CAPÍTULO 2 / TEMA 2

SUSTRACCIÓN

La sustracción es una de las cuatro operaciones básicas de las matemáticas que nos permite resolver infinidad de situaciones cotidianas. Cuando decimos “me queda”, “me falta” o “la diferencia” nos referimos a la sustracción. A continuación aprenderás cómo restar número naturales.

La sustracción o resta es una operación aritmética elemental que consiste en quitar una cantidad a otra para averiguar la diferencia entre las dos; se representa con el signo “–” (menos). La resta es la operación opuesta a la suma. Para realizar problemas de este tipo es necesario reconocer el valor posicional de cada cifra que luego va a permitir ordenarlas.

la susTRACCIÓN 

La sustracción es una operación matemática que consiste en quitar o restar una cantidad a otra con el propósito de obtener la diferencia de ambas. Por esta razón, la sustracción es considerada la operación inversa a la adición.

Los términos de la sustracción son: minuendo, sustraendo y resta o diferencia. Observa:

  • El minuendo es la cantidad a la que se le va a restar la cantidad indicada por el sustraendo.
  • El sustraendo es la cantidad que se resta
  • La resta o diferencia es el resultado de la operación.

La sustracción no cumple con la propiedad conmutativa, es decir, el orden de los factores sí afecta el resultado, por lo tanto, para restar dos cantidades, la cantidad mayor, es decir el minuendo debe escribirse siempre en primer lugar.

¿cómo resolver una sustracción?

Si un número tiene más de tres cifras conviene usar el algoritmo de la resta. Esto consiste en ordenar el minuendo y el sustraendo de tal manera que las unidades, las decenas, las centenas y las unidades de mil estén en las mismas columnas. Luego restamos cada posición desde la derecha. Los pasos son los siguientes:

1. Restamos la unidades: 8 − 2 = 6.

2. Restamos las decenas: 7 − 2 = 5

3. Restamos las centenas: 5 − 3 = 2

4. Restamos la unidades de mil: 9 − 5.

¿Sabías qué?
Si le restamos cero (0) al cualquier número, la diferencia será el mismo número. Por eso el cero (0) es el elemento neutro de la sustracción.

 

– Otro ejemplo:

1. Restamos las unidades: 8 − 1 = 7.

2. Restamos las decenas: 7 − 2 = 5

3. Restamos las centenas: 3 − 3 = 0

4. Restamos las unidades de mil: 5 − 4 = 1

Los ejemplos anteriores representan una sustracción “sin canje” ya que cada cifra del minuendo es menor o igual a las cifras del sustraendo, lo que hace que estas cantidades se resten en forma sencilla.

La resta, al igual que el resto de las operaciones básicas de las matemáticas, tienen relación con muchas de las actividades de la vida cotidiana, por ejemplo, administrar dinero, preparar una receta de cocina, calcular la distancia que tenemos que recorrer para llegar a algún lugar, etc. A través de estas podemos resolver problemas y tomar decisiones.

¡Es tu turno!

Resuelve las sustracciones:

  • 8.971 – 3.801
  • 9.999 – 7.554
  • 5.649 – 2.628
Solución

SUSTRACCIÓN CON CANJE

Las sustracciones con y sin canje se resuelven de la misma manera. Solo se diferencian en que, al resolver sustracciones con canje, si en una posición el dígito del minuendo es menor que el del sustraendo, se desagrupa la cifra de la izquierda y se hace el canje. Para restas de números con más tres cifras los pasos son los siguientes:

1. Restamos las unidades: 9 − 6 = 3.

2. Como no le podemos restar 9 a 7, tomamos prestado o canjeamos una centena de la izquierda. Ahora, la decena 7 se transforma en 17 y la centena 3 se convierte en 2. Restamos 17 − 9 = 8.

3. Restamos las centenas: 2 − 2 = 0.

4. Restamos las unidades de mil: 4 − 2 = 2.

¿Sabías qué?
En una sustracción puede haber canje en una o más cifras.

– Otro ejemplo:

1. Restamos las unidades. Como no podemos restarle 9 a 1, prestamos una decena de de la izquierda. Ahora, a 11 le restamos 9 y la decena 3 se convierte en 2. Entonces. 11 − 9 = 2.

2. Restamos las decenas: 2 − 1 = 1.

 

3. Restamos las centenas: 7 − 3 = 4.

 

4. Restamos las unidades de mil: 9 − 6 = 3.

Ten presente que cuando el cero (0) está en el minuendo debes realizar las transformaciones respectivas. El mismo indica ausencia de valores en un orden específico.

¡Es tu turno!

Resuelve las siguientes sustracciones:

  • 4.353 – 1.845
  • 6.957 – 3.529
  • 9.843 – 7.626

Solución

En la sustracción no se cumple la propiedad conmutativa, lo que significa que el cambio del orden de los términos da como resultado diferente cantidad y cambia el signo de la respuesta. Esta operación tampoco cumple con la propiedad asociativa, lo que significa que cuando se restan más de dos números, importa el orden en el que se realiza la resta.

¡COMPRUEBA SUSTRACCIONES!

Cuando resuelvas sustracciones, es muy importante que verifiques su solución, de esta manera evitarás resultados incorrectos.

La sustracción se puede comprobar con su operación matemática inversa: la suma. Para comprobarla basta con sumar la diferencia con el sustraendo, si el resultado es igual al minuendo; entonces la operación está correcta. Ejemplo:

También podemos expresarlo como:

Sustraendo + Diferencia = Minuendo 

¡A practicar!

Resuelve las siguientes restas:

  • 2.652 − 1.398
Solución
2.652 − 1.398 = 1.254
  • 1.563 − 581
Solución
1.563 − 581 = 982
  • 3.862 − 1.475
Solución
3.862 − 1.475 = 2.387
  • 7.539 − 2.864
Solución
7.539 − 2.864 = 4.675
  • 2.841 − 1.563
Solución
2.841 − 1.563 = 1.278
  • 1.349 − 580
Solución
1.349 − 580 = 769

RECURSOS PARA DOCENTES

Artículo “Suma y resta utilizando el algoritmo de descomposición”

El siguiente artículo te permitirá trabajar con sus alumnos las operaciones de adición y sustracción por medio del algoritmo de descomposición.

VER

Artículo “Operaciones Matemáticas”

En este artículo se explican las operaciones básicas o elementales en matemática. También se hace un enfoque en sus diferentes propiedades y sus elementos.

VER

Video “Aprender a restar por descomposición”

Con este material audiovisual podrás explicar con mayor profundidad cómo realizar restas o sustracciones por medio de la descomposición de los números.

VER

CAPÍTULO 4 / TEMA 4

Propiedades de las Raíces

La radicación consiste en la obtención de un número que se ha multiplicado por sí mismo n cantidad de veces bajo el operador de la raíz, por eso también se conoce como “raíz enésima de un número”. De este modo, también podemos decir que la radicación es la operación inversa a la potenciación y, al igual que esta última, presenta propiedades importantes que aprenderás a continuación.

El origen del símbolo radical es incierto. Algunos autores coinciden en que provino de los árabes, mientras que otros afirman que fue introducido en siglo XVI por Christoph Rudolff, cuyo uso es evidenciado en su libro Coss. Muchos otros asocian el origen del signo de la raíz con la letra r, de la palabra latina radix que significa “raíz”.

¿Qué es la radicación?

Es una operación que consiste en hallar números que multiplicados por sí mismos tantas veces como indica el índice de la raíz den como resultado al radicando. Puede verse como la operación inversa a la potenciación.

\boldsymbol{\sqrt[n]{a} = b\; \; \Leftrightarrow \; \; b^{n}=a}

– Ejemplo:

\boldsymbol{\sqrt{81}=9}\: \: \: porque\: \: \: \boldsymbol{9^{2}=9\times 9=81}

\boldsymbol{\sqrt[3]{27} = 3}\; \; porque\; \; \boldsymbol{ 3^{3} = 3\times 3\times 3 =27}

Elementos de una raíz

Toda raíz cuenta con tres elementos:

\huge \boldsymbol{\sqrt[n]{a}=b}

  • Índice (n): orden de la raíz que se aplica al radicando. Indica cuántas veces multiplicamos un número por sí mismo para obtener el radicando.
  • Radicando (a): número sometido a la raíz del orden determinado por el índice.
  • Raíz (b): resultado de la radicación, el cual elevado al orden de la raíz da como resultado el radicando.

principales propiedades de la radicación

Las propiedades de la radicación tienen una gran cantidad de aplicaciones y, del mismo modo que en la potenciación, no se deben aplicar las propiedades a las operaciones de suma y resta, sino solo a las de multiplicación y división.

Propiedades de la radicación
Raíz de cero \boldsymbol{\sqrt[n]{0}=0\; \: \: \: \: \: n\neq 0}
Raíz de la unidad \boldsymbol{\sqrt[n]{1}=1}
Raíz de un producto \boldsymbol{\sqrt[n]{a\times b}=\sqrt[n]{a}\times \sqrt[n]{b}}
Raíz de un cociente \boldsymbol{\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}}
Potencia de una raíz \boldsymbol{\left ( \sqrt[n]{a} \right )^{x}=\sqrt[n]{a^{x}}}
Raíz de una raíz \boldsymbol{\sqrt[n]{\sqrt[m]{a}}=\sqrt[n\times m]{a}}

¿Sabías qué?
La mayoría de los números irracionales pueden ser expresados a partir de una raíz, por ejemplo, \sqrt{2} o \sqrt{3}.

raíz cuadrada de números negativos

La raíz cuadrada de números negativos no tiene solución dentro de los números reales (\boldsymbol{\mathbb{R}}) porque no existe un número (positivo o negativo) que al ser multiplicado por sí mismo resulte en otro negativo. Por ejemplo, la raíz cuadrada de 4 es igual a 2 porque 22 es igual a 4.

\boldsymbol{\sqrt{4}=2}\: \: \: porque \: \: \: \boldsymbol{2^{2}=2\times 2=4}

Pero esta raíz también tiene otra solución negativa:

\boldsymbol{\sqrt{4}=-2} \: \: \: porque\: \: \: \boldsymbol{\left ( -2 \right )^{2}=\left ( -2 \right )\times \left ( -2 \right )=4}

Recuerda que la regla de los signos indica que al multiplicar símbolos iguales el resultado es positivo.

Ahora, ¿cuál será la raíz cuadrada de −4?

\boldsymbol{\sqrt{-4}=} no \: \: existe

La raíz cuadrada de −4 no existe en los números reales porque no hay un número que al multiplicarse por sí mismo resulte en −4.

Sin embargo, esto no significa que no tenga solución posible, sino que pertenece a otro grupo numérico: los números complejos. Los números complejos incluyen una parte imaginaria que sirve para obtener resultados que no pertenecen a los reales.

Soluciones de una raíz

Siempre que el radicando sea negativo, la raíz tendrá solución real solo si el índice es impar, en cambio, si el índice es par, el resultado pertenecerá a los números imaginarios. Esto se debe a la regla de los signos, pues si multiplicamos por sí mismo un número negativo una cantidad de veces par (2, 4, 6, 8,…) el resultado será igualmente positivo.

aplicación de las propiedades de la radicación

Raíz de cero

Toda raíz cuyo radicando sea cero es igual a cero, siempre y cuando su índice sea diferente de dicho número.

\boldsymbol{\sqrt[n]{0}=0\; \: \: \: \: \: n\neq 0}

– Ejemplo:

\sqrt[3]{0}=0

\sqrt[5]{0}=0

Raíz de la unidad

La raíz de la unidad es igual a uno.

\boldsymbol{\sqrt[n]{1}=1}

– Ejemplo:

\sqrt[3]{1}=1

\sqrt{1}=1

Raíz de un producto

La raíz de un producto es igual al producto de las raíces de los factores.

\boldsymbol{\sqrt[n]{a\times b}=\sqrt[n]{a}\times \sqrt[n]{b}}

– Ejemplo:

\sqrt[3]{64\times 8}=\sqrt[3]{64}\times \sqrt[3]{8}=4\times 2=8

\sqrt{9\times 25}=\sqrt{9}\times \sqrt{25}=3\times 5=15

Raíz de un cociente

La raíz de un cociente es igual al cociente de las raíces del dividendo y del divisor.

\boldsymbol{\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}}

– Ejemplo:

\sqrt{\frac{576}{4}}=\frac{\sqrt{576}}{\sqrt{4}}=\frac{24}{2}=12

\sqrt[3]{\frac{64}{8}}=\frac{\sqrt[3]{64}}{\sqrt[3]{8}}=\frac{4}{2}=2

Potencia de una raíz

La potencia de una raíz es igual a la misma raíz con el radicando elevado a dicha potencia.

\boldsymbol{\left ( \sqrt[n]{a} \right )^{x}=\sqrt[n]{a^{x}}}

– Ejemplo:

\left ( \sqrt{4} \right )^{4}=\sqrt{4^{4}}=\sqrt{256}=16

\left ( \sqrt[3]{3} \right )^{9}=\sqrt[3]{3^{9}}=\sqrt[3]{19.683}=27

¡Existe otro método!

La potencia de una raíz es igual al radicando elevado al cociente de las potencias.

\left ( \sqrt{4} \right )^{4}=4^{\frac{4}{2}}=4^{2}=16

\left ( \sqrt[3]{3} \right )^{9}=3^{\frac{9}{3}}=3^{3}=27

Raíz de una raíz

La raíz de una raíz es igual otra raíz con el mismo radicando y cuyo índice es igual al producto de los índices.

\boldsymbol{\sqrt[n]{\sqrt[m]{a}}=\sqrt[n\times m]{a}}

– Ejemplo:

\sqrt{\sqrt[3]{64}}=\sqrt[2\times 3]{64}=\sqrt[6]{64}=2

\sqrt{\sqrt{81}}=\sqrt[2\times 2]{81}=\sqrt[4]{81}=3

Números irracionales

Existen números que no se pueden expresar como el cociente de dos enteros. Estos reciben el nombre de número irracionales y las raíces son un ejemplo de ellos. Uno de los números irracionales más famosos es el número pi (π). A lo largo de la historia el valor de pi ha tenido distintas aproximaciones y se lo usa, entre otras cosas, para el cálculo de superficies y volúmenes de circunferencias y esferas.

Suma y resta de radicales

Podemos sumar y restar radicales siempre y cuando estos sean semejantes, es decir, que tengan el mismo índice y el mismo radicando. Cuando esto sucede, solo sumamos o restamos los coeficientes y mantenemos el radical igual.

\boldsymbol{{\color{Red} b}\sqrt[n]{a}+{\color{Red} c}\sqrt[n]{a}=({\color{Red} b+c})\sqrt[n]{a}}

– Ejemplo:

5\sqrt{8}+\sqrt{8}+2\sqrt{8}=(5+1+2)\sqrt{8}=8\sqrt{8}

3\sqrt{25}+\sqrt{25}+\sqrt[3]{25}=4\sqrt{25}+\sqrt[3]{25}

¡A practicar!

Resuelve estas raíces y aplica las propiedades.

  • \sqrt{4}\times \sqrt{9}
Solución

\sqrt{4}\times \sqrt{9}=\sqrt{4\times 9}=\sqrt{36}=6

  • \frac{\sqrt[4]{64}}{\sqrt[4]{4}}
Solución

\frac{\sqrt[4]{64}}{\sqrt[4]{4}}=\sqrt[4]{\frac{64}{4}}=\sqrt[4]{16}=2

  • \sqrt{\sqrt[4]{256}}

Solución

\sqrt{\sqrt[4]{256}}=\sqrt[2\times 4]{256}=\sqrt[8]{256}=2

  • \sqrt[4]{3}\times \sqrt[4]{27}
Solución

\sqrt[4]{3}\times \sqrt[4]{27}=\sqrt[4]{3\times 27}=\sqrt[4]{81}=3

  • \frac{\sqrt[3]{16}}{\sqrt[3]{2}}
Solución

\frac{\sqrt[3]{16}}{\sqrt[3]{2}}=\sqrt[3]{\frac{16}{2}}=\sqrt[3]{8}=2

  • \sqrt{3}\times \sqrt{12}
Solución

\sqrt{3}\times \sqrt{12}=\sqrt{3\times 12}=\sqrt{36}=6

  • \sqrt{\frac{16}{9}}
Solución

\sqrt{\frac{16}{9}}=\frac{\sqrt{16}}{\sqrt{9}}=\frac{4}{3}

  • \frac{\sqrt{98}}{\sqrt{2}}
Solución

\frac{\sqrt{98}}{\sqrt{2}}=\sqrt{\frac{98}{2}}=\sqrt{49}=7

  • \sqrt{8}\times \sqrt{2}
Solución

\sqrt{8}\times \sqrt{2}=\sqrt{8\times 2}=\sqrt{16}=4

RECURSOS PARA DOCENTES

Artículo “Los números irracionales”

En el artículo podrá encontrar los números irracionales más conocidos y su representación en la recta numérica. Es un buen complemento para afianzar la importancia de la radicación y experimentar sus aplicaciones.

VER

Artículo “Propiedades de las raíces”

Este recurso contiene ejemplos prácticos muy útiles para profundizar sobre las propiedades de la radicación.

VER

CAPÍTULO 5 / TEMA 5 (REVISIÓN)

FRACCIONES | ¿qué aprendimos?

nOCIÓN DE FRACCIÓN

Las fracciones son divisiones sin resolver. Están formadas por una raya de fracción que divide al numerador del denominador. El numerador es la parte que tomamos del entero y el denominador indica las partes en las que se divide al entero. Las fracciones pueden ser propias, impropias y aparentes. Las fracciones propias tienen un numerador menor que el denominador; las impropias tienen un numerador mayor que el denominador; y las aparentes son iguales a un entero.

La porción de pastel que se toma es igual a 1/8. El numerador es la parte tomada (1) y el denominador señala la cantidad de partes en las que se dividió el pastel (8).

representación de fracciones

Para leer una fracción solo tenemos que leer al numerador como cualquier otro número y al denominador según unas simples reglas: medios si es 2, tercios si es 3, cuartos si es 4, quintos si es 5 y así sucesivamente. A partir de números mayores a diez añadimos el sufijo –avos; como onceavos. Los gráficos de las fracciones se representan por medio de figuras divididas en tantas partes como muestra el denominador y con tantas partes pintadas como señala el numerador.

Podemos representar fracciones propias e impropias en gráficos con formas de figuras geométricas.

tipos de fracciones

Dos o más fracciones son homogéneas si comparten el mismo denominador, en cambio, si dos o más fracciones tienen distinto denominador se las llama heterogéneas. También existen las fracciones propias o puras, que son aquellas que tienen un numerador menor que el denominador y siempre son menores a un entero; y las fracciones impropias o impuras, que tienen un numerador mayor que el denominador y son mayores a uno.

Depende del país en el que nos encontramos, la fracción propia se puede llamar también fracción pura.

operaciones con fracciones homogéneas

Para sumar y restar fracciones homogéneas primero sumamos o restamos los numeradores y mantenemos el mismo denominador. Así como ordenamos números naturales, también lo podemos hacer con las fracciones, para esto usamos los símbolos de relación como > (mayor que) y < (menor que). Por otro lado, existen fracciones con distintos numeradores y denominadores pero que representan la misma cantidad, a estas se las conoce como fracciones equivalentes.

Las fracciones propias siempre tienen el numerador menor al denominador y representan una cantidad inferior a la unidad.

CAPÍTULO 5 / TEMA 4

OPERACIONES CON FRACCIONES homogéneas

Si la mamá de Carla compró 1/2 kg de naranjas y su papá compró 3/2 kg de naranjas, ¿cuántos kg de naranja hay en total? Esta situación la podemos encontrar a diario en nuestra vida. Para resolverla tenemos que involucrar operaciones básicas como la suma o la resta a números fraccionarios. Las características de cada fracción nos indicarán qué pasos tenemos que seguir.

Cada vez que dividimos un todo en varias partes iguales usamos fracciones. Todas las fracciones son divisiones sin resolver que tienen un numerador y un denominador, ambos separados por una raya fraccionaria. Las usamos cuando repartimos comida, seguimos instrucciones de recetas o pedimos una parte o porción de algo.

VER INFOGRAFÍA

suma de fracciones homogéneas

Recordemos que dos o más fracciones son homogéneas cuando comparten el mismo denominador. Sumar este tipo de fracciones es muy fácil. Primero sumamos los numeradores, el número resultante será el numerador de la fracción y mantenemos el mismo denominador. Veamos un ejemplo:

\boldsymbol{\frac{{\color{Blue} 1}}{{\color{Red} 5}}+\frac{{\color{Blue} 6}}{{\color{Red} 5}}=\frac{{\color{Blue} 1+6}}{{\color{Red} 5}}=\frac{7}{5}}

 

– Otros ejemplos:

\boldsymbol{\frac{{\color{Blue} 1}}{{\color{Red} 2}}+\frac{{\color{Blue} 3}}{{\color{Red} 2}}=\frac{{\color{Blue} 1+3}}{{\color{Red} 2}}=\frac{4}{2}=2}

 

\boldsymbol{\frac{{\color{Blue} 12}}{{\color{Red} 8}}+\frac{{\color{Blue} 4}}{{\color{Red} 8}}=\frac{{\color{Blue} 12+8}}{{\color{Red} 8}}=\frac{20}{8}}

sustracción de fracciones homogéneas

Del mismo modo que se resuelve la suma de fracciones homogéneas, en la sustracción primero restamos los numeradores y conservamos el mismo denominador. Por ejemplo:

\boldsymbol{\frac{{\color{Blue} 6}}{{\color{Red} 7}}-\frac{{\color{Blue} 3}}{{\color{Red} 7}}=\frac{{\color{Blue} 6-3}}{{\color{Red} 7}}=\frac{3}{7}}

– Otros ejemplos:

\boldsymbol{\frac{{\color{Blue} 8}}{{\color{Red} 5}}-\frac{{\color{Blue} 4}}{{\color{Red} 5}}=\frac{{\color{Blue} 8-4}}{{\color{Red} 5}}=\frac{4}{5}}

 

\boldsymbol{\frac{{\color{Blue} 10}}{{\color{Red} 3}}-\frac{{\color{Blue} 8}}{{\color{Red} 3}}=\frac{{\color{Blue} 10-8}}{{\color{Red} 3}}=\frac{2}{3}}

fracciones equivalentes

Las fracciones equivalentes son fracciones que tienen distinto numerador y denominador pero representan una misma cantidad. Hay dos métodos para calcular fracciones equivalentes: por amplificación y por simplificación.

  • Por el método de amplificación multiplicamos el numerador y el denominador por un mismo número.

Por ejemplo, \frac{1}{3} es la fracción equivalente a \frac{3}{9}, porque tanto el numerador como el denominador fueron multiplicados por 3.

 

  • Por el método de simplificación dividimos el numerador y el denominador por un mismo número.

Por ejemplo, la fracción \frac{22}{10} es equivalente a \frac{11}{5} porque tanto el numerador como el denominador fueron divididos por 2.

 

Se puede simplificar una fracción hasta obtener su mínima expresión, es decir, hasta conseguir la fracción irreducible. Se la llama irreducible porque el numerador y el denominador no comparten los mismos divisores. Obtener esta expresión hace que se simplifiquen los cálculos y la escritura de fracciones.

¿Cómo sabemos si dos fracciones son equivalentes?

El cálculo que permite determinar si dos fracciones son iguales es el método de multiplicar cruzado los numeradores y denominadores de ambas fracciones.

Para saber si \frac{2}{5} y \frac{4}{10} son fracciones equivalentes debes seguir estos pasos:

1. Multiplica el numerador de la primera fracción por el denominador de la segunda.

2. Multiplica el numerador de la segunda fracción por el denominador de la primera.

3. Compara los dos resultados. Sin los dos son iguales significa que las dos fracciones son equivalentes.

\boldsymbol{\frac{2}{5}=\frac{4}{10}}

orden de fracciones

Todos los números tienen un orden y las fracciones no son la excepción. Para establecer ese orden podemos comparar sus elementos y determinar si son mayores, menores o iguales unas con otras. Los símbolos que se usan para compararlas son:

Símbolo Significado
> Mayor que
< Menor que

Cuando las fracciones tienen igual denominador y se quiere saber si una es mayor que la otra solo tenemos que comparar sus numeradores. Una fracción es mayor que otra si tiene el numerador más grande. Por ejemplo:

\boldsymbol{\frac{7}{6}>\frac{5}{6}} porque 7 es mayor que 5.

Para determinar si una fracción es menor que otra y sus denominadores son iguales, solo comparamos los numeradores. Veamos un ejemplo:

\boldsymbol{\frac{8}{9}<\frac{13}{9}} porque 8 es menor que 13.

problemas

Día a día nos cruzamos con problemas que involucran fracciones y son las diferentes operaciones básicas las que nos permiten resolverlos. Algunas veces nos toca comparar fracciones para saber, por ejemplo, quién comió más chocolate; otras veces cuántas partes de jugo se tomó y cuántas quedan.

Pasos a seguir para resolver problemas con fracciones

Los siguientes pasos también servirán para resolver problemas con números naturales.

  1. Lee atentamente el problema.
  2. Identifica y anota los datos del problema.
  3. Piensa qué pide el problema, ¿qué pregunta hace?
  4. Establece qué operaciones permiten resolver el problema.
  5. Haz los cálculos.
  6. Relee la pregunta del problema para luego contestarla.

1. Carla y María se repartieron una barra de chocolate en 6 partes iguales, Carla comió \frac{3}{6} y María \frac{2}{6}. ¿Quién comió más chocolate?

  • Datos

Cantidad de chocolate que comió Carla: \frac{3}{6}

Cantidad de chocolate que comió María: \frac{2}{6}

  • Pregunta

¿Quién comió más chocolate?

  • Piensa

Para saber quién comió más hay que comparar las dos fracciones. Como son homogéneas solo no fijamos en los numeradores.

  • Calcula

\boldsymbol{\frac{3}{6}>\frac{2}{6}} porque 3 es mayor que 2.

  • Respuesta

Carla comió más chocolate que María.


2. Pedro tenía en la heladera \frac{3}{4} de litro de jugo de naranja. Si tomó \frac{1}{4} de litro, ¿cuánto jugo le quedó?

  • Datos

Litros de jugo naranja en la heladera: \frac{3}{4}

Litros de jugo que tomó Pedro: \frac{1}{4}

  • Pregunta

¿Cuánto jugo le quedó?

  • Piensa

Hay que restar la cantidad de jugo que tomó Pedro a la cantidad de jugo que había en la heladera.

  • Calcula

\frac{3}{4}-\frac{1}{4}=\frac{3-1}{4}=\boldsymbol{\frac{2}{4}}

  • Respuesta

A Pedro le quedaron \frac{2}{4} de litro de jugo de naranja.


3. Si Pedro prepara \frac{5}{4} de litro de jugo y los une con \frac{2}{4} de litro de jugo que le quedaron, ¿cuánto jugo tiene ahora?

  • Datos

Litros de jugo que preparó Pedro: \frac{5}{4}

Litro de jugo que ya tiene Pedro: \frac{2}{4}

  • Pregunta

¿Cuánto jugo tiene ahora?

  • Piensa

Para saber la cantidad total de jugo hay que sumar las dos cantidades.

  • Calcula

\frac{5}{4}+\frac{2}{4}=\frac{5+2}{4}=\boldsymbol{\frac{7}{4}}

  • Respuesta

Pedro tiene ahora \frac{7}{4} de litro de jugo de naranja.

¡A practicar!

1. Resuelve las siguientes operaciones.

  • \frac{7}{8}-\frac{2}{8}=
Solución

\frac{7}{8}-\frac{2}{8}=\frac{7-2}{8}=\boldsymbol{\frac{5}{8}}

  • \frac{4}{3}+\frac{6}{3}=
Solución

\frac{4}{3}+\frac{6}{3}=\frac{4+6}{3}=\boldsymbol{\frac{10}{3}}

  • \frac{16}{5}-\frac{4}{5}=
Solución

\frac{16}{5}-\frac{4}{5}=\frac{16-4}{5}=\boldsymbol{\frac{12}{5}}

  • \frac{9}{7}+\frac{3}{7}=
Solución

\frac{9}{7}+\frac{3}{7}=\frac{9+3}{7}=\boldsymbol{\frac{12}{7}}

 

2. Ordenar de mayor a menor las siguientes fracciones.

\frac{4}{5},\: \: \: \frac{2}{5},\: \: \: \frac{1}{5},\: \: \: \frac{6}{5},\: \: \: \frac{3}{5}

Solución

\frac{6}{5}>\frac{4}{5}>\frac{3}{5}>\frac{2}{5}>\frac{1}{5}

3. Ordenar de menor a mayor las siguientes fracciones.

\frac{7}{7},\: \: \: \frac{3}{7},\: \: \: \frac{5}{7},\: \: \: \frac{2}{7},\: \: \: \frac{9}{7}

Solución

\frac{2}{7}<\frac{3}{7}<\frac{5}{7}<\frac{7}{7}<\frac{9}{7}

 

4. Determina si las siguientes fracciones son equivalentes.

  • \frac{3}{5} y \frac{9}{15}
Solución
Son fracciones equivalentes porque 3 × 15 = 45 y 9 × 5 = 45.

  • \frac{2}{9} y \frac{10}{42}
Solución
No son fracciones equivalentes porque 2 × 42 = 84 y 10 × 9 = 90.

  • \frac{6}{18} y \frac{3}{9}
Solución
Son fracciones equivalentes porque 6 × 9 = 54 y 18 × 3 = 54.

 

5. Marianela se va de vacaciones con su familia. En la primera hora de viaje recorrieron \frac{3}{8} del trayecto y en la segunda hora, \frac{2}{8} del trayecto. ¿Cuánto del trayecto ya recorrieron?

Solución
Recorrieron \frac{5}{8} del trayecto.

 

6. Marcos tiene \frac{9}{12} de una tarta y le regala a su vecino \frac{3}{12}, ¿cuánto le queda de la tarta?

Solución
Le queda \frac{6}{12} de tarta.
RECURSOS PARA DOCENTES

Artículo “Adición y sustracción de fracciones”

Este recurso permitirá profundizar en el tema de la suma y resta de fracciones.

VER

Artículo “Fracciones decimales y equivalentes”

Este recurso permitirá complementar la información sobre fracciones equivalentes mediante múltiples ejemplos.

VER

Artículo “Partes y porciones”

El siguiente artículo profundiza temas tales como fracciones equivalentes, orden de las fracciones y otros.

VER

CAPÍTULO 3 / TEMA 2

FRACCIONES EQUIVALENTES

Hay fracciones que aunque parezcan diferentes representan la misma cantidad. Por ejemplo, si un amigo te ofrece 1/2 de un alfajor y otro te ofrece 2/4 de un alfajor, ¿quién te ofrece más? ¡Ninguno! ¡Los dos ofrecen lo mismo! Este tipo de fracciones son conocidas como fracciones equivalentes y son muy fáciles de distinguir.

¿QUÉ ES UNA FRACCIÓN EQUIVALENTE?

Decimos que dos o más fracciones son equivalentes cuando todas ellas representan a la misma cantidad, es decir, al mismo número. Veamos un ejemplo:

\boldsymbol{\frac{2}{3}} =

 

\boldsymbol{\frac{4}{6}}=

Podemos observar que en ambas fracciones pintamos la misma porción del entero, lo que quiere decir que ambas fracciones representan la misma cantidad. Por lo tanto, decimos que \frac{2}{3} y \frac{4}{6} son fracciones equivalentes, y las podemos escribir así:

\boldsymbol{\frac{2}{3}=\frac{4}{6}}

 

¿Hay una sola fracción equivalente?

Cada fracción tiene muchas fracciones equivalentes. Por ejemplo, otra fracción equivalente de \frac{2}{3} es \frac{8}{12}:

Entonces, como las 3 fracciones son equivalentes entre sí, podemos escribir:

\boldsymbol{\frac{2}{3}=\frac{4}{6}=\frac{8}{12}}

 

Decimos que dos o más fracciones son equivalentes cuando todas ellas representan a la misma cantidad, es decir, al mismo número. Por lo tanto, hay muchas formas de decir media sandía: 1/2 , 2/4 , 4/8 , 8/16 , 16/32 y muchas más. Todas ellas son fracciones equivalentes que indican la mitad de un entero.

 

¿Cómo saber si dos fracciones son equivalentes?

Dos fracciones son equivalentes si al multiplicar sus términos en forma de cruz el resultado el mismo.

  • \boldsymbol{\frac{3}{4}} y \boldsymbol{\frac{6}{8}} son fracciones equivalentes porque \boldsymbol{3\times 8=4\times 6}

 

  • \boldsymbol{\frac{3}{5}} y \boldsymbol{\frac{6}{18}} no son equivalentes porque \boldsymbol{3\times 18\neq 5\times 6}

¡Es tu turno!

¿Estas fracciones son equivalentes?

  • \boldsymbol{\frac{2}{5}} y \boldsymbol{\frac{6}{15}}
Solución

\boldsymbol{\frac{2}{5}} y \boldsymbol{\frac{6}{15}} son fracciones equivalentes porque \boldsymbol{2\times 15=5\times 6}

  • \boldsymbol{\frac{4}{7}} y \boldsymbol{\frac{3}{5}}
Solución

\boldsymbol{\frac{4}{7}} y \boldsymbol{\frac{3}{5}} no son fracciones equivalentes porque \boldsymbol{4\times 5\neq 7\times 3}

¿cómo CONVERTIR FRACCIONES EQUIVALENTES?

Las fracciones equivalentes se pueden obtener por medio de dos métodos: amplificación y simplificación.

Amplificación de fracciones

Para obtener fracciones equivalentes por amplificación debemos multiplicar al numerador y al denominador de la fracción por un mismo número distinto de cero.

Si al numerador y al denominador de la fracción \frac{3}{5} los multiplicamos por 3, obtenemos \frac{9}{15} y por lo tanto, ambas fracciones son equivalentes.

Así, si multiplicamos al numerador y al denominador por 4, obtenemos otra fracción equivalente: \frac{12}{20}.

Y si multiplicamos por 5, obtenemos otra: \frac{15}{25}.

 

 

Podemos escribir las fracciones obtenidas de la siguiente manera:

\boldsymbol{\frac{3}{5}=\frac{9}{15}=\frac{12}{20}=\frac{15}{25}}

¡Puedes comprobarlo!

Las fracciones equivalentes, a pesar de tener numeradores y denominadores diferentes, representan una misma cantidad. Puedes corroborar esto si divides el numerador entre el denominador.

\boldsymbol{\frac{3}{5}=3\div 5=0.6}

\boldsymbol{\frac{9}{15}=9\div 15=0.6}

\boldsymbol{\frac{12}{20}=12\div 20=0.6}

\boldsymbol{\frac{15}{25}=15\div 25=0.6}

Simplificación de fracciones

Para obtener fracciones equivalentes por simplificación debemos dividir al numerador y al denominador de la fracción por un mismo número distinto de cero. Pero en este caso, el número debe ser un divisor común entre el numerador y el denominador. Es decir, tanto el numerador como el denominador se deben poder dividir por el número.

Si al numerador y al denominador de la fracción \frac{30}{15} los dividimos por 3, obtenemos \frac{10}{5}, que es una fracción equivalente.

Los divisores comunes entre 30 y 15 son: 3, 5, 15. Entonces, también podemos simplificar la fracción \frac{30}{15} si dividimos el numerador y denominador por 5, cuyo resultado es \frac{6}{3}.

Y si dividimos por 15, obtenemos \frac{2}{1}, otra fracción equivalente.

Como todas representan la misma cantidad, podemos escribirlas de este modo:

 

\boldsymbol{\frac{30}{15}=\frac{10}{5}=\frac{6}{3}=\frac{2}{1}}

¿Sabías qué?
Cuando una fracción no puede simplificarse se dice que es una fracción irreducible.
Para obtener fracciones equivalentes por amplificación debemos multiplicar al numerador y al denominador de la fracción por un mismo número distinto de cero; y para obtener fracciones equivalentes por simplificación debemos dividir al numerador y al denominador de la fracción por un mismo número distinto de cero que sea divisor común entre ambos.

APLICACIÓN DE LAS FRACCIONES EQUIVALENTES EN OPERACIONES DE FRACCIONES

Podemos usar las fracciones equivalentes para sumar y restar fracciones heterogéneas (aquellas que tienen distinto denominador). Para estos solo tenemos que convertirlas en fracciones homogéneas, es decir, en fracciones con igual denominador. Luego sumamos o restamos los numeradores y conservamos el denominador.

– Ejemplo:

\boldsymbol{\frac{2}{4}+\frac{8}{2}=}

Los denominadores son 4 y 2. Pero si en la segunda fracción multiplicamos numerador y denominador por 2, obtenemos \frac{16}{4}, que es una fracción equivalente.

\boldsymbol{\frac{8}{2}=\frac{16}{4}}

Entonces, la suma queda así:

\boldsymbol{\frac{2}{4}+\frac{16}{4}=\frac{2+16}{4}=\frac{18}{4}}

 

También podemos representar esta fracción final de una manera más simple si encontramos un divisor común. Como 18 y 4 son divisible por 2, su fracción equivalente es \frac{9}{2}.

\boldsymbol{\frac{18}{4}=\frac{9}{2}}

Por lo tanto:

\boldsymbol{\frac{2}{4}+\frac{16}{4}=\frac{2+16}{4}=\frac{18}{4}=\boldsymbol{\frac{9}{2}}}


– Otro ejemplo:

\boldsymbol{\frac{6}{5}-\frac{1}{2}=}

 

Los denominadores son 5 y 2, así que debemos encontrar el mínimo común múltiplo entre ambos, que es 10. Para llegar de 5 a 10, debemos multiplicar a 5 por 2. Entonces, amplificamos la fracción \frac{6}{5} por 2:

\boldsymbol{\frac{6}{5}=\frac{12}{10}}

 

Y para llegar de 2 a 10, debemos multiplicar a 2 por 5. Amplificamos esta fracción por 5:

\boldsymbol{\frac{1}{2}=\frac{5}{10}}

 

La resta queda así:

\boldsymbol{\frac{12}{10}-\frac{5}{10}=\frac{12-5}{10}=\frac{7}{10}}

 

Las fracciones equivalentes se pueden utilizar para sumar y restar fracciones heterogéneas (que tienen distinto denominador). Para poder sumarlas o restarlas, debemos convertirlas en fracciones homogéneas, es decir, que tengan el mismo denominador. Y para convertirlas en fracciones homogéneas, utilizamos fracciones equivalentes de las originales.

¡A practicar!

1. Indica si estas equivalencias son verdaderas o falsas.

\boldsymbol{\frac{8}{11}=\frac{33}{44}}

Solución
Falso. Estas fracciones no son equivalentes porque 8 × 44 ≠ 11 × 33.

\boldsymbol{\frac{1}{5}=\frac{3}{15}}

Solución
Verdadero. Estas fracciones sí son equivalentes porque 1 × 15 = 5 × 3.

\boldsymbol{\frac{4}{12}=\frac{20}{24}}

Solución
Falso. Estas fracciones no son equivalentes porque 4 × 24 ≠ 12 × 20.

\boldsymbol{\frac{9}{10}=\frac{36}{30}}

Solución
Falso. Estas fracciones no son equivalentes porque 9 × 30 ≠ 10 × 36.

\boldsymbol{\frac{7}{8}=\frac{14}{16}}

Solución
Verdadero. Estas fracciones sí son equivalentes porque 7 × 16 = 8 × 14.

\boldsymbol{\frac{6}{9}=\frac{24}{36}}

Solución
Falso. Estas fracciones no son equivalentes porque 9 × 24 ≠ 6 × 36.

 

2. Realiza los siguientes cálculos. Utiliza sus fracciones equivalentes:

  • \boldsymbol{\frac{1}{4}+\frac{3}{2}=}
Solución

\boldsymbol{\frac{1}{4}+\frac{6}{4}=\frac{6+1}{4}=\frac{7}{4}}

  • \boldsymbol{\frac{2}{3}+\frac{6}{4}=}
Solución

\boldsymbol{\frac{8}{12}+\frac{18}{12}=\frac{8+18}{12}=\frac{26}{12}=\frac{13}{6}}

  • \boldsymbol{\frac{7}{5}-\frac{2}{2}=}
Solución

\boldsymbol{\frac{14}{10}-\frac{10}{10}=\frac{14-10}{10}=\frac{4}{10}=\frac{2}{5}}

  • \boldsymbol{\frac{8}{3}-\frac{2}{5}=}
Solución

\boldsymbol{\frac{40}{15}-\frac{6}{15}=\frac{40-6}{15}=\frac{34}{15}}

 

RECURSOS PARA DOCENTES

Artículo “Fracciones equivalentes”

En este artículo podrás ahondar en los conceptos de amplificación y simplificación de fracciones, hasta llegar al concepto de fracción irreducible.

VER

Micrositio “Operaciones matemáticas”

En este micrositio, las tarjetas te ayudarán a profundizar en el procedimiento que debe realizarse en las operaciones matemáticas de adición, resta, multiplicación y división de fracciones homogéneas y heterogéneas.

VER

 

CAPÍTULO 4 / TEMA 3

Propiedades de la potencia

Cada vez que necesitamos hacer una multiplicación del mismo número repetidas veces, recurrimos a la potenciación. Esta operación, así como muchas otras, cumple con ciertas propiedades. ¿Cuál es la manera correcta de aplicarlas?, ¿cuáles son los beneficios? A continuación, aprenderás cuáles son y sus aplicaciones prácticas.

La potencia o potenciación es una operación matemática que consiste en multiplicar varias veces un mismo número. Consta de una base, que es el número que se multiplica, y de un exponente, que es el número que señala la cantidad de veces que se multiplica la base por sí misma. Es decir, la potenciación no es más que una multiplicación abreviada.

principales propiedades de la potencia

Las propiedades de potenciación tienen una gran cantidad de aplicaciones, pero también tienen ciertas restricciones y es importante conocerlas para no cometer errores en su resolución. Entonces, siempre que apliquemos las propiedades será a las operaciones de multiplicación y división, nunca será a las operaciones de suma y resta.

En verde están las operaciones a las que aplicaremos las propiedades de potenciación, y en rojo, las operaciones a las que no podremos aplicarlas nunca.

En la siguiente tabla podrás observar las propiedades de la potenciación:

Propiedades de la potenciación
Producto de potencia de igual base a· a= a(m + n)
Cociente de potencia de igual base a/ a= a(m − n)
Potencia de potencia (am)= an · m
Producto de potencias con bases diferentes y exponentes iguales a· bn = (a · b)n
Cociente de potencias con bases diferentes y exponentes iguales a/ b= (a / b)n
Exponente negativo a−n = 1 / an

¿Sabías qué?
Cuando el exponente es negativo, mientras mayor sea su valor más pequeño será el resultado.

Notación científica

La notación científica es una forma de expresar cantidades muy grandes o muy pequeñas que le ha permitido a los científicos simplificar sus cálculos. Es conocida también como notación o patrón exponencial porque emplea potencias de base 10 dentro de su expresión. Las potencias de base 10 son iguales a la unidad seguida de tantos ceros como indique el exponente. Un ejemplo de notación científica lo vemos en las masas de los objetos astronómicos, por ejemplo, la masa de la Luna es de aproximadamente 735 × 1020 kg.

Ejemplos prácticos

Aplicación a la suma y resta

La aplicación de las propiedades corresponde a varias operaciones matemáticas pero no a la suma y la resta. Sin embargo, eso no significa que no pueda aplicarse a ejercicios donde existan muchos términos que se suman o se restan. Cuando esto sucede, se aplican las propiedades solo a los términos por separado.

Producto de una potencia de igual base

Cuando existe una multiplicación entre dos potencias con igual base, el resultado final será la misma base elevada a la suma de los exponente de potencias que se multiplicaron. Por ejemplo:

  • 5· 52 = 5(3 + 2) = 55
  • 4· 40 = 4(2 + 0) = 42
  • 68 · 62 · 63 = 6(8 + 2 + 3) = 613

Cociente de una potencia de igual base

Cuando dividimos dos potencias con igual base el procedimiento es similar al de la multiplicación, con la diferencia de que aquí restamos los exponentes de las potencias. Por ejemplo:

  • 53 / 52 = 5(3 − 2) = 51
  • 42 / 40 = 4(2 − 0) = 42

Potencia de una potencia

Cuando tenemos una base elevada a un exponente n, y esta a su vez está elevada a otro exponente m, el resultado final lo obtenemos al multiplicar ambos exponentes (n · m). Por ejemplo:

  • (42)4 = 42 · 4 = 48
  • (33)3 = 33 · 3 = 39

Producto de potencias con bases diferentes y exponentes iguales

Si multiplicamos dos potencias con igual exponente y bases distintas, el resultado será igual a mantener el exponente y solo multiplicar las bases. Por ejemplo:

  • 53 · 43 = (5 · 4)3
  • 32 · 22 = (3 · 2)2

Cociente de potencias con bases diferentes y exponentes iguales

De igual manera que en el caso anterior, el resultado será el cociente de las bases elevadas al exponente. Por ejemplo:

  • 53 43 = (5/4)3
  • 32 / 22 = (3/2)2

Exponente negativo

Cuando el exponente es negativo, la potencia será igual a la inversa de su base y el mismo exponente con signo positivo. Por ejemplo:

  • (2)2 = (1/2)2 = 1/22 = 1/4
  • (1/2)−1 = 2
Los átomos son las unidades básicas de toda la materia. En conjunto crean las moléculas y son microscópicos. Para poder medir las distancias entre ellos se usa una unidad de longitud llamada angstrom (Å = 1 x 10−10 metros). El exponente igual a −10 nos indica que el valor en metros es equivalente a 0,0000000001 m.

Potencia de decimales y fracciones

Cuando las bases son decimales o fracciones, las propiedades se mantienen sin distinción. Por ejemplo:

  • (0,1)2 = (0,1) · (0,1) = 0,01

Observa que 0,1 = 1 · 10−1 , y aquí se puede aplicar la propiedad de potencia de potencia. 

  • (0,1)2 = (1 · 10(−1))2 = 10(−1) · 2 = 102 = 0,01

De la misma manera, si sabemos que 0,1 = 1/10:

  • (0,1)2 = (1/10)2 = 1/102 = 1/100 = 0,01

Cualquiera sea la expresión que se elija para resolver la operación se debe llegar al mismo resultado.

¡A practicar!

Aplica la propiedad correspondiente en cada caso:

  • 34 · 3· 33

Solución
34 · 31 · 33 = 3(4 + 1 + 3) = 38 = 6.561
  • 62 / 62

Solución
62 / 62 = 6(2 − 2) = 60 = 1
  • (7−1)−3

Solución
(7−1)−3 = 7(−1) · (−3) = 73 = 343
  • 63 · 83

Solución
63 · 83 = (6 · 8)3 = 483 = 110.592
  • (−1/2)−2

Solución
(−1/2)−2 = (−2)2 = (−2) · (−2) = 4 
  • 83 / 43

Solución
83 / 43 = (8/4)3 = 23 = 8
RECURSOS PARA DOCENTES

Artículo “Ejercicios de propiedades de la potencia”

En el artículo podrá reforzar las propiedades de potenciación vistas a partir de ejemplos y ejercicios. También se explica la importancia de la correcta aplicación de las propiedades en cada término al sumar o restar.

VER

CAPÍTULO 2 / TEMA 2

OPERACIONES COMBINADAS

En ocasiones necesitamos efectuar cálculos que combinan varios tipos de números y, por lo tanto, diferentes tipos de operaciones. Para estos casos lo más importante es saber las jerarquías o el orden en el que debemos resolverlos, y para eso están los signos de agrupación. Aprendamos cuáles son y cómo usarlos.

SIGNOS DE AGRUPACIÓN

En matemática, los signos de agrupación hacen referencia a los paréntesis “( )”, corchetes “[ ]” y llaves “{ }” que empleamos para saber el orden o prioridad en el que realizamos las operaciones. En este sentido, existe una convención respecto a la jerarquía de estos signos:

  • En primer lugar, resolvemos los cálculos que se encuentran entre paréntesis “( )”.
  • En segundo lugar, realizamos los cálculos que están agrupados dentro de los corchetes “[ ]”.
  • Finalmente, hacemos las operaciones que están dentro de las llaves “{ }”.

¿Sabías qué?

En una ecuación no deberían aparecer corchetes sin la presencia de paréntesis, ya que los paréntesis tienen la prioridad en el orden de operaciones.

Operaciones combinadas en la calculadora

Muchas calculadoras u hojas de cálculo no utilizan los corchetes ni las llaves para jerarquizar el orden de operaciones combinadas y solo aplican los paréntesis para indicar qué operaciones se realizan primero. Por ejemplo, si deseamos resolver la operación:

\sqrt{\frac{\left ( 27-15 \right )\times 8}{\left [ (11+39)-(47-19) \right ]\times 6}}

El modo de introducir esta operación en algunas calculadoras (con entrada de datos SVPAM) sería:

Como observamos, hay diferentes niveles de jerarquía en los paréntesis, que en este caso, los denotamos por colores.

En las calculadoras también debemos emplear los signos de agrupación para indicar el orden de las operaciones. El uso incorrecto de los paréntesis, o su omisión cuando se necesiten, arrojará resultados erróneos. Por ejemplo, la operación (12 − 10) / 4 da como resultado 0,5; sin embargo, si obviamos los paréntesis y solo escribimos 12 − 10 / 4, el resultado será 9,5.

METODOLOGÍA PARA RESOLVER PROBLEMAS COMBINADOS

Cuando se presentan ejercicios que combinan diversas operaciones, así como diferentes tipos de números, es recomendable que sigamos los siguientes pasos:

1. Identificamos los signos de agrupación que aparecen en el ejercicio para saber el orden en el que vamos a resolver los términos. En este ejemplo tenemos paréntesis, corchetes y llaves.

\frac{1}{12}\times \left \{ -36\times \left [ \frac{5}{3}\times \left ( -\frac{9}{4}\times 7,81+22,06 \right ) \right ] \right \}=

2. Realizamos primero las operaciones que se encuentran dentro del paréntesis.

\frac{1}{12}\times \left \{ -36\times \left [ \frac{5}{3}\times \left ( {\color{Red} -\frac{9}{4}\times 7,81+22,06} \right ) \right ] \right \}=

Multiplicación y división primero

Si en una operación tenemos dos o más términos que se suman o restan y no hay paréntesis, pero a su vez cada término tiene una multiplicación o una división, primero hacemos la multiplicación o la división antes de hacer la suma o la resta.

Multiplicamos la fracción por 7,81 ya que esta operación tiene prioridad sobre la suma. Las multiplicaciones se resuelven de manera lineal, así que basta con multiplicar −9 × 7,81, y dividir el producto de esta multiplicación entre el denominador de la fracción (4).

-9\times 7,81 = -70,29

-70,29\div 4=-17,5725

Luego realizamos la suma de este resultado con 22,06. Como se trata de una suma de números con signos diferentes, empleamos una regla de los signos: ambos números se restan y se mantiene el signo del número con mayor valor absoluto.

(-17.5725)+ (22,06)=4,4875

3. Una vez que realizamos todas las operaciones dentro del paréntesis, lo eliminamos y agregamos el resultado obtenido. Luego seguimos con las operaciones dentro de los corchetes:

\frac{1}{12}\times \left \{ -36\times \left [ {\color{Blue} \frac{5}{3}}{\color{Blue} \times 4,4875} \right ] \right \}=

Multiplicamos el número decimal por 5 y el producto lo dividimos entre 3.

5\times 4,4875=22,4375

22,4375\div 3\approx 7,48

4. Eliminamos los corchetes y colocamos el resultado obtenido. A continuación, realizamos la operación dentro de las llaves:

\frac{1}{12}\times \left \{{\color{Green} -36\times 7,48} \right \}=

Multiplicamos el número negativo por el número decimal. Aplicamos la regla de los signo para la multiplicación: (−)(+)=(−).

-36\times 7,48 = -269,28

5. Por último, resolvemos la multiplicación. En este caso solo tenemos que multiplicar el resultado anterior por la fracción 1/12, lo que es igual a solo dividir entre 12 el número −269,28.

1\times -269,28=-269,28

-269,28\div 12=-22,44

6. Escribimos el resultado:

\frac{1}{12}\times \left \{ -36\times \left [ \frac{5}{3}\times \left ( -\frac{9}{4}\times 7,81+22,06 \right ) \right ] \right \}=\boldsymbol{-22,44}

En ocasiones no se utilizan todos los signos de agrupación y se trabaja solo con paréntesis que tienen diferentes jerarquías como podemos ver en la parte superior de la imagen. En este caso, debemos resolver primero las operaciones que están dentro de los paréntesis más internos hasta terminar con los paréntesis externos.

EJERCICIOS COMBINADOS

Los ejercicios combinados pueden involucrar diferentes tipos de números y además varias operaciones, y de ser necesario, el orden para realizarlos viene determinado por los signos de agrupación.

Si los términos dentro de un signo de agrupación contienen diferentes tipos de números, por ejemplo, fracciones, decimales, potencias o radicales; será necesario que realicemos primero una transformación para unificar el tipo de número antes de resolver.

– Ejemplo:

\left \{ \frac{8}{12}\left [ 5^{3}-\left ( \frac{9}{7}-\frac{2}{3} \right ) \right ]+\sqrt{4} \right \}=

  • Primero resolvemos la operación dentro de los paréntesis:

\left \{ \frac{8}{12}\left [ 5^{3}-\left ({\color{Red} \frac{9}{7}-\frac{2}{3} }\right ) \right ]+\sqrt{4} \right \}=

En este caso, es una resta de fracciones:

\frac{9}{7}-\frac{2}{3}=\frac{27-14}{21}=\frac{13}{21}

  • Eliminamos los paréntesis y colocamos el resultado. Luego resolvemos la operación dentro de los corchetes:

\left \{ \frac{8}{12}\left [ {\color{Blue} 5^{3}-\frac{13}{21}} \right ]+\sqrt{4} \right \}=

Resolvemos la potencia:

5^{3}=5\times 5\times 5 = 125

Después resolvemos la resta:

\frac{125}{1}-\frac{13}{21}=\frac{2.625-13}{21}=\frac{2.612}{21}

Expresamos la fracción como su número decimal equivalente por medio de una división entre su numerador y denominador:

2.612\div 21=124,38

  • Eliminamos lo corchetes y escribimos el nuevo resultado. Ahora, resolvemos las operaciones dentro de las llaves:

\left \{ {\color{Green} \frac{8}{12}\times 124,38} +\sqrt{4}\right \}=

Tenemos dos operaciones dentro de las llaves, y como las multiplicaciones tienen prioridad sobre las sumas, hacemos la multiplicación de la fracción con el número decimal primero:

8\times 124,38=995,04

995,04\div 12=82,92

Después realizamos la suma con el radical:

\left \{ 82,92+\sqrt{4} \right \}=

Resolvemos la raíz cuadrada. En este caso, es un cuadrado perfecto y la raíz es exacta.

\sqrt{4}=2

Finalmente sumamos:

82,92+2=84,92

  • Por último, escribimos el resultado:

\left \{ \frac{8}{12}\left [ 5^{3}-\left ( \frac{9}{7}-\frac{2}{3} \right ) \right ]+\sqrt{4} \right \}=\boldsymbol{84,92}

Las operaciones básicas utilizadas en aritmética son la suma, la resta, la multiplicación y la división. Sin embargo, podemos encontrar otras operaciones, como la potenciación, que en esencia es una multiplicación sucesiva de factores iguales. Por ejemplo, si queremos conocer el resultado de 23, solo efectuamos la operación 2 x 2 x 2 = 8.

¡A practicar!

Determina la solución de los siguientes ejercicios combinados.

  • \frac{8}{9}\left \{ -14,7+\frac{6^{3}}{4}\left [ 3^{2}+\sqrt{9}\times \left ( 6,5-\frac{13}{4} \right ) \right ] \right \}=
Solución

\frac{8}{9}\left \{ -14,7+\frac{6^{3}}{4}\left [ 3^{2}+\sqrt{9}\times \left ( 6,5-\frac{13}{4} \right ) \right ] \right \}=\boldsymbol{886,9\widehat{3}}

  • \left \{ \frac{1}{3}\times \frac{7}{8}+\sqrt{4}\left [ 2^{3}-\frac{21}{9}\left ( 0,75+\frac{3}{2} \right ) \right ] \right \}=
Solución

\left \{ \frac{1}{3}\times \frac{7}{8}+\sqrt{4}\left [ 2^{3}-\frac{21}{9}\left ( 0,75+\frac{3}{2} \right ) \right ] \right \}=\boldsymbol{5,79}

  • 2\left \{5^{3} \left [ \frac{1}{5}\left ( 8,36-\sqrt{25} \right )+3 \right ] \right \}=
Solución

2\left \{5^{3} \left [ \frac{1}{5}\left ( 8,36-\sqrt{25} \right )+3 \right ] \right \}=\boldsymbol{918}

RECURSOS PARA DOCENTES

Artículo “¿Cómo realizar ejercicios combinados con fracciones?”

Este recurso describe por medio de ejemplos el procedimiento para realizar operaciones combinadas entre números naturales, fracciones y potencias.

VER

Artículo “Los números irracionales”

El enlace que se presenta explica las características y propiedades de los números irracionales, así como ejemplos de esta categoría de números.

VER

Artículo “Resolución de cálculos combinados con paréntesis, corchetes y llaves”

Con este material podrá expandir la práctica sobre las operaciones combinadas y sus respectivos signos de agrupación.

VER

 

CAPÍTULO 2 / TEMA 1

adición y sustracción

La adición y la sustracción son dos operaciones muy usadas en la cotidianidad. La primera consiste en combinar o agrupar números; y la segunda, en cambio, consiste en quitar números a un grupo. Saber los valores posicionales de cada cifra nos ayudan a hacer sumas y restas con números grandes por reagrupación de sus unidades, decenas y centenas. 

Las primeras operaciones básicas que todos aprendemos son la adición y la sustracción. Estas nos ayudan día a día en cálculos cotidianos, como saber cuántos juguetes tenemos en total, cuánto dinero gastamos en el desayuno, cuánta tarea nos falta por hacer o cuántas horas faltan para ver nuestro programa favorito.

ADICIÓN POR REAGRUPACIÓN

La adición es una operación básica en la que combinamos dos o más números para obtener una cantidad final o total. El símbolo empleado para hacer esta operación es “+“.

Toda adición consta de dos partes:

  • Sumandos: son los números que vamos a sumar.
  • Suma: es el resultado de la suma.

La adición por reagrupación es un método que consiste en agrupar las unidades, decenas y centenas del número. Para sumar dos números como 12.468 y 147.314, los pasos son los siguientes:

1. Ubica los sumandos uno arriba del otro de tal manera que los valores posicionales estén en una misma columna, es decir, unidades con unidades, decenas con decenas, centenas con centenas, y así sucesivamente.

2. Suma cada columna a partir de las unidades. Escribe en la parte inferior de la columna el resultado. Si el resultado de la suma en una columna es de dos cifras, coloca el número de la unidad de dicho número en la parte inferior y la decena la sumanos a la columna siguiente.

Propiedades de la adición

Propiedad conmutativa

Esta propiedad indica que el orden de los números no afecta el resultado de la suma.

– Ejemplo:

  • 12.046 + 71 = 71 + 12.046

 

Observa que sin importar la ubicación de los sumandos, el resultado es el mismo.

¡Hay otra solución! 

Podemos representar la propiedad conmutativa de otra manera. Para la suma anterior es así:

Propiedad asociativa

Esta propiedad indica que la forma en la que agrupemos los sumandos no afecta el resultado.

– Ejemplo:

  • (856.127 + 12.713) + 82.311 = 951.151

Primero resolvemos la suma que está dentro de los paréntesis y al final sumamos 82.311.

  • 856.127 + (12.713 + 82.311) = 951.151

Primero resolvemos las sumas que están dentro de los paréntesis y al final sumamos 856.127.

En ambas ocasiones el resultado es el mismo sin importar la manera en la que se agruparon.

¡Hay otra solución!

Podemos representar la propiedad asociativa de otra manera. Para la suma anterior es así:

Elemento neutro

Esta propiedad indica que si a cualquier número le sumamos cero el resultado será el mismo número.

– Ejemplo:

  • 148.583 + 0 = 148.583

Ábaco: una herramienta para contar

El ábaco es una herramienta o instrumento que se utiliza para realizar cálculos manuales a través de contadores o marcadores que representan ciertas cantidades. Es uno de los objetos más antiguos utilizados por el hombre para realizar sus operaciones matemáticas y quizás el de mayor distribución a nivel mundial.

sustracción por reagrupación

La sustracción, al igual que la adición, es una operación básica. Es considerada una operación opuesta a la adición, ya que consiste en quitar una cantidad a otra. Se representa con el símbolo ““.

Las partes de esta operación son:

  • Minuendo: es el número al cual le quitamos una cantidad.
  • Sustraendo: es el número que resta al minuendo.
  • Diferencia: es el resultado de la operación.

La sustracción por reagrupación es un método que consiste en agrupar las unidades, decenas y centenas del número. Para restar dos números como 549.763 y 95.126, los pasos son los siguientes:

1. Ubica el minuendo sobre el sustraendo y verifica que los valores posicionales de cada cifra coincidan en la misma columna.

2. Comienza a restar desde la columna de las unidades, de derecha a izquierda. Cuando en una columna una cifra del minuendo es menor que la del sustraendo, esta toma una decena del minuendo de la izquierda. En estos casos, el minuendo que prestó una decena se reduce y debemos considerar el valor de la nueva cifra.

¿Sabías qué?
En la sustracción no existen las mismas propiedades que en la adición.

Propiedades de la sustracción

Elemento neutro

Si a un número se le resta 0, el resultado es el mismo número.

– Ejemplo:

  • 245.630 − 0 = 245.630

Elemento simétrico

Si dos números iguales se restan, el resultado siempre es 0.

– Ejemplo:

  • 983.124 − 983.124 = 0

En una ciudad se recolectaron 55.879 botellas de plástico para reciclar. Si solo se han reciclado 48.250 botellas, ¿cuántas botellas faltan para terminar la tarea? Responder esta pregunta es fácil cuando sabemos las restas por reagrupación. Así que restamos: 55.879 – 49.250 = 6.629. Entonces, aún faltan 6.629 botellas por reciclar.

Problemas de adición y sustracción

Para resolver problemas matemáticos debemos seguir una serie de pasos. Observa estos ejemplos:

1. Juan tenía en el banco $ 132.798 y le pagaron por la venta de su vehículo $ 369.000. ¿Cuánto dinero tiene Juan ahora?

  • Datos

Dinero en el banco: $ 132.798

Pago por el vehículo: $ 369.000

  • Pregunta

¿Cuánto dinero tiene Juan ahora?

  • Piensa

Para saber la cantidad total de dinero que Juan tiene ahora debemos sumar el dinero que tenía en el banco y el dinero que le pagaron.

  • Calcula

  • Solución

Juan tiene $ 501.798 en el banco.


2. Gabriel jugaba un videojuego. En un día obtuvo 412.312 puntos en el primer partido, 469.142 puntos en el segundo partido y 111.222 en el tercero. ¿Cuántos puntos obtuvo en total ese día?

  • Datos

Puntos en el primer partido: 412.312

Puntos en el segundo partido: 469.142

Puntos en el tercer partido: 111.222

  • Pregunta

¿Cuántos puntos obtuvo en total?

  • Piensa

Para hallar la cantidad total de puntos solo debemos sumar todos los puntos que obtuve en los tres partidos. Según la propiedad asociativa, no importa cómo se agrupen los números, el resultado siempre será el mismo.

  • Calcula

  • Solución

Gabriel obtuvo 992.676 puntos ese día en el videojuego.


3. Carla y Pedro tomaban fotografías en el parque. Carla tomó 2.546 fotografía y Pedro tomó 620 fotografía menos que ella. ¿Cuántas fotografía tomaron los dos?

  • Datos

Fotografía tomadas por Carla: 2.546

Fotografía tomadas por Pedro: 620 menos que Carla

  • Pregunta

¿Cuántas fotografía tomaron los dos?

  • Piensa
  1. Hay que hallar las fotos que tomó Pedro. Para esto restamos 620 a la cantidad de fotos que tomó Carla.
  2. Para saber el total de fotos tomadas entre los dos solo debemos sumar la cantidad de foto que tomaron ambos.
  • Calcula

1. Fotos tomadas por Pedro:

2. Fotos tomadas por los dos:

  • Solución

Carla y Pedro tomaron 4.472 fotografías.


¡A practicar!

Resuelve las siguientes operaciones:

  • 18.654 + 987 =
    Solución
    18.654 + 987 = 19.641
  • 546.821 + 12.547 =
    Solución
    546.821 + 12.547 = 559.368
  • 452.365 − 0 =
    Solución
    452.365 − 0 = 452.365
  • 89.546 + 6.547 + 3.245 =
    Solución
    89.546 + 6.547 + 3.245 = 99.338
  • 81.974 − 9.634 =
    Solución
    81.974 − 9.634 = 72.340
  • 15.689 − 15.689 =
    Solución
    15.689 − 15.689 = 0
  • 35.785 + 54.753 + 56.852 =
    Solución
    35.785 + 54.753 + 56.852 =147.390
  • 258.369 + 0 =
    Solución
    258.369 + 0 = 258.369

RECURSOS PARA DOCENTES

Artículo “Operaciones básicas de los número naturales y sus propiedades”

Este artículo explica las propiedades de las operaciones básicas con los números naturales, lo que te permitirá ampliar el tema.

VER

Artículo “Cómo enseñar a sumar y restar”

Este recurso contiene sugerencias y prácticas que puedes emplear para enseñar operaciones como la suma y la resta.

VER

Artículo “Resta de números naturales

Este recurso te permitirá profundizar sobre los elementos que conforman una sustracción, sus propiedades y usos.

VER

CAPÍTULO 2 / TEMA 5 (REVISIÓN)

OPERACIONES CON NATURALES | ¿QUÉ APRENDIMOS?

ADICIÓN

LA ADICIÓN ES UNA OPERACIÓN MATEMÁTICA QUE UNE O AGRUPA DOS O MÁS CANTIDADES. EN DICHA UNIÓN SE FORMA OTRA CANTIDAD QUE ES DENOMINADA SUMA O RESULTADO. LOS ELEMENTOS DE LA ADICIÓN SON LOS SUMANDOS Y LA SUMA. LA ADICIÓN ES UNA DE LAS CUATRO OPERACIONES BÁSICAS DE LAS MATEMÁTICAS.

EL SIGNO USADO PARA LA SUMA ES + Y SE LEE “MÁS”. EN LA IMAGEN VEMOS QUE “UNO MÁS TRES ES IGUAL A CUATRO”.

SUSTRACCIÓN

LA RESTA, TAMBIÉN LLAMADA SUSTRACCIÓN, ES UNA OPERACIÓN MATEMÁTICA EN LA QUE QUITAMOS UNA CANTIDAD LLAMADA SUSTRAENDO A OTRA LLAMADA MINUENDO. SIEMPRE EL SUSTRAENDO DEBE SER MENOR AL MINUENDO Y EL RESULTADO QUE SE OBTIENE SE DENOMINA RESTA. LA RESTA ES UNA DE LAS CUATRO OPERACIONES MATEMÁTICAS MÁS IMPORTANTES.

UNA MANERA SENCILLA DE RESTAR CANTIDADES PEQUEÑAS ES CON LOS DEDOS. CUENTA 4 DEDOS Y LUEGO QUITA 3 DEDOS, ¿CUÁNTOS QUEDAN? ¡1! ES DECIR: 4 V 3 = 1.

¿QUÉ ES LA MULTIPLICACIÓN?

LA MULTIPLICACIÓN ES UNA SUMA REPETIDA. ESTA OPERACIÓN CONSISTE EN SUMAR UN NÚMERO TANTAS VECES COMO INDICA OTRO NÚMERO, POR EJEMPLO, 3 × 5 ES IGUAL A SUMAR 3 VECES EL NÚMERO 5, ASÍ QUE 5 + 5 + 5 = 15 Y POR LO TANTO 3 × 5 = 15. SUS ELEMENTOS SE DENOMINAN FACTORES, Y EL RESULTADO OBTENIDO PRODUCTO.

LA MULTIPLICACIÓN SIRVE PARA ABREVIAR SUMAS REPETIDAS CON IGUALES CANTIDADES. 2 × 2 ES IGUAL A 2 VECES 2 QUE ES IGUAL A 4.

FRACCIONES

CADA VEZ QUE CONTAMOS OBJETOS USAMOS LOS NÚMEROS NATURALES: 1, 2, 3, 4,… PERO NO SIEMPRE ES POSIBLE USARLOS, PUES SI TENEMOS UNA PARTE DE UN ENTERO TENEMOS QUE USAR UN TIPO ESPECIAL DE NÚMERO LLAMADO FRACCIÓN. LAS FRACCIONES REPRESENTAN UNA PARTE DE UN TODO QUE SE HA DIVIDIDO EN PARTES IGUALES Y TIENEN DOS ELEMENTOS: UN NUMERADOR Y UN DENOMINADOR.

EL REPARTO ES LA BASE DE LAS FRACCIONES Y SURGE DE LA NECESIDAD DE PARTIR ALIMENTOS.

CAPÍTULO 2 / TEMA 2

sustracción

LA RESTA O SUSTRACCIÓN ES LA OPERACIÓN INVERSA A LA SUMA. EN ESTE CÁLCULO “QUITAMOS” UNA CANTIDAD A OTRA, POR EJEMPLO, SI TENEMOS 8 CARAMELOS Y NOS COMEMOS 3, AL FINAL TENDREMOS SOLO 5. AUNQUE TIENE MUCHA RELACIÓN CON LA SUMA, NO CUMPLE CON LAS MISMAS PROPIEDADES. EN ESTE ARTÍCULO APRENDERÁS CÓMO RESTAR NÚMEROS DE HASTA TRES CIFRAS.

LA SUSTRACCIÓN Y SUS ELEMENTOS

LA SUSTRACCIÓN ES UNA OPERACIÓN QUE CONSISTE EN RESTAR O QUITAR UNA CANTIDAD LLAMADA SUSTRAENDO A OTRA LLAMADA MINUENDO.

– EJEMPLO:

MARÍA TENÍA 10 MAGDALENAS Y REGALÓ 8 MAGDALENAS A SUS AMIGOS, ¿CUÁNTAS MAGDALENAS LE QUEDARON?

ESTE PROBLEMA LO SOLUCIONAMOS POR MEDIO DE UNA SUSTRACCIÓN. AL MINUENDO 10 LE “QUITAMOS” EL SUSTRAENDO 8 (10 − 8). POR ESTO, LA RESTA O DIFERENCIA ES 2.

UNA DE LAS FORMAS MÁS SENCILLAS DE HACER RESTAS DE PEQUEÑAS CANTIDADES ES CON LOS DEDOS O CON PALITOS. POR EJEMPLO, SI DESEAS RESTARLE 4 A 9, DEBES TOMAR 9 PALITOS, LUEGO QUITAS 4 PALITOS Y LA CANTIDAD DE PALITOS QUE TE QUEDEN SERÁ LA DIFERENCIA O RESTA. LO REPRESENTAMOS ASÍ: 9 − 4 = 5. SEGURO TIENES PALITOS EN TU CASA. ¡INTÉNTALO!

 

RESTA CON TABLAS POSICIONALES

ES UNA MANERA DE REPRESENTAR LAS RESTAS O SUSTRACCIONES. CONSISTE EN COLOCAR EN COLUMNAS LAS UNIDADES, LAS DECENAS Y LAS CENTENAS DE CADA NÚMERO. POR EJEMPLO:

COMO VES, PRIMERO RESTAMOS LA UNIDADES (9 − 8 = 1) Y LUEGO LAS DECENAS (4 − 0 = 4).

¡ES TU TURNO!

REALIZA LAS SIGUIENTES RESTAS:

  • 79 − 6
  • 36 − 4
  • 25 − 2
SOLUCIÓN

¿SABÍAS QUÉ?
SI NO HAY UN NÚMERO EN LA CASILLA DE LAS DECENAS O CENTENAS SE ENTIENDE QUE HAY UN CERO. 

RESTAS PRESTANDO

CUANDO LA UNIDAD DEL MINUENDO ES MENOR QUE LA DEL SUSTRAENDO TENEMOS QUE “PRESTAR” UNA DECENA. SI SUCEDE CON LA DECENA DEL MINUENDO, PRESTAMOS UNA CENTENA. LOS PASOS SON LOS SIGUIENTES:

1. COLOCAMOS EL MINUENDO SOBRE EL SUSTRAENDO. DIBUJAMOS LA LÍNEA Y EL SIGNO “MENOS”.

 

2. COMO A 3 NO SE LE PUEDE RESTAR 7, PRESTAMOS UNA DECENA A LA POSICIÓN DE LAS UNIDADES. DE ESTE MODO, EL 3 SE TRANSFORMA EN 13. COMO 6 PRESTÓ UNA DECENA, LO TACHAMOS Y AHORA SE CONVIERTE EN 5.

 

3. RESTAMOS LAS UNIDADES. TENEMOS QUE 13 − 7 = 6.

 

4. RESTAMOS LA DECENAS. TENEMOS QUE 5 − 2 = 3.

 

– OTROS EJEMPLOS:

 

TAMBIÉN PUEDE OCURRIR CON LAS CENTENAS. OBSERVA:

PROPIEDADES DE LA SUSTRACCIÓN

LA SUSTRACCIÓN NO CUMPLE CON LAS MISMAS PROPIEDADES DE LA ADICIÓN. LA SUSTRACCIÓN NO CUMPLE CON LA PROPIEDAD CONMUTATIVA, NI CON LA PROPIEDAD ASOCIATIVA.

ELEMENTO NEUTRO

LA RESTA DE CUALQUIER NÚMERO CON CERO DA COMO RESULTADO EL NÚMERO INICIAL.

¿CÓMO COMPROBAR UNA RESTA?

CON LA SUMA DEL SUSTRAENDO Y LA DIFERENCIA O RESTA.

¡ES TU TURNO!

REALIZA ESTAS RESTAS Y LUEGO COMPRUEBA EL RESULTADO.

  • 966 − 82
SOLUCIÓN
966 − 82 = 884

COMPROBACIÓN:

82 + 884 = 966

  • 32 − 27
SOLUCIÓN
32 − 27 = 5

COMPROBACIÓN:

27 + 5 = 32

LA RESTA NO TIENE LAS MISMAS PROPIEDADES DE LA SUMA YA QUE SU OPERACIÓN ES LA INVERSA. LA RESTA NO ES CONMUTATIVA PORQUE SI CAMBIAMOS DE POSICIÓN EL SUSTRAENDO Y EL MINUENDO SU RESULTADO NO VA A SER UN NÚMERO NATURAL. LA RESTA NO ES ASOCIATIVA PORQUE AL CAMBIAR EL ORDEN DE LAS CANTIDADES CAMBIA SU RESULTADO.

¡PRACTIQUEMOS LO APRENDIDO!

1. JOSÉ QUIERE COMPRAR UNOS INSTRUMENTOS QUE CUESTAN $ 257. SI HA AHORRADO $ 129, ¿CUÁNTO DINERO LE FALTA  PARA PODER COMPRAR LOS INSTRUMENTOS?

  • DATOS

PRECIO DE LOS INSTRUMENTOS: $ 257

DINERO AHORRADO: $ 129

  • PREGUNTA

¿CUÁNTO DINERO LE FALTA A JOSÉ PARA PODER COMPRAR LOS INSTRUMENTOS?

  • ANALIZA

TENEMOS QUE HACER UNA RESTA. EL MINUENDO ES 257 Y EL SUSTRAENDO ES 129. RESTAMOS PRIMERO LAS UNIDADES, LUEGO LAS DECENAS Y LAS CENTENAS.

  • CALCULA

  • RESPUESTA

A JOSÉ LE FALTAN $ 128 PARA PODER COMPRAR LOS INSTRUMENTOS.

 


2. UNA ESCUELA PLANIFICA UN VIAJE ESCOLAR. EN TOTAL VAN 240 PERSONAS ENTRE ESTUDIANTES Y PROFESORES. SI HAY 25 PROFESORES, ¿CUÁNTOS ESTUDIANTES VAN AL VIAJE?

  • DATOS

TOTAL DE ESTUDIANTES Y PROFESORES: 240

TOTAL DE PROFESORES: 25

  • PREGUNTA

¿CUÁNTOS ESTUDIANTES VAN AL VIAJE?

  • ANALIZA

TENEMOS QUE HACER UNA RESTA. EL MINUENDO ES 240 Y EL SUSTRAENDO ES 25. RESTAMOS PRIMERO LAS UNIDADES, LUEGO LAS DECENAS Y LAS CENTENAS.

  • CALCULA

  • RESPUESTA

VIAJAN 215 ESTUDIANTES.

 


3. A UN MUSEO ASISTIERON 389 PERSONAS EN UN DÍA. SI DURANTE LA MAÑANA SOLO FUERON 19 PERSONAS, ¿CUÁNTAS PERSONAS FUERON EN LA TARDE?

  • DATOS

ASISTENTES EN UN DÍA: 389

ASISTENTES DE LA MAÑANA: 19

  • PREGUNTA

¿CUÁNTAS PERSONAS FUERON EN LA TARDE?

  • ANALIZA

TENEMOS QUE HACER UNA RESTA. EL MINUENDO ES 389 Y EL SUSTRAENDO ES 19. RESTAMOS PRIMERO LAS UNIDADES, LUEGO LAS DECENAS Y LAS CENTENAS.

  • CALCULA

  • RESPUESTA

EN LA TARDE FUERON 370 PERSONAS AL MUSEO.

 


4. EL SEÑOR PEDRO TIENE 436 MANZANAS VERDES Y ROJAS PARA VENDER. 184 MANZANAS SON VERDES Y LAS DEMÁS SON ROJAS. ¿CUÁNTAS MANZANAS SON ROJAS?

  • DATOS

CANTIDAD DE MANZANAS: 436

CANTIDAD DE MANZANAS VERDES: 184

  • PREGUNTA

¿CUÁNTAS MANZANAS SON ROJAS?

  • ANALIZA

DEBEMOS RESTAR ESTAS CANTIDADES. 436 ES EL MINUENDO Y 184 ES EL SUSTRAENDO.

  • CALCULA

  • RESPUESTA

252 MANZANAS SON ROJAS.

 


LA SUSTRACCIÓN ES UNA OPERACIÓN QUE CONSISTE EN RESTAR O QUITAR UNA CANTIDAD LLAMADA SUSTRAENDO A OTRA LLAMADA MINUENDO. LAS PODEMOS REPRESENTAR DE MANERA HORIZONTAL O DE MANERA VERTICAL POR MEDIO DE UNA TABLA POSICIONAL. EL SIGNO MENOS (−) ES UN POCO MÁS LARGO QUE EL GUIÓN (-) Y UN POCO MÁS CORTO QUE LA RAYA (—).

¡A PRACTICAR!

1. RESUELVE LAS SIGUIENTES RESTAS:

  • 48 − 12
SOLUCIÓN
48 − 12 = 36 
  • 589 − 354
SOLUCIÓN
589 − 354 = 235
  • 16 − 14
SOLUCIÓN
16 − 14 = 2
  • 708 − 573
SOLUCIÓN
708 − 573 = 135
  • 86 − 45
SOLUCIÓN
86 − 45 = 41
  • 78 − 28
SOLUCIÓN
78 − 28 = 50
  • 337 − 182
SOLUCIÓN
337 − 182 = 155

 

 

2. ¿QUÉ NÚMERO FALTA?

  • ____ − 342 = 484
SOLUCIÓN
826 − 342 = 484
  • ____ − 182 = 155
SOLUCIÓN
337 − 182 = 155
  • ____ − 82 = 464
SOLUCIÓN
546 − 82 = 464
  • ____ − 6 = 315
SOLUCIÓN
321 − 6 = 315
  • ____ − 14 = 313
SOLUCIÓN
327 − 14 = 313
  • ____ − 317 = 227
SOLUCIÓN
544 − 317 = 227

 

3. COLOREA EL DIBUJO SEGÚN EL RESULTADO DE LAS SUMAS Y RESTAS.

 

RECURSOS PARA DOCENTES

Artículo “Resta de números naturales”

Con el siguiente artículo podrás ampliar las estrategias de enseñanza para la resta de números naturales.

VER