CAPÍTULO 5 / TEMA 6

Volumen y capacidad

El volumen y la capacidad son dos conceptos que empleamos a diario. A veces necesitamos medir la cantidad de agua para una receta y otras veces necesitamos saber cuánto puede contener un molde para tortas. En el primer caso hablamos de volumen y en el segundo de capacidad. A pesar de estar relacionados, cada magnitud emplea distintas unidades de medida para los cálculos.

Cálculo de volumen de cubos

Así como en área empleamos cuadrados como referencia para medir una superficie, en la medición del volumen empleamos cubos como referencia.

El volumen es el espacio ocupado por un objeto. Por ejemplo, si una caja tiene un volumen de 200 cm3 (centímetros cúbicos) quiere decir que está formado por 200 cubos que miden 1 cm en cada lado, cada uno.

Para comprender mejor el concepto de volumen, debemos aprender cómo calcularlo en cubos. La fórmula es la siguiente:

V=a\times a\times a

Donde:

V = volumen.

a = longitud de los lados del cubo.

La fórmula de volumen también puede expresarse como V=a^{3}

– Ejemplo:

Calcula el volumen del siguiente cubo:

Como es un cubo, cada lado mide 3 cm y hay que aplicar la fórmula de volumen, es decir, multiplicar la longitud de un lado tres veces:

V = 3\, cm\times 3\, cm\times3\, cm = \mathbf{27\, cm^{3}}

Observa que la unidad centímetro se multiplicó tres veces, por lo tanto, al final se expresa en cm3.

VER INFOGRAFÍA

¿Sabías qué?
Un cubo tiene tres dimensiones: alto, ancho y profundidad.
Cuando medimos, relacionamos una cantidad con una unidad de medida base, en otras palabras, medir es un proceso de comparación. El volumen es una característica muy importante de los cuerpos porque permite saber cuánto ocupa el mismo en el espacio. Los científicos suelen medir volúmenes de muestras en sus diferentes estudios y ensayos a través de equipos especializados.

Comparación de volúmenes

Todos los objetos ocupan un lugar en el espacio, por lo tanto tienen volumen. Ese espacio ocupado depende de las características del material, por eso, para realizar comparaciones entre objetos usamos medidas de volumen.

Cuanto mayor sea el lugar que ocupe un cuerpo en el espacio, mayor será su volumen. Por ejemplo, el volumen que ocupa un grano de arroz no es igual al volumen que ocupa un edificio.

Observa las siguientes figuras:

Imaginemos que cada cubo equivale a 1 cm3, ¿cuántos cubos de 1 cm3 tiene la figura 1?, ¿y la figura 2?, ¿cuál figura tiene mayor volumen?

  • La figura 1 tiene 5 cubos de 1 cm3, así que su volumen es de 5 cm3.
  • La figura 2 tiene 15 cubos de 1 cm3, así que su volumen es de 15 cm3.

La figura 2 tiene mayor volumen que la figura 1 y, por lo tanto, ocupa mayor espacio.

Otras unidades de volumen

La unidad empleada por el Sistema Internacional de Unidades es el metro cúbico (m3), sin embargo, esta unidad tiene múltiplos y submúltiplos que en situaciones cotidianas suelen emplearse, por ejemplo, el milímetro cúbico (mm3), el decímetro cúbico (dm3), el centímetro cúbico (cm3), etc.

También existen otras unidades de volumen como pulgada cúbica (pulg3) y pie cúbico (pie3).

El litro y las unidades de capacidad

La capacidad es la propiedad que tienen los objeto de contener a otras sustancias dentro de él. Por ejemplo, es común ver en el supermercado diferentes productos con envases en los que hay cierto volumen en su interior, ya sea de gaseosas, aceites o detergentes. El litro (L) es la medida de capacidad que vemos en las etiquetas de estos artículos.

Al ocupar un lugar en el espacio, todos los objetos tienen volumen pero no todos tienen capacidad. Por ejemplo, un objeto sólido como una barra de metal, tiene volumen pero no tiene capacidad.

Relación entre capacidad y volumen

La capacidad que tiene un recipiente es equivalente al volumen del objeto. De este modo, si construimos un cubo de 10 cm en cada lado y lo llenamos con agua en su interior, notaremos que la capacidad de ese cubo es igual a 1 litro ya que su volumen es igual a 1.000 cm3.

Recordemos que:

V=10 \, cm\times 10 \, cm\times 10 \, cm = 1.000\,\, cm^{3}

1\: L = 1.000\: cm^{3}

Algunas equivalencias útiles

  • 1 litro es igual a 2 medios litros.

1\: L = \left ( \frac{1}{2}+\frac{1}{2} \right )\: L

 

  • 1 litro es igual a 4 cuartos de litro.

1\: L = \left ( \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4} \right )\: L

 

  • Medio litro es igual a 2 cuartos de litro.

\frac{1}{2}\: L = \left ( \frac{1}{4}+\frac{1}{4} \right )\: L

 

¡A practicar!

  1. Calcula el volumen de los siguientes cubos.

a)

Solución
V = 2 x 2 x 2 = 8 cm3.

b)

Solución
V = 1 x 1 x 1 = 1 cm3.

c)

Solución
V = 4 x 4 x 4 = 64 cm3.

d)

Solución
V = 5 x 5 x 5 =125 cm3.

2. ¿Cuál de los siguientes cubos tiene un volumen igual a 343 cm3?

a) 

b) 

c) 

d) 

Solución
b) Porque V = 7\, cm\times 7\, cm\times7\, cm = \mathbf{343\, cm^{3}}.

 

RECURSOS PARA DOCENTES

Video “Volumen de los cuerpos sólidos”

Este video muestra cómo se forman los cuerpos geométricos y explica las diferentes fórmulas de volumen en cada caso.

VER

Artículo “Volumen y capacidad: aplicaciones”

Este artículo explica las diferentes unidades de medición de volumen, al igual que las diferentes situaciones en las que puedes aplicarlo.

VER

Artículo “Sistemas de medición”

En este artículo destacado se explica qué es un sistema de medición, sus aplicaciones y los diferentes tipos de instrumentos para medir algunas unidades.

VER

CAPÍTULO 3 / TEMA 1

UNIDADES DE MEDIDA

CASI TODO LO QUE NOS RODEA PUEDE SER MEDIDO, INCLUSO NUESTRO PROPIO CUERPO, POR EJEMPLO, ¿QUÉ TAN ALTO ERES?, ¿CUÁNTO PESAS?, ¿CUÁNTA AGUA BEBES AL DÍA? TODAS ESTAS SON PREGUNTAS QUE PODEMOS RESPONDER CON UNIDADES DE MEDIDA COMO EL METRO, EL KILOGRAMO O EL LITRO. ¡APRENDAMOS LAS UNIDADES DE MEDIDA!

¿QUÉ ES UNA UNIDAD DE MEDIDA?

¿PUEDES MEDIR TU ESTATURA? ¡CLARO! SABEMOS QUÉ TAN ALTOS SOMOS GRACIAS A UNA UNIDAD LLAMADA METRO. PERO TAMBIÉN SABEMOS QUE TAN PESADOS SOMOS POR UNIDAD LLAMADA KILOGRAMO.

LAS UNIDADES DE MEDIDA SON LAS CANTIDADES ESTABLECIDAS PARA UNA MAGNITUD, ES DECIR, LAS MEDIDAS ACEPTADAS EN TU PAÍS PARA SABER LA LONGITUD, LA MASA, LA CAPACIDAD O EL TIEMPO DE ALGO.

¿SABÍAS QUÉ?
UNA MAGNITUD ES UNA CANTIDAD QUE PUEDE SER MEDIDA, COMO LA LONGITUD, LA MASA O EL TIEMPO.
LA UNIDAD DE MEDIDA PRINCIPAL DE LA LONGITUD ES EL METRO. EXISTEN UNIDADES DE MEDIDA MAYORES, COMO EL KILÓMETRO, O MENORES, COMO EL CENTÍMETRO. LA REGLA ES UN INSTRUMENTO QUE SIRVE PARA MEDIR DISTANCIAS CORTAS DESDE UN PUNTO A OTRO O LA LONGITUD DE LOS OBJETOS PEQUEÑOS, COMO LA DE UN LÁPIZ. POR LO GENERAL LAS REGLAS MIDEN HASTA 30 CENTÍMETROS.

¿POR QUÉ MEDIMOS LAS COSAS?

MEDIR ES IMPORTANTE PORQUE NOS PERMITE COMPRENDER CÓMO FUNCIONA EL MUNDO QUE NOS RODEA. GRACIAS A LAS MEDIDAS HACEMOS COMPARACIONES PARA SABER QUÉ TAN ALTO, LARGO O PESADO ES UN OBJETO. DEL MISMO MODO, PODEMOS SABER A QUÉ DISTANCIA NOS ENCONTRAMOS DE UN LUGAR O CUÁNTOS LITROS DE PINTURA SE NECESITAN PARA PINTAR UNA CASA. LA FACILIDAD DE HACER COSAS HA LLEGADO CON LAS UNIDADES DE MEDIDA Y SU APLICACIÓN.

CUANDO VAMOS AL MERCADO, ¿CÓMO PEDIMOS LAS FRUTAS, EL QUESO O LA CARNE? ¡EN KILOGRAMOS! POR EJEMPLO, PODEMOS PEDIR 1 KILOGRAMO DE CARNE, 1/2 KILOGRAMO DE QUESO O 300 GRAMOS DE FRESAS. PARA ESTO, LAS PERSONAS UTILIZAN UN INSTRUMENTO LLAMADO BALANZA. LA BALANZA SIRVE PARA MEDIR LA MASA DE LOS ALIMENTOS Y DE CUALQUIER OBJETO.

UNIDADes CONVENCIONALes

LAS UNIDADES CONVENCIONALES SON AQUELLAS RECONOCIDAS EN LA MAYORÍA DE LOS PAÍSES. LAS CUATRO MAGNITUDES MÁS CONOCIDAS SON LA LONGITUD, LA MASA, LA CAPACIDAD Y EL TIEMPO.

EL SISTEMA INTERNACIONAL DE UNIDADES, TAMBIÉN CONOCIDO COMO “SI”, ES EL CONJUNTO DE UNIDADES DE MEDIDAS ACEPTADAS EN CASI TODOS LOS PAÍSES DEL MUNDO. ESTE SISTEMA ESTABLECE LAS UNIDADES PARA SIETE MAGNITUDES, ENTRE ESAS, EL SEGUNDO PARA EL TIEMPO; EL METRO PARA LA LONGITUD, EL KILOGRAMO PARA LA MASA; Y EL KELVIN PARA LA TEMPERATURA.

LONGITUD

SE UTILIZA PARA MEDIR LA DISTANCIA ENTRE DOS CUERPOS. CUANDO ESTAS DISTANCIAS SON GRANDES, USAMOS LOS METROS, PERO SI SON MUY PEQUEÑAS USAMOS LOS CENTÍMETROS.

POR EJEMPLO, UN NIÑO PUEDE MEDIR MÁS DE 1 METRO DE ALTURA Y UN BEBÉ PUEDE MEDIR UNOS 60 CENTÍMETROS.

MASA

SE UTILIZA PARA MEDIR LA CANTIDAD DE MATERIA DE UN CUERPO. CUÁNDO LA MASA ES GRANDE USAMOS LOS KILOGRAMOS, PERO SI SON PEQUEÑAS USAMOS LOS GRAMOS.

POR EJEMPLO, UN BEBÉ PUEDE PESAR DE 3 A 4 KILOGRAMOS Y UNA MANZANA PUEDE LLEGAR A PESAR 250 GRAMOS.

CAPACIDAD

SE UTILIZA PARA ESTABLECER LA CANTIDAD DE LÍQUIDO QUE TIENE UN RECIPIENTE. CUANDO LA CANTIDAD ES GRANDE USAMOS LOS LITROS, PERO SI ES PEQUEÑA USAMOS LOS MILILITROS.

POR EJEMPLO, UNA JARRA TIENE CAPACIDAD PARA UN LITRO DE LECHE Y UNA CUCHARADITA TIENE CAPACIDAD PARA 5 MILILITROS.

TIEMPO

SE UTILIZA PARA ORDENAR SECUENCIAS DE SUCESOS. PARA TIEMPOS MENORES A UN DÍA USAMOS LAS HORAS, LOS MINUTOS Y LOS SEGUNDOS, PERO CUANDO SON MAYORES A UN DÍA USAMOS LOS DÍAS, LAS SEMANAS, LOS MESES Y LOS AÑOS.

POR EJEMPLO, CON EL RELOJ MEDIMOS LOS MINUTOS DE UN DÍA Y CON UNA CALENDARIO MEDIMOS LOS DÍAS DE LA SEMANA Y DEL MES.

¡ES TU TURNO!

RESPONDE:

  • ¿QUÉ UNIDAD DE MEDIDA USARÍAS PARA MEDIR CANTIDAD DE HARINA?
    SOLUCIÓN
    LOS KILOGRAMOS.
  • ¿QUÉ UNIDAD DE MEDIDA USARÍAS PARA MEDIR EL JUGO EN UNA JARRA?
    SOLUCIÓN
    LOS LITROS.
  • ¿QUÉ UNIDAD DE MEDIDA USARÍAS PARA MEDIR LA DISTANCIAS ENTRE UNA MESA Y UNA SILLA?
    SOLUCIÓN
    LOS METROS.
  • ¿QUÉ UNIDAD DE MEDIDA USARÍAS PARA MEDIR CUÁNTO DURA EL RECREO?
    SOLUCIÓN
    LOS MINUTOS.

UNIDAD NO CONVENCIONAL

LAS UNIDADES DE MEDIDAS NO CONVENCIONALES SON LAS QUE NO PERTENECEN AL SISTEMA INTERNACIONAL DE UNIDADES Y SON INFORMALES. POR EJEMPLO, SI SE QUIERE MEDIR EL LARGO DE UNA PARCELA DE TIERRA PODEMOS USAR EL LARGO DE LOS PIES. ESTO NO PERMITÍA QUE SEA UNA MEDIDA UNIVERSAL Y EXACTA YA QUE LOS PIES DE LAS PERSONAS NO SON TODOS IGUALES.

¿SABÍAS QUÉ?
OTRAS MEDIDAS NO CONVENCIONALES SON LOS PALMOS DE LA MANO O LOS PASOS.

LAS UNIDADES DE MEDIDA EN LA VIDA COTIDIANA

USAMOS LAS MEDIDAS DE LONGITUD CUANDO MEDIMOS EL LARGO DE UN PANTALÓN, EL ANCHO DE UNA VENTANA O LA PROFUNDIDAD DE UNA CAJA. LAS MEDIDAS DE CAPACIDAD SON USADAS CADA VEZ QUE COMPRAMOS UNA BOTELLA DE AGUA O CUANDO LLENAMOS UNA BAÑERA O PISCINA. LAS MEDIDAS DE MASA SON APLICADAS CUANDO PESAMOS NUESTRO CUERPO O CUANDO PEDIMOS COMIDA POR KILO.

POR OTRO LADO, LAS MEDIDAS DE TIEMPO SON PROBABLEMENTE LAS MÁS USADAS DIARIAMENTE, PUES CADA VEZ QUE VEMOS EL RELOJ PARA SABER LA HORA DE IR A CLASES LAS USAMOS. TAMBIÉN SE APLICAN CUANDO CONTAMOS LOS SEGUNDOS PARA FIN DE AÑO O LOS DÍAS PARA QUE INICIE EL VERANO.

LOS DÍAS Y LOS AÑOS

EL TIEMPO ESTÁ RELACIONADO CON EL MOVIMIENTO DE NUESTRO PLANETA TIERRA. CUANDO LA TIERRA GIRA SOBRE SU PROPIO EJE PRODUCE EL DÍA Y LA NOCHE. EN CAMBIO, TRAS EL GIRO QUE HACE EL PLANETA ALREDEDOR DEL SOL SE PRODUCE UN AÑO.

¡A PRACTICAR!

RESPONDE LAS SIGUIENTES PREGUNTAS:

  • ¿QUÉ ES MAYOR? ¿UN KILOGRAMO DE HARINA O UN KILOGRAMO DE LIBROS?
    SOLUCIÓN
    AMBOS PESAN LO MISMO, 1 KILOGRAMO.
  • ¿CON CUÁL UNIDAD MEDIRÍAS EL LARGO DE UN LÁPIZ?
    SOLUCIÓN
    CON LOS CENTÍMETROS.
  • SI TENEMOS UNA BOTELLA DE 1 LITRO DE AGUA Y UNA JARRA CON 2 LITROS DE JUGO. ¿CUÁL ALMACENA MÁS LÍQUIDO?
    SOLUCIÓN
    LA JARRA.
  • ¿CON CUÁL UNIDAD MEDIRÍAS LA MASA DE UNAS PAPAS?
    SOLUCIÓN
    CON LOS KILOGRAMOS.
  • SI EL TERRENO DE PEDRO MIDE 45 METROS Y EL DE JOSÉ MIDE 26 METROS. ¿CUÁL TERRENO ES EL MÁS GRANDE?
    SOLUCIÓN
    EL TERRENO DE PEDRO.
  • ¿CON CUÁL UNIDAD MEDIRÍAS LA DISTANCIA DE TU CASA A LA ESCUELA?
    SOLUCIÓN
    CON LOS KILÓMETROS.

RECURSOS PARA DOCENTES

Artículo: Sistema Internacional de Unidades

En el siguiente artículo podrás ampliar tus conocimientos sobre el Sistema Internacional de Medidas.

VER

CAPÍTULO 5 / TEMA 2

Ángulos

El ángulo es uno de los elementos fundamentales para la geometría porque está presente en las figuras ¡Incluso las paredes de nuestras casas forman ángulos entre ellas! Se puede definir como la porción del plano que se encuentra delimitada por dos semirrectas que comparten el mismo origen. 

Tipos de ángulos

Antes de poder reconocer los diferentes tipos de ángulos es necesario comprender los elementos que los forman.

  • Lado: es cada una de las semirrectas que conforman el ángulo y que tienen un origen en común.
  • Vértice: es el punto común o de origen de los lados.

 

Sistema de medida

El sistema usado para medir ángulos se denomina sistema sexagesimal, su unidad de medida es el grado (°) y resulta de dividir un ángulo llano en 180 partes, cada una de ellas representa un grado. Para medidas más pequeñas se usa el minuto (′) y el segundo (′′). Se denomina sexagesimal porque cada unidad es 60 veces mayor que la siguiente y 60 veces inferior que la anterior. Es por ello que 1° = 60′ y 1′ = 60′′.

De acuerdo a su tamaño los ángulos se clasifican en:

  • Ángulo agudo: es aquel mayor a 0° pero menor a 90°.
  • Ángulo recto: es aquel que mide 90°.
  • Ángulo obtuso: es aquel cuya medida es mayor a 90°pero menor a 180°.
  • Ángulo llano: es aquel cuyo ángulo es igual a 180°.

VER INFOGRAFÍA

Medición de ángulos

Uno de los instrumentos más usados para medir ángulos es el transportador, este presenta una serie de marcas que indican los grados. El más común es el transportador semicircular el cual viene graduado en 180°. Sus partes fundamentales son:

Para medir un ángulo con el transportador debemos seguir los siguientes pasos:

  1. Ubicar el origen del transportador en el vértice del ángulo que se va a medir.
  2. Hacer coincidir uno de los lados del ángulo con la línea horizontal de la base.
  3. Leer el ángulo que corta el segundo lado. Si el ángulo está abierto hacia la izquierda se usa la escala externa, si está abierto hacia la derecha se usa la escala interna (de acuerdo al tipo de instrumento las escalas pueden invertirse).

¿Sabías qué?
El teodolito es un instrumento con mayor precisión que el transportador que permite medir grados, minutos y segundos.

Construcción de ángulos

Una de las formas de construir ángulos es a través de una regla y un transportador. Para ello debemos realizar los siguientes pasos:

1. Trazamos con ayuda de la regla una semirrecta que será más adelante uno de los lados del ángulo.

 

2. Ubicamos el origen del transportador en uno de los extremos de la semirrecta (este también será el origen del ángulo), de manera que el número cero de la escala coincida con el otro extremo.

 

3. Ubicamos en la escala el ángulo que deseamos construir, para este ejemplo queremos construir un ángulo de 40°.

 

4. Hacemos una marca en el punto donde leímos el ángulo deseado.

 

5. Unimos el origen con la lectura marcada, de esta forma construimos un ángulo agudo de 40°.

Además del transportador, otros instrumentos usados para construir ángulos son el compás y la escuadra. Esta última permite construir ángulos rectos. Disciplinas como la arquitectura hacen uso de los ángulos en sus diseños. La exactitud en las mediciones es importante porque de lo contrario muchas de las estructuras podrían sufrir daños y afectar a las personas.

 

Comparación de ángulos

Luego de conocer cómo funciona el sistema sexagesimal en la medición de ángulos, podemos concluir que los ángulos llanos son mayores que los obtusos, que los obtusos son mayores que los rectos y que estos últimos son mayores que los agudos.

De manera que cuando necesitemos comparar ángulos lo primero que debemos hacer es identificar qué tipo de ángulo es. En el caso de conocer los valores de los ángulos, realizamos la comparación de de los números de acuerdo a la cantidad que representan, es decir: un ángulo de 35° es mayor que uno de 20°, pero es menor que uno de 150°.

Los ángulos y el triángulo

Los ángulos son tan importantes que en sí mismos determinan un criterio de clasificación de los triángulos. En este sentido, los triángulos se clasifican en acutángulos, rectángulos y obtusángulos. Los triángulos acutángulos tienen todos sus ángulos internos agudos, los triángulos rectángulos tienen un ángulo recto y los otros dos agudos, los triángulos obtusángulos tienen un ángulo obtuso y los otros dos agudos. En los triángulos se cumple que la suma de sus ángulos internos siempre es igual 180°.

¡A practicar!

1. ¿A qué tipo de ángulo corresponde cada imagen?

a)

Solución
Ángulo recto.
b) 
Solución
Ángulo llano.
c) 
Solución
Ángulo obtuso.
d) 
Solución
Ángulo agudo.

2. ¿Cuál de los siguientes ángulos no es agudo?

a) 95°

b) 30°

c) 3°

d) 84°

Solución
a) 95°. No es agudo porque no es menor a 90°.

3. ¿Cuál de los siguientes ángulos no es obtuso?

a) 125°

b) 95°

c) 160°

d) 180°

Solución
d) 180°. No es obtuso porque es igual a 180°, los ángulos obtusos deben ser mayores a 90° y menores a 180°.

4. ¿Cuál de los siguientes ángulos es agudo?

a) 90°

b) 180°

c) 200°

d) 50°

Solución
d) 50°. Es agudo por ser menor a 90°.

RECURSOS PARA DOCENTES

Artículo “Ángulos”

El presente artículo profundiza más en los diferentes tipos de ángulos que existen según su medida, su posición y sus características.

VER

Video “Propiedades de los ángulos de los polígonos”

En el presente video se muestra de manera animada cómo varían los ángulos externos e internos de los principales polígonos regulares.

VER

Artículo “Ángulo”

Este artículo detalla los elementos y tipos de ángulos, su construcción y el uso del transportador. Al final se proponen una serie de ejercicios relacionados.

VER

 

CAPÍTULO 5 / TEMA 3

Área

El área mide la extensión de una superficie, por eso permite saber información importante de las cosas, como el tamaño de un país o la cantidad de baldosas que se necesitan en el piso de una casa. De acuerdo al tipo de figura, el área puede calcularse a través de fórmulas o mediante la descomposición de las figuras en otras más sencillas.

Cálculo de áreas en figuras planas

El área es la superficie o extensión comprendida en una figura. En el caso de las figuras planas, para calcular su área es necesario reconocer cada figura, porque su cálculo es diferente en cada caso.

Triángulos

En los triángulos se cumple que su área es igual a la base por la altura y el resultado se divide entre dos:

A=\frac{b\times h}{2}

– Calcula el área del siguiente triángulo:

A=\frac{3 \, cm \times 4\, cm}{2} = \frac{12 \, cm^{2}}{2}=\mathbf{6\, cm^{2}}

Es importante tener en cuenta que al multiplicar dos unidades de longitud (en este caso centímetros) escribimos el producto al cuadrado; es decir, colocamos el exponente “2” arriba de la unidad de medida, por eso se escribe cm2, y se lee “centímetros cuadrados”.

El área y las unidades al cuadrado

En el Sistema Internacional de Unidades el área siempre se expresa en unidades de longitud elevadas al cuadrado, esto se debe a que el área es la medida de una superficie. Un área de 15 cm2 quiere decir que esa superficie está cubierta por 15 cuadrados que miden 1 cm en cada uno de sus lados. Otras unidades de área comunes son: mm2 (milímetros cuadrados), m2 (metro cuadrado) y km2 (kilómetro cuadrado).

VER INFOGRAFÍA

Cuadrados

El área de un cuadrado es igual a la multiplicación de dos de sus lados. Como los lados de un cuadrado son todos iguales, la fórmula también se puede expresar como la medida de un lado al cuadrado.

A = l\times l =l^{2}

– Calcula el área del siguiente cuadrado

A= 3\, m\times 3\,m = \mathbf{9\, m^{2}}

Es un cuadrado de nueve metros cuadrados de área.

Rectángulos y romboides

El área de los rectángulos y romboides es igual al producto de su base por su altura.

A=b\times h

 

 

– Calcula el área del siguiente rectángulo:

A=10\, mm\times 5\, mm =\mathbf{50\, mm^{2}}

Rombos

El área de un rombo es igual al producto de su diagonal mayor (D) y su diagonal menor (d) dividido entre 2.

A=\frac{D\times d}{2}

– Calcula el área del siguiente rombo:

A = \frac{9\, cm\times 5\, cm}{2}=\frac{45\, cm^{2}}{2}=\mathbf{22,5\, cm^{2}}

El área del rombo es de 22,5 centímetros cuadrados.

Trapecios

En el caso de los trapecios el área es igual a la suma de su base mayor y su base menor, el resultado se divide entre 2 y luego se multiplica por la altura.

A = \frac{B+ b}{2}\times h

– Calcula el área del siguiente trapecio:

\small A= \frac{9\, mm+ 15\, mm}{2}\times 4\, mm=\frac{24\, mm}{2}\times 4\, mm=12\, mm\times 4\, mm = \mathbf{48\, mm^{2}}

El trapecio tiene un área de 48 milímetros cuadrados.

Polígonos regulares

Los polígonos regulares son figuras geométricas donde todos sus lados miden lo mismo. En todos los polígonos regulares se cumple que:

A= \frac{N\times L\times ap}{2}

Donde:

N = número de lados del polígono regular.

L = longitud de uno de los lados.

ap = longitud de la apotema.

¿Sabías qué?
La apotema es la menor distancia que existe entre el centro de un polígono y cualquiera de sus lados.

– Calcula el área del siguiente polígono regular:

A=\frac{6\times 4\, cm\times 3,4\, cm}{2}=\frac{24\, cm\times 3,4\, cm}{2}= \frac{81,6\, cm^{2}}{2}=\mathbf{40,8\, \mathbf{cm^{2}}}

Observa que en este caso como el polígono regular tiene seis lados (hexágono) se coloca el número 6. El área de este hexágono es de 40,8 centímetros cuadrados.

¿Cómo calcular el área de un círculo?

Para determinar el área de un círculo se debe multiplicar el número pi (que aunque es un número infinito se redondea a 3,14) por el radio de la circunferencia elevado al cuadrado, es decir;  \bg_white A = \pi \times r^{2}. El área para un círculo con un radio igual a 2 cm, por ejemplo; se calcularía como A = 3,14\times (2\, cm)^{2}=3,14\times4\, cm^{2} =\mathbf{12,56\, cm^{2}}.

 

Cálculo de áreas en figuras compuestas

Las figuras compuestas se llaman así porque están formadas por dos o más figuras geométricas. Para calcular el área en estas figuras debemos “separar” las figuras geométricas presentes y calcular por separado el área de cada una. El área total de la figura compuesta será igual a la sumatoria de las áreas de las figuras geométricas que la conformen.

– Calcula el área de la siguiente figura compuesta:

Lo primero para resolver es identificar las figuras geométricas presentes, en este caso es un triángulo (figura 1) y un rectángulo (figura 2).

Calculamos las áreas de las figuras por separado.

– Área del triángulo:

La altura es un dato del problema y es 2 cm, la base del triángulo tiene la misma longitud que la base mayor del rectángulo, por lo tanto tiene el mismo valor que es 5 cm. Calculamos el área según la fórmula de área para el triángulo:

A_{1} = \frac{b\times h}{2}=\frac{5\, cm\times 2\, cm}{2}=\frac{10\, cm^{2}}{2} = \mathbf{5\, cm^{2}}

– Área del rectángulo:

Calculamos con la fórmula de área para rectángulos.

A_{2} = b\times h=5\, cm\times 4\, cm = \mathbf{20\, }\mathbf{cm^{2}}

 

El área total es igual a la sumatoria de las áreas de las figuras geométricas calculadas:

A = A_{1}+A_{2}= 5\, cm^{2}+20\, cm^{2} =\mathbf{25\, cm^{2}}

Quiere decir que el área de la figura compuesta es de 25 centímetros cuadrados.

¿Por qué es útil conocer el área?

Conocer la superficie del área tiene múltiples usos desde los cotidianos hasta lo científico. Por ejemplo, gracias al área podemos saber cuánta tela necesita un vestido, o cuántas baldosas son necesarias en la construcción de un piso. También se usa para realizar comparaciones, por ejemplo, con el área podemos comparar países de acuerdo a su tamaño. O, también, podemos estimar la superficie de un planeta de acuerdo a su forma.

Además, el área es un parámetro usado en otras fórmulas más avanzadas como los cálculos de presiones. Por otra parte, las diferentes medidas permiten cuantificar desde áreas de tamaños microscópicos hasta áreas del tamaño de una estrella.

Aunque el Sistema Internacional de Unidades es el más extendido en el mundo, no todos los países emplean el metro cuadrado y sus múltiplos o submúltiplos para hablar de área. Hay países, como Estados Unidos, que emplea la yarda cuadrada (equivalente a 0,863 metros cuadrados), otras unidades usadas son la pulgada cuadrada, el pie cuadrado, la hectárea y el acre.
¡A practicar!

1. Calcular el área de las siguientes figuras:

a)

Solución
A = 6 cm2
b) 
Solución
A = 20 m2
c) 
Solución
A = 18 cm2
d) 
Solución
A = 61,5 mm2
e) 
Solución
A = 79 cm2

2. ¿A cuál de estas figuras corresponde la fórmula de área A = b\times h?

a) 

b) 

c) 

d) 

e) 

Solución
d) Es un romboide.

RECURSOS PARA DOCENTES

Video “Resolución del área”

En este video se explica cómo resolver cálculos de áreas en figuras compuestas y se muestran dos de las fórmulas de área más usadas.

VER

Artículo “Perímetro y área”

Este artículo explica ejercicios de perímetro y áreas. Toma como referencia diferentes unidades de medida y conversiones.

VER

Artículo “Cuerpos redondos. Áreas y volúmenes”

En el presente artículo se explica como realizar cálculos de área en cuerpos redondos, sí como las características de este tipo de figuras.

VER

 

CAPÍTULO 1 / TEMA 1

LECTURA Y CONTEO

LA NECESIDAD DE CONTAR ES CASI TAN ANTIGUA COMO LA EXISTENCIA DE LOS HUMANOS EN LA TIERRA. EL CONTEO Y LOS NÚMEROS SURGIERON POR LA NECESIDAD DEL HOMBRE DE CONTROLAR LA CANTIDAD DE ELEMENTOS QUE ERAN DE SU PROPIEDAD, COMO LOS ALIMENTOS, LOS ANIMALES O LAS TIERRAS.

NO SABEMOS CON EXACTITUD EL ORIGEN DE LOS NÚMEROS, PERO SÍ SABEMOS QUE NO HAN SIDO COMO LOS CONOCEMOS HOY DÍA. CONTAR CUÁNTAS PERSONAS HABÍA EN UNA CUEVA, EXPRESAR A QUÉ DISTANCIA ESTABA EL RÍO O CUÁNTAS FRUTAS SE RECOLECTARON FUERON ALGUNAS DE LAS INQUIETUDES DEL HOMBRE PRIMITIVO Y LA RAZÓN POR LA EMPEZÓ A BUSCAR MÉTODOS PARA EXPRESAR CANTIDADES.

Escritura y lectura de números

NUESTRO SISTEMA DE NUMERACIÓN ES DECIMAL POSICIONAL.

  • ES DECIMAL PORQUE SOLO TIENE DIEZ CIFRAS. CADA CIFRA SE EXPRESA CON UN SÍMBOLO:

0: CERO

1: UNO

2: DOS

3: TRES

4: CUATRO

5: CINCO

6: SEIS

7: SIETE

8: OCHO

9: NUEVE

  • ES POSICIONAL PORQUE CADA CIFRA TIENE UN VALOR DIFERENTE SEGÚN SU POSICIÓN.

POR EJEMPLO, EN EL NÚMERO 111 CADA CIFRA TIENE UNA VALOR DISTINTO. OBSERVA:

  • 1 UNIDAD ES IGUAL A 1 UNIDAD.
  • 1 DECENA ES IGUAL A 10 UNIDADES.
  • 1 CENTENA ES IGUAL A 100 UNIDADES.

 

¿QUÉ ES EL ÁBACO?

EL ÁBACO ES UN INSTRUMENTO DIDÁCTICO ELABORADO EN MADERA QUE SE UTILIZA PARA CONTAR O PARA REALIZAR SUMAS O RESTAS. POR LO GENERAL TIENE DIEZ TIRAS CON ESFERAS DE COLORES QUE SE MUEVEN DE UN LADO A OTRO. VARIAS CULTURAS LO CONSIDERAN UNA HERRAMIENTA DE CÁLCULO UNIVERSAL. ES UN RECURSO MUY DIVERTIDO, ÚTIL Y FÁCIL DE USAR.

¿CÓMO LEER Y ESCRIBIR NÚMEROS DE DOS CIFRAS?

AL TENER EN CUENTA LAS UNIDADES, ES IMPORTANTE COMPRENDER LA COMPOSICIÓN DE LAS DECENAS EXACTAS. ESTAS ESTÁN FORMADAS POR LAS CIFRAS BÁSICAS SEGUIDAS DE UN CERO. SE ESCRIBEN ASÍ:

10: DIEZ

20: VEINTE

30: TREINTA

40: CUARENTA

50: CINCUENTA

60: SESENTA

70: SETENTA

80: OCHENTA

90: NOVENTA

LOS NÚMEROS DEL 0 AL 99

OBSERVA ESTA CUADRÍCULA. LAS UNIDADES ESTÁN CON COLOR ROJO Y LAS DECENAS CON COLOR AZUL.

¿TE ANIMAS A COMPLETARLA?

COMO VES, LAS DECENAS SE MANTIENEN IGUALES Y DE MANERA ORDENADA SE MODIFICA LA UNIDAD.

SI QUEREMOS ESCRIBIR O LEER LOS NÚMEROS DEL 11 AL 19 Y DEL 21 AL 29, ES IMPORTANTE SABER QUE SE NOMBRAN CON UNA SOLA PALABRA. OBSERVA:

11: ONCE

12: DOCE

13: TRECE

14: CATORCE

15: QUINCE

16: DIECISÉIS

17: DIECISIETE

18: DIECIOCHO

19: DIECINUEVE

21: VEINTIUNO

22: VEINTIDÓS

23: VEINTITRÉS

24: VEINTICUATRO

25: VEINTICINCO

26: VEINTISÉIS

27: VEINTISIETE

28: VEINTIOCHO

29: VEINTINUEVE

 

LOS NÚMEROS DEL 31 EN ADELANTE SE NOMBRAN CON TRES PALABRAS, EXCEPTO LAS DECENAS EXACTAS. PARA LEERLOS SIGUE ESTOS PASOS:

  1. LEE EL NOMBRE DE LA DECENA EXACTA SEGUIDA DE LA PALABRA “Y”.
  2. LEE EL NOMBRE DE LA UNIDAD.

 

POR EJEMPLO:

  • ¿CÓMO SE LEE EL NÚMERO 34?

30 SE LEE “TREINTA”.

4 SE LEE “CUATRO”.

POR LO TANTO, EL NÚMERO 34 SE LEE “TREINTA Y CUATRO”.

 

  • ¿CÓMO SE LEE EL NÚMERO 46?

40 SE LEE “CUARENTA”.

6 SE LEE “SEIS”.

POR LO TANTO, EL NÚMERO 46 SE LEE “CUARENTA Y SEIS”.

 

¡A PRACTICAR!

¿CÓMO SE LEEN ESTOS NÚMEROS?

  • 55
SOLUCIÓN

50 SE LEE “CINCUENTA”.

5 SE LEE “CINCO”.

EL NÚMERO 55 SE LEE “CINCUENTA Y CINCO”.

  • 63
SOLUCIÓN

60 SE LEE “SESENTA”.

3 SE LEE “TRES”.

EL NÚMERO 63 SE LEE “SESENTA Y TRES”.

 

NUESTRO SISTEMA NUMÉRICO ESTÁ CONFORMADO POR SOLO DIEZ CIFRAS: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9. CON ESTAS PODEMOS CREAR INFINIDAD DE NÚMEROS. LOS NÚMEROS CON UNA CIFRA SE DENOMINAN UNIDADES; CUANDO TIENEN DOS CIFRAS, A LA PRIMERA DE IZQUIERDA A DERECHA SE LA LLAMA DECENA; Y CUANDO TIENEN TRES CIFRAS, A LA PRIMERA DE IZQUIERDA A DERECHA SE LA LLAMA CENTENA.

¿CÓMO LEER Y ESCRIBIR NÚMEROS DE TRES CIFRAS?

AQUELLOS NÚMEROS CON TRES CIFRAS ESTÁN FORMADOS POR UNIDADES, DECENAS Y CENTENAS. LAS CENTENAS EXACTAS SE COMPONEN DE LAS UNIDADES BÁSICAS SEGUIDAS DE DOS CERO. SE ESCRIBEN ASÍ:

100: CIEN

200: DOSCIENTOS

300: TRESCIENTOS

400: CUATROCIENTOS

500: QUINIENTOS

600: SEISCIENTOS

700: SETECIENTOS

800: OCHOCIENTOS

900: NOVECIENTOS

 

PARA ESCRIBIR Y LEER NÚMEROS DE TRES CIFRAS SE SIGUEN LOS SIGUIENTES PASOS:

  1. LEE EL NOMBRE DE LA CENTENA EXACTA.
  2. LEE EL NOMBRE DE LA DECENA EXACTA SEGUIDA DE LA PALABRA “Y”.
  3. LEE EL NOMBRE DE LA UNIDAD.

 

POR EJEMPLO:

  • ¿CÓMO SE LEE EL NÚMERO 548?

500 SE LEE “QUINIENTOS”.

40 SE LEE “CUARENTA”.

8 SE LEE “OCHO”.

POR LO TANTO, EL NÚMERO 548 SE LEE “QUINIENTOS CUARENTA Y OCHO”.

 

  • ¿CÓMO SE LEE EL NÚMERO 612?

600 SE LEE “SEISCIENTOS”.

12 SE LEE “DOCE”.

POR LO TANTO, 612 SE LEE “SEISCIENTOS DOCE”.

 

¡A PRACTICAR!

¿CÓMO SE LEEN ESTOS NÚMEROS?

  • 768
SOLUCIÓN

700 SE LEE “SETECIENTOS”.

60 SE LEE “SESENTA”.

8 SE LEE “OCHO”.

EL NÚMERO 768 SE LEE “SETECIENTOS SESENTA Y OCHO”.

  • 842
SOLUCIÓN

800 SE LEE “OCHOCIENTOS”.

40 SE LEE “CUARENTA”.

2 SE LEE “DOS”.

EL NÚMERO 842 SE LEE “OCHOCIENTOS CUARENTA Y DOS”.

NÚMEROS PARES

LOS NÚMEROS PARES SON AQUELLOS QUE TERMINAN EN 0, 2, 4, 6 Y 8.

¿QUÉ PASA SI TENEMOS NÚMEROS MÁS GRANDES, COMO POR EJEMPLO UN NÚMERO DE DOS O TRES CIFRAS? EN ESE CASO, SOLO DEBEMOS TENER EN CUENTA LA UNIDAD.

58

EL NÚMERO 58 ES PAR PORQUE TERMINA EN 8.

¿SABIAS QUÉ?
PARA DARTE CUENTA QUÉ NÚMEROS SON PARES TAMBIÉN PUEDES CONTAR DE DOS EN DOS. POR EJEMPLO: 12, 14, 16, 18…

EJEMPLOS:

  • 150

EL NÚMERO 150 ES PAR PORQUE TERMINA EN 0.

  • 476

EL NÚMERO 476 ES PAR PORQUE TERMINA EN 6.

NÚMEROS IMPARES

LOS NÚMEROS IMPARES SON AQUELLOS QUE TERMINAN EN 1, 3, 5, 7 Y 9.

PARA DARNOS CUENTA DE ESTO, SI TENEMOS UN NÚMERO DE DOS CIFRAS, SOLO DEBEMOS CONSIDERAR LA UNIDAD.

65

EL NÚMERO 65 ES IMPAR PORQUE TERMINA EN 5.

 

EJEMPLOS:

  • 261

EL NÚMERO 261 ES UN NÚMERO IMPAR PORQUE TERMINA EN 1.

  • 969

EL NÚMERO 969 ES UN NÚMERO IMPAR PORQUE TERMINA EN 9.

 

LOS NÚMEROS PARES E IMPARES

SI VOLVEMOS A LA CUADRÍCULA, LOS NÚMEROS PARES Y LOS NÚMEROS IMPARES COMPARTEN LA MISMA COLUMNA.

COMO PODRÁS VER, EN LAS COLUMNAS CELESTES ESTÁN LOS NÚMEROS PARES QUE TERMINAN EN 0, 2, 4, 6 Y 8 Y EN LAS COLUMNAS AMARILLAS ESTÁN LOS NÚMEROS IMPARES QUE TERMINAN EN 1, 3, 5, 7 Y 9.

EJERCICIOS

1. PIENSA Y RESPONDE.

  • ¿CUÁLES SON LOS NÚMEROS PARES MAYORES QUE 15 Y MENORES QUE 20?
SOLUCIÓN
16 Y 18.
  • ¿CUÁLES SON LOS NÚMEROS IMPARES MENORES QUE 100 PERO MAYORES QUE 90?
SOLUCIÓN
91, 93, 95, 97 Y 99.
  • ¿CUÁLES SON LOS NÚMEROS PARES MAYORES QUE 580 Y MENORES QUE 585?
SOLUCIÓN
582 Y 584.
  • ¿CUÁLES SON LOS NÚMEROS IMPARES MAYORES QUE 440 Y MENORES QUE 445?
SOLUCIÓN
441 Y 443.

2. ESCRIBE LOS SIGUIENTES NÚMEROS EN LETRA.

  • 17
SOLUCIÓN
DIECISIETE.
  • 19
SOLUCIÓN
DIECINUEVE.
  • 24
SOLUCIÓN
VEINTICUATRO.
  • 41
SOLUCIÓN
CUARENTA Y UNO.
  • 57
SOLUCIÓN
CINCUENTA Y SIETE.
  • 269
SOLUCIÓN
DOSCIENTOS SESENTA Y NUEVE.
  • 577
SOLUCIÓN
SETECIENTOS SETENTA Y SIETE.
  • 782
SOLUCIÓN
SETECIENTOS OCHENTA Y DOS.
  • 998
SOLUCIÓN
NOVECIENTOS NOVENTA Y OCHO.

3. ¿ES UN NÚMERO PAR O IMPAR? COMPLETA.

  • 21 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 45 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 56 ES UN NÚMERO ____.
SOLUCIÓN
PAR
  • 484 ES UN NÚMERO ____.
SOLUCIÓN
PAR
  • 499 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 687 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 225 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 738 ES UN NÚMERO ____.
SOLUCIÓN
PAR
RECURSOS PARA DOCENTES

Artículo destacado “Situaciones problemáticas”

Este artículo ayudará a afianzar el conteo de números y ejercitar con situaciones problemáticas, números ya abordados.

VER

CAPÍTULO 3 / TEMA 3

Gráficas de fracciones

Las gráficas son recursos visuales que permiten representar datos numéricos, como las fracciones. En este tipo de problemas podemos usar gran variedad de figuras para expresar una fracción de manera más sencilla, y así facilitar su interpretación. Los pasos para poder graficar una fracción dependen de su tipo.

Graficar una fracción propia

Podemos expresar fracciones a través de diagramas, pero para comprender cómo realizar un gráfico es importante recordar que una fracción es la representación de una o varias partes iguales de la unidad, donde:

El denominador representa el número de partes que se dividen de la unidad.

El numerador es el número de partes que se toman o se consideran de la unidad.

Toda fracción propia cumple una condición: el numerador siempre es menor que el denominador.

Pasos para graficar una fracción propia

  1. Elige la figura en la que se va a representar la fracción. Puede ser un triángulo, círculo, cuadrado, rectángulo, etc.
  2. Divide la figura elegida en tantas partes como indique el denominador de la fracción. Todas las partes deben ser iguales.
  3. Señala el número de partes que indique el numerador de la fracción.

– Grafica la fracción \frac{3}{4}

La figura que seleccionaremos en este caso será un triángulo, pero recuerda que puede ser cualquier figura. Como el denominador de la fracción es cuatro (4), la figura debe estar dividida en cuatro partes iguales:

Luego señalamos el número de partes que indique el numerador, en este caso serían tres (3) partes:

De manera gráfica es más fácil entender la representación de la fracción “tres cuartos”.

Otros ejemplos:

¿Sabías qué?
Las fracciones no solo pueden representarse con figuras geométricas, también lo pueden hacer en la recta numérica.

¿Cómo graficar fracciones cuyo numerador es igual al denominador?

A este tipo de fracción se lo denomina fracción igual la unidad porque, al ser iguales el numerador y el denominador, el cociente de ambos siempre va a ser uno (1). Por esta razón la representamos como toda la figura geométrica:

VER INFOGRAFÍA

Graficar una fracción impropia

En las fracciones impropias el numerador siempre es mayor al denominador y, como su resultado es mayor a la unidad, se requiere más de una figura geométrica para representarlas.

Pasos para graficar una fracción impropia

  1. Elige la figura en la que se va a representar la fracción.
  2. Divide la figura elegida en tantas partes como indique el denominador de la fracción. Todas las partes deben ser iguales.
  3. Señala el número de partes que indique el numerador de la fracción. Como es una fracción impropia van a faltar partes para señalar.
  4. Realiza tantas figuras geométricas hasta que el número de partes del numerador pueda ser señalado.

– Grafica la fracción \frac{10}{6}

Primero se divide la figura en 6 partes iguales:

Como el numerador es igual a 10, nos hace falta otra figura idéntica para completar las 10 partes que se van a seleccionar. Recuerda que se pueden agregar tantas figuras como sean necesarias hasta poder representar el número de partes del numerador.

Como las fracciones impropias tienen el numerador mayor al denominador, siempre van a estar representadas con más de una figura, porque representan a “algo” mayor que la unidad. Por esta razón, las fracciones de este tipo también pueden representarse como números mixtos. Por ejemplo la fracción 10/6 en número mixto se representa como 1 4/6.

 

Problemas cotidianos

Expresiones como “un cuarto de hora”, “media taza de té”, “tres cuartas partes de la población”, son algunos ejemplos en los que se emplean las fracciones dentro del lenguaje cotidiano. Por eso es común encontrarnos con fracciones y resolver problemas habituales. Algunos ejemplos son los siguientes:

– En una escuela solo la cuarta parte de los estudiantes practica fútbol, ¿cuál sería la representación gráfica de esa proporción?

Las expresión “cuarta parte” hace referencia a la fracción un cuarto: \frac{1}{4}. Entonces, lo que debemos hacer es graficar dicha fracción y responder así la interrogante del problema:

– En una fiesta compraron 3 pizzas del mismo tamaño que estaban cortadas en 4 partes iguales cada una. Uno de los invitados se comió una de las porciones, ¿cómo se puede expresar en forma de fracción al número de porciones de pizza que quedaron?

Lo primero que tenemos que hacer es imaginarnos las pizzas con el número total de porciones:

De la imagen determinamos que originalmente habían 12 porciones. Luego tenemos que imaginar cuántas porciones quedaron después de que el invitado se comiera una de ellas:

La imagen anterior representaría la gráfica del problema, ahora lo que debemos hacer es determinar la fracción de ella. Recordemos que el denominador es el número en el que se divide la unidad, en este caso la unidad es cada pizza y cada una de ellas está cortada o dividida en cuatro porciones, por lo tanto, el denominador es 4.

Como el numerador es el número de partes que se considera de la unidad, en este caso serían las porciones que quedaron, por lo tanto, el numerador es 11.

De esta manera se concluye que quedaron \frac{11}{4} de porciones de pizza.

Observa que \frac{11}{4} es una fracción impropia y por eso la unidad (la pizza) fue graficada más de una vez.

¡A practicar!

1. ¿Qué fracción representan las siguientes gráficas?

a)

Solución
\frac{2}{6}
b) 
Solución
\frac{3}{4}
c) 
Solución
\frac{5}{7}
d) 
Solución
\frac{2}{4}
e) 
Solución
\frac{7}{3}
e) 
Solución
\frac{2}{2}

2. ¿Cuál de las siguientes expresiones representa al siguiente gráfico?


a) Un quinto de taza de café.
b) Cinco medios de cucharadas de azúcar.
c) Tres medios de harina.
d) Tres quintas partes de agua.
e) Dos terceras partes de vinagre.

Solución
d) Tres quintas partes de agua \left ( \frac{3}{5} \right ).

RECURSOS PARA DOCENTES

Artículo “Fracciones”

El presente artículo destacado explica los elementos de una fracción y la forma de graficarlas de acuerdo a sus tipos. También presenta una serie de ejemplos que facilitan su comprensión.

VER

Enciclopedia “Recursos para docentes”

La enciclopedia muestra algunas herramientas para ayudar el proceso de aprendizaje de los estudiantes en todas las áreas de estudio.

VER

CAPÍTULO 4 / TEMA 2

COMPARACIÓN DE CANTIDADES

Día a día comparamos números. Lo hacemos al ver que un precio es más bajo que otro, que los grados aumentan o disminuyen en el termómetro de acuerdo a la temperatura, o que un compañero tuvo una calificación diferente a la nuestra. Todos los números pueden compararse entre sí y para hacerlo existen algunas reglas y símbolos especiales.

Los números de nuestro sistema decimal poseen valores absolutos y relativos. El valor absoluto no considera la posición de la cifra, mientras que el relativo sí. De este modo, y en su función de representar cantidades, podemos hallar números que son mayores que otros. Esta relación nos permite establecer un orden entre ellos.

USO DE LOS SÍMBOLOS DE RELACIÓN

¿Qué son los símbolos de relación?

Son aquellos que permiten comparar números según el valor que estos tengan. Así, al observar dos cantidades podemos determinar si una es mayor, menor o igual que la otra. Para indicar estas relaciones colocamos los siguientes símbolos:

  • >, se lee “mayor que”.
  • <, se lee “menor que”.
  • =, se lee “igual a”.

Mayor que (>)

Todo número ubicado a la izquierda del símbolo “> será mayor que el número ubicado a su derecha, entonces, si el símbolo se encuentra entre dos números, significa que el primero es mayor que el segundo.

Menor que (<)

Todo número ubicado a la izquierda del símbolo “< será menor que el número ubicado a su derecha, entonces, si el símbolo se encuentra entre dos números, significa que el primero es menor que el segundo.

Igual a (=)

Los números ubicados tanto a la derecha como a la izquierda del símbolo “=” son iguales.

¿Sabías qué?
El matemático inglés Robert Recorde fue quien inventó el símbolo de igualdad. Le dio esta forma porque decía que “dos cosas no pueden ser más iguales que dos rectas paralelas”.
Existe una manera sencilla de memorizar los símbolos de relación y su función, consiste en fijarse en sus extremos. “Mayor que” y “menor que” apuntan su parte más ancha y abierta hacia el número mayor y su parte más cerrada y fina hacia el número menor. Ya que leemos de izquierda a derecha, el primero de los dos extremos que veamos nos dirá cuál símbolo es.

ESTABLECER ORDEN ENTRE DIFERENTES CANTIDADES

Orden de los números naturales

Los números naturales son los números que usamos para contar y con los que estamos más familiarizados. El orden de estos números comienza con sus unidades básicas, que se distribuyen de la siguiente manera:

Posterior al número 9 comienzan los números de dos cifras, formados por decenas y unidades:

El orden de los números naturales continúa en crecimiento hasta alcanzar el número 100, momento en el que se llega a las 3 cifras y aparece la primera centena de la sucesión:

El proceso se repite mientras se suman más y más cifras a la izquierda del número, cada una en representación de un valor mayor:

Esto indica que mientras más cifras tenga un número natural, mayor será su valor. Sin embargo, si dos números poseen la misma cantidad de cifras, hay que diferenciar los valores de cada dígito.

Observa estos ejemplos:

– Compara los números 110 y 120.

Primero vemos sus centenas. En este caso, las dos centenas son iguales (1), así que pasamos a las decenas. Estas son distintas y, por lo tanto, comparamos esos dos dígitos. Como 1 es menor que 2, entonces 110 es menor que 120.

– Compara los números 122 y 123.

Estos números tienen centenas y decenas iguales, así que pasamos a comparar las unidades. Como 2 es menor que 3, decimos que 122 es menor que 123.

– Compara los números 5.392.897 y 5.403.121.

La primera cifra corresponde a las unidades de millón y es la misma en los dos números. Comparamos entonces la siguiente cifra: la centena de mil. Como 3 es menor que 4, decimos que 5.392.897 es menor que 5.403.121.

– Compara los números 25.072.518 y 25.072.523.

Al igual que los casos anteriores, comparamos de izquierda a derecha cada cifra hasta ubicar las que tienen distinto valor. En este ejemplo, las decenas son distintas. Como 1 es menor que 2, decimos que 25.072.518 es menor que 25.072.523.

¡Es tu turno!

– Compara estos números.

  • 9.854.125.369 y 9.854.311.003

Solución
9.854.125.369 < 9.854.311.003
  • 658.899.157.021 y 658.899.157.001

Solución
658.899.157.021 > 658.899.157.001
Desigualdades

Las desigualdades, también llamadas inecuaciones, son expresiones algebraicas que contienen incógnitas y emplean símbolos para expresar la relación entre las partes. Los símbolos usados son:

 menor que

>   mayor que

   menor o igual que

   mayor o igual que

   no es igual a

Orden de los números enteros

Los números enteros están formados por los números naturales y los números negativos. Los números negativos poseen una peculiaridad que los diferencia de los positivos: sus valores actúan de forma completamente opuesta. A partir de cero hacia la derecha, los números naturales se hacen cada vez mayores; en cambio, a partir de cero hacia la izquierda, los números negativos se hacen cada vez menores.

Esto quiere decir que si 2 es mayor que 1, −2 es menor que −1.

Es así como los números negativos siguen las mismas reglas de jerarquía que los naturales, pero de forma opuesta. Por ejemplo:

Los dos números tienen la misma cantidad de centenas y de decenas, pero las unidades son distintas. Como −4 es menor que −3, decimos que −424 es menor que −423.

 ¡Colócalos en orden!

– Ordena los siguientes números enteros de menor a mayor y utiliza el símbolo correspondiente.

4, 26, −26, 572, 54, −175, 274, −265, 675, 345, −98, 213, 0, 9, 73, −44

Solución
−265 < −175 < −98 < −44 < −26 < 0 < 4 < 9 < 26 < 54 < 73 < 213 < 274 < 345 < 572 < 675

El orden entre los números decimales

Los números decimales son aquellos que tienen una parte entera y una parte decimal, es decir, una cantidad inferior a la unidad. Ambas partes son separadas por una coma.

El orden que siguen los números decimales es parecido a los explicados anteriormente. Observa este ejemplo:

1,4 es menor que 2,4 porque solo se consideraron sus partes enteras.

Si la parte entera de los números es la misma, empezamos a considerar la parte decimal, la cual se divide en cifras con nombres específicos: décimas, centésimas y milésimas. Estas tres unidades decimales son las más comunes, pero la cantidad de cifras puede extenderse hasta el infinito.

Lo más importante a saber para poder ordenar números decimales es que las décimas tienen mayor valor que las centésimas, y estas, a su vez, valen más que las milésimas. Observa las equivalencias:

  • 1 décima = 0,1 unidades
  • 1 centésima = 0,01 unidades
  • 1 milésima = 0,001 unidades

Por lo tanto: 0,1 > 0,01 > 0,001

Ejemplo:

– Compara los números 2,3462 y 2,35.

La parte entera del número es la misma, así que pasamos a la parte decimal. Las décimas son iguales, pero las centésimas no. Como 4 es menor que 5, decimos que 2,3462 es menor que 2,35.

¿Sabías qué?
A diferencia de los números enteros, la cantidad de decimales no determina el valor del número.

¡Colócalos en orden!

– Ordena los siguientes números decimales de menor a mayor y utiliza el símbolo correspondiente.

2,4398; 57,3; 42,45; 17,58; 17,123; 17,982; 17,512; 17,244935; 4,87; 17,983

Solución
2,4398 < 4,87 < 17,123 < 17,244935 < 17,512 < 17,58 < 17,982 < 17,983 < 42,45 < 57,3

Orden de números fraccionarios

Los números fraccionarios o fracciones son aquellos números que representan una división o la separación de algo en varias partes. Están formados por un numerador y denominador, ambos separados por una barra horizontal.

VER INFOGRAFÍA

La comparación de fracciones dependerá del numerador y el denominador. Los casos pueden ser los siguientes:

  • Fracciones con igual denominador.
  • Fracciones con igual numerador.
  • Fracciones con diferentes numeradores y denominadores.

Fracciones con igual denominador

Si dos fracciones tienen el mismo denominador, la mayor fracción será aquella con mayor numerador. Por ejemplo:

¿Por qué \frac{2}{8} es menor que \frac{4}{8}?

Observa las gráficas:

Las dos gráficas están divididas en 8 partes, como lo indica el denominador. En la primera tomamos 2 partes de las 8 (2/8), y en la segunda tomamos 4 partes (4/8). Hay más partes tomadas en la segunda gráfica.

Puedes comprobarlo por medio de divisiones:

\frac{2}{8} = 2 : 8 = \mathbf{0,25}

\frac{4}{8} = 4 : 8 = \mathbf{0,5}

Si comparamos estos números decimales, tenemos que:

0,25 < 0,5

Que es igual a:

\frac{2}{8}< \frac{4}{8}

Fracciones con igual numerador

Si dos fracciones tienen el mismo numerador, la mayor fracción será aquella con menor denominador. Por ejemplo:

¿Por qué \frac{2}{6} es menor que \frac{2}{4}?

Observa las gráficas:

En las dos gráficas tomamos 2 partes, como lo indica el numerador. La primera se dividió en 6 partes totales y la otra en 4 partes totales. A pesar de que el número 6 es mayor que 4, aquí el 6 indica una mayor cantidad de divisiones y esto le resta valor a la fracción.

Puedes comprobarlo por medio de divisiones:

\frac{2}{6} = 2 : 6 = 0,\bar{\mathbf{33}}

\frac{2}{4} = 2 : 4 = \mathbf{0,5}

Si comparamos estos números decimales, tenemos que:

0,\bar{33} < 0,5

Que es igual a:

\frac{2}{6}< \frac{2}{4}

Si tienes dificultades para encontrar el orden de las fracciones, puedes probar este otro método: simplemente divide el numerador entre el denominador, y obtendrás un número entero o un número decimal. Luego sólo tienes que ordenar estos resultados. Su orden será el mismo que el de las fracciones iniciales.

Fracciones con diferente numerador y denominador

Para conocer el orden que tienen estas fracciones no basta con observarlas a simple vista. Para lograrlo debemos seguir dos pasos:

  1. Hallar una fracción equivalente a la que deseamos comparar. Ambas deben tener el mismo denominador.
  2. Comparar las fracciones resultantes según el método ya explicado para las fracciones con igual denominador.

¿Cómo comparar estas fracciones: \frac{8}{5} \frac{5}{9}?

1. Calcula el mínimo común múltiplo de los denominadores. Para ello, debes descomponer cada número en sus factores primos.

m.c.m (5; 9) = 5 x 32 = 5 x 9 = 45

2. Multiplica el denominador por un número cuyo producto sea el m.c.m. Luego multiplica el numerador por ese mismo número. El resultado será su fracción equivalente.

\frac{8\times {\color{Red} 9}}{5\times {\color{Red} 9}}= \frac{72}{\mathbf{45}}

 

\frac{5\times {\color{Red} 5}}{9\times {\color{Red} 5}} = \frac{25}{\mathbf{45}}

 

Observa que en la primera fracción 5 x 9 = 45. Por eso, toda la fracción se multiplica por 9/9. Lo mismo sucede con la fracción 5/9, como 9 x 5 = 45, toda la fracción se multiplica por 5/5.

3. Compara las nuevas fracciones con igual denominador. La mayor fracción será aquella con mayor numerador, y como 72 > 25, entonces:

\frac{72}{45}> \frac{25}{45}

Ejercicios

1. Coloca el símbolo correcto entre los siguientes números.

  1. 10 ____ 9
  2. 4 ____ 4
  3. 8 ____ 27
  4. 46 ____ 6
  5. 59 ____ 59
  6. 40 ____ 70
  7. 2 ____ 22
  8. 100 ____ 1
  9. 23 ____ 32
  10. 85 ____ 85
Solución
  1. 10 > 9
  2. 4 = 4
  3. 8 < 27
  4. 46 > 6
  5. 59 = 59
  6. 40 < 70
  7. 2 < 22
  8. 100 > 1
  9. 23 < 32
  10. 85 = 85

2. Ordena los siguientes números naturales de menor a mayor y utiliza el símbolo correspondiente para ello.

3.546, 12, 53, 4.080, 25.892, 634, 4, 824, 1.450, 234, 73, 896. 111, 724, 1.898, 246, 1, 11, 4.800, 424, 125, 353, 55, 2.

Solución

1 < 2 < 4 < 11 < 12 < 53 < 55 < 73 < 125 < 234 < 246 < 353 < 424 < 634 < 724 < 824 < 1.450 < 1.898 < 3.546 < 3.643 < 4.080 < 4.800 < 25.892 < 896.111

3. Compara estas fracciones. Coloca el signo que corresponda en cada caso.

  • \frac{35}{4} y \frac{24}{8}
Solución

\frac{35}{4} > \frac{24}{8}

  • \frac{3}{7} y \frac{12}{28}
Solución

\frac{3}{7} = \frac{12}{28}

  • \frac{13}{12} y \frac{2}{6}
Solución

\frac{13}{12} > \frac{2}{6}

  • \frac{11}{4} y \frac{11}{6}
Solución

\frac{11}{4}> \frac{11}{6}

  • \frac{64}{89} y \frac{56}{48}
Solución

\frac{64}{89} < \frac{56}{48}

  • \frac{25}{8} y \frac{25}{9}
Solución

\frac{25}{8}> \frac{25}{9}

RECURSOS PARA DOCENTES

Artículo destacado “Comparar y ordenar números”

Este recurso, orientado hacia los más pequeños de la casa, es ideal para repasar las bases de lo explicado aquí.

VER