallar las fotos que tomó Pedro. Para esto restamos 620 a la cantidad de fotos que tomó Carla.
  2. Para saber el total de fotos tomadas entre los dos solo debemos sumar la cantidad de foto que tomaron ambos.
  • Calcula

1. Fotos tomadas por Pedro:

2. Fotos tomadas por los dos:

  • Solución

Carla y Pedro tomaron 4.472 fotografías.


¡A practicar!

Resuelve las siguientes operaciones:

  • 18.654 + 987 =
    Solución
    18.654 + 987 = 19.641
  • 546.821 + 12.547 =
    Solución
    546.821 + 12.547 = 559.368
  • 452.365 − 0 =
    Solución
    452.365 − 0 = 452.365
  • 89.546 + 6.547 + 3.245 =
    Solución
    89.546 + 6.547 + 3.245 = 99.338
  • 81.974 − 9.634 =
    Solución
    81.974 − 9.634 = 72.340
  • 15.689 − 15.689 =
    Solución
    15.689 − 15.689 = 0
  • 35.785 + 54.753 + 56.852 =
    Solución
    35.785 + 54.753 + 56.852 =147.390
  • 258.369 + 0 =
    Solución
    258.369 + 0 = 258.369

RECURSOS PARA DOCENTES

Artículo “Operaciones básicas de los número naturales y sus propiedades”

Este artículo explica las propiedades de las operaciones básicas con los números naturales, lo que te permitirá ampliar el tema.

VER

Artículo “Cómo enseñar a sumar y restar”

Este recurso contiene sugerencias y prácticas que puedes emplear para enseñar operaciones como la suma y la resta.

VER

Artículo “Resta de números naturales

Este recurso te permitirá profundizar sobre los elementos que conforman una sustracción, sus propiedades y usos.

VER

CAPÍTULO 3 / TEMA 1

Las fracciones y sus usos

En diversas situaciones cotidianas usamos números naturales para expresar la hora, nuestra edad o un número de teléfono. Sin embargo, si queremos indicar las partes de algo debemos recurrir a los números racionales, también conocidos como fracciones. Usamos estos números frecuentemente: por ejemplo, cuando hacemos una receta o al comprar una bebida.

¿Qué es una fracción?

Una fracción es una parte de un número entero y se representa como una división o un cociente. Está formada por un numerador y un denominador, ambos separados por una raya fraccionaria.

El denominador nos indica en cuántas partes hemos dividido el entero, mientras que el numerador nos muestra cuántas de esas partes hemos tomado.

 

– Ejemplo:

Compramos una barra de chocolate muy grande, entonces decidimos dividirla en tres partes iguales y comernos solo dos de esas porciones, ¿cómo representamos esa cantidad?

Primero consideramos la barra como un todo.

Luego, dividimos el todo en tres partes. Esto significa que el denominador es igual a 3.

Sombreamos o pintamos las dos partes que no comimos. Esto significa que el numerador es 2.

Este último gráfico representa a la fracción 2/3. Es decir, nos comimos 2/3 de chocolate.

¿Sabías qué?

Además de la raya fraccionaria, podemos representar números fraccionarios con diagonales o como divisiones. Por ejemplo:

\boldsymbol{\frac{1}{2}=1/2 =1\div 2}

VER INFOGRAFÍA

Imagina que estás con tres amigos y debes repartir una pizza para todos, ¿cómo harías el reparto? ¡Muy sencillo! Solo debes cortarla en cuatro partes iguales y cada uno podrá comer una rebanada, es decir, cada quien tomará 1/4 de la pizza. Observa que el pedazo que comes es igual al numerador y la cantidad total de pedazos es igual al denominador.

¿Cómo se leen las fracciones?

Cada vez que dividimos un entero, este recibe un nombre diferente. Observa esta tabla:

Partes en la que dividimos al entero ¿Cómo se lee?
2 Medios
3 Tercios
4 Cuartos
5 Quintos
6 Sextos
7 Séptimos
8 Octavos
9 Novenos
10 Décimos
11 Onceavos
12 Doceavos
13 Treceavos
14 Catorceavos
15 Quinceavos
16 Dieciseisavos
17 Diecisieteavos
18 Dieciochoavos
19 Diecinueveavos
20 Veinteavos
30 Treintavos
40 Cuarentavos
50 Cincuentavos
60 Sesentavos
70 Setentavos
80 Ochentavos
90 Noventavos
100 Centavo

Así que para la lectura de fracciones seguimos estos pasos:

  1. Lee el número del numerador.
  2. Lee el número del denominador, es decir, las partes en las que se dividió el entero según la tabla.

– Ejemplos:

 

  • \frac{2}{8}  se lee “dos octavos”.

 

  • \frac{1}{2}  se lee “un medio”.

 

  • \frac{13}{40}  se lee “trece cuarentavos”.

 

  • \frac{1}{10}  se lee “un décimo”.

 

  • \frac{7}{15}  se lee “siete quinceavos”.

 

  • \frac{25}{100}  se lee “veinticinco centavos”.

 

Observa que cuando el numerador es 1, decimos “un” en lugar de “uno”.



Una fracción es una parte del número entero y se representa como una división o un cociente. Es un tipo de número muy usado en la cocina. Por ejemplo, cuando desayunamos podemos agregar a nuestro cereal 1/2 taza de leche o yogurt, también podemos añadir 1/4 de taza de frutas.

¿Sabías qué?
Una fracción con denominador 1 es igual a un número entero, por eso es común no escribir el denominador en estos casos. Por ejemplo, 8/1 = 8.

Tipos de Fracciones

Las fracciones pueden ser propiasimpropias o aparentes.

Fracciones propias

Son aquellas fracciones en las que el numerador es menor que el denominador. Estas fracciones siempre son menores que 1. Por ejemplo:

\frac{2}{3},  \frac{1}{4} y \frac{7}{10}

Fracciones impropias

Son aquellas fracciones en las que el numerador es mayor que el numerador. Estas fracciones siempre son mayores que 1. Por ejemplo:

\frac{4}{3},  \frac{5}{2} y \frac{8}{6}

Fracciones aparentes

Son aquellas fracciones cuyo numerador es múltiplo del denominador. Por ejemplo:

\frac{6}{3}=2

\frac{10}{2}=5

 

¿Qué tipo de fracción es?

Clasifica las siguientes fracciones en propias, impropias o aparentes:

  • \frac{8}{2}
Solución
Fracción aparente.
  • \frac{3}{5}
Solución
Fracción propia.
  • \frac{9}{4}
Solución
Fracción impropia.

 

Gráfico de Fracciones

De acuerdo al tipo de fracción, podemos graficar un entero o más de uno. Si es una fracción propia, usaremos un entero; sin embargo, si se trata de una fracción impropia, utilizaremos más de un entero.

Gráfico de fracciones propias

Este tipo de fracciones tiene el numerador menor que el denominador y siempre son menores que 1. Para graficarlas solo dibujamos cualquier figura (será el entero) y la dividimos en tantas partes como indique el denominador. Luego, pintamos las partes que señale el numerador.

– Ejemplo:

Realiza el gráfico de la fracción \frac{5}{8}

1. Dibujamos una figura, esta será el entero o “el todo”. En este caso es un rectángulo.

2. Dividimos el entero en 8 partes iguales porque el denominador de la fracción es 8.

3. Pintamos 5 partes del entero porque el numerador de la fracción es 5. Este será el gráfico de la fracción.

Gráfico de fracciones impropias

Estas fracciones tienen el numerador mayor al denominador y siempre son mayores que 1. Para realizar sus gráficos debemos dibujar una figura (será el entero) y dividirla en tantas partes como señale el denominador. Como el numerador es mayor, repetimos la figura la cantidad de veces necesaria para poder pintar la partes que exprese el numerador.

– Ejemplo:

Realiza el gráfico de la fracción \frac{9}{4}

1. Dibujamos una figura que represente al entero, por ejemplo, un cuadrado.

 

2. Dividimos el entero en 4 partes iguales porque el denominador de la fracción es 4.

 

3. Pintamos 9 partes del entero, pero como el entero solo tiene 4, repetimos la misma figura hasta que podamos tener las nueve partes para pintar. Este será el gráfico de la fracción.

Gráfico de una fracción aparente

En las fracciones aparentes el numerador es múltiplo del denominador. Para graficar estas fracciones podemos seguir los pasos anteriores. Como resultado, los gráficos tendrán siempre todas sus partes pintadas.

– Ejemplo:

Realiza el gráfico de la fracción \frac{6}{3}

Observa que, si bien el numerador es mayor que el denominador, 6 es múltiplo de 3, por lo tanto, 6 ÷ 3 = 2.

Si tomamos un rectángulo como entero, lo dividimos en 3 partes iguales (por el denominador) y repetimos la figura para poder pintar 6 partes (por el numerador); observaremos que el gráfico es igual a dos enteros completos.

Usos de Fracciones

Sin darnos cuenta, hacemos uso de las fracciones a diario. Por ejemplo, en las instrucciones para una receta que necesite 1/4 de taza de azúcar; en el supermercado cuando pedimos 1/2 kilogramo de fresas; cuando hablamos de distancias y decimos que nuestras casa está a 1/2 cuadra del kiosco; o al medir el tiempo y decir que en 1/2 hora empieza una serie de televisión. Cada vez que dividamos un valor entero en partes iguales empleamos fracciones.

Toda fracción indica que un todo se ha dividido en partes iguales. Cada vez que repartimos alimentos tratamos de hacerlo de esta forma. Por ejemplo, podemos comernos “medio trozo de pan” cuya fracción es 1/2, lo que quiere decir que dividimos la unidad (el pan) en dos partes iguales (el denominador) y tomamos una (el numerador).

Equivalencias de interés

Este cuadro muestra las fracciones que están contenidas en una unidad.

De otro modo:

1 = \frac{1}{2}+\frac{1}{2}

1 = \frac{1}{4}+ \frac{1}{4}+ \frac{1}{4}+ \frac{1}{4}

\frac{1}{2}=\frac{1}{4}+\frac{1}{4}

\frac{1}{2} = \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}

¡A practicar!

1. En la panadería venden el pan rallado en bolsitas de 1 kg, 1/2 kg y 1/4 kg. Si José quiere comprar 2 kg de pan rallado…

a) ¿Cuántas bolsitas de 1/4 de kilo necesita?

Solución
 8 bolsitas de 1/4 de kg.

b) ¿Cuántas bolsitas de 1/2 kilo necesita?

Solución
4 bolsitas de 1/2 kg.

c) Si quiere llevar llevar 5 bolsitas para completar los 2 kg, ¿cuáles puede tomar?

Solución
1 bolsita de 1 kg y 4 bolsas de 1/4 de kg.

d) Si quiere llevar 3 bolsitas, ¿cuáles puede tomar?

Solución
1 bolsita de 1 kg y 2 bolsitas de 1/2 kg.

e) ¿Cuál es la menor cantidad de bolsitas que puede tomar? ¿y la mayor cantidad?

Solución
Puede tomar la menor cantidad de bolsitas si escoge las de mayor peso, es decir, las de 1 kg. Entonces, solo tomaría 2 bolsitas de 1 kg.

Para tomar la mayor cantidad de bolsita, debe escoger las de menor peso, que serían las de 1/4 de kg. En ese caso, llevaría 8 bolsitas de 1/4 de kg.

[/su_spoiler]

2. ¿Qué fracción representa cada gráfico?

Solución

Partes en las que dividimos el entero: 16

Partes sombreada: 10

Solución

\frac{4}{4}=1

Partes en las que dividimos el entero: 4

Partes sombreada: 4

Solución

\frac{6}{10}

Partes en las que dividimos el entero: 10

Partes sombreada: 6

 

RECURSOS PARA DOCENTES

Artículo “Fracciones”

Este artículo te permitirá acceder a más ejemplos sobre las fracciones y sus tipos.

VER

Artículo “Clasificación de las fracciones”

El siguiente recurso proporciona más información sobre los tipo de fracciones y sus gráficos.

VER

CAPÍTULO 5 / TEMA 1

CUADRÍCULA

Es posible que hayas visto rectas verticales y horizontales en algún mapa. Esta red de líneas se llama cuadrícula y sirve para ubicar un punto de manera sencilla. Las cuadrículas tienen varios usos: cuando sus líneas se cruzan forman una coordenada y gracias a ella podemos saber exactamente, por ejemplo, la posición de una persona en el mundo o la posición de un planeta en el espacio.

¿QUÉ ES UNA CUADRÍCULA?

Una cuadrícula es un conjunto de líneas verticales y horizontales que funcionan como sistema de referencia y permiten ubicar elementos en un espacio. Cada línea puede tener asignado un número o una letra.

El tablero de ajedrez es un ejemplo de una cuadrícula porque está formado por líneas rectas perpendiculares. En este caso, cada cuadro dentro de la cuadrícula tiene un número y una letra asignada, los cuales comunican al jugador la posición exacta de la pieza dentro del tablero. La posición se nombra como una coordenada, por ejemplo, posición (C,5).

¿qué son las COORDENADAS?

Las coordenadas son un conjunto de valores que permiten localizar un punto en un espacio determinado. En un plano, las coordenadas están dadas por dos ejes: el eje X y el eje Y.

Ejes de coordenadas

Son las rectas rectas perpendiculares que se cortan en un punto denominado origen de coordenadas. Juntas forman el sistema de coordenadas.

  • El eje horizontal se llama eje de abscisas y es conocido normalmente como eje X.
  • El eje vertical se llama eje de ordenadas y es conocido normalmente como eje Y.

– Ejemplo:

 

En este sistema de coordenadas observamos que:

  • El eje Y está representado por números.
  • El eje X está representado por letras.
  • El origen de las coordenadas es denotado por (0,0).
  • La estrella está en un cuadro que corresponde a la posición D del eje X y a la posición 4 del eje Y.
¿Sabías qué?

Al tipo de localización que describe exactamente la posición de un objeto o una persona a través de un sistema de coordenadas geográficas se lo llama localización absoluta.

¿Cómo se escriben las coordenadas?

Existe una manera sencilla de escribir las coordenadas de un punto en el plano, para esto debemos seguir los siguientes pasos:

  1. Ubicar el dato del eje horizontal o eje X.
  2. Ubicar el dato del eje vertical o eje Y.
  3. Separar ambos datos con una coma.
  4. Colocarlos dentro de paréntesis.

Observa el ejemplo anterior. En ese sistema de coordenadas la estrella ocupa el cuadro que coincide con el punto D del eje X y el punto 4 del eje Y. Por lo tanto, las coordenadas de la estrella son (D,4).

 

– Ejemplo:

Esta cuadrícula tiene coordenadas por cuadros. Los del eje X tienen letras y los del eje Y tienen números. ¿Cuáles son las coordenadas de las figuras?

Figura Coordenadas
Corazón (C,5)
Círculo (E,4)
Rayo (A,1)

¡A practicar!

Completa la tabla y escribe las coordenadas de las demás figuras.

Solución
Figura Coordenadas
Corazón (C,5)
Círculo (E,4)
Rayo (A,1)
Cuadrado (A,5)
Luna (C,4)
Sol (B,2)
Nube (E,2)
Triángulo (B,3)

¿Sabías qué?

Al ubicar un punto en una cuadrícula, siempre tomaremos primero la referencia horizontal del eje X y luego la vertical del eje Y.

Las coordenadas geográficas nos permiten saber cualquier ubicación en la Tierra por medio de una combinación de números y letras. En este sistema, las líneas horizontales representan a los paralelos que determinan la latitud, mientras que las líneas verticales representan a los meridianos que determinan la longitud.

VER INFOGRAFÍA

 

También podemos hallar puntos en una posición precisa si asignamos valores a las líneas.

– Ejemplo:

Esta cuadrícula tiene coordenadas con letra en el eje X y coordenadas con números en el eje Y. ¿Cuáles son las coordenadas de los punto de colores?

Color del punto Coordenada
Azul (F,3)
Naranja (B,2)
Rosa (D,5)

¡A practicar!

Completa la tabla y escribe las coordenadas de los demás puntos.

Solución
Color del punto Coordenada
Azul (F,3)
Naranja (B,2)
Rosa (D,5)
Verde (0,4)
Rojo (0,0)
Morado (B,6)
Amarillo (E,1)

GPS: un gran invento

Uno de los mejores inventos de nuestros tiempos ha sido el GPS, cuyas siglas en español significan “Sistema de Posicionamiento Global”. Este sistema brinda servicios de posicionamiento y navegación a todos sus usuarios a nivel mundial. Su funcionamiento se basa en un sistema de coordenadas geográficas llamado WGS que puede ubicar cualquier punto en el planeta.

¿Sabías qué?
Las coordenadas cartesianas son un sistema para localizar un punto en el plano. René Descartes fue el primer matemático que las utilizó de manera formal, de ahí el nombre de “cartesianas”.

¿PARA QUÉ SIRVE LA CUADRICULA?

Desde la elaboración de planos y dibujos a escalas en hojas cuadriculadas, hasta la localización de estrellas en la galaxia. La unión de rectas perpendiculares nos ayuda a distinguir la posición de cualquier objeto.

Cuando conforman un sistema de coordenadas, las cuadrículas son comunes en los planos de los museos, los parques de diversiones, o incluso de los barrios. También se emplean en los mapas de las ciudades o de los países, los planisferios o incluso los globos terráqueos y en el GPS de los teléfonos móviles y los medios de transporte.

¡A practicar!

  1. Ubica en un cuadrícula las siguientes coordenadas:
  • (A,3)
  • (B,7)
  • (C,2)
  • (D,6)
  • (E,1)
  • (F,5)
Solución

2) Observa la siguiente cuadrícula e indica las coordenadas que están pintadas.

Solución

Azul: (A,6) (A,7) (B,6) (B,7)

Rojo: (F,5) (F,6) (F,7) (G,6)

Morado: (B,3) (C,1) (C,2) (C,3)

Amarillo: (E,1) (E,2) (E,3) (F,1) (F,3) (G,1)

RECURSOS PARA DOCENTES

Artículo “Ejes cartesianos”

Este artículo te permitirá ampliar la información acerca del sistema de representación de ejes cartesianos.

VER 

Artículo “Líneas imaginarias del planeta Tierra”

Este artículo brinda información para los estudiantes, así como material para el docente, relacionada a la ubicación geográfica a partir de coordenadas.

VER

CAPÍTULO 1 / TEMA 1

Universo de los números

El universo de los números es muy amplio y diverso. Si nos sumergimos en él, encontraremos una gran variedad de situaciones en las que aplicamos distintos números. Por ejemplo, usamos los números ordinales para indicar las posiciones de los ganadores de una carrera, pero usamos los números binarios para procesar datos informáticos. En definitiva, los distintos tipos de números nos ayudan a representar diferentes aspectos de la vida cotidiana.

El sentido numérico nos permite comprender los números y sus operaciones, de manera tal que podamos aplicarlos de forma eficiente para resolver problemas día a día. En la vida cotidiana disponemos de los números para distintos usos, por este motivo existen varias clasificaciones, como los números romanos, los números cardinales o los números ordinales.

Secuencia de números naturales

Las secuencias son sucesiones de números que van hacia una dirección establecida. Pueden avanzar o retroceder una cantidad determinada de espacios dentro de la recta numérica.

Dichas secuencias pueden ser de 1 en 1, de 5 en 5, de 10 en 10, de 100 en 100, o de cualquier cantidad de espacios que haya sido establecida.

Estos son los ejemplos de distintas secuencias de números naturales:

1 en 1

10 en 10

100 en 100

Algunas rectas pueden estar incompletas. En ese caso debemos tener en cuenta cuál es la regularidad de la recta para poder completarla.

Por ejemplo:

Esta recta va de 10 en 10, por lo tanto debemos completarla por medio de sumas o restas de a 10 unidades según corresponda.

¡A practicar!

Completa la siguiente recta numérica:

Solución

Las secuencias son sucesiones de números que van hacia una dirección establecida. Las mismas pueden avanzar o retroceder una cantidad determinada de espacios dentro de la recta numérica. Dichas secuencias pueden ser de 1 en 1, de 5 en 5, de 10 en 10, de 100 en 100, o de cualquier cantidad de espacios que hayan sido establecidos.

¿Sabías qué?
Aunque para nosotros sea normal tenerlo, algunas civilizaciones no utilizaban el concepto del número cero (0) porque creían que no les hacía falta un número para referirse a la nada.

Números ordinales

Los números ordinales nos sirven para establecer un orden. Con ellos podemos ordenar de una manera determinada distintas cosas. Por ejemplo, podemos ordenar un grupo de personas en una fila, las posiciones de los autos en las carreras o también o las cosas que queremos hacer este fin de semana. 

Si queremos nombrar los resultados de las carreras de autos debemos utilizar números ordinales. Así, decimos que los ganadores obtuvieron el “primer” y el “segundo” lugar en la competencia. A su vez, si queremos expresar que una cosa va antes que otra, también debemos utilizar los números ordinales de la siguiente manera: “esta muñeca va primera y esta otra va segunda”.

 

A este tipo de números los nombramos y escribimos de la siguiente manera:

1°/1ª = primero/primera 11°/11ª = décimo primero/primera
2°/2ª = segundo/segunda 12°/12ª = décimo segundo/segunda
3°/3ª = tercero/tercera 13°/13ª = décimo tercero/tercera
4°/4ª = cuarto/cuarta 14°/14ª = décimo cuarto/cuarta
5°/5ª = quinto/quinta 15°/15ª = décimo quinto/quinta
6°/6ª = sexto/sexta 16°/16ª = décimo sexto/sexta
7°/7ª = séptimo/séptima 17°/17ª = décimo séptimo/séptima
8°/8ª = octavo/octava 18°/18ª = décimo octavo/octava
9°/9ª = noveno/novena 19°/19ª = décimo noveno/novena
10°/10ª = décimo/décima 20°/20ª = vigésimo/vigésima

 

Por ejemplo, en este grupo alineado de figuras podemos decir que, de izquierda a derecha, la primera tiene forma de sol y la segunda es un cuadrado.

 

¡A practicar!

¿En qué orden están todas las figuras del grupo anterior?

Solución
Posición Figura
Primero Sol
Segundo Cuadrado
Tercero Corazón
Cuarto Círculo
Quinto Estrella
Sexto Triángulo
Séptimo Luna
Octavo Nube

¿Qué son los números cardinales?

Son aquello que nos indican cantidades numéricas de elementos que pertenecen a un grupo o conjunto. Aparecen en nuestra vida cotidiana en diversas situaciones: al contar los goles que le hizo un equipo a otro o para saber si alcanzan las galletas que compartiremos con nuestros amigos.

Números romanos

El sistema de numeración romano se utilizó durante muchos años a lo largo de todo el Imperio romano. Los números romanos, a pesar de ser muy antiguos, aparecen todavía en nuestra vida cotidiana, por ejemplo en capítulos de libros, en los nombres de los reyes, en relojes o en las numeraciones de los siglos.

En este sistema se utilizan siete letras mayúsculas de nuestro alfabeto para representar a los números.

VER INFOGRAFÍA

Muchos relojes utilizan un sistema de numeración para señalar la hora. El reloj solar de la imagen utiliza la sombra que da un estilete para medir el paso del tiempo. Los más antiguos tenían las inscripciones en números romanos para leer la hora, los minutos y los segundos. Este sistema de numeración se mantiene vigente en la actualidad en diferentes sitios.

Algunas reglas de este sistema son las siguientes

  • Un número romano ubicado a la derecha de otro de mayor valor se suma.

XI = 10 + 1 = 11

  • Las símbolos I, X, C y M son los únicos que pueden repetirse, pero solo hasta 3 veces.

XXX = 10 + 10 + 10 = 30

  • Algunas letras se pueden ubicar a la izquierda de otras para restarlas.

IV = 5 − 1 = 4

  • A partir del 4.000 se coloca una pequeña raya arriba del símbolo para indicar que debe multiplicarse por 1.000.

\overline{V} = 5 x 1.000 = 5.000

¡Para ejercitar!

Marca cuáles de las siguientes escrituras son incorrectas:

  • VV = 10
  • XV = 15
  • LXXXX = 90
  • CCCIII = 303
Solución
  • VV = 10 X = 10
  • XV = 15
  • LXXXX = 90 XC = 90
  • CCCIII = 303

Números binarios

Los números binarios son utilizados en un sistema que contiene solo dos símbolos: el cero (0) y el uno (1). Este sistema es usado en el ámbito de la informática.

El sistema binario es el lenguaje de la informática. Si queremos leer un número binario, lo que debemos hacer es nombrar dígito por dígito, los cuales serán siempre cero (0) y uno (1). Por ejemplo, el número natural catorce (14) en el sistema binario se escribe de la siguiente manera: 1110, y se lee “uno, uno, uno, cero”.

Transformar a número binario

Para convertir un número del sistema decimal al sistema binario, solo debemos dividir por 2 el número natural. El cociente de esa división se vuelve a dividir por 2 en sucesivas divisiones hasta que el cociente sea igual a uno (1). Luego leemos el número binario de derecha a izquierda, de abajo hacia arriba.

En el caso del 30, su número binario equivalente es 11110.

¿Sabías qué?
Un dígito binario por sí solo se llama “bit”.

Ejercicios

1. Completa la secuencia numérica con los números correspondientes del sistema numérico romano.

De 1 en 1

  1. X – XI – ____ –  XIII – ____ – XV – ____ – XVII
  2.  CL – ____ – ____ – CLIII – CLIV – ____ – CLVI

De 10 en 10 

  1. I – ____ – XXI – ____ – XLI – LI  – ____ – LXXI – ____ –
  2. V – XV – ____ – XXXV – ____ – ____ –  LXV – ____ – LXXXV

De 100 en 100

  1. II – CII – ____ – CCCII – ____ – DII – ____ – ____ – DCCCII
Solución

De 1 en 1

  1. X – XI – XII –  XIII – XIV – XV – XVI – XVII
  2.  CL – CLICLII – CLIII – CLIV – CLV – CLVI

De 10 en 10 

  1. I – XI – XXI – XXXI – XLI – LI  – LXI – LXXI – LXXXI
  2. V – XV – XXV – XXXV – XLV – LV –  LXV – LXXV– LXXXV

De 100 en 100

  1. II – CII – CCII – CCCII – CDII – DII – DCII DCCII– DCCCII

2. Escribe los siguientes números en sistema romano:

  1. 421
  2. 9
  3. 109
  4. 1.003
  5. 70
  6. 299
Solución
  1. 421 = CDXXI
  2. 9 = IX
  3. 109 = CIX
  4. 1.003 = MIII
  5. 70 = LXX
  6. 299 = CCXCIX

3. Transforma los siguientes números naturales en números binarios:

  1. 50
  2. 13
  3. 46
  4. 28
Solución
  1. 50 = 110010
  2. 13 = 1101
  3. 46 = 101110
  4. 28 = 11100

4. Completa la siguientes secuencias numéricas de números naturales:

b. 

Solución

 

RECURSOS PARA DOCENTES

Artículo destacado “Recta numérica”

El siguiente artículo te permitirá ampliar la noción de “recta numérica” por medio de su uso en distintos contextos.

VER

Artículo destacado “Números romanos (Sistemas de numeración)”

El siguiente artículo te proporcionará más información acerca del sistema de numeración romano.

VER 

Artículo destacado “Sistemas posicionales de numeración”

Este recurso te ayudará a conocer las características de los sistemas posicionales de numeración, como el decimal o el binario.

VER