CAPÍTULO 1 / TEMA 5 (REVISIÓN)

SISTEMA DE NUMERACIÓN | ¿QUÉ APRENDIMOS?

ALGUNOS SISTEMAS DE NUMERACIÓN

Desde la Antigüedad, el hombre ha usado diversos sistemas con símbolos que le permiten contar. Algunos son no posicionales, como los números romanos; y otros son posicionales, como el sistema decimal, binario o sexagesimal. Los números romanos cuentan con solo siete símbolos, iguales a algunas letras de nuestro alfabeto. El sistema binario tiene base 2 y solo utiliza 2 cifras: el 1 y el 0. El sistema de numeración sexagesimal tiene como base el número 60. Y el sistema decimal, el que usamos normalmente, tiene como base el 10 y emplea diez dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9.

El sistema binario se considera fundamental en la computación. La base de este sistema son los números 0 y 1 y su combinación en cadena para generar algoritmos.

CONJUNTO DE LOS NÚMEROS ENTEROS

Este conjunto está conformado por los números naturales (\mathbb{N}), los enteros negativo (\mathbb{Z}^{-}) y el cero que es neutro. Este conjunto de números lo utilizamos, por ejemplo, para expresar alturas que se encuentran por encima y por debajo de un sistema de referencia, o bien para indicar temperaturas por encima y debajo del cero.

Las temperaturas por encima de cero se leen como números positivos, mientras que las que están por debajo de cero se leen como números negativos. Ejemplo, 20 ºC y −10 ºC.

CONJUNTO DE LOS NÚMEROS RACIONALES

El conjunto de los números racionales se denota con la letra \mathbb{Q} e incluye todas las fracciones, es decir, las divisiones de dos números enteros. Tienen gran utilidad cuando deseamos expresar partes de una totalidad, por ejemplo, cantidades de ingredientes en una receta (1/2 taza de harina) o porciones de pizza (3/4 de pizza).

Los gráficos circulares son visualmente muy útiles cuando deseamos expresar un número racional.

LOS NÚMEROS DECIMALES

Los números decimales constituyen un amplio grupo de números que incluyen al conjunto de números racionales (\mathbb{Q}) e irracionales (\mathbb{I}). Están conformados por una parte entera y una parte decimal separados por una coma o un punto. Los empleamos para expresar valores que se encuentran entre dos números consecutivos.

Los números decimales se aplican en la vida cotidiana y en el campo laboral. Muchas unidades monetarias son expresadas con números decimales para indicar precios, porcentajes, ventas, ganancias o pérdidas.

CAPÍTULO 1 / TEMA 3

CONJUNTO DE LOS NÚMEROS RACIONALES

El conjunto de los números racionales está conformado por todos aquellos números que pueden ser expresados como una división. Entran en este grupo algunos números decimales y las fracciones. Tienen gran aplicación cotidiana para representar partes de un entero o porciones de una totalidad.

No podemos usar los números enteros para resolver todas las operaciones entre ellos. Por ejemplo, si cortamos una tabla de 1 metro en 2 partes iguales, ¿cuánto mide cada pedazo? La división 1 ÷ 2 no tiene solución dentro de los números enteros, por tal motivo, usamos el conjunto de los números racionales, en el que esta división se representa como 1/2.

¿Sabías qué?
La primera civilización en utilizar los números racionales fueron los egipcios.

¿QUÉ SON LOS NÚMEROS RACIONALES?

Son todos aquellos números que pueden representarse a través de una fracción. De ahí su nombre “racionales”, pues a las fracciones también se las conocen como “razones”.

El conjunto de los números racionales se denota con la letra \mathbb{Q}, que alude al término quotient que significa “cociente”, ya que todo número racional puede ser representado como una fracción con cociente igual a un número decimal.

VER INFOGRAFÍA

Los números racionales como subconjunto de los números reales

Los números racionales (\mathbb{Q}), en conjunto con los números enteros (\mathbb{Z}) y los irracionales (\mathbb{I}), conforman el conjunto de los números reales (\mathbb{R}), donde se encuentran todos los números naturales y decimales.

ELEMENTOS DE LOS NÚMEROS RACIONALES

Los números racionales se forman al dividir dos números enteros que dan como resultado un número decimal. Los números racionales son todos los números del tipo \frac{a}{b} donde a es el numerador y b es el denominador. Ambos elementos, a y b, son número enteros y b es distinto de cero.

Número irracionales

Toda fracción es un número racional. Sin embargo, no todo número decimal pertenece al conjunto de los números racionales, porque no todos tienen una fracción equivalente. Tal es el caso de los decimales no periódicos, los cuales pertenecen al conjunto de los números irracionales, denotados con la letra \mathbb{I}. En esta categoría se encuentran, por ejemplo, \sqrt{7}, \pi o cualquier número con decimales infinitos.

orden de los números racionales

Comparar racionales permite establecer una relación de orden en \mathbb{Q}. Cuando los racionales tienen igual denominador, será mayor aquel con mayor numerador. Por ejemplo, entre \frac{8}{3} y \frac{2}{3}\frac{8}{3} es mayor porque 8 > 2.

Cuando los racionales tienen denominadores diferentes tenemos que convertirlos en fracciones equivalentes de igual denominador y luego comparar. También podemos usar la siguiente regla:

Si \frac{a}{b} y \frac{c}{d} ∈ \mathbb{Q}, con b y d positivos

Se cumple que:

Si  a\times d> b\times c,  entonces   \frac{a}{b}> \frac{c}{d}

Si  a\times d< b\times c,  entonces   \frac{a}{b}< \frac{c}{d}

– Ejemplo:

\frac{8}{5}> \frac{6}{7}   porque  8\times 7> 5\times 6

\frac{4}{7}< \frac{3}{5}  porque  4\times 5< 7\times 3

Fracciones negativas

Si el numerador o el denominador de una fracción es un número negativo podemos escribir el signo “−” antes de la fracción.

\frac{-a}{b}=-\frac{a}{b}

\frac{a}{-b}=-\frac{a}{b}

Las fracciones negativas, al estar más a la izquierda en la recta numérica, son menores que las fracciones positivas.

REPRESENTACIÓN GRÁFICA

Los números racionales se suelen utilizar para expresar partes de una totalidad. Por ejemplo, “un 1/4 de la población mundial utiliza Internet” o “un 1/3 de la población vive en situación de pobreza”, o bien “un 1/2 de los habitantes del planeta son mujeres”. En general, resulta más representativo hablar de fracciones de un total que solo indicar la cantidad de personas.

Para graficar números racionales tenemos que identificar primero qué tipo de fracción es. Si la fracción es propia, es decir, si tiene el numerador menor al denominador, basta con dividir una figura geométrica en tantas partes como indique el denominador y colorear las partes que indique el denominador. Por ejemplo:

\boldsymbol{1=}

\boldsymbol{\frac{2}{2}=}

\boldsymbol{\frac{2}{3}=}

\boldsymbol{\frac{2}{4}=}

\boldsymbol{\frac{2}{5}=}

 

\boldsymbol{\frac{2}{6}=}

\boldsymbol{\frac{2}{7}=}

\boldsymbol{\frac{2}{8}=}

\boldsymbol{\frac{2}{9}=}

\boldsymbol{\frac{2}{10}=}

 

Si la fracción es impropia tenemos que dividir la figura en tantas partes como muestre el denominador y repetirla hasta que se coloreen todas las partes que señale el numerador. Estas fracciones siempre tendrán más de un entero, así que también podemos convertir la fracción impropia en número mixto y seguir los pasos anteriores. Por ejemplo:

\frac{20}{9}=2\frac{2}{9}=

\frac{10}{8}=1\frac{2}{8}=

Fracciones y porcentajes

Los gráficos circulares o de sectores son ampliamente utilizados en estadística y otras áreas en las que son una herramienta de gran utilidad para expresar partes de un todo, por lo que las fracciones son necesarias para determinar las porciones de colores. No obstante, es mucho más práctico hacer estos gráficos con datos mostrados en porcentajes: una forma de representar a una fracción decimal, cuyo denominador es 100.

Convertir fracciones en porcentajes es muy sencillo, solo tenemos que dividir el numerador entre el denominador y después multiplicar por 100 %. Por ejemplo, 1/4 es igual a 25 % porque 1 ÷ 4 = 0,25 y 0,25 × 100 % = 25 %.

¡A practicar!

1. Señala cuáles números son racionales y cuáles son irracionales.

  • \frac{4}{5}
Solución
Es un número racional.
  • \sqrt{2}
Solución
Es un número irracional.
  • \frac{\pi }{3}
Solución
Es un número irracional.
  • \frac{1}{4}
Solución
Es un número racional.

2. Ordena de menor a mayor los siguientes número racionales.

  • \frac{8}{5}\frac{6}{7}\frac{2}{9}\frac{1}{2}
Solución
\frac{2}{9} < \frac{1}{2} < \frac{6}{7} < \frac{8}{5}
  • \frac{10}{3}\frac{6}{8}\frac{2}{3}\frac{5}{2}
Solución
\frac{2}{3} < \frac{6}{8} < \frac{5}{2} < \frac{10}{3}

  • -\frac{8}{4}\frac{3}{7}1\frac{2}{5}
Solución
-\frac{8}{4} < \frac{2}{5} < \frac{3}{7} < 1

3. ¿Qué fracción representan estos gráficos?

Solución
\frac{7}{3}
Solución
\frac{2}{9}
Solución
\frac{8}{5}
Solución
\frac{4}{10}
RECURSOS PARA DOCENTES

Artículo “¿Cómo transformar un número decimal a fracción?”

En este artículo hallará el método y la explicación para obtener la fracción generatriz de un número decimal.

VER

Artículo “La recta numérica”

En este recurso encontrará un método para representar números racionales en la recta real.

VER

Artículo “La clasificación de los números”

En este artículo encontrará la clasificación de los diferentes conjuntos numéricos, a fin de identificar en qué categoría o a qué subconjunto pertenecen los números racionales.

VER

CAPÍTULO 5 / TEMA 4 (REVISIÓN)

REPRESENTACIONES GRÁFICAS | ¿QUÉ APRENDIMOS?

PICTOGRAMAS

LOS PICTOGRAMAS SON GRÁFICOS QUE SIRVEN PARA REPRESENTAR A TRAVÉS DE DIBUJOS O SÍMBOLOS SENTIMIENTOS, PERSONAS, ANIMALES, ACCIONES U OBJETOS. EN SITUACIONES DE NUESTRA VIDA COTIDIANA PODEMOS ENCONTRARLOS EN SEÑALES DE TRÁNSITO, CARTELES, HISTORIETAS O EN PRODUCTOS. TAMBIÉN SON ÚTILES CUANDO HACEMOS TABLAS DE DATOS.

LOS PICTOGRAMAS SON USADOS EN LAS HISTORIETAS O CÓMICS PARA EXPRESAR SENTIMIENTOS O ACCIONES DE UN PERSONAJE.

TABLAS

LAS TABLAS DE DATOS SON UN RECURSO MUY ÚTIL PARA MOSTRAR INFORMACIÓN RECOLECTADA DE FORMA RESUMIDA Y CLARA. ESTAS TABLAS SON CUADROS FORMADOS POR COLUMNAS VERTICALES  Y FILAS HORIZONTALES QUE EXPRESAN LOS DATOS. ESTA DEBE SER SENCILLA PARA QUE CUALQUIER LECTOR PUEDA ENTENDERLA. LA UNIÓN DE UNA COLUMNA Y UNA FILA SE DENOMINA CELDA.

PARA LOS CIENTÍFICOS LAS TABLAS SON DE GRAN AYUDA PARA ORGANIZAR MUCHOS DATOS.

FRACCIONES Y SUS GRÁFICAS

LAS FRACCIONES SON NÚMEROS QUE REPRESENTAN UNA PARTE DE UN TODO O ENTERO. EN UN GRÁFICO EL ENTERO SE DIVIDE EN LAS PARTES QUE INDICA EL DENOMINADOR Y SE COLOREAN LAS PARTES QUE INDICA EL NUMERADOR. CUANDO PARTIMOS UN PASTEL EN 8 PARTES IGUALES Y COMEMOS UNA, CUANDO COMPRAMOS MEDIO KILOGRAMO DE PAPAS O CUANDO DECIMOS “SON LAS TRES Y MEDIA” HACEMOS USO DE LAS FRACCIONES.

SI DIVIDIMOS Y CORTAMOS UNA PIZZA EN 2 PARTES IGUALES PARA COMER UNA, LA FRACCIÓN QUE EXPRESA ESA PARTE SERÍA 1/2 Y SE LEE “UN MEDIO”.

CAPÍTULO 5 / TEMA 3

FRACCIONES Y SUS GRÁFICAS

CUANDO CONTAMOS NUESTROS JUGUETES O LÁPICES USAMOS LOS NÚMEROS NATURALES: 1, 2, 3, … PERO ¿QUÉ SUCEDE SI SOLO TENEMOS LA MITAD DE UN LÁPIZ? EN ESTOS CASOS USAMOS UN TIPO DE NÚMEROS LLAMADO FRACCIÓN. LAS FRACCIONES REPRESENTAN UNA PARTE DE UN ENTERO, ESTÁN FORMADAS POR DOS NÚMEROS NATURALES Y SON MÁS COMUNES DE LOS QUE CREES. ¡APRENDAMOS A GRAFICARLAS!

¿QUÉ ES UNA FRACCIÓN?

UNA FRACCIÓN REPRESENTA LA PARTE DE UN TODO O DE UNA UNIDAD DIVIDIDA EN PARTES IGUALES.

UNA NARANJA ENTERA ES IGUAL A UNA UNIDAD O EL “TODO”. OBSERVA LA IMAGEN, ¿LA NARANJA ESTÁ ENTERA? ¡NO! ESTÁ PICADA A LA MITAD Y HAY DOS MITADES. SI COMEMOS UNA DE ESTAS PARTES, DECIMOS QUE COMIMOS “MEDIA NARANJA”. ESTO ES UN EJEMPLO DE FRACCIÓN PORQUE COMIMOS UNA PARTE DE UN TODO. PIENSA: ¿EN QUÉ OTRA OCASIÓN USAMOS FRACCIONES?

VER INFOGRAFÍA

ELEMENTOS DE UNA FRACCIÓN

LA FRACCIÓN TIENE DOS ELEMENTOS SEPARADOS POR UNA RAYA: EL NÚMERO DE ARRIBA SE LLAMA NUMERADOR Y EL DE ABAJO SE LLAMA DENOMINADOR.

  • EL NUMERADOR ES IGUAL A LA CANTIDAD DE PARTES QUE SE HAN TOMADO DEL ENTERO.
  • EL DENOMINADOR ES IGUAL A LA CANTIDAD DE PARTES EN LAS QUE SE HA DIVIDIDO AL ENTERO.

TIPOS DE FRACCIONES

LAS FRACCIONES PUEDEN SER PROPIAS O IMPROPIAS.

  • LAS FRACCIONES PROPIAS TIENEN EL NUMERADOR MENOR AL DENOMINADOR.

POR EJEMPLO: \frac{1}{2}\frac{3}{5} Y \frac{8}{10}.

  • LAS FRACCIONES IMPROPIAS TIENEN EL NUMERADOR MAYOR AL DENOMINADOR.

POR EJEMPLO: \frac{7}{5}\frac{10}{4} Y \frac{5}{3}.

¿SABÍAS QUÉ?
LAS FRACCIONES TAMBIÉN SE PUEDEN EXPRESAR CON UNA DIAGONAL, POR EJEMPLO,\frac{1}{2} ES IGUAL A 1/2.

¿CÓMO GRAFICAR FRACCIONES?

AL SER LAS PARTES DE UN TODO O UNIDAD, PODEMOS DIBUJAR FRACCIONES POR MEDIO DE GRÁFICOS CON FIGURAS GEOMÉTRICAS.

SI QUEREMOS GRAFICAR LA FRACCIÓN \boldsymbol{\frac{1}{2}} LOS PASOS SON LOS SIGUIENTES:

1. DIBUJAMOS CUALQUIER FIGURA GEOMÉTRICA. EN ESTE CASO DIBUJAMOS UN RECTÁNGULO.

2. VEMOS EL DENOMINADOR DE LA FRACCIÓN. EL DENOMINADOR DE LA FRACCIÓN \boldsymbol{\frac{1}{{\color{Red} 2}}} ES 2, ASÍ QUE DIVIDIMOS EL RECTÁNGULO EN 2 PARTES IGUALES.

3. VEMOS EL NUMERADOR DE LA FRACCIÓN. EL NUMERADOR DE LA FRACCIÓN \boldsymbol{\frac{{\color{Red} 1}}{2}} ES 1, ASÍ QUE COLOREAMOS UNA SOLA PARTE DEL RECTÁNGULO.

 

– OTRO EJEMPLO:

GRAFIQUEMOS LA FRACCIÓN \boldsymbol{\frac{3}{4}}.

PRIMERO DIBUJAMOS LA FIGURA GEOMÉTRICA QUE REPRESENTA AL “TODO”.

¿CUÁL ES EL DE DENOMINADOR? EL DENOMINADOR ES 4. ASÍ QUE DIVIDIMOS LA FIGURA EN 4 PARTES IGUALES.

¿CUÁL ES EL NUMERADOR? EL NUMERADOR ES 3. ENTONCES, COLOREAMOS 3 PARTES DE LA FIGURA.

¡ES TU TURNO!

REALIZA EL GRÁFICO DE ESTAS FRACCIONES:

  • \boldsymbol{\frac{2}{5}}
SOLUCIÓN

  • \boldsymbol{\frac{2}{3}}
SOLUCIÓN

LAS FRACCIONES SON UN TIPO ESPECIAL DE NÚMEROS Y SE LEEN DE UNA MANERA DIFERENTE A LOS DEMÁS. PRIMERO LEEMOS EL NUMERADOR COMO CUALQUIER NÚMERO NATURAL. EL DENOMINADOR CAMBIA SEGÚN EL NÚMERO, SI ES 2 SE LEE “MEDIOS”, SI ES 3 SE LEE “TERCIOS” Y SI ES 4 SE LEE “CUARTOS”. ASÍ, LA FRACCIÓN 1/2 SE LEE “UN MEDIO” Y LA FRACCIÓN 1/3 SE LEE “UN TERCIO”.

FRACCIONES EN LA VIDA COTIDIANA

LAS FRACCIONES FORMAN PARTE DE NUESTRO DÍA A DÍA. USAMOS FRACCIONES CADA VEZ QUE COMPRAMOS PAN, FRUTAS O VEGETALES, PUES PODEMOS PEDIR MEDIO KILOGRAMO DE ALGO. TAMBIÉN USAMOS FRACCIONES CUANDO DAMOS LA HORA Y DECIMOS, POR EJEMPLO, “SON LAS DOS Y CUARTO” LO QUE SIGNIFICA QUE HA PASADO 1/4 DE HORA DESPUÉS DE LAS 2.

– OTRAS SITUACIONES:

  • AL CORTAR UNA FRUTA EN DOS PARTES Y COMER UNA: 
  • AL CORTAR UNA PIZZA EN 4 PARTES Y COMER 2: 
  • AL COMPRAR PRODUCTOS:  KILO DE HARINA.
  • AL REALIZAR UNA PARTE DE UN RECORRIDO. LAURA RECORRIÓ  DE UNA CARRERA.
EN VARIAS SITUACIONES DE NUESTRA VIDA ENCONTRAMOS FRACCIONES DE FORMA GRÁFICA. UN EJEMPLO COMÚN DE FRACCIONES ES CUANDO REPARTIMOS UN PASTEL. EN LA IMAGEN VEMOS UNO CORTADO EN 8 PARTES IGUALES, ES DECIR, EL DENOMINADOR ES 8. TAMBIÉN VEMOS QUE SE TOMA 1 PARTE, ASÍ QUE EL NUMERADOR ES 1 Y LA FRACCIÓN DE ESE PEDAZO ES 1/8. LA TORTA TIENE FORMA DE CÍRCULO Y ES SIMILAR AL GRÁFICO DE LA FRACCIÓN.

¡A PRACTICAR!

ESCRIBE LA FRACCIÓN PARA CADA GRÁFICO:

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 2

PARTES COLOREADAS: 1

FRACCIÓN: \boldsymbol{\frac{1}{2}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 5

PARTES COLOREADAS: 1

FRACCIÓN: \boldsymbol{\frac{1}{5}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 3

PARTES COLOREADAS: 2

FRACCIÓN: \boldsymbol{\frac{2}{3}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 4

PARTES COLOREADAS: 3

FRACCIÓN: \boldsymbol{\frac{3}{4}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 4

PARTES COLOREADAS: 2

FRACCIÓN: \boldsymbol{\frac{2}{4}}

RECURSOS PARA DOCENTES

Artículo “Fracciones”

Este recurso cuenta con ejemplos didáctico sobre los tipos de fracciones y cómo graficarlos.

VER

CAPÍTULO 3 / TEMA 4

FRACCIONES MIXTAS

Las fracciones mixtas se denominan así porque están formadas por un número entero y por una fracción. Hay diversas situaciones donde se usan, unas de ellas son las recetas de cocina, donde se suelen emplear fracciones mixtas para representar cantidades: por ejemplo, “2 ½ de tazas de azúcar” hacen referencia a dos tazas y media de ese ingrediente.

¿QUÉ ES UNA FRACCIÓN MIXTA?

Una fracción mixta es una forma de representar a una cantidad, y esta compuesta por una parte entera y una parte fraccionaria. La estructura general de una fracción mixta es la siguiente:

Donde:

A = es la parte entera; es decir, un número entero.

b = es el numerador de la parte fraccionaria.

c = es el denominador de la parte fraccionaria.

Una característica de estas expresiones es que la parte fraccionaria corresponde a una fracción propia, es decir, una fracción en la que su numerador es menor que el denominador.

Lectura de fracciones mixtas

Para leer fracciones de este tipo se lee primero su parte entera y luego su parte fraccionaria.

Veamos algunos ejemplos:

a) \inline 2\tfrac{1}{3}

La parte entera de este número es 2 y su parte fraccionaria es 1/3. Por lo tanto, esta fracción se lee como: dos enteros y un tercio.

b) \inline 4\tfrac{5}{7}

En este caso la parte entera del número es 4 y su parte fraccionaria es 5/7. Se lee como: cuatro enteros y siete quintos.

¿Sabías qué?
Las fracciones mixtas también son denominadas números mixtos.
Una fracción mixta es una forma de representar a una cantidad, y está compuesta por una parte entera y una parte fraccionaria que esta formada por una fracción propia. Es otra forma representar a las fracciones. La hora siempre puede ser representada por medio de una fracción mixta. Por ejemplo, en esta imagen “una hora y media” se escribiría como 1 1/2 hora.

GRÁFICA DE FRACCIONES MIXTAS

Para graficar fracciones mixtas se siguen los siguientes pasos:

  1. Se representa al entero o la unidad dividida en tantas partes iguales como indique el denominador de la parte fraccionaria.
  2. Se repite este gráfico tantas veces como indique la parte entera. En este caso representaríamos solo la parte entera de la fracción.
  3. Se representa la parte fraccionaria con otro gráfico similar pero en este caso se rellenan solo las partes que indique el numerador de la fracción.

Por ejemplo, si queremos graficar la fracción mixta:

Lo primero es representar a la unidad dividida en tantas partes iguales como indique el denominador de la parte fraccionaria. En este caso como el denominador es 3 se debe dividir al entero o la unidad en 3 partes iguales:

Como la parte entera de esta fracción es 2, quiere decir que esta formada por dos enteros, entonces se debe graficar el entero nuevamente:

Finalmente, se repite el gráfico pero se rellenan únicamente las partes que indique el numerador, como el numerador es 1, señalamos una sola parte que corresponde a un tercio:

La fracción se lee como dos enteros y un tercio.

Historia de las fracciones

Las fracciones surgieron a partir de la necesidad de representar divisiones inexactas y unidades de medida. Por esta razón, no son un invento nuevo. De hecho, antiguas civilizaciones como la egipcia, la babilonia y la griega ya las conocían. Sin embargo, la manera de expresar fracciones con la raya horizontal fue introducida por los árabes y luego fue llevada a Europa por Lenorado Fibonacci en el siglo XIII. Posteriormente, su uso se expandió por el resto del mundo.

Para graficar fracciones mixtas se sigue un procedimiento similar al que utilizamos para graficar fracciones convencionales. En primer lugar, dividimos al entero en tantas partes como indique el denominador de la parte fraccionaria. Luego, rellenamos tantos enteros (completos) como indique la parte entera de la fracción mixta. Por último, se emplea un gráfico similar para la parte fraccionaria y se rellenan tantas parte como indique el numerador de la fracción.

TRANSFORMAR FRACCIONES MIXTAS A FRACCIONES CONVENCIONALES

Para transformar una fracción mixta a una fracción convencional, se debe sumar la parte entera con la parte fraccionaria. El resultado, será una fracción convencional que representa la misma cantidad que la fracción mixta original.

Por ejemplo:

– Convertir la siguiente fracción mixta a fracción convencional.

En este caso se debe sumar 2 + 1/3 pero como la parte entera que es 2 no es una fracción, se debe colocar un número 1 como denominador para poder realizar la suma de fracciones. Se debe seguir el procedimiento de suma de fracciones heterogéneas (con diferente denominador):

De esta manera el resultado es 7/3,  es una fracción impropia porque su numerador es mayor que el denominador y es igual a 2 1/3.

VER INFOGRAFÍA

¿Sabías qué?
Para graficar fracciones impropias se deben convertir primero a fracciones mixtas.
Para transformar una fracción mixta a una fracción convencional, se debe realizar una suma de la parte entera y la parte fraccionaria. El resultado será una fracción convencional que representa la misma cantidad que la fracción mixta original. Cuando convertimos una fracción mixta a fracción convencional, siempre obtenemos una fracción impropia, es decir, una fracción en la que el numerador es mayor al denominador, y por lo tanto, una fracción mayor a uno.

¡A practicar!

1. Representa gráficamente los siguientes números mixtos.

a. 1\frac{1}{3}

b. 3\frac{3}{2}

c. 2\frac{3}{4}

RESPUESTAS

2. Transforma las siguientes fracciones mixtas en fracciones convencionales.

a. 1\frac{2}{3}

b. 3\frac{1}{2}

c. 1\frac{4}{3}

d. 2\frac{4}{5}

e. 3\frac{2}{7}

RESPUESTAS

a. \frac{5}{3}

b. \frac{7}{2}

c. \frac{7}{3}

d. \frac{14}{5}

e. \frac{23}{7}

RECURSOS PARA DOCENTES

Artículo “Clasificación de fracciones”

En este artículo se explican los diferentes tipos de fracciones, como las fracciones propias, las impropias, las homogéneas, las heterogéneas, las reducibles y las irreducibles.

VER

Enciclopedia “Matemática primaria”

En el tomo 2 de esta enciclopedia se abordan con mayor detalle temas relacionados con fracciones, números mixtos y números decimales.

VER

CAPÍTULO 4 / TEMA 3

ORDEN DE FRACCIONES

Si tienes que elegir entre 1/2 de pizza o 3/4 de pizza, ¿cuál elegirías? Para responder esta pregunta es importante que sepas comparar distintos tipos de fracciones. Estas expresiones matemáticas constan de un numerador y un denominador, y según la relación entre ellos pueden ser mayores o menores que otras. ¡Aprende cómo ordenar fracciones!

Una fracción es una división entre dos números: un numerador y un denominador. El denominador indica en cuantas partes se divide la unidad y el numerador señala cuántas de esas partes se han de tomar. Si el numerador es menor que el denominador, la fracción es propia; pero si es mayor al denominador, la fracción es impropia.

Ubicación de fracciones en la recta numérica

Fracciones propias

Las fracciones propias son aquellas que tienen el numerador menor al denominador, por lo que siempre son menores a 1. Para ubicar estas fracciones en la recta numérica dividimos a la unidad en tantos segmentos como indique el denominador de la fracción que queremos representar. Luego, contamos tantos espacios como indique el numerador a partir del cero.

– Ejemplo:

La fracción \frac{4}{5} es propia porque su numerador es menor al denominador (4 < 5).

Para representarla en la recta dividimos el segmento entre el 0 y el 1 en 5 espacios (denominador). Después contamos 4 espacios (numerador) y ubicamos la fracción.

Fracciones impropias

Las fracciones impropias son aquellas cuyo numerador es mayor al denominador, por lo que siempre son mayores a 1. Para representar este tipo de fracciones en la recta numérica tenemos que transformarlas a números mixtos.

¿Qué es un número mixto?

Es aquel que tiene una parte entera y una parte fraccionaria. Por ejemplo:

\boldsymbol{2\frac{1}{2}=} 

Este número mixto se lee “dos enteros y un medio”.

¿Cómo transformar una fracción impropia a un número mixto?

Realiza la división entre el numerador y el denominador. Al terminar con la cuenta, el cociente de la división indica el entero del número mixto; el resto junto al divisor van a conformar la parte fraccionaria: el resto será el numerador y el divisor será el denominador.

– Ejemplo:

¿Cuál es el número mixto equivalente a la fracción \frac{5}{2}?

Por lo tanto:

\boldsymbol{\frac{5}{2}=2\frac{1}{2}}

 

De este modo, para poder representar el número mixto 2\frac{1}{2} en la recta numérica consideramos el número entero, en este caso el 2, y a partir de este seguimos los mismos pasos que en las fracciones propias: dividimos el segmento entre el 2 y el 3 en 2 segmentos iguales (denominador), después contamos un espacio (numerador) y ubicamos la fracción.

VER INFOGRAFÍA

¡Es tu turno!

Representa las siguientes fracciones en una recta numérica.

  • \frac{7}{5}
Solución

Como la fracción es impropia, la transformamos a número mixto.

\boldsymbol{\frac{7}{5}=1\frac{2}{5}}

  • \frac{1}{5}
Solución

  • \frac{8}{10}
Solución

  • \frac{9}{6}
Solución

Como la fracción es impropia, la transformamos a número mixto.

\boldsymbol{\frac{9}{6}=1\frac{3}{6}}

 

Las fracciones representan una parte del todo. No solo son importantes en el ámbito escolar, sino que son muy utilizadas en la vida diaria. Usamos fracciones cada vez que partimos un pastel, cuando pedimos media docena de empanadas o cuando cortamos la mitad de un pan. También vemos fracciones en las etiquetas de los productos, por ejemplo, 1/2 litro de jugo.

comparación de fracciones

Cuando comparamos fracciones, determinamos cuál es mayor o menor que otra. Para esto, debemos tomar en cuenta sus elementos y ver si los denominadores son iguales o si sus numeradores son iguales.

Comparar fracciones con igual denominador

Entre dos fracciones con igual denominador será mayor la fracción que tenga mayor numerador.

– Ejemplo:

\boldsymbol{\frac{8}{3}>\frac{6}{3}}

Observa que los denominadores son iguales (3 = 3) pero los numeradores no; y como 8 > 6, la fracción 8/6 es mayor que 6/3.

Comparar fracciones con igual numerador

Entre dos fracciones con igual numerador será mayor la fracción que tenga menor denominador.

– Ejemplo:

\boldsymbol{\frac{12}{5}<\frac{12}{4}}

Observa que los numeradores son iguales (12 = 12) pero los denominadores no; y como 5 > 4, la fracción 12/4 es mayor que 12/5.

Fracciones con distintos numeradores y denominadores

Cuando las dos fracciones tienen numeradores y denominadores diferentes, buscamos homogeneizar, es decir, encontrar fracciones equivalentes con igual denominador.

¿Cómo homogeneizar dos fracciones?

Para encontrar las fracciones equivalentes con igual denominador de unas fracciones seguimos estos pasos:

  1. Determinamos el mínimo común múltiplo de los denominadores. Ese será el denominador de las fracciones equivalentes.
  2. Encontramos el número por el que hay que multiplicar el numerador y el denominador de las fracciones.

– Ejemplo:

Homogeneiza las fracciones \boldsymbol{\frac{2}{3}} y \boldsymbol{\frac{3}{4}}. Luego compara.

1. Calculamos el m. c. m. de los denominadores 3 y 4.

2. Encontramos el número por el que hay que multiplicar el numerador y el denominador de las fracciones.

Como 3 × 4 = 12, entonces también multiplicamos el numerador por 4.

\frac{2}{3}=\frac{2\times 4}{12}=\boldsymbol{ \frac{8}{12}}

Como 4 × 3 = 12, entonces también multiplicamos el numerador por 3.

\frac{3}{4}=\frac{3\times 3}{12}=\boldsymbol{\frac{9}{12}}

 

Ahora es más sencillo comparar las fracciones, pues tenemos fracciones homogéneas por lo que seguimos los pasos anteriores: entre dos fracciones con igual denominador será mayor la fracción que tenga mayor numerador. Así que:

\boldsymbol{\frac{9}{12}>\frac{8}{12}} Como \frac{9}{8} es la fracción equivalente de \frac{3}{4}; y \frac{8}{12} es la fracción equivalente de \frac{2}{3}, podemos decir que:

\boldsymbol{\frac{3}{4}>\frac{2}{3}}

 

¿Sabías qué?
En el año 1800 a. C. el pueblo babilonio introdujo las fracciones.

Comparación de números mixtos

Entre dos números mixtos, será mayor aquel que tenga mayor parte entera. Por ejemplo:

\boldsymbol{2\frac{3}{4}<3\frac{5}{3}}

Pero si las partes enteras son iguales, comparamos la parte fraccionaria por medio de cualquier de los métodos aplicados anteriormente. Por ejemplo:

\boldsymbol{1\frac{4}{6}>1\frac{1}{6}}

Las dos partes entera son iguales (1 = 1), pero las partes fraccionarias no. Como ves, ambas son fracciones homogéneas porque los denominadores son iguales (6 = 6), así que comparamos los numeradores, y como 4 > 1, el número mixto 1\frac{4}{6} es mayor que 1\frac{1}{6}.

Un uso muy popular de las fracciones es cuando damos la hora. Por ejemplo, cuando decimos que son “las dos y media”, hacemos referencia a un número mixto en la que la parte entera es 2, y la parte fraccionaria es 1/2. También ocurre cuando decimos que “son las cinco y cuarto”, allí la parte entera es 5 y la parte fraccionaria es 1/4.

 

¡A practicar!

1. Representa las siguientes fracciones en la recta numérica.

  • \frac{4}{9}
Solución

  • \frac{9}{5}
Solución

\frac{9}{5}=1\frac{4}{5}

  • \frac{2}{10}
Solución

  • 6\frac{3}{5}
Solución

 

2. Compara los siguientes números mixtos.

  • 4\frac{1}{6} y 2\frac{1}{2}
Solución
4\frac{1}{6}>2\frac{1}{2}
  • 1\frac{7}{8} y 2\frac{2}{6}
Solución
1\frac{7}{8}<2\frac{2}{6}
  • 1\frac{1}{3} y 1\frac{2}{6}
Solución
1\frac{1}{3}=1\frac{2}{6} porque \frac{1}{3}=\frac{2}{6}
  • 1\frac{5}{6} y 1\frac{1}{2}
Solución
1\frac{5}{6}>1\frac{1}{2}
RECURSOS PARA DOCENTES

Artículo “Partes y porciones”

En este artículo podrás ampliar la información sobre la comparación de fracciones por medio del método del común denominador (sin utilizar recta numérica).

VER

Enciclopedia “Enciclopedia de Matemáticas Primaria”

Con el Tomo 2 de esta enciclopedia podrás profundizar en el concepto de fracciones y su clasificación, así como en la comparación de fracciones y números mixtos.

VER

Artículo “Clasificación de fracciones”

En este artículo podrás encontrar más información sobre la clasificación de fracciones.

VER

CAPÍTULO 3 / TEMA 2

adición y sustracción de fracciones

Las fracciones son divisiones no resueltas que representan las partes de un todo. Pertenecen a los números racionales y, como cualquier otro tipo de número, pueden ser sumadas o restadas. Las características de cada fracción hacen que las operaciones tengan reglas distintas. A continuación, aprenderás los métodos posibles para realizar estos cálculos.

Una fracción simboliza una división entre un número y otro, y a su vez indica las partes tomadas de un todo. Una fracción tiene dos partes: un numerador y un denominador separados por una línea horizontal. El denominador señala en cuántas partes se divide la unidad, y el numerador señala cuántas de esas partes se han tomado.

VER INFOGRAFÍA

adición y sustracción de fracciones homogéneas

Cuando dos fracciones tienen el mismo denominador se las llama homogéneas. Para sumar y restar este tipo de fracciones solo se suman o restan lo numeradores y se mantiene el mismo denominador.

Adición

\frac{{\color{Red} 12}}{{\color{Blue} 7}}+\frac{{\color{Red} 4}}{{\color{Blue} 7}} = \frac{{\color{Red} 12+4}}{{\color{Blue} 7}}=\boldsymbol{\frac{16}{7}}

– Otros ejemplos:

\frac{{\color{Red} 31}}{{\color{Blue} 17}}+\frac{{\color{Red} 41}}{{\color{Blue} 17}}=\frac{{\color{Red} 31+41}}{{\color{Blue} 17}}=\boldsymbol{\frac{72}{17}}

\frac{{\color{Red} 15}}{{\color{Blue} 11}}+\frac{{\color{Red} 10}}{{\color{Blue} 11}}+\frac{{\color{Red} 21}}{{\color{Blue} 11}}= \frac{{\color{Red} 15+10+21}}{{\color{Blue} 11}}=\boldsymbol{\frac{46}{11}}

Sustracción

\frac{{\color{Red} 23}}{{\color{Blue} 7}}-\frac{{\color{Red} 14}}{{\color{Blue} 7}}=\frac{{\color{Red} 23-14}}{{\color{Blue} 7}}=\boldsymbol{\frac{9}{7}}

– Otros ejemplos:

\frac{{\color{Red} 3}}{{\color{Blue} 5}}-\frac{{\color{Red} 1}}{{\color{Blue} 5}}=\frac{{\color{Red} 3-1}}{{\color{Blue} 5}}=\boldsymbol{\frac{2}{5}}

\frac{{\color{Red} 24}}{{\color{Blue} 13}}-\frac{{\color{Red} 8}}{{\color{Blue} 13}}-\frac{{\color{Red} 10}}{{\color{Blue} 13}}=\frac{{\color{Red} 24-8-10}}{{\color{Blue} 13}}=\boldsymbol{\frac{6}{13}}

fracciones equivalentes

Las fracciones equivalentes son aquellas que, a pesar de tener distintos numeradores y denominadores, representan la misma cantidad. Dos fracciones son equivalentes si al multiplicar sus términos en forma de cruz el resultado es el mismo.

– Ejemplo:

\frac{3}{6} y \frac{6}{12} son fracciones equivalentes porque:

        3\times 12=\boldsymbol{36}

        6\times 6=\boldsymbol{36}

Podemos escribir las fracciones equivalentes de la siguiente manera:

\frac{3}{6}=\frac{6}{12} porque 3\times 12 = 6\times 6

– Otro ejemplo:

\frac{8}{3} y \frac{2}{4} no son fracciones equivalentes porque:

         8\times 4=\boldsymbol{32}

         3\times 2=\boldsymbol{6}

Podemos escribir las fracciones no equivalentes de la siguiente manera:

\frac{8}{3}\neq \frac{2}{4} porque 8\times 4\neq 3\times 2

¡Practiquemos! 

Laura, Tomás y Daniela tienen cada uno un chocolate. Laura comió 1/2, Tomás comió 3/6 y Daniela comió 6/12. ¿Quién comió más chocolate?

Si representamos en gráficos cada fracción tenemos que:

\boldsymbol{\frac{1}{2}=}  

\boldsymbol{\frac{3}{6}=}  

\boldsymbol{\frac{6}{12}=}

Laura partió el chocolate en 2 pedazos y comió uno de esos; Tomás lo cortó en 6 pedazos y comió 3; y Daniela lo cortó en 12 pedazos y comió 6.

Sin importar la cantidad de trozos en las que se dividió el chocolate, cada uno comió lo mismo: la mitad.

Además de comprobarlo con los gráficos y por el método cruzado, podemos corroborar que una fracción es equivalente a otra si resolvemos la división. De este modo, tenemos que:

\frac{1}{2}=\boldsymbol{0,5}

\frac{3}{6}=\boldsymbol{0,5}

\frac{6}{12}=\boldsymbol{0,5}

Como todas las fracciones representan la misma cantidad, se pueden escribir de la siguiente forma:

\frac{1}{2}=\frac{3}{6}=\frac{6}{12}

¿Cómo podemos obtener fracciones equivalentes?

Por medio de dos métodos: amplificación y simplificación.

Amplificación

Consiste en multiplicar el numerador y el denominador por un mismo número distinto de cero.

– Ejemplo:

Ambas fracciones, 2/5 y 6/15 son equivalentes. Observa que tanto el numerador como el denominador se multiplicaron por 3.

– Otro ejemplo:

Simplificación

Consiste en dividir al numerador y al denominador por un mismo número distinto de cero. Este número debe ser un divisor común entre el numerador y el denominador.

– Ejemplo:

Como el número 2 es un divisor común entre el numerador y denominador, podemos hacer una simplificación de la fracción.

– Otro ejemplos:

¿Sabías qué?
Cuando una fracción no puede simplificarse más se la llama fracción irreducible.
Juan y Carlos compraron una pizza cada uno. Si Juan comió 2/3 de pizza y Carlos 3/4 de pizza, ¿quién comió más? Hallar la fracción equivalente con igual denominador de estas fracciones puede ayudarnos a comparar las cantidades y responder la pregunta. 2/3 = 8/12 y 3/4 = 9/12, entonces comparamos los numeradores y, como 9 > 8, decimos que Carlos comió más que Juan.

adición y sustracción de fracciones heterogéneas

Las fracciones heterogéneas son las que tienen distinto denominador. Para sumar o restar fracciones heterogéneas podemos emplear tres métodos distintos.

Método 1: con fracciones equivalentes

En este método hallamos la fracción equivalente de las fracciones para que todas tengan el mismo denominador, es decir, para que sean homogéneas. Luego las sumamos como se explicó al inicio: sumamos los numeradores y mantenemos el mismo denominador.

– Ejemplo:

\frac{1}{2}+\frac{3}{4}

1. Hallamos la fracción equivalente a 1/2 con denominador igual a 4.

Ya sabemos que el producto cruzado de los términos debe ser el mismo. Así que multiplicamos el primer numerador por el segundo denominador, el cual necesitamos que sea 4.

\frac{{\color{Red} 1}}{2}=\frac{a}{{\color{Red} 4}}\; \; \; \; \;\; \; 1\times 4=\boldsymbol{4}

Luego planteamos la segunda multiplicación como una ecuación. Esta corresponde a la del primer denominador con el primer numerador.

\frac{1}{{\color{Blue} 2}}=\frac{{\color{Blue} a}}{4}\; \; \; \; \;\; \; 2\times a=\boldsymbol{4}

Despejamos la incógnita a y obtenemos el numerador de la fracción equivalente.

2\times a=4\: \Rightarrow a=4\div 2=\boldsymbol{2}

Por lo tanto,

\frac{1}{2}=\frac{\boldsymbol{2}}{4}

2. Reescribimos la suma con la nueva fracción equivalente. En lugar de la fracción 1/2 escribimos su fracción equivalente 2/4.

\frac{2}{4}+\frac{3}{4}

3. Resolvemos la suma de fracciones homogéneas.

\frac{2}{4}+\frac{3}{4}=\frac{2+3}{4}=\boldsymbol{\frac{5}{4}}

El procedimiento es igual con la sustracción, solo cambiamos el signo más (+) por el signo menos (−).

Método 2: con mínimo común múltiplo

Consiste en hallar el mínimo común múltiplo de los denominadores de las fracciones, el cual será el nuevo denominador. El cociente entre este valor y los denominadores se multiplica con los numeradores.

– Ejemplo:

\frac{1}{2}+\frac{3}{4}

1. Calculamos el mínimo común múltiplo de los denominadores. Ese será el denominador de la fracción resultante.

mcm (2, 4) = 2 × 2 = 4

2. Dividimos al mcm con el denominador de la primera fracción (4 ÷ 2 = 2) y multiplicamos ese resultado por su numerador.

\frac{1}{2}+\frac{3}{4} = \frac{{\color{Red} 2} \times 1\:}{4}+

3. Realizamos el mismo procedimiento con la segunda fracción. Esta vez dividimos el mcm entre el segundo denominador (4 ÷ 4 = 1) y multiplicamos ese resultado por el segundo numerador. Sumamos este resultado con el obtenido anteriormente.

\frac{1}{2}+\frac{3}{4} = \frac{{\color{Red} 2}\times 1}{4}+\frac{{\color{Blue} 1}\times 3}{4}

4. Resolvemos las operaciones y obtenemos el resultado final.

\frac{1}{2}+\frac{3}{4} = \frac{{\color{Red} 2}\times 1}{4}+\frac{{\color{Blue} 1}\times 3}{4}=\frac{2+3}{4}=\boldsymbol{\frac{5}{4}}

El procedimiento es igual con la sustracción, solo cambiamos el signo más (+) por el signo menos (−).

Método 3: con productos cruzados

En este método multiplicamos de manera cruzada los numeradores y denominadores de las fracciones. Sumamos los resultados y los colocamos en el numerador resultante. El denominador de la fracción final será igual al producto de la multiplicación de los denominadores.

– Ejemplo:

\frac{1}{2}+\frac{3}{4}

1. Multiplicamos el primer numerador por el segundo denominador.

\frac{{\color{Red} 1}}{2}+\frac{3}{{\color{Red} 4}}=\frac{{\color{Red} 1\times 4}}{}

2. Multiplicamos el primer denominador por el segundo numerador. Sumamos esta operación con la primera.

\frac{{\color{Red} 1}}{{\color{Blue} 2}}+\frac{{\color{Blue} 3}}{{\color{Red} 4}}=\frac{{\color{Red} 1\times 4}+{\color{Blue} 2\times 3}}{}

3. Multiplicamos los denominadores. El resultado lo colocamos en el lugar del denominador.

\frac{{\color{Red} 1}}{{\color{Blue} 2}}+\frac{{\color{Blue} 3}}{{\color{Red} 4}}=\frac{{\color{Red} 1\times 4}+{\color{Blue} 2\times 3}}{{\color{Blue} 2}\times {\color{Red} 4}}

4. Resolvemos las operaciones y obtenemos el resultado final.

\frac{1}{2}+\frac{3}{4}=\frac{1\times 4+2\times 3}{2\times 4}=\frac{4+6}{8}=\frac{10}{8}=\boldsymbol{\frac{5}{4}}

Observa que al resolver las operaciones el resultado es 10/8, pero esta fracción se puede simplificar al dividir ambos términos entre 2, el cual es un divisor común.

El procedimiento es igual con la sustracción, solo cambiamos el signo más (+) por el signo menos (−).

Las fracciones heterogéneas son las que tienen distinto denominador. Para sumar o restar este tipo de fracciones podemos emplear tres métodos diferentes: por medio de fracciones equivalentes, mínimo común múltiplo o productos cruzados. Sin importar el método que escojas el resultado será el mismo.

¡A practicar!

1. ¿Cuáles de las siguientes fracciones son equivalentes a \frac{2}{5}?

\frac{6}{15}\ ,\ \frac{6}{9}\ ,\ \frac{10}{25}\ ,\ \frac{14}{30}\ ,\ \frac{8}{20}

Solución

\frac{6}{15}\ ,\ \frac{10}{25}\ ,\ \frac{8}{20}

2. ¿Cuáles de las siguientes fracciones son equivalentes a \frac{25}{40}?

\frac{50}{80}\ ,\ \frac{5}{8}\ ,\ \frac{75}{110}\ ,\ \frac{75}{120}\ ,\ \frac{5}{4}

Solución

\frac{50}{80}\ , \frac{5}{8}\ , \frac{75}{120}

3. ¿Cuál es la fracción equivalente? Coloca el numerador que falta.

  • \frac{1}{2}=\frac{?}{8}

Solución

\frac{1}{2}=\frac{{\color{Red} 4}}{8}

  • \frac{3}{5}=\frac{?}{25}

Solución

\frac{3}{5}=\frac{{\color{Red} 15}}{25}

  • \frac{4}{5}=\frac{?}{12}

Solución

No es posible conseguir una fracción equivalente de denominador 12 porque el 12 no es múltiplo del 5.

  • \frac{2}{7}=\frac{?}{21}

Solución

\frac{2}{7}=\frac{{\color{Red} 6}}{21}

4. Realizar los siguientes cálculos con fracciones:

  • \dfrac{1}{5}+\dfrac{3}{10}-\dfrac{1}{2}+\dfrac{2}{5}=
Solución

\dfrac{1}{5}+\dfrac{3}{10}-\dfrac{1}{2}+\dfrac{2}{5}=\boldsymbol{\frac{2}{5}}

  • \frac{4}{5}+\frac{1}{3}+\frac{1}{2}=
Solución

\frac{4}{5}+\frac{1}{3}+\frac{1}{2}=\boldsymbol{\frac{49}{30}}

  • \frac{3}{10}-\frac{1}{12}=
Solución

\frac{3}{10}-\frac{1}{12}=\boldsymbol{\frac{13}{60}}

  • \frac{1}{2}+\frac{1}{3}-\left ( \frac{1}{4}+\frac{1}{5} \right )=
Solución

\frac{1}{2}+\frac{1}{3}-\left ( \frac{1}{4}+\frac{1}{5} \right )=\boldsymbol{\frac{23}{60}}

RECURSOS PARA DOCENTES

Artículo “Adición y sustracción de fracciones”

Puedes realizar la adición o la sustracción de fracciones por medio de varios métodos. Este recurso le permitirá ampliar información sobre estos.

VER

Artículo “Fracciones equivalentes”

Con este artículo podrá profundizar sobre las fracciones y cómo obtenerlas por amplificación y simplificación.

VER

CAPÍTULO 5 / TEMA 5 (REVISIÓN)

FRACCIONES | ¿qué aprendimos?

nOCIÓN DE FRACCIÓN

Las fracciones son divisiones sin resolver. Están formadas por una raya de fracción que divide al numerador del denominador. El numerador es la parte que tomamos del entero y el denominador indica las partes en las que se divide al entero. Las fracciones pueden ser propias, impropias y aparentes. Las fracciones propias tienen un numerador menor que el denominador; las impropias tienen un numerador mayor que el denominador; y las aparentes son iguales a un entero.

La porción de pastel que se toma es igual a 1/8. El numerador es la parte tomada (1) y el denominador señala la cantidad de partes en las que se dividió el pastel (8).

representación de fracciones

Para leer una fracción solo tenemos que leer al numerador como cualquier otro número y al denominador según unas simples reglas: medios si es 2, tercios si es 3, cuartos si es 4, quintos si es 5 y así sucesivamente. A partir de números mayores a diez añadimos el sufijo –avos; como onceavos. Los gráficos de las fracciones se representan por medio de figuras divididas en tantas partes como muestra el denominador y con tantas partes pintadas como señala el numerador.

Podemos representar fracciones propias e impropias en gráficos con formas de figuras geométricas.

tipos de fracciones

Dos o más fracciones son homogéneas si comparten el mismo denominador, en cambio, si dos o más fracciones tienen distinto denominador se las llama heterogéneas. También existen las fracciones propias o puras, que son aquellas que tienen un numerador menor que el denominador y siempre son menores a un entero; y las fracciones impropias o impuras, que tienen un numerador mayor que el denominador y son mayores a uno.

Depende del país en el que nos encontramos, la fracción propia se puede llamar también fracción pura.

operaciones con fracciones homogéneas

Para sumar y restar fracciones homogéneas primero sumamos o restamos los numeradores y mantenemos el mismo denominador. Así como ordenamos números naturales, también lo podemos hacer con las fracciones, para esto usamos los símbolos de relación como > (mayor que) y < (menor que). Por otro lado, existen fracciones con distintos numeradores y denominadores pero que representan la misma cantidad, a estas se las conoce como fracciones equivalentes.

Las fracciones propias siempre tienen el numerador menor al denominador y representan una cantidad inferior a la unidad.

CAPÍTULO 5 / TEMA 2

REPRESENTACIÓN DE FRACCIONES

Todas las fracciones representan una división o las partes de un entero. Las usamos día a día cuando queremos repartir chocolates con amigos, una pizza con familiares y hasta picar una torta de cumpleaños para los invitados. Cada vez que organizamos una reunión y pensamos cuántos invitados vendrán, hacemos uso de las fracciones.

lectura de fracciones

Toda fracción tiene un numerador y un denominador. Podemos representarlos en esta caja de rosquillas. ¡Observa! La caja es el entero y lo dividimos en 12 partes iguales porque hay 12 rosquillas. Ese es el denominador. El numerador será igual a las rosquillas repartidas. Si solo repartirmos 4, podemos decir que comimos 4/12 de la caja.

Las fracciones reciben diferentes nombres de acuerdo a los números que aparecen en el numerador y el denominador. El numerador lo leemos como cualquier número natural y el denominador de la siguiente manera:

Denominador Lectura
2 Medios
3 Tercios
4 Cuartos
5 Quintos
6 Sextos
7 Séptimos
8 Octavos
9 Novenos
10 Décimos

A partir del 11 el número se lee terminado en -avos. Por ejemplo, onceavos, doceavos, treceavos y así sucesivamente.

 

– Veamos algunos ejemplos:

  • \boldsymbol{\frac{3}{7}} se lee “tres séptimos”.

 

  • \boldsymbol{\frac{5}{3}} se lee “cinco tercios”.

 

  • \boldsymbol{\frac{7}{12}} se lee “siete doceavos”.

 

  • \boldsymbol{\frac{2}{10}} se lee “dos décimos”.

 

  • \boldsymbol{\frac{8}{2}} se lee “ocho medios”.

¡Es tu turno!

Observa las siguientes fracciones, ¿cómo se leen?

  • \boldsymbol{\frac{9}{4}}
Solución
Nueve cuartos.
  • \boldsymbol{\frac{25}{13}}
Solución
Veinticinco treceavos.
  • \boldsymbol{\frac{5}{8}}
Solución
Cinco octavos.

representación gráfica

En una fracción, el denominador indica las partes en las que se divide al entero y el numerador las partes que se toman.

Estas definiciones son importantes para realizar los gráficos de fracciones.

¿Cómo graficar una fracción propia?

  • Realicemos el gráfico de la fracción \boldsymbol{\frac{3}{5}}

Lo primero que hacemos es dibujar una figura. En este caso dibujaremos un rectángulo. Este será el entero.

Luego dividimos el entero en la cantidad de partes que nos indique el denominador. En este caso, como el denominador es 5, dividimos el rectángulo en 5 partes iguales.

Después pintamos la cantidad de partes que señale el numerador. Como en esta fracción el numerador es 3, pintamos 3 partes. El resultado será el gráfico de la fracción.

 

¿Cómo graficar una fracción impropia?

La fracciones impropias tienen el numerador mayor al denominador y por lo tanto son mayores que 1.

  • Realicemos el gráfico de la fracción \boldsymbol{\frac{6}{4}}

Primero dibujamos un figura que represente al entero. En este caso es un cuadrado.

Ahora dividimos el entero en tantas partes como nos señale el denominador. El denominador de esta fracción es 4, así que dividimos al cuadrado en 4 partes iguales.

Luego pintamos las partes que nos indique el numerador. Como el numerador es 6, no es suficiente con una sola figura, así que dibujamos de nuevo otro cuadrado con 4 partes y pintamos las partes necesarias para llegar a 6. Ese será el gráfico de la fracción.

¿Sabías qué?
Siempre que el numerador sea mayor que el denominador será necesario que dibujemos más de un entero para representar la fracción.

 

¡A practicar!

Representa gráficamente las siguientes fracciones:

  • \boldsymbol{\frac{4}{6}}
Solución

  • \boldsymbol{\frac{1}{4}}
Solución

  • \boldsymbol{\frac{7}{5}}
Solución

representación en la recta numérica

La recta numérica es una línea recta sin principio ni final que contiene a todos los números. Ubicamos los números a partir del cero en segmentos iguales.

Entre el 0 y el 1, el 1 y el 2, o entre cualquier entero podemos encontrar fracciones. Todas estas también se pueden ubicar en la recta numérica.

Para ubicar las fracciones en la recta numérica solo tenemos que dividir la unidad en segmentos iguales según lo que indica el denominador y a partir del cero contamos tantos lugares como indique el numerador. Luego marcamos la fracción.

 

– Ejemplo:

Para representar en la recta numérica la fracción \boldsymbol{\frac{2}{5}} sigue estos pasos:

  1. Divide el espacio entre 0 y 1 en 5 partes iguales.
  2. Cuenta desde el cero dos lugares porque el numerador es 2.
  3. Ubica la fracción.

¿Sabías qué?

Para representar en la recta numérica fracciones impropias se usan fracciones mixtas. Estas fracciones están formadas por una parte entera y una fraccionaria.

Ubica las fracciones

  • ¿Qué fracción se representa en esta recta numérica?

Solución
La fracción \boldsymbol{\frac{7}{8}}.
  • Ubica en una recta numérica la fracción \boldsymbol{\frac{2}{3}}.
Solución

VER INFOGRAFÍA

¿cómo se relacionan las fracciones y las divisiones?

Las fracciones son partes de un todo, es decir, son divisiones de ese todo. Por esta razón están directamente relacionadas una con la otra.

Toda fracción es una división sin resolver entre dos números: el numerador y el denominador.

Entonces, \boldsymbol{\frac{1}{4}} es igual a \boldsymbol{1\div 4}. Las dos son formas correctas de escribir una división.

¿Sabías qué?
Podemos expresar las fracciones con la raya horizontal o con una diagonal, por ejemplo, \boldsymbol{\frac{3}{4}} es igual a \boldsymbol{3/4}.

La representación de las horas

Un reloj analógico marca diferentes fracciones con el paso de las horas. En una hora hay cuatro cuartos de hora, así que, cuando decimos que pasaron 15 minutos después de las 12, realmente decimos que pasó 1/4 de hora. Cuando la aguja de los minutos (aguja larga) llega al 6 significa que pasó media (1/2) hora y a los 45 minutos pasaron 3/4 de una hora.

Actividades

1. ¿Cómo se lee la fracción 3/10? Realiza su gráfico.

Solución
3/10 se lee “tres décimos”.

Su gráfico es igual a este:

2. ¿Cómo se lee la fracción 5/12? Representa la fracción en la recta numérica.

Solución
5/12 se lee “cinco doceavos”.

En la recta se representa así:

3. Une cada fracción con su gráfico:

Solución

4. ¿Qué fracción está representada en la siguiente recta numérica?

Solución
La fracción 3/6.

5. ¿Qué fracción está representada en la siguiente recta numérica?

Solución
La fracción 1/5.
RECURSOS PARA DOCENTES

Artículo “Partes y porciones”

Este recurso permitirá profundizar la representación en la recta numérica.

VER

Video “Cómo se lee una fracción”

Este recurso audiovisual explica, de manera clara, los pasos a seguir para nombrar fracciones al tiempo que las compara con la unidad.

VER

CAPÍTULO 4 / TEMA 1

RECTA NUMÉRICA

Todos los números representan una determinada cantidad. Por ejemplo, con $ 100 no compramos lo mismo que podemos comprar con $ 1.000, porque esas cantidades de dinero son distintas. Por ese motivo es de gran importancia saber cómo comparar cifras, y una herramienta muy útil para hacerlo es la recta numérica: una línea recta que tiene puntos con valores específicos.

¿Qué es la recta numérica?

La recta numérica es una herramienta en la que podemos representar de manera gráfica distintos números. Consiste en una línea recta marcada a intervalos regulares, a los cuales se le asigna un número. Estos intervalos no son más que las separaciones entre un número y otro.

Las rectas numéricas pueden incluir cualquier número que pertenezca al conjunto de los números reales (\mathbb{R}). En este ejemplo, la recta numérica abarca los números enteros (\mathbb{Z}) desde el −7 hasta el +7, incluido el cero (0).

¿Sabías qué?
El primero en utilizar una recta numérica fue el matemático inglés John Wallis. Él la utilizó para representar gráficamente los números naturales (\mathbb{N}). 
Una regla graduada es muy parecida a una recta numérica. Este instrumento de medición tiene divisiones con valores asignados en centímetros o pulgadas. Gracias a ella sabemos la longitud de objetos pequeños, como la de un lápiz o un borrador. Además nos ayuda a dibujar líneas rectas.

¿Cómo construir una RECTA NUMÉRICA?

Para construir una recta numérica lo primero que debemos hacer es trazar una línea recta con flechas en sus extremos.

Luego colocamos los intervalos y marcamos sus extremos con un punto o con una pequeña línea vertical. Es importante que todos los intervalos sean del mismo tamaño para conservar la escala.

Una vez trazada la línea recta y los intervalos, colocamos los números sobre cada una de las pequeñas líneas verticales. Los números irán de menor a mayor, de izquierda a derecha.

Intervalos en la recta numérica

Los intervalos utilizados para construir una recta numérica deben ser siempre iguales entre un número y su consecutivo, pero pueden variar en cuanto a su valor.

Por ejemplo, podemos construir una recta numérica en la que cada intervalo entre un número y su consecutivo corresponda a un entero, es decir, de 1 en 1:

Pero también podemos construir rectas numéricas en las que cada intervalo corresponda a dos enteros, es decir, de 2 en 2:

¿Qué números se pueden incluir en una recta numérica?

Si bien, en un principio solo se ubicaban números naturales en la recta numérica (desde el cero hasta el infinito positivo), hoy día todos los números reales \mathbb{R} pueden representarse en ella. Estos incluyen a los números naturales (\mathbb{N}), los números enteros (\mathbb{Z}), los números racionales (\mathbb{Q}) y los números irracionales (\mathbb{I}).

Representación de decimales y fracciones en la recta numérica

Los números decimales son aquellos formados por una parte entera y una parte menor a la unidad, y también pueden ser mostrados como fracciones. En la recta numérica podemos representar este tipo de números si subdividimos los enteros ya ubicados. Por ejemplo, entre 1 y 2 hay pequeños intervalos más pequeños que señalan a los decimales desde el 0,1 hasta el 0,9. También podemos mostrarlos en escalas de 2 en 2 décimas. Observa esta recta:

Dado que para cada fracción hay un número decimal equivalente, podemos representar ambas cantidades en una recta numérica. Por ejemplo, las fracción 1/5 = 0,2 y 8/5 = 1,6. 

¡A practicar!

Realiza una recta numérica y luego marca en la misma los siguientes números:

  • 0
  • 2
  • 2,8
  • 4/5
Solución

SÍMBOLOS DE RELACIÓN

Los números de la recta numérica tienen relaciones entre sí. Los distintos tipos de relaciones que existen son los siguientes.

TIPO DE RELACIÓN SIGNIFICADO SÍMBOLO
“Mayor que” Se utiliza para indicar que un número es mayor que otro. >
“Igual a” Se utiliza para indicar que un número es igual a otro. =
“Menor que” Se utiliza para indicar que un número es menor que otro. <

Veamos algunos ejemplos:

  • Para indicar que el 3 es mayor que el 2, escribimos: 3 > 2
  • Para indicar que el 4 es igual que el 4, escribimos: 4 = 4
  • Para indicar que el 5 es menor que el 8, escribimos: 5 < 8

 

Todos los números tienen algún otro número mayor que él y otro menor. Todos los números guardan una relación con los demás. Para compararlos podemos utilizar los símbolos de relación, los cuales muestran cuando entre dos cantidades la primera es mayor que la segunda (>), menor que la segunda (<) o igual a la segunda (=).

 

Relaciones entre los números de la recta numérica

Si prestamos atención, notaremos que en una recta numérica siempre ocurre lo siguiente: entre dos números, el que se encuentra más a la derecha en la recta numérica será el mayor.

Por ejemplo, entre el 3 y el −5, el 3 se encuentra más a la derecha, entonces, podemos afirmar que 3 > −5. O al encontrarse el −5 más a la derecha que el −7, podemos afirmar que −5 > −7.

¡A practicar!

Coloca el símbolo de relación que corresponda en cada caso:

  • 3,5 ____ 5,3
  • 4,0 ____ 0,4
  • 1 ____ −1
  • 2 ____ 2
  • 2,2 ____ 2,02
  • 8,001 ____ 8,01
Solución
  • 3,5 < 5,3
  • 4,0 > 0,4
  • > −1
  • 2 = 2
  • 2,2 > 2,02
  • 8,001 < 8,01

RECURSOS PARA DOCENTES

Artículo “La recta numérica”

Este artículo te permitirá profundizar sobre el concepto de recta numérica y los conjuntos numéricos que pueden ser representados en la misma.

VER

Artículo “Recta numérica”

En este artículo podrás detallar el procedimiento a realizar para poder ubicar números decimales y fracciones en la recta numérica.

VER