CAPÍTULO 3 / TEMA 7 (REVISIÓN)

SISTEMAS DE MEDIDAS | ¿qué aprendimos?

UNIDADES DE MEDIDA

MEDIR ES COMPARAR. CUANDO HACEMOS ESTO USAMOS UNIDADES DE MEDIDA QUE SON LAS CANTIDADES ESTABLECIDAS PARA UNA MAGNITUD, ES DECIR, LAS MEDIDAS ACEPTADAS EN TU PAÍS PARA SABER LA LONGITUD, LA MASA, LA CAPACIDAD O EL TIEMPO DE ALGO. SU NECESIDAD DE APLICACIÓN LOGRÓ SATISFACER NECESIDADES BÁSICAS DE LOS PRIMEROS POBLADORES COMO LA CREACIÓN DE VESTIMENTA, LA CANTIDAD DE ALIMENTOS Y LA ALTURA DE SUS CONSTRUCCIONES.

UNA MAGNITUD ES UNA CANTIDAD QUE PUEDE SER MEDIDA, COMO LA LONGITUD, LA CUAL SE MIDE CON LA REGLA O ESCUADRA.

LA LONGITUD

LA LONGITUD ES UNA MAGNITUD MUY UTILIZADA POR LOS SERES HUMANOS. SU UNIDAD DE MEDIDA PRINCIPAL ES EL METRO, EL CUAL SE UTILIZA PARA MEDIR EL LARGO DE UN OBJETO O LA DISTANCIA ENTRE UN LUGAR Y OTRO. POR LO GENERAL SE USA PARA SABER A QUÉ DISTANCIA SE ENCUENTRA UNA PERSONA DE UN LUGAR AL QUE DESEA LLEGAR. LOS INSTRUMENTOS QUE SIRVEN PARA MEDIR LA LONGITUD SON LA REGLA GRADUADA O LA CINTA MÉTRICA.

LAS CINTAS MÉTRICAS ESTÁN MARCADOS CON RAYAS QUE REPRESENTAN SUS UNIDADES. LO COMÚN ES VER CINTAS MÉTRICAS CON METROS, CENTÍMETROS Y MILÍMETROS.

MASA

LA MASA ES LA CANTIDAD DE MATERIA QUE TIENE UN CUERPO. SEGÚN EL SISTEMA INTERNACIONAL DE MEDIDAS SU UNIDAD DE MEDIDA PRINCIPAL ES EL KILOGRAMO. EN ALGUNOS CASOS TAMBIÉN SE UTILIZAN SUS UNIDADES DERIVADAS MENORES, COMO LO SON EL GRAMO O EL MILIGRAMO. LA MASA SE MIDE CON UN INSTRUMENTO LLAMADO BALANZA.

LA BALANZA ES EL INSTRUMENTO MÁS POPULAR PARA MEDIR LA MASA DE LOS CUERPOS. EN LA MISMA SE PUEDE VISUALIZAR LAS UNIDADES DE MEDIDAS QUE MÁS SE UTILIZAN: EL KILOGRAMO Y EL GRAMO.

LA CAPACIDAD

LA CAPACIDAD ES UNA MAGNITUD QUE DETERMINA LA CANTIDAD DE SUSTANCIA QUE PUEDE ALMACENAR UN RECIPIENTE. SU UNIDAD PRINCIPAL ES EL LITRO Y SE UTILIZA A MENUDO EN LOS ALIMENTOS EN ESTADO LÍQUIDO QUE SON ENVASADOS. LA CAPACIDAD DE UN RECIPIENTE INDICA CUÁNTO LÍQUIDO PUEDE CONTENER Y TENDRÁ MÁS CAPACIDAD CUANTO MAYOR SEA EL VOLUMEN DE ESTE.

LA JARRA DE JUGO TIENE MÁS CAPACIDAD QUE EL VASO. EL TAMAÑO DEL RECIPIENTE TIENE RELACIÓN CON EL VOLUMEN DE LÍQUIDO QUE PUEDE CONTENER.

EL TIEMPO

EL TIEMPO ES UNA MAGNITUD QUE MUESTRA LA DURACIÓN DE LO EVENTOS. EL TIEMPO PUEDE SER MEDIDO Y, A DIFERENCIA DE LAS OTRAS MAGNITUDES, TIENE DIFERENTES UNIDADES DE MEDIDAS. LAS MENORES A UN DÍA SON LAS HORAS, LOS MINUTOS Y LOS SEGUNDOS; LAS MAYORES A UN DÍA SON LAS SEMANAS, LOS MESES, LOS AÑOS, LAS DÉCADAS, LOS SIGLOS, ETC. EL TIEMPO ESTÁ RELACIONADA CON EL MOVIMIENTO DE LA TIERRA.

EL MOVIMIENTO DE ROTACIÓN DE LA TIERRA SOBRE SU PROPIO EJE DETERMINA EL DÍA Y LA NOCHE. EL MOVIMIENTO DE TRASLACIÓN DETERMINA LAS ESTACIONES DEL AÑO Y EL AÑO COMÚN DE 365 DÍAS.

EL CALENDARIO

EL CALENDARIO ES UN SISTEMA CREADO POR EL HOMBRE PARA CONTABILIZAR EL TRANSCURSO DEL TIEMPO. EL CALENDARIO USADO ACTUALMENTE POR TODO EL MUNDO ES EL CALENDARIO GREGORIANO, QUE TIENE EN CUENTA EL CALENDARIO SOLAR. EL MISMO EXPONE QUE UN AÑO TIENE 365 DÍAS DIVIDIDO EN 12 MESES. CADA CUATRO AÑOS SE SUMA 1 DÍA AL AÑO Y ESTE RECIBE EL NOMBRE DE “AÑO BISIESTO”.

LAS PARTES DE UN CALENDARIO ANUAL DETERMINAN LOS MESES, LAS SEMANAS Y LOS DÍAS QUE TIENE UN AÑO.

CAPÍTULO 3 / TEMA 6

EL CALENDARIO

EL RELOJ NOS SIRVE PARA MEDIR LAS HORAS, LOS MINUTOS Y LOS SEGUNDOS DE UN DÍA, PERO SI QUEREMOS MEDIR UNIDADES DE TIEMPO MAYORES, COMO LOS DÍAS, LAS SEMANAS Y LOS MESES DE UN AÑO TENEMOS QUE USAR OTRA HERRAMIENTA VISUAL: EL CALENDARIO. GRACIAS AL CALENDARIO PODEMOS ORGANIZAR EVENTOS PASADOS Y FUTUROS.

¿QUÉ ES UN CALENDARIO?

EL CALENDARIO ES UN SISTEMA CREADO POR EL HOMBRE PARA CONTAR EL TRANSCURSO DEL TIEMPO. CUENTA CON UNA SUCESIÓN DE DÍAS Y MESES. EL TIPO DE CALENDARIO QUE USAMOS EN LA ACTUALIDAD ES EL CALENDARIO SOLAR YA QUE DETERMINA QUE LA TIERRA TARDA 365 DÍAS EN DAR LA VUELTA COMPLETA AL SOL.

EL CALENDARIO PERMITE QUE NOS SITUEMOS EN EL TIEMPO, ES DECIR, DETERMINA EN QUÉ DÍA, SEMANA Y MES DEL AÑO ESTAMOS.

HAY VARIOS TIPOS DE CALENDARIOS, PERO DE MANERA OFICIAL SE USA EL CALENDARIO GREGORIANO EN TODO EL MUNDO. ESTE CALENDARIO REPRESENTA:                             – EL AÑO COMÚN DE 365 DÍAS Y EL AÑO BISIESTO DE 366 DÍAS.   – LOS MESES DE ENTRE 28 Y 31 DÍAS.                                          – LAS SEMANAS DE 7 DÍAS.          – LOS DÍAS QUE EQUIVALEN A 24 HORAS.                                    EL CALENDARIO SE LLAMA ASÍ POR SU DIFUSOR, EL PAPA GREGORIO XIII.

¿SABÍAS QUÉ?
LA PALABRA CALENDARIO PROVIENE DEL LATÍN Y SIGNIFICA “LIBRO DE CUENTAS”.

PARTES DE UN CALENDARIO

LAS PARTES DE UN CALENDARIO ANUAL SON:

  • DÍA: ES LA UNIDAD PRINCIPAL DEL CALENDARIO GREGORIANO. UN DÍA ESTÁ CONFORMADO POR 24 HORAS.
  • SEMANA: ES UN PERÍODO DE 7 DÍAS.
  • MES: ES UNO DE LOS 12 PERÍODOS DE TIEMPO EN LOS QUE ESTÁ DIVIDIDO UN AÑO.

CALENDARIO ANUAL

LOS CALENDARIOS SE DIVIDEN POR LA CANTIDAD DE MESES QUE EXISTEN. DESDE ENERO A DICIEMBRE SON 12 MESES.

ESTE ES EL CALENDARIO DEL AÑO 2020.

EL AÑO 2020 ES UN AÑO BISIESTO PORQUE EL MES DE FEBRERO TIENE 29 DÍAS.

LAS SEMANAS COMIENZAN CON EL DÍA DOMINGO, LUEGO SIGUEN: LUNES, MARTES, MIÉRCOLES, JUEVES, VIERNES Y SÁBADO. LOS DÍAS DE LA SEMANA ESTÁN EXPUESTOS CON SUS PRIMERAS LETRAS. LOS DÍAS DOMINGO ESTÁN DE COLOR ROJO, YA QUE SE CONSIDERAN DÍAS DE DESCANSO LABORAL. LOS DÍAS FESTIVOS TAMBIÉN PUEDEN TENER SU IDENTIFICACIÓN CON OTRO COLOR.

VEAMOS EL SIGUIENTE CUADRO CON LOS DÍAS CORRESPONDIENTES A CADA MES:

MES DÍAS
ENERO 31
FEBRERO 28 (29, AÑO BISIESTO)
MARZO 31
ABRIL 30
MAYO 31
JUNIO 30
JULIO 31
AGOSTO 31
SEPTIEMBRE 30
OCTUBRE 31
NOVIEMBRE 30
DICIEMBRE 31

UTILIDAD

LA UTILIDAD DEL CALENDARIO ES IMPORTANTE EN MUCHOS ASPECTOS DE NUESTRA VIDA. POR EJEMPLO, CON UN CALENDARIO PODEMOS SABER CUÁNTOS MESES FALTAN PARA NUESTRO CUMPLEAÑOS, CUÁNTAS SEMANAS FALTAN PARA QUE INICIE EL VERANO O CUÁNTOS DÍAS FALTAN PARA EMPEZAR LAS CLASES.

LAS AGENDAS SON CUADERNOS DIVIDIDOS EN LOS DÍAS DEL AÑO. EN CADA DÍA PODEMOS ESCRIBIR ACTIVIDADES POR HACER, COMO ALGUNA TAREA O RECORDAR UNA FECHA ESPECIAL. LAS AGENDAS SON ÚTILES POR UN SOLO AÑO, PORQUE LAS FECHAS DE CADA AÑO SON DIFERENTES, POR EJEMPLO, EL 18 DE JUNIO DE 2017 FUE DOMINGO Y EL 18 DE JUNIO DE 2020 FUE JUEVES.

¿CÓMO LEER UN CALENDARIO?

  1. LEEMOS EL DÍA.
  2. LEEMOS EL MES.
  3. LEEMOS EL AÑO.

– EJEMPLO:

  • 5 DE AGOSTO DE 2020.
  • 10 DE SEPTIEMBRE DE 2015.
  • 8 DE JULIO DE 2000.


EXISTEN CALENDARIOS QUE EN VEZ DE MOSTRAR TODOS LOS MESES, SOLO MUESTRAN MES POR MES COMO EL SIGUIENTE:

PARA LEER LA FECHA MARCADA DE ESTE MES LEEMOS EL NOMBRE DEL DÍA, LUEGO LEEMOS EL DÍA, EL MES Y EL AÑO. EJEMPLO:

MIÉRCOLES, 15 DE ENERO DE 2020.

¡ES TU TURNO!

OBSERVA DE NUEVO EL CALENDARIO Y RESPONDE:

  • ¿QUÉ FECHA ES EL SEGUNDO DÍA DEL MES?
SOLUCIÓN
JUEVES, 2 DE ENERO DE 2020.
  • ¿QUÉ FECHA ES EL ÚLTIMO DÍA DEL MES?
SOLUCIÓN
VIERNES, 31 DE ENERO DE 2020.

CALENDARIOS EN LA HISTORIA

A LO LARGO DE LA HISTORIA DE LA HUMANIDAD HAN EXISTIDO CALENDARIOS DE DIFERENTES CIVILIZACIONES. LOS MÁS CONOCIDOS SON:

  • CALENDARIO GREGORIANO: UTILIZADO ACTUALMENTE POR TODO EL MUNDO.
  • CALENDARIO JULIANO: USADO EN LA ANTIGUA ROMA. EXISTIÓ ANTES QUE EL CALENDARIO GREGORIANO.
  • CALENDARIO BABILÓNICO: BASADO EN LAS FASES LUNARES, SE UTILIZÓ HACE MUCHOS AÑOS EN BABILONIA.
  • CALENDARIO CHINO: USADO ACTUALMENTE PARA FESTIVIDADES Y CREENCIAS EN ASIA ORIENTAL.

EL CALENDARIO MAYA

LA CIVILIZACIÓN MAYA FUE UNA DE LAS MÁS AVANZADAS DE NUESTRO CONTINENTE. SUS CONOCIMIENTOS SOBRE LOS MOVIMIENTOS DE LAS ESTRELLAS, LA LUNA Y EL PLANETA TIERRA, JUNTO A LAS MATEMÁTICAS HICIERON QUE CREARAN UN CALENDARIO MUY EXACTO. LOS MÁS CONOCIDOS CON EL HAAB, EQUIVALENTE A 365 DÍAS TERRESTRES; Y EL TZOLK’IN QUE EQUIVALE A 260 DÍA TERRESTRES.

¡A PRACTICAR!

1. ESCRIBE LA FECHA MARCADA EN CADA CALENDARIO:

SOLUCIÓN
DOMINGO, 16 DE FEBRERO DE 2020.

SOLUCIÓN
MARTES, 9 DE JUNIO DE 2020.

SOLUCIÓN
LUNES, 20 DE ABRIL DE 2020.

SOLUCIÓN
SÁBADO, 27 DE JUNIO DE 2020.

SOLUCIÓN
MIÉRCOLES, 23 DE SEPTIEMBRE DE 2020.

SOLUCIÓN
JUEVES, 5 DE NOVIEMBRE DE 2020.
RECURSOS PARA DOCENTES

Artículo “Los calendarios”

En el siguiente se presenta información histórica sobre los diferentes calendarios de antiguas civilizaciones.

VER

CAPÍTULO 2 / TEMA 1

adición y sustracción

La adición y la sustracción son dos operaciones muy usadas en la cotidianidad. La primera consiste en combinar o agrupar números; y la segunda, en cambio, consiste en quitar números a un grupo. Saber los valores posicionales de cada cifra nos ayudan a hacer sumas y restas con números grandes por reagrupación de sus unidades, decenas y centenas. 

Las primeras operaciones básicas que todos aprendemos son la adición y la sustracción. Estas nos ayudan día a día en cálculos cotidianos, como saber cuántos juguetes tenemos en total, cuánto dinero gastamos en el desayuno, cuánta tarea nos falta por hacer o cuántas horas faltan para ver nuestro programa favorito.

ADICIÓN POR REAGRUPACIÓN

La adición es una operación básica en la que combinamos dos o más números para obtener una cantidad final o total. El símbolo empleado para hacer esta operación es “+“.

Toda adición consta de dos partes:

  • Sumandos: son los números que vamos a sumar.
  • Suma: es el resultado de la suma.

La adición por reagrupación es un método que consiste en agrupar las unidades, decenas y centenas del número. Para sumar dos números como 12.468 y 147.314, los pasos son los siguientes:

1. Ubica los sumandos uno arriba del otro de tal manera que los valores posicionales estén en una misma columna, es decir, unidades con unidades, decenas con decenas, centenas con centenas, y así sucesivamente.

2. Suma cada columna a partir de las unidades. Escribe en la parte inferior de la columna el resultado. Si el resultado de la suma en una columna es de dos cifras, coloca el número de la unidad de dicho número en la parte inferior y la decena la sumanos a la columna siguiente.

Propiedades de la adición

Propiedad conmutativa

Esta propiedad indica que el orden de los números no afecta el resultado de la suma.

– Ejemplo:

  • 12.046 + 71 = 71 + 12.046

 

Observa que sin importar la ubicación de los sumandos, el resultado es el mismo.

¡Hay otra solución! 

Podemos representar la propiedad conmutativa de otra manera. Para la suma anterior es así:

Propiedad asociativa

Esta propiedad indica que la forma en la que agrupemos los sumandos no afecta el resultado.

– Ejemplo:

  • (856.127 + 12.713) + 82.311 = 951.151

Primero resolvemos la suma que está dentro de los paréntesis y al final sumamos 82.311.

  • 856.127 + (12.713 + 82.311) = 951.151

Primero resolvemos las sumas que están dentro de los paréntesis y al final sumamos 856.127.

En ambas ocasiones el resultado es el mismo sin importar la manera en la que se agruparon.

¡Hay otra solución!

Podemos representar la propiedad asociativa de otra manera. Para la suma anterior es así:

Elemento neutro

Esta propiedad indica que si a cualquier número le sumamos cero el resultado será el mismo número.

– Ejemplo:

  • 148.583 + 0 = 148.583

Ábaco: una herramienta para contar

El ábaco es una herramienta o instrumento que se utiliza para realizar cálculos manuales a través de contadores o marcadores que representan ciertas cantidades. Es uno de los objetos más antiguos utilizados por el hombre para realizar sus operaciones matemáticas y quizás el de mayor distribución a nivel mundial.

sustracción por reagrupación

La sustracción, al igual que la adición, es una operación básica. Es considerada una operación opuesta a la adición, ya que consiste en quitar una cantidad a otra. Se representa con el símbolo ““.

Las partes de esta operación son:

  • Minuendo: es el número al cual le quitamos una cantidad.
  • Sustraendo: es el número que resta al minuendo.
  • Diferencia: es el resultado de la operación.

La sustracción por reagrupación es un método que consiste en agrupar las unidades, decenas y centenas del número. Para restar dos números como 549.763 y 95.126, los pasos son los siguientes:

1. Ubica el minuendo sobre el sustraendo y verifica que los valores posicionales de cada cifra coincidan en la misma columna.

2. Comienza a restar desde la columna de las unidades, de derecha a izquierda. Cuando en una columna una cifra del minuendo es menor que la del sustraendo, esta toma una decena del minuendo de la izquierda. En estos casos, el minuendo que prestó una decena se reduce y debemos considerar el valor de la nueva cifra.

¿Sabías qué?
En la sustracción no existen las mismas propiedades que en la adición.

Propiedades de la sustracción

Elemento neutro

Si a un número se le resta 0, el resultado es el mismo número.

– Ejemplo:

  • 245.630 − 0 = 245.630

Elemento simétrico

Si dos números iguales se restan, el resultado siempre es 0.

– Ejemplo:

  • 983.124 − 983.124 = 0

En una ciudad se recolectaron 55.879 botellas de plástico para reciclar. Si solo se han reciclado 48.250 botellas, ¿cuántas botellas faltan para terminar la tarea? Responder esta pregunta es fácil cuando sabemos las restas por reagrupación. Así que restamos: 55.879 – 49.250 = 6.629. Entonces, aún faltan 6.629 botellas por reciclar.

Problemas de adición y sustracción

Para resolver problemas matemáticos debemos seguir una serie de pasos. Observa estos ejemplos:

1. Juan tenía en el banco $ 132.798 y le pagaron por la venta de su vehículo $ 369.000. ¿Cuánto dinero tiene Juan ahora?

  • Datos

Dinero en el banco: $ 132.798

Pago por el vehículo: $ 369.000

  • Pregunta

¿Cuánto dinero tiene Juan ahora?

  • Piensa

Para saber la cantidad total de dinero que Juan tiene ahora debemos sumar el dinero que tenía en el banco y el dinero que le pagaron.

  • Calcula

  • Solución

Juan tiene $ 501.798 en el banco.


2. Gabriel jugaba un videojuego. En un día obtuvo 412.312 puntos en el primer partido, 469.142 puntos en el segundo partido y 111.222 en el tercero. ¿Cuántos puntos obtuvo en total ese día?

  • Datos

Puntos en el primer partido: 412.312

Puntos en el segundo partido: 469.142

Puntos en el tercer partido: 111.222

  • Pregunta

¿Cuántos puntos obtuvo en total?

  • Piensa

Para hallar la cantidad total de puntos solo debemos sumar todos los puntos que obtuve en los tres partidos. Según la propiedad asociativa, no importa cómo se agrupen los números, el resultado siempre será el mismo.

  • Calcula

  • Solución

Gabriel obtuvo 992.676 puntos ese día en el videojuego.


3. Carla y Pedro tomaban fotografías en el parque. Carla tomó 2.546 fotografía y Pedro tomó 620 fotografía menos que ella. ¿Cuántas fotografía tomaron los dos?

  • Datos

Fotografía tomadas por Carla: 2.546

Fotografía tomadas por Pedro: 620 menos que Carla

  • Pregunta

¿Cuántas fotografía tomaron los dos?

  • Piensa
  1. Hay que hallar las fotos que tomó Pedro. Para esto restamos 620 a la cantidad de fotos que tomó Carla.
  2. Para saber el total de fotos tomadas entre los dos solo debemos sumar la cantidad de foto que tomaron ambos.
  • Calcula

1. Fotos tomadas por Pedro:

2. Fotos tomadas por los dos:

  • Solución

Carla y Pedro tomaron 4.472 fotografías.


¡A practicar!

Resuelve las siguientes operaciones:

  • 18.654 + 987 =
    Solución
    18.654 + 987 = 19.641
  • 546.821 + 12.547 =
    Solución
    546.821 + 12.547 = 559.368
  • 452.365 − 0 =
    Solución
    452.365 − 0 = 452.365
  • 89.546 + 6.547 + 3.245 =
    Solución
    89.546 + 6.547 + 3.245 = 99.338
  • 81.974 − 9.634 =
    Solución
    81.974 − 9.634 = 72.340
  • 15.689 − 15.689 =
    Solución
    15.689 − 15.689 = 0
  • 35.785 + 54.753 + 56.852 =
    Solución
    35.785 + 54.753 + 56.852 =147.390
  • 258.369 + 0 =
    Solución
    258.369 + 0 = 258.369

RECURSOS PARA DOCENTES

Artículo “Operaciones básicas de los número naturales y sus propiedades”

Este artículo explica las propiedades de las operaciones básicas con los números naturales, lo que te permitirá ampliar el tema.

VER

Artículo “Cómo enseñar a sumar y restar”

Este recurso contiene sugerencias y prácticas que puedes emplear para enseñar operaciones como la suma y la resta.

VER

Artículo “Resta de números naturales

Este recurso te permitirá profundizar sobre los elementos que conforman una sustracción, sus propiedades y usos.

VER

CAPÍTULO 1 / TEMA 2

VALOR POSICIONAL

EL HOMBRE SIEMPRE HA TENIDO LA NECESIDAD DE CONTAR Y POR ESO INVENTÓ LOS SISTEMAS DE NUMERACIÓN. NOSOTROS USAMOS EL SISTEMA DECIMAL QUE SOLO TIENE DIEZ CIFRAS CON LAS QUE PODEMOS FORMAR CUALQUIER CANTIDAD DE NÚMEROS. PERO ¿CÓMO HACERLO? DEBEMOS SABER EL VALOR DE CADA CIFRA DENTRO DEL NÚMERO, ES DECIR, SU VALOR POSICIONAL.

ESTOS DIEZ DÍGITOS FORMAN NUESTRO SISTEMA DECIMAL Y CON ELLOS FORMAMOS MUCHOS NÚMEROS. ¿LOS HAS USADO? ¡SEGURO QUE SÍ! USAMOS LA COMBINACIÓN DE ESTAS CIFRAS PARA DAR UN NÚMERO DE TELÉFONO, LA FECHA DE NUESTRO CUMPLEAÑOS, EL NÚMERO DE IDENTIFICACIÓN O  PARA CONTAR LA CANTIDAD DE JUGUETES QUE TENEMOS.

¿QUÉ ES EL VALOR POSICIONAL?

ES EL VALOR QUE TIENE UNA CIFRA SEGÚN SU POSICIÓN EN EL NÚMERO. ESTAS POSICIONES TIENEN UN NOMBRE Y PUEDEN SER UNIDADES, DECENAS O CENTENAS. OBSERVA Y RESPONDE:

1. ¿CUÁNTOS CUADRADOS HAY?

HAY 1 CUADRADO.

1 = 1 UNIDAD

 

2. ¿CUÁNTAS TIRAS HAY?

HAY 10 TIRAS.

10 UNIDADES = 1 DECENA

 

3. ¿CUÁNTOS CUADRADOS HAY?

HAY 100 CUADRADOS.

100 UNIDADES = 1 CENTENA

 

¿CUÁNTAS UNIDADES HAY?

OBSERVA LAS IMÁGENES Y CUENTA LAS UNIDADES.

1. 

SOLUCIÓN

HAY 2 CENTENAS.

2 VECES 100 = 200 UNIDADES

HAY 200 UNIDADES.

2. 

SOLUCIÓN
HAY 3 DECENAS.

3 VECES 10 = 30 UNIDADES

HAY 30 UNIDADES.

3. 

SOLUCIÓN
HAY 8 UNIDADES.

4. 

SOLUCIÓN
HAY 1 DECENA Y 1 UNIDAD.

10 UNIDADES + 1 UNIDAD = 11 UNIDADES

HAY 11 UNIDADES.

5. 

SOLUCIÓN
HAY 1 CENTENA, 1 DECENA Y 1 UNIDAD.

100 UNIDADES + 10 UNIDADES + 1 UNIDAD = 111 UNIDADES

HAY 111 UNIDADES.

EL NÚMERO 123 ESTÁ FORMADO POR TRES CIFRAS: 1, 2 Y 3. ¿PODEMOS CREAR MÁS NÚMERO CON ESTAS TRES CIFRAS? ¡CLARO QUE SÍ! POR EJEMPLO, EL NÚMERO 312 O EL 231. COMO VES, AUNQUE TENGAN LAS MISMAS CIFRAS, CADA NÚMERO TIENE UN VALOR DISTINTO PORQUE LAS POSICIONES SON DIFERENTES.    EN 123 EL 1 VALE 100; EN 312 EL 1 VALE 10; Y EN 231 EL 1 VALE 1.

 

PARA SABER LOS VALORES DE CADA CIFRA EN UN NÚMERO USAMOS UNA TABLA DE VALOR POSICIONAL COMO ESTA:

EL NÚMERO 468 TIENE:

  • 8 UNIDADES.
  • 6 DECENAS.
  • 4 CENTENAS.

¡CAMBIEMOS POSICIONES!

LA POSICIÓN DE UNA CIFRA EN UN NÚMERO INDICAN UN VALOR. SI UNA DE LAS CIFRAS CAMBIA DE POSICIÓN, ENTONCES SE CONVIERTE EN OTRO NÚMERO. OBSERVA ESTOS EJEMPLOS EN LOS QUE CAMBIAMOS LAS POSICIONES DE TRES CIFRAS: 4, 6 Y 8.

NÚMERO VALOR POSICIONAL SE LEE
468 4 CENTENAS

6 DECENAS

8 UNIDADES

CUATROCIENTOS SESENTA Y OCHO.
486 4 CENTENAS

8 DECENAS

6 UNIDADES

CUATROCIENTOS OCHENTA Y SEIS.
864 8 CENTENAS

6 DECENAS

4 UNIDADES

OCHOCIENTOS SESENTA Y CUATRO.
 846 8 CENTENAS

4 DECENAS

6 UNIDADES

OCHOCIENTOS CUARENTA Y SEIS.
684

 

6 CENTENAS

8 DECENAS

4 UNIDADES

SEISCIENTOS OCHENTA Y CUATRO.
648 6 CENTENAS

4 DECENAS

8 UNIDADES

SEISCIENTOS CUARENTA Y OCHO.

DESCOMPOSICIÓN DE NÚMEROS

CONSISTE EN CONVERTIR UN NÚMERO EN UNA SUMA DE SUS VALORES POSICIONALES.

– EJEMPLO:

EL NÚMERO 183 TIENE:

1 CENTENA = 1 VEZ 100 = 100 UNIDADES

8 DECENAS = 8 VECES 10 = 80 UNIDADES

3 UNIDADES = 3 VECES 1 = 3 UNIDADES

ENTONCES, LA DESCOMPOSICIÓN DEL NÚMERO 183 ES LA SIGUIENTE:

183 = 1 C + 8 D + 3 U

183 = 100 + 80 + 3

¡A PRACTICAR!

REALIZA LA DESCOMPOSICIÓN ADITIVA DE LOS SIGUIENTES NÚMEROS:

  • 642
SOLUCIÓN
642 = 6 C + 4 D + 2 U

642 = 600 + 40 + 2

  • 789
SOLUCIÓN
789 = 7 C + 8 D + 9 U

789 = 700 + 80 + 9

  • 453
SOLUCIÓN
453 = 4 C + 5 D + 3 U

453 = 400 + 50 + 3

  • 998
SOLUCIÓN
998 = 9 C + 9 D + 8 U

998 = 900 + 90 + 8

¿SABÍAS QUÉ?
LA DESCOMPOSICIÓN DEL NÚMERO 1.000 TIENE UNA UNIDAD DE MIL Y SE ESCRIBE “1 UM”. 

UBICACIÓN EN LA RECTA NUMÉRICA

ES UNA LÍNEA RECTA EN LA QUE UBICAMOS LOS NÚMEROS. EL 0 ES EL COMIENZO DE LA RECTA, LUEGO VAN LOS NÚMEROS DE 1 EN 1 DE MENOR A MAYOR.

– EJEMPLO:

LA REGLA ES UN ELEMENTO QUE UTILIZAMOS PARA MEDIR OBJETOS O PARA TRAZAR LAS LÍNEAS DE UN DIBUJO. SU FORMA ES DELGADA Y RECTANGULAR, PUEDE SER RÍGIDA O FLEXIBLE Y HAY DE DISTINTOS MATERIALES: PLÁSTICO, GOMA, METAL, MADERA. EXISTEN OTROS ELEMENTOS QUE CUMPLEN UNA FUNCIÓN SIMILAR, PERO SON MÁS LARGOS, COMO POR EJEMPLO, LA CINTA MÉTRICA O EL METRO.

 

– EJEMPLO:

LAS EDADES DE CINCO HERMANOS SON LAS SIGUIENTES:

JUAN: 2 AÑOS; INÉS: 5 AÑOS; ALDO: 9 AÑOS; CARLA: 12 AÑOS; y LUCÍA: 18 AÑOS.

SI DESEAMOS UBICAR EN UNA RECTA NUMÉRICA LAS EDADES DE LOS HERMANOS SEGUIMOS ESTOS PASOS:

 

1) DIBUJAMOS UNA RECTA CON LAS FLECHAS EN LOS EXTREMOS, HACEMOS DIVISIONES DE IGUAL DISTANCIA Y UBICAMOS EL 0.

2) EN ESTE CASO HICIMOS 20 DIVISIONES PARA UBICAR TODAS LAS EDADES.

3) COLOCAMOS UN PUNTO EN EL VALOR DE LAS EDADES.

OBSERVA QUE MIENTRAS MÁS AVANZA HACIA LA DERECHA, MAYORES SON LOS NÚMEROS.

¡A PRACTICAR!

 

1. REALIZA LA DESCOMPOSICIÓN DE ESTOS NÚMEROS.

  • 275
SOLUCIÓN
275 = 2 C + 7 D + 5 U = 200 + 70 + 5
  • 638
SOLUCIÓN
638 = 6 C + 3 D + 8 U = 600 + 30 + 8
  • 996
SOLUCIÓN
996 = 9 C + 9 D + 6 U = 900 + 90 + 6
  • 47
SOLUCIÓN
47 = 4 D + 7 U = 40 + 7
  • 546
SOLUCIÓN
546 = 500 + 40 + 6
  • 87
SOLUCIÓN
87 = 80 + 7
  • 788
SOLUCIÓN
788 = 700 + 80 + 8
  • 9 D + 2 U =
SOLUCIÓN
92 = 90 + 2

 

2. UBICA EN ESTA RECTA NUMÉRICA LOS SIGUIENTES NÚMEROS: 0, 3, 10, 15 Y 20.

SOLUCIÓN

RECURSOS PARA DOCENTES

Composición y descomposición de números

El siguiente artículo destacado te permitirá trabajar con los alumnos la composición y descomposición aditiva de números.

VER

CAPÍTULO 3 / TEMA 1

noción de fracción

En la vida diaria usamos números para decir nuestra edad, dar la hora o para contar. Todos estos números son los que conocemos como números naturales, pero no siempre son útiles. Por ejemplo, si nos comemos medio alfajor, un cuarto de torta, o compramos medio kilo de naranjas, necesitamos emplear otro tipo de números: los fraccionarios.

¿Qué es una fracción?

Una fracción es la forma de representar una parte de un todo. Así, si queremos decir que nos comimos medio alfajor, lo podemos pensar como que a nuestro todo, el alfajor, lo cortamos en dos y de esas dos partes nos comimos una. En forma de fracción lo escribimos como:

 

En el numerador escribimos la cantidad que nos comimos y en el denominador la cantidad en la que cortamos el alfajor.

VER INFOGRAFÍA

¿Sabías qué?
Los egipcios trabajaban con fracciones para indicar la distribución del pan, para la construcción de las pirámides y para estudiar las medidas de la Tierra. Ellos usaban fracciones llamadas “unitarias” porque todas tenían numerador 1.

Para resolver el problema de repartir 6 panes entre 10 hombres ellos decían que a cada uno le tocaba  panes. Esto significaba que cada pan lo dividían en mitades y el último lo hacían en décimos.

¡A practicar!

Escribe las fracciones que están representadas por los gráficos:

Solución

\boldsymbol{\frac{3}{8}}

Cantidad de divisiones: 8

Partes sombreadas: 3

Solución

\boldsymbol{\frac{4}{8}}

Cantidad de divisiones: 8

Partes sombreadas: 4

Solución

\boldsymbol{\frac{5}{8}}

Cantidad de divisiones: 8

Partes sombreadas: 5

Una fracción nos indica dos cosas: las partes en las que se ha dividido un todo y las partes que se han tomado de ese todo. Al primero lo llamamos denominador y al segundo lo llamamos numerador. Por ejemplo, en la imagen vemos un círculo que está dividido en 6 partes iguales, pero solo una, la parte azul, fue tomada. Esa pieza azul representa 1/6 del total.

Tipos de fracciones

Las fracciones se pueden clasificar en:

  • Propias: son las que tienen numerador menor al denominador. Esto quiere decir que representan un número menor a 1 entero. Ejemplo:

\boldsymbol{\frac{2}{5}}=

  • Impropias: son las que tienen el numerador mayor al denominador y representan números mayores a 1 entero. Ejemplo:

\boldsymbol{\frac{9}{4}}=

  • Aparentes: son aquellas en las que el numerador es múltiplo del denominador, por lo cual, al dividirlos resulta un número entero. Ejemplo:

\boldsymbol{\frac{10}{5}}=

También podemos clasificarlas en:

  • Puras: son las que se representan únicamente con una fracción.

Ejemplo: \frac{2}{5}  o  \frac{3}{8}

  • Mixtas: son las que se representan con una parte entera y una parte fraccionaria. Para esto, es necesario que la fracción sea más grande que 1 entero.

Ejemplo: 2\frac{3}{8}  o  4\frac{1}{7}

¡A practicar!

Clasifica las siguientes fracciones en propias, impropias o aparentes

 

Solución
  • Propias

  • Impropias

  • Aparentes

¿Cómo convertimos una fracción impropia pura a una fracción impropia mixta y viceversa?

De impropia pura a mixta

Dividimos el numerador con el denominador y, según los valores obtenidos, los representamos de la siguiente manera:

De impropia mixta a pura

Multiplicamos el denominador por el entero y le sumamos el numerador. Este valor nos da el numerador de la fracción pura, mientras que el denominador de ambas es el mismo.

Una fracción mixta nos da una información más visible que una fracción impropia. Por ejemplo, si nosotros tenemos 7 galletitas para compartir entre tres amigos, sabemos que 7 dividido 3 nos da 2, o sea, 2 galletitas para cada uno. Pero la que nos sobra la partimos en tres partes y nos toca 1 parte a cada uno. Es decir, cada uno comerá 2 1/3 de galletitas.

Fracción irreducible

Una fracción es irreducible cuando su numerador y su denominador solo tienen como divisor común al 1.

Recordemos el mcd

Para calcularlo descomponemos los números en sus factores primos.

– Ejemplo: halla el mcd entre 15 y 18.

Ahora solo debemos elegir los factores que se repiten en ambos y la menor cantidad de veces que aparece. En este caso, el que se repite es el 3 y aparece una sola vez en el 15.

Entonces:

mcd(15, 18) = \boldsymbol{3}

Veamos algunas fracciones para ver si son irreducibles:

– Ejemplo 1:

\frac{15}{4}

Como ya vimos, podemos escribir los números como descomposición de sus factores primos y calcular su mcd:

15 = 5\: \times 3

4 = 2^{2}

Entonces, los números 15 y 4 no tienen factores en común por lo tanto la fracción es irreducible.

– Ejemplo 2:

\frac{6}{8}

Descomponemos cada número en sus factores primos y calculamos el mcd.

6 = 2\: \times 3

8 = 2^{3}

Los números 6 y 8 tienen un factor en común, el número 2, por lo tanto la fracción no es irreducible. Para convertirla en una fracción irreducible lo único que tenemos que hacer es dividir al numerador y denominador por el factor que tienen en común.

Y ahora la fracción que se obtuvo es irreducible.

¡A practicar!

Señala cuáles de las siguientes fracciones son irreducibles

Solución

simplificación de fracciones

Simplificar una fracción significa “achicarla” tanto como podamos, o sea, hacerla irreducible. Como lo vimos antes, para convertir una fracción en irreducible hay que dividir el numerador y el denominador por un número que sea divisor de ambos (mcd).

Este valor lo podemos buscar por medio de los factores primos, o si nos damos cuenta, podemos calcular por cuáles números se pueden dividir ambos. Podemos dividir tantas veces como consideremos necesarias hasta lograr la fracción irreducible.

También usamos las fracciones para decir la hora. Por ejemplo, si dividimos el reloj a la mitad como en la foto, podemos decir que son las nueve y media. Pero también lo podemos dividir en cuatro partes. Entonces, cuando la aguja de los minutos esté en el 3 diremos que son las nueve y cuarto, y cuando esté en el 9 diremos que falta un cuarto de hora para la diez.

Hagamos algunos ejemplos:

– Ejemplo 1:

\frac{25}{35} = \frac{5}{7}

Ambas fracciones fueron divididas por 5.

– Ejemplo 2:

\frac{14}{36}=\frac{7}{18}

Ambas fracciones fueron divididas por 2.

– Ejemplo 3:

\frac{45}{105}=\frac{9}{21}=\frac{3}{7}

Ambas fracciones fueron divididas primero por 5 y después por 3.

¡A practicar!

1. Simplifica las siguientes fracciones hasta su fracción irreducible.

  • \boldsymbol{\frac{24}{36}}
Solución

\frac{2}{3}

  • \boldsymbol{\frac{40}{24}}
Solución

\frac{5}{3}

  • \boldsymbol{\frac{18}{63}}
Solución

\frac{2}{7}

2. Clasifica las siguientes fracciones, en caso de que sea impropia escríbela como fracción mixta. Luego, indica si la fracción es irreducible. Si no lo es, simplifica.

  • \boldsymbol{\frac{24}{36}}
Solución

Fracción propia. No es irreducible.

Simplificación: \frac{2}{3}

  • \boldsymbol{\frac{40}{24}}
Solución

Fracción impropia. No es irreducible.

Fracción mixta: 1\frac{2}{3}

  • \boldsymbol{\frac{6}{9}}
Solución

Fracción propia. No es irreducible.

Simplificación: \frac{2}{3}

  • \boldsymbol{\frac{23}{4}}
Solución

Fracción impropia. Es irreducible.

La fracción mixta es: 5\frac{3}{4}

  • \boldsymbol{\frac{21}{50}}
Solución

Fracción propia. Es irreducible.

  • \boldsymbol{\frac{18}{63}}
Solución

Fracción propia. No es irreducible.

Simplificación: \frac{2}{7}

  • \boldsymbol{\frac{120}{40}}
Solución

Fracción aparente. No es irreducible.

La fracción es igual a 3.

  • \boldsymbol{\frac{42}{9}}
Solución

Fracción impropia. No es irreducible.

Fracción mixta: 4\frac{2}{3}

  • \boldsymbol{\frac{90}{50}}
Solución

Fracción impropia. No es irreducible.

Fracción mixta: 1\frac{4}{5}

RECURSOS PARA DOCENTES

Artículo sobre “Fracciones”

Es un artículo didáctico con más ejemplos sobre la representación y clasificación de las fracciones.

VER

Libro de “Matemáticas primaria”

El mismo cuenta con ejercicios, explicaciones y ejemplos de los temas vistos en este capítulo para poder ampliar en clase.

VER

CAPÍTULO 3 / TEMA 5

EL TIEMPO

LAS PERSONAS REALIZAN MUCHAS ACTIVIDADES A LO LARGO DEL DÍA. MIENTRAS REALIZAN ESAS ACTIVIDADES EL TIEMPO PASA O TRANSCURRE. PODEMOS SABER QUE EL TIEMPO PASA CUANDO AMANECE Y ES DE DÍA O CUANDO OSCURECE Y ES DE NOCHE. SI QUEREMOS MEDIR EL TIEMPO PODEMOS UTILIZAR INSTRUMENTOS COMO EL RELOJ O EL CRONÓMETRO.

¿QUÉ ES EL TIEMPO?

EL TIEMPO ES LA MAGNITUD QUE NOS INDICA LA DURACIÓN DE LAS COSAS O DE LO QUE PASA. DE ESTA MANERA, LOS ACONTECIMIENTOS PUEDEN SER ORGANIZADOS CON UN ORDEN O CON UN PRINCIPIO Y FIN.

– EJEMPLO:

OBSERVA ESTAS IMÁGENES, ¿A QUÉ HORA LUIS SALIÓ DE SU CASA?, ¿A QUÉ HORA LLEGÓ A LA ESCUELA?, ¿CUÁNTO TIEMPO TARDÓ?

                                          

LUIS SALIÓ DE SU CASA A LAS 7 EN PUNTO Y LLEGÓ A LA ESCUELA A LAS 7 Y 20 MINUTOS.

CONTEMOS LA MARCAS DE LOS MINUTOS QUE HAY DESDE LAS 7:00 A LAS 7:20.

VEMOS QUE PASARON 20 MINUTOS DESDE QUE SALIÓ DE SU CASA HASTA LLEGAR A LA ESCUELA.

 

LA NOCIÓN DE TIEMPO ESTÁ RELACIONADA EL MOVIMIENTO DE NUESTRO PLANETA. CUANDO LA TIERRA DA UN GIRO COMPLETO SOBRE SU PROPIO EJE DECIMOS QUE HA PASADO UN DÍA. GRACIAS A ESE GIRO EN UNA PARTE DEL MUNDO ES DE DÍA Y EN LA OTRA ES DE NOCHE. PERO CUANDO LA TIERRA HACE UN GIRO COMPLETO ALREDEDOR DEL SOL DECIMOS QUE HA PASADO 1 AÑO.

UNIDADES DE TIEMPO

LA DURACIÓN DE CIERTOS FENÓMENOS, COMO LAS ESTACIONES DEL AÑO SUPERA AL DÍA O VARIOS DÍAS. ES POR ESO QUE SE NECESITAN UNIDADES MAYORES, COMO LA SEMANA, EL MES O EL AÑO.

HAY OTROS FENÓMENOS DE TIEMPO, COMO LA DURACIÓN DE UNA CARRERA, QUE SE PRODUCEN EN TIEMPOS MENORES QUE UN DÍA. ES POR ESO QUE PARA ORGANIZAR EL TIEMPO, EL HOMBRE DIVIDIÓ EL DÍA EN HORAS, MINUTOS Y SEGUNDOS.

SEGÚN EL SISTEMA INTERNACIONAL DE UNIDADES, LA UNIDAD PRINCIPAL DEL TIEMPO ES EL SEGUNDO.

VEAMOS LAS EQUIVALENCIAS DEL TIEMPO:

UNIDADES MENORES DE 1 DÍA UNIDADES MAYORES DE 1 DÍA
1 DÍA = 24 HORAS

1 HORA = 60 MINUTOS

1 MINUTO = 60 SEGUNDOS

1 SEMANA = 7 DÍAS

1 MES = 30 DÍAS APROXIMADAMENTE

AÑO = 12 MESES = 365 DÍAS

¡HAY MÁS UNIDADES DE TIEMPO!

  • 1 TRIMESTRE = 3 MESES
  • 1 SEMESTRE = 6 MESES
  • 1 LUSTRO = 5 AÑOS
  • 1 DÉCADA = 10 AÑOS
  • 1 SIGLO = 100 AÑOS
  • 1 MILENIO = 1.000 AÑOS

¿SABÍAS QUÉ?
CADA 4 AÑOS SE SUMA 1 DÍA MÁS AL MES DE FEBRERO (29 DE FEBRERO). ESTE AÑO SE CONOCE COMO “AÑO BISIESTO”.

EL RELOJ

EL RELOJ ES EL INSTRUMENTO MÁS IMPORTANTE PARA DETERMINAR EL TIEMPO DEL DÍA QUE TRANSCURRE. EL RELOJ MIDE EL TIEMPO EN HORAS, MINUTOS Y SEGUNDOS, ES DECIR, MIDE CON LAS UNIDADES MENORES A UN DÍA.

UNO DE LOS INVENTOS MÁS IMPORTANTES DE LA HISTORIA FUE EL RELOJ. ESTE INSTRUMENTO, POR LO GENERAL, ES CIRCULAR, CON MARCAS Y AGUJAS QUE SEÑALAN LAS HORAS, LOS MINUTOS Y LOS SEGUNDOS. TAMBIÉN EXISTEN OTROS TIPOS DE RELOJ CON PANTALLAS DIGITALES QUE MUESTRAN LA HORA CON NÚMEROS. EN EL RELOJ DE LA IMAGEN SON LAS 2:00 O 2 EN PUNTO.

¿CÓMO LEER LA HORA?

EN UN RELOJ ANALÓGICO

  • PRIMERO LEEMOS LA HORA SEGUIDO DE LA PALABRA “Y”. LA HORA LA SEÑALA LA AGUJA MÁS CORTA.
  • DESPUÉS LEEMOS LOS MINUTOS, PARA ESTO CONTAMOS LA CANTIDAD ENTRE 0 Y 60 QUE SEÑALA LA AGUJA MÁS LARGA. LUEGO DECIMOS LA PALABRA “MINUTOS”. CADA NÚMERO REPRESENTA 5 MINUTOS MÁS QUE EL ANTERIOR.

– EJEMPLO:

SON LAS NUEVE Y DIEZ MINUTOS.

SON LAS SEIS Y CUARENTA MINUTOS.

  • CUANDO LA AGUJA DE LOS MINUTOS ESTÁ EN EL 0 DECIMOS LA HORA SEGUIDA DE ” … EN PUNTO”. 
  • CUANDO LA AGUJA DE LOS MINUTOS ESTÁ EN EL 15 DECIMOS LA HORA SEGUIDA DE ” … Y CUARTO”.
  • CUANDO LA AGUJA DE LOS MINUTOS ESTÁ EN EL 30 DECIMOS LA HORA SEGUIDA DE ” … Y MEDIA”.
  • CUANDO LA AGUJA DE LOS MINUTOS ESTÁ EN EL 45 DECIMOS “UN CUARTO PARA …” SEGUIDO DE LA HORA QUE LE SIGUE A LA MARCADA.

 SON LAS ONCE Y CUARTO.

ES LA UNA Y MEDIA.

 ES UN CUARTO PARA LAS CUATRO.

SON LAS SEIS EN PUNTO.

ABREVIATURAS DE TIEMPO

SI LA HORA LEÍDA CORRESPONDE A ANTES DEL MEDIODÍA USAMOS LA ABREVIATURA a. m.

SI LA HORA LEÍDA CORRESPONDE A DESPUÉS DEL MEDIODÍA USAMOS LA ABREVIATURA p. m.

EN UN RELOJ DIGITAL

PRIMERO LEEMOS LA HORA QUE ESTÁ ANTES DE LOS DOS PUNTOS (:). LUEGO LEEMOS LOS MINUTOS QUE ESTÁN DESPUÉS DE LOS DOS PUNTOS.

– EJEMPLO:

 SON LAS DOS Y CUARENTA Y CINCO MINUTOS O UN CUARTO PARA LAS TRES.

 SON LAS OCHO EN PUNTO.

 SON LAS OCHO Y QUINCE MINUTOS O LAS OCHO Y CUARTO.

 SON LAS OCHO Y TREINTA MINUTOS O LAS OCHO Y MEDIA.

 SON LAS OCHO Y CUARENTA Y CINCO MINUTOS O UN CUARTO PARA LAS NUEVE.

LA HISTORIA DEL PRIMER RELOJ

LOS PRIMEROS INTENTOS DE MEDIR EL TIEMPO SURGIERON POR LA OBSERVACIÓN DE LOS MOVIMIENTOS DE LA TIERRA, LA LUNA, EL SOL Y LAS ESTRELLAS. UNO DE LO PRIMEROS RELOJES FUE EL SOLAR, INVENTADO POR LOS EGIPCIOS. ESTE CONSISTÍA EN UNA BARRA QUE PROYECTABA LA SOMBRA DEL SOL SOBRE UNA SUPERFICIE.

EL CRONÓMETRO

UN CRONÓMETRO ES UN RELOJ DE MANO QUE SE UTILIZA PARA MEDIR FRACCIONES DE TIEMPO PEQUEÑAS. AL INICIAR EL CONTEO DE SEGUNDOS SE PRESIONA UN BOTÓN Y PARA TERMINARLO SE VUELVE A PRESIONAR. POR EJEMPLO, PARA MEDIR LA DURACIÓN DE UNA COMPETENCIA DE VELOCIDAD SE UTILIZA ESTE INSTRUMENTO.

EL CRONÓMETRO CUENTA CON UN SISTEMA DE MEDIDA MENOR A UN DÍA, ES DECIR QUE MIDE LAS HORAS, LOS MINUTOS Y LOS SEGUNDOS. POR LO GENERAL, SE UTILIZA PARA MEDIR LOS SEGUNDOS O UNIDADES MÁS PEQUEÑAS COMO LAS MILÉSIMAS DE SEGUNDO. UNA MILÉSIMA DE SEGUNDO ES IGUAL A 1 SEGUNDO/1.000. ADEMÁS DE USARSE EN LOS DEPORTES TAMBIÉN SE EMPLEAN EN LA INDUSTRIA.

¿SABÍAS QUE?
EN EL SIGLO XIX, EL RELOJERO SUIZO LOUIS BERTHOUD DESARROLLÓ UN CRONÓMETRO MARINO.

¡A PRACTICAR!

1. RESPONDE:

  • SI MARTA SALIÓ DE SU CASA A LAS 7:15 DE SU CASA Y LLEGÓ A LAS 7:30 A LA CASA DE SU AMIGA, ¿CUÁNTO TIEMPO TARDÓ EN LLEGAR?
    SOLUCIÓN
    15 MINUTOS.
  • SI LUIS SALIÓ DE SU CASA A LAS 8:20 DE SU CASA Y LLEGÓ A LAS 8:35 A LA ESCUELA, ¿CUÁNTO TIEMPO TARDÓ EN LLEGAR?
    SOLUCIÓN
    15 MINUTOS.
  • SI ANDREA SALIÓ DE SU CASA A LAS 3:40 DE SU CASA Y LLEGÓ A LAS 4:00 A LA CASA DE SU ABUELA, ¿CUÁNTO TIEMPO TARDÓ EN LLEGAR?
    SOLUCIÓN
    20 MINUTOS.

2. ¿QUÉ HORA ES?

SOLUCIÓN
SON LAS SEIS Y CINCUENTA MINUTOS.

SOLUCIÓN
SON LAS DOS Y TREINTA Y CINCO MINUTOS.

SOLUCIÓN
SON LAS DIEZ Y VEINTE MINUTOS.

SOLUCIÓN
SON LAS CINCO EN PUNTO.
RECURSOS PARA DOCENTES

Artículo “Concepto Físico del tiempo”

En el siguiente artículo podrás encontrar más información acerca del concepto de tiempo desde la perspectiva de la física.

VER

CAPÍTULO 3 / TEMA 4

LA CAPACIDAD

LA CAPACIDAD SURGE CON LA NECESIDAD DE ESTABLECER UNA MEDIDA DE “LO QUE CABE” DENTRO DE UN OBJETO. POR EJEMPLO, EN UNA LLAVE NO CABE NINGUNA SUSTANCIA, PERO DENTRO DE UN VASO SÍ CABEN OBJETOS Y LÍQUIDOS, COMO AGUA O JUGO. LA UNIDAD DE MEDIDA DE LA CAPACIDAD ES EL LITRO. A CONTINUACIÓN APRENDERÁS CÓMO EMPLEARLA.

¿QUÉ ES LA CAPACIDAD?

OBSERVA ESTOS VASOS, ¿EN CUÁL HAY MÁS AGUA?

HAY MÁS AGUA EN EL VASO B.

AHORA OBSERVA ESTOS VASOS, ¿EN CUÁL CABE MÁS AGUA?

CABE MÁS AGUA EN EL VASO C. 

LA CAPACIDAD ES UNA MAGNITUD QUE SE CARACTERIZA POR CONTENER UNA CIERTA CANTIDAD DE SUSTANCIA. GENERALMENTE SE UTILIZA PARA ESTABLECER LA CANTIDAD DE LÍQUIDO QUE TIENE UN RECIPIENTE.

OBSERVA DE NUEVO LOS VASOS DE ARRIBA, ¿CUALES TIENEN MAYOR CAPACIDAD?

EN EL PRIMER EJEMPLO, LOS DOS VASOS TIENEN LA MISMA CAPACIDAD, PERO EN EL SEGUNDO EJEMPLO, EL VASO C TIENE MAYOR CAPACIDAD QUE EL VASO D.

LA CAPACIDAD INDICA CUÁNTO LÍQUIDO PUEDE CONTENER UN RECIPIENTE Y SU UNIDAD DE MEDIDA ES EL LITRO. NO DEBE CONFUNDIRSE CON EL VOLUMEN, QUE ES EL ESPACIO OCUPADO POR EL LÍQUIDO Y SU UNIDAD ES EL METRO CÚBICO. EN LA IMAGEN VEMOS DOS VASOS, ¿CUÁL TIENE MAYOR CAPACIDAD? ¡LOS DOS TIENEN LA MISMA CAPACIDAD PORQUE PUEDEN CONTENER EL MISMO VOLUMEN!

¿SABÍAS QUÉ?
TODOS LOS CUERPOS OCUPAN UN VOLUMEN EN TRES DIMENSIONES: LARGO, ANCHO Y ALTO.

¡COMPAREMOS CAPACIDADES!

¿DÓNDE CABE MÁS AGUA?, ¿CUÁL RECIPIENTE TIENE MAYOR CAPACIDAD?

EN EL BOTELLÓN CABE MÁS AGUA QUE EN LA LATA. EL BOTELLÓN TIENE MAYOR CAPACIDAD.


EN EL BARRIL CABE MÁS AGUA QUE EN LA JARRA. EL BARRIL TIENE MAYOR CAPACIDAD.


EN LA PISCINA CABE MÁS AGUA QUE EN LA PIPA. LAS PISCINA TIENE MAYOR CAPACIDAD.


¡ES TU TURNO!

SOLUCIÓN
EN LA JARRA CABE MÁS AGUA QUE EN EL CARTÓN DE JUGO. LA JARRA TIENE MAYOR CAPACIDAD.

SOLUCIÓN
EN LA CISTERNA CABE MÁS AGUA QUE EN LA BOTELLA. LA CISTERNA TIENE MAYOR CAPACIDAD.

¿CÓMO SE MIDE LA CAPACIDAD?

LA CAPACIDAD SE PUEDE MEDIR CON VARIOS INSTRUMENTOS, COMO JARRAS MEDIDORAS, GOTEROS Y CUCHARAS. EN OTROS CASOS ENCONTRAMOS ENVASES CON SU CAPACIDAD YA DELIMITADA, POR EJEMPLO UNA BOTELLA DE 1 LITRO Y MEDIO DE AGUA, O UNA CAJA DE 1 LITRO DE LECHE.

LAS JARRAS MEDIDORAS SON TRANSPARENTES, FABRICADAS DE PLÁSTICO O VIDRIO; Y TIENEN RAYAS O MARCAS QUE REPRESENTAN LA MEDIDA DE CAPACIDAD HASTA ESE PUNTO. ES POSIBLE QUE TENGAS UNA EN CASA PORQUE SON DE GRAN AYUDA CUANDO PREPARAMOS RECETAS. ALGUNAS TIENEN LAS MEDIDAS EN MILILITROS (mL), LITROS (L) O CENTÍMETRO CÚBICO (cm3 O cc).

PRINCIPALES UNIDADES DE CAPACIDAD

LA UNIDAD PRINCIPAL DE LA CAPACIDAD ES EL LITRO, PERO NO ES LA ÚNICA. TAMBIÉN EXISTEN SUS MÚLTIPLOS, QUE REPRESENTAN UNA CANTIDAD MAYOR QUE EL LITRO, Y SUS SUBMÚLTIPLOS, QUE REPRESENTAN UNA CANTIDAD MENOR QUE EL LITRO. POR EJEMPLO:

UNA JARRA TIENE CAPACIDAD DE 1 LITRO.

ALGUNAS BOTELLAS TIENEN CAPACIDAD DE 500 MILILITROS.

 UN CARTÓN PEQUEÑO DE JUGO TIENE CAPACIDAD DE 250 MILILITROS.


OBSERVA LAS EQUIVALENCIAS:

EN 1 LITRO HAY DOS ½ LITROS.

EN UN LITRO HAY CUATRO ¼ DE LITRO.

¡MUY IMPORTANTE!

1 LITRO = 1.000 MILILITROS

½ LITRO = 500 MILILITROS

¼ DE LITRO = 250 MILILITROS

 

1 L = ½ L + ½ L

1 L = ¼ L + ¼ L + ¼ L + ¼ L

– EJEMPLO:

OBSERVA LA TAZA MEDIDORA, ¿QUÉ CAPACIDAD TIENE?, ¿CUÁNTA AGUA HAY?

ESTA TAZA MEDIDORA TIENE CAPACIDAD PARA 1 LITRO.

 

NO ESTÁ LLENA DE AGUA HASTA LA MARCA DE 1 LITRO.

 

SI CONTAMOS LAS MARCAS, HAY AGUA HASTA LA MITAD DE 1 LITRO, ES DECIR, ½ LITRO.

 

POR LO TANTO, LA TAZA MEDIDORA TIENE ½ LITRO O 500 MILILITROS DE AGUA. 

TODOS LOS RECIPIENTES DE LOS PRODUCTOS QUE CONSEGUIMOS EN UN SUPERMERCADO VIENEN CON ETIQUETAS QUE INDICAN LA CAPACIDAD O VOLUMEN. ALGUNOS TIENEN LAS UNIDADES DE CAPACIDAD DEL ENVASE Y OTROS TIENEN LAS UNIDADES DE VOLUMEN DE LAS SUSTANCIAS CONTENIDAS. ¡BUSCA EN TU CASA ALGÚN RECIPIENTE Y LEE SUS UNIDADES DE MEDIDA!

RELACIÓN ENTRE centímetro CÚBICO Y miliLITRO

AUNQUE LA CAPACIDAD Y EL VOLUMEN NO SON LO MISMO, TIENEN MUCHA RELACIÓN ENTRE SÍ. CUANDO NOS REFERIMOS A LA CAPACIDAD HABLAMOS DEL ESPACIO VACÍO QUE TIENE UN RECIPIENTE PARA SER LLENADO, MIENTRAS QUE EL VOLUMEN ES EL ESPACIO OCUPADO POR EL CUERPO.

DE ESTE MODO, UN OBJETO QUE TENGA CAPACIDAD PARA 1 MILILITRO SERÁ OCUPADO POR UN VOLUMEN DE 1 CENTÍMETRO CÚBICO. ASÍ QUE:

1 MILILITRO (mL) = 1 CENTÍMETRO CÚBICO (cm3)

¡A PRACTICAR!

1. ESTOS RECIPIENTES TIENEN DEBAJO SU CAPACIDAD. CONVIÉRTELA EN LITROS O MILILITROS SEGÚN SEA EL CASO.

SOLUCIÓN

A) 5 LITROS = 5.000 MILILITROS

B) ¼ LITRO = 250 MILILITROS

C) 1.000 MILILITROS = 1 LITRO

 

2. COMPLETAR LA TABLA TENIENDO EN CUENTA LA EQUIVALENCIA 1 cm3 = 1 mL.

2 cm3 = ____ mL

SOLUCIÓN
2

____ cm3 = 6 mL

SOLUCIÓN
6

____ cm3 = 42 mL

SOLUCIÓN
42

96 cm3 = ____ mL

SOLUCIÓN
96
RECURSOS PARA DOCENTES

Artículo: “Volumen y capacidad: aplicaciones”

En el siguiente artículo podrás encontrar un trabajo sobre la relación entre volumen y capacidad y varias estrategias de enseñanza.

VER

CAPÍTULO 3 / TEMA 1

Las fracciones y sus usos

En diversas situaciones cotidianas usamos números naturales para expresar la hora, nuestra edad o un número de teléfono. Sin embargo, si queremos indicar las partes de algo debemos recurrir a los números racionales, también conocidos como fracciones. Usamos estos números frecuentemente: por ejemplo, cuando hacemos una receta o al comprar una bebida.

¿Qué es una fracción?

Una fracción es una parte de un número entero y se representa como una división o un cociente. Está formada por un numerador y un denominador, ambos separados por una raya fraccionaria.

El denominador nos indica en cuántas partes hemos dividido el entero, mientras que el numerador nos muestra cuántas de esas partes hemos tomado.

 

– Ejemplo:

Compramos una barra de chocolate muy grande, entonces decidimos dividirla en tres partes iguales y comernos solo dos de esas porciones, ¿cómo representamos esa cantidad?

Primero consideramos la barra como un todo.

Luego, dividimos el todo en tres partes. Esto significa que el denominador es igual a 3.

Sombreamos o pintamos las dos partes que no comimos. Esto significa que el numerador es 2.

Este último gráfico representa a la fracción 2/3. Es decir, nos comimos 2/3 de chocolate.

¿Sabías qué?

Además de la raya fraccionaria, podemos representar números fraccionarios con diagonales o como divisiones. Por ejemplo:

\boldsymbol{\frac{1}{2}=1/2 =1\div 2}

VER INFOGRAFÍA

Imagina que estás con tres amigos y debes repartir una pizza para todos, ¿cómo harías el reparto? ¡Muy sencillo! Solo debes cortarla en cuatro partes iguales y cada uno podrá comer una rebanada, es decir, cada quien tomará 1/4 de la pizza. Observa que el pedazo que comes es igual al numerador y la cantidad total de pedazos es igual al denominador.

¿Cómo se leen las fracciones?

Cada vez que dividimos un entero, este recibe un nombre diferente. Observa esta tabla:

Partes en la que dividimos al entero ¿Cómo se lee?
2 Medios
3 Tercios
4 Cuartos
5 Quintos
6 Sextos
7 Séptimos
8 Octavos
9 Novenos
10 Décimos
11 Onceavos
12 Doceavos
13 Treceavos
14 Catorceavos
15 Quinceavos
16 Dieciseisavos
17 Diecisieteavos
18 Dieciochoavos
19 Diecinueveavos
20 Veinteavos
30 Treintavos
40 Cuarentavos
50 Cincuentavos
60 Sesentavos
70 Setentavos
80 Ochentavos
90 Noventavos
100 Centavo

Así que para la lectura de fracciones seguimos estos pasos:

  1. Lee el número del numerador.
  2. Lee el número del denominador, es decir, las partes en las que se dividió el entero según la tabla.

– Ejemplos:

 

  • \frac{2}{8}  se lee “dos octavos”.

 

  • \frac{1}{2}  se lee “un medio”.

 

  • \frac{13}{40}  se lee “trece cuarentavos”.

 

  • \frac{1}{10}  se lee “un décimo”.

 

  • \frac{7}{15}  se lee “siete quinceavos”.

 

  • \frac{25}{100}  se lee “veinticinco centavos”.

 

Observa que cuando el numerador es 1, decimos “un” en lugar de “uno”.



Una fracción es una parte del número entero y se representa como una división o un cociente. Es un tipo de número muy usado en la cocina. Por ejemplo, cuando desayunamos podemos agregar a nuestro cereal 1/2 taza de leche o yogurt, también podemos añadir 1/4 de taza de frutas.

¿Sabías qué?
Una fracción con denominador 1 es igual a un número entero, por eso es común no escribir el denominador en estos casos. Por ejemplo, 8/1 = 8.

Tipos de Fracciones

Las fracciones pueden ser propiasimpropias o aparentes.

Fracciones propias

Son aquellas fracciones en las que el numerador es menor que el denominador. Estas fracciones siempre son menores que 1. Por ejemplo:

\frac{2}{3},  \frac{1}{4} y \frac{7}{10}

Fracciones impropias

Son aquellas fracciones en las que el numerador es mayor que el numerador. Estas fracciones siempre son mayores que 1. Por ejemplo:

\frac{4}{3},  \frac{5}{2} y \frac{8}{6}

Fracciones aparentes

Son aquellas fracciones cuyo numerador es múltiplo del denominador. Por ejemplo:

\frac{6}{3}=2

\frac{10}{2}=5

 

¿Qué tipo de fracción es?

Clasifica las siguientes fracciones en propias, impropias o aparentes:

  • \frac{8}{2}
Solución
Fracción aparente.
  • \frac{3}{5}
Solución
Fracción propia.
  • \frac{9}{4}
Solución
Fracción impropia.

 

Gráfico de Fracciones

De acuerdo al tipo de fracción, podemos graficar un entero o más de uno. Si es una fracción propia, usaremos un entero; sin embargo, si se trata de una fracción impropia, utilizaremos más de un entero.

Gráfico de fracciones propias

Este tipo de fracciones tiene el numerador menor que el denominador y siempre son menores que 1. Para graficarlas solo dibujamos cualquier figura (será el entero) y la dividimos en tantas partes como indique el denominador. Luego, pintamos las partes que señale el numerador.

– Ejemplo:

Realiza el gráfico de la fracción \frac{5}{8}

1. Dibujamos una figura, esta será el entero o “el todo”. En este caso es un rectángulo.

2. Dividimos el entero en 8 partes iguales porque el denominador de la fracción es 8.

3. Pintamos 5 partes del entero porque el numerador de la fracción es 5. Este será el gráfico de la fracción.

Gráfico de fracciones impropias

Estas fracciones tienen el numerador mayor al denominador y siempre son mayores que 1. Para realizar sus gráficos debemos dibujar una figura (será el entero) y dividirla en tantas partes como señale el denominador. Como el numerador es mayor, repetimos la figura la cantidad de veces necesaria para poder pintar la partes que exprese el numerador.

– Ejemplo:

Realiza el gráfico de la fracción \frac{9}{4}

1. Dibujamos una figura que represente al entero, por ejemplo, un cuadrado.

 

2. Dividimos el entero en 4 partes iguales porque el denominador de la fracción es 4.

 

3. Pintamos 9 partes del entero, pero como el entero solo tiene 4, repetimos la misma figura hasta que podamos tener las nueve partes para pintar. Este será el gráfico de la fracción.

Gráfico de una fracción aparente

En las fracciones aparentes el numerador es múltiplo del denominador. Para graficar estas fracciones podemos seguir los pasos anteriores. Como resultado, los gráficos tendrán siempre todas sus partes pintadas.

– Ejemplo:

Realiza el gráfico de la fracción \frac{6}{3}

Observa que, si bien el numerador es mayor que el denominador, 6 es múltiplo de 3, por lo tanto, 6 ÷ 3 = 2.

Si tomamos un rectángulo como entero, lo dividimos en 3 partes iguales (por el denominador) y repetimos la figura para poder pintar 6 partes (por el numerador); observaremos que el gráfico es igual a dos enteros completos.

Usos de Fracciones

Sin darnos cuenta, hacemos uso de las fracciones a diario. Por ejemplo, en las instrucciones para una receta que necesite 1/4 de taza de azúcar; en el supermercado cuando pedimos 1/2 kilogramo de fresas; cuando hablamos de distancias y decimos que nuestras casa está a 1/2 cuadra del kiosco; o al medir el tiempo y decir que en 1/2 hora empieza una serie de televisión. Cada vez que dividamos un valor entero en partes iguales empleamos fracciones.

Toda fracción indica que un todo se ha dividido en partes iguales. Cada vez que repartimos alimentos tratamos de hacerlo de esta forma. Por ejemplo, podemos comernos “medio trozo de pan” cuya fracción es 1/2, lo que quiere decir que dividimos la unidad (el pan) en dos partes iguales (el denominador) y tomamos una (el numerador).

Equivalencias de interés

Este cuadro muestra las fracciones que están contenidas en una unidad.

De otro modo:

1 = \frac{1}{2}+\frac{1}{2}

1 = \frac{1}{4}+ \frac{1}{4}+ \frac{1}{4}+ \frac{1}{4}

\frac{1}{2}=\frac{1}{4}+\frac{1}{4}

\frac{1}{2} = \frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}

¡A practicar!

1. En la panadería venden el pan rallado en bolsitas de 1 kg, 1/2 kg y 1/4 kg. Si José quiere comprar 2 kg de pan rallado…

a) ¿Cuántas bolsitas de 1/4 de kilo necesita?

Solución
 8 bolsitas de 1/4 de kg.

b) ¿Cuántas bolsitas de 1/2 kilo necesita?

Solución
4 bolsitas de 1/2 kg.

c) Si quiere llevar llevar 5 bolsitas para completar los 2 kg, ¿cuáles puede tomar?

Solución
1 bolsita de 1 kg y 4 bolsas de 1/4 de kg.

d) Si quiere llevar 3 bolsitas, ¿cuáles puede tomar?

Solución
1 bolsita de 1 kg y 2 bolsitas de 1/2 kg.

e) ¿Cuál es la menor cantidad de bolsitas que puede tomar? ¿y la mayor cantidad?

Solución
Puede tomar la menor cantidad de bolsitas si escoge las de mayor peso, es decir, las de 1 kg. Entonces, solo tomaría 2 bolsitas de 1 kg.

Para tomar la mayor cantidad de bolsita, debe escoger las de menor peso, que serían las de 1/4 de kg. En ese caso, llevaría 8 bolsitas de 1/4 de kg.

[/su_spoiler]

2. ¿Qué fracción representa cada gráfico?

Solución

Partes en las que dividimos el entero: 16

Partes sombreada: 10

Solución

\frac{4}{4}=1

Partes en las que dividimos el entero: 4

Partes sombreada: 4

Solución

\frac{6}{10}

Partes en las que dividimos el entero: 10

Partes sombreada: 6

 

RECURSOS PARA DOCENTES

Artículo “Fracciones”

Este artículo te permitirá acceder a más ejemplos sobre las fracciones y sus tipos.

VER

Artículo “Clasificación de las fracciones”

El siguiente recurso proporciona más información sobre los tipo de fracciones y sus gráficos.

VER

CAPÍTULO 3 / TEMA 2

LA LONGITUD

ENTRE NUESTRA CASA Y LA CASA DE UN AMIGO HAY UNA DISTANCIA QUE LAS SEPARA, ESTA DISTANCIA LA PODEMOS MEDIR EN METROS: UNIDAD QUE NOS PERMITE SABER LA LONGITUD DE LAS COSAS, PERO NO ES LA ÚNICA UNIDAD. TAMBIÉN ESTÁN LOS MILÍMETROS Y LOS CENTÍMETROS. LOS INSTRUMENTOS PARA MEDIR LONGITUD SON MÁS COMUNES DE LO QUE CREES Y SEGURO TIENES ALGUNO EN CASA.

¿QUÉ ES LA LONGITUD?

OBSERVA ESTAS CINTAS, ¿CUÁL ES LA MÁS LARGA?, ¿CUÁL CINTA ES MÁS CORTA?

LA CINTA ROJA OCUPA 4 CUADROS Y LA CINTA AZUL OCUPA 7 CUADROS. ASÍ QUE:

  • LA CINTA AZUL ES MÁS LARGA QUE LA CINTA ROJA.
  • LA CINTA ROJA ES MÁS CORTA QUE LA CINTA AZUL.

 

LA LONGITUD ES UNA MAGNITUD QUE DETERMINA LA DISTANCIA ENTRE DOS PUNTOS. GRACIAS A ELLA SABEMOS QUÉ TAN LARGO O ALTO ES UN OBJETO. LA UNIDAD DE MEDIDA PRINCIPAL ES EL METRO.

LA CINTA MÉTRICA ES UNA HERRAMIENTA UTILIZADA PARA MEDIR LA LONGITUD DE PAREDES Y CERCAS. LOS ALBAÑILES Y CARPINTEROS LA USAN TODO EL TIEMPO PARA HACER SU TRABAJO, YA QUE LES PERMITE SABER EL LARGO O EL ANCHO DE UNA TABLA, CAJA O PISO. LA MAYORÍA VIENE CON MEDIDAS EN CENTÍMETROS Y CON MARCAS MÁS PEQUEÑAS QUE REPRESENTAN LOS MILÍMETROS.

UNIDADES PARA MEDIR LONGITUD

PODEMOS MEDIR LONGITUDES CON UNIDADES ARBITRARIAS Y CONVENCIONALES.

  • LAS UNIDADES DE MEDIDA ARBITRARIAS SON LA CUARTA, EL PIE O LOS PASOS. ESTAS MEDIDAS NO SON EXACTAS PORQUE LAS PARTES DEL CUERPO NO SON IGUALES EN TODAS LAS PERSONAS.
  • LAS UNIDADES CONVENCIONALES SON LAS ACEPTADAS EN LA MAYORÍA DE LOS PAÍSES. PARA LA LONGITUD EL SISTEMA INTERNACIONAL DE MEDIDA ACEPTA AL METRO Y SUS SUBMÚLTIPLOS.

EL METRO Y SUS SUBMÚLTIPLOS

EL METRO ES LA UNIDAD PRINCIPAL PARA MEDIR LONGITUDES. GRACIAS A ESTA UNIDAD SABEMOS QUE TAN ALTOS SOMOS.

LOS SUBMÚLTIPLOS DEL METRO SON LAS UNIDADES MENORES QUE ÉL; ES DECIR, QUE PARA MEDIR LONGITUDES MENORES AL METRO USAMOS LOS SUBMÚLTIPLOS: EL DECÍMETRO, EL CENTÍMETRO Y EL MILÍMETRO.

VEAMOS CÓMO SE COMPONE UN METRO DE LONGITUD EN UNA CINTA MÉTRICA:

  • DENTRO DE 1 METRO TENEMOS 10 DECÍMETROS.

  • DENTRO DE 1 METRO TENEMOS 100 CENTÍMETROS.

 

  • DENTRO DE 1 METRO TENEMOS 1.000 MILÍMETROS.

EQUIVALENCIAS DE INTERÉS

1 METRO = 10 DECÍMETROS

1 METRO = 100 CENTÍMETROS

1 METRO = 1.000 MILÍMETROS

¿SABÍAS QUÉ?
TAMBIÉN EXISTEN UNIDADES MAYORES AL METRO, COMO EL KILÓMETRO, QUE ES IGUAL A 1.000 METROS.

INSTRUMENTOS USADOS PARA MEDIR LA LONGITUD

LOS INSTRUMENTOS UTILIZADOS PARA MEDIR LA LONGITUD SON:

INSTRUMENTO CARACTERÍSTICAS
REGLA GRADUADA ES UN INSTRUMENTO CORTO Y PLANO. SE UTILIZA PARA TRAZAR FIGURAS GEOMÉTRICAS O PARA SUBRAYAR.
ESCUADRA ES UN INSTRUMENTO DE FORMA TRIANGULAR Y SE UTILIZA EN GEOMETRÍA. ES MUY ÚTIL PARA TRAZAR RECTAS PARALELAS.
FLEXÓMETRO
ES UN INSTRUMENTO FLEXIBLE QUE MIDE 1,5 METROS. ES MUY USADO POR LOS COSTUREROS PARA LOS CORTES Y CONFECCIONES.
CINTA MÉTRICA ES UN INSTRUMENTO METÁLICO CON UNA CINTA FLEXIBLE QUE PUEDE ENROLLARSE. POR LO GENERAL TIENE 5 METROS.
LAS MEDIDAS DE LONGITUD, ASÍ COMO SUS INSTRUMENTOS DE MEDICIÓN, SON DE GRAN IMPORTANCIA EN TODAS LAS ÁREAS DE CONOCIMIENTO Y OFICIOS. LAS REGLAS, ESCUADRAS Y CINTAS MÉTRICAS SON NECESARIAS PARA LOS INGENIEROS, ARQUITECTOS Y DISEÑADORES. TODOS LOS PLANOS Y FIGURAS DE CUALQUIER TAMAÑO SE CONSTRUYEN GRACIAS A ESTOS INSTRUMENTOS DE MEDICIÓN.

¿cómo medir con la regla graduada?

LAS REGLAS GRADUADAS TIENEN MEDIDAS EN CENTÍMETROS MARCADAS CON NÚMEROS. ENTRE LOS CENTÍMETROS HAY UNIDADES MÁS PEQUEÑAS QUE VEMOS CON RAYAS. SI DESEAMOS MEDIR UN OBJETO PEQUEÑO EN CENTÍMETROS CON UNA REGLA SEGUIMOS ESTOS PASOS:

1. COLOCAMOS UN EXTREMO DEL OBJETO EN CERO.

2. LEEMOS EL NÚMERO QUE ESTÁ EN EL OTRO EXTREMO.

LA CINTA AZUL MIDE 10 CENTÍMETROS.

¡COMPAREMOS LONGITUDES!

OBSERVA LA CUADRÍCULA Y LOS OBJETOS. CADA CUADRO MIDE 1 CENTÍMETRO. LUEGO RESPONDE:

¿CUÁL OBJETO TIENE MAYOR LONGITUD?

  • EL CLIP OCUPA 2 CUADROS. MIDE 2 CENTÍMETROS.
  • LA GOMA DE BORRAR OCUPA 4 CUADROS. MIDE 4 CENTÍMETROS.

LA GOMA DE BORRAR TIENE MAYOR LONGITUD QUE EL CLIP.


¿CUÁL OBJETO TIENE MAYOR LONGITUD?

  • EL MARCADOR OCUPA 9 CUADROS. MIDE 9 CENTÍMETROS.
  • EL LÁPIZ OCUPA 6 CUADROS. MIDE 6 CENTÍMETROS.

EL MARCADOR TIENE MAYOR LONGITUD QUE EL LÁPIZ.

¡A PRACTICAR!

1. ¿CUÁNTO MIDE EL LÁPIZ?

SOLUCIÓN
EL LÁPIZ MIDE 11 CENTÍMETROS.

2. ¿CUÁNTO MIDE EL PINCEL?

SOLUCIÓN
EL PINCEL MIDE 15 CENTÍMETROS.

3. RESPONDE LAS SIGUIENTES PREGUNTAS:

  • ¿CUÁL UNIDAD USARÍAS PARA MEDIR EL CUELLO DE UNA JIRAFA?
SOLUCIÓN
LOS METROS.
  • ¿CUÁL UNIDAD USARÍAS PARA MEDIR EL TAMAÑO DE UN HORMIGA?
SOLUCIÓN
LOS MILÍMETROS.
  • ¿CUÁL UNIDAD USARÍAS PARA MEDIR EL LARGO DE UN DEDO?
SOLUCIÓN
LOS CENTÍMETROS.
  • ¿CUÁL UNIDAD USARÍAS PARA MEDIR EL ANCHO DE UNA MESA?
SOLUCIÓN
LOS METROS.
  • ¿CUÁL UNIDAD USARÍAS PARA MEDIR UN GRANO DE ARROZ?
SOLUCIÓN
LOS MILÍMETROS.
RECURSOS PARA DOCENTES

Artículo “Conversión de unidades de longitud”

Con este recurso ampliaras la información relacionada a los múltiplos y submúltiplo de las unidades de longitud.

VER

 

CAPÍTULO 3 / TEMA 3

MASA

UNA DE LAS PROPIEDADES QUE SE PUEDEN MEDIR DE LOS CUERPOS ES LA MASA. UN ESCRITORIO, UN GATO, UN GLOBO, UN JUGO O UNA HORMIGA SON CUERPOS CON MASA. LA MANERA MÁS SENCILLA DE MEDIRLA ES CON UNA BALANZA Y ES PROBABLE QUE TENGAS UNA EN CASA PORQUE TAMBIÉN SON NECESARIAS PARA SABER NUESTRO PESO A MEDIDA QUE CRECEMOS.

¿QUÉ ES LA MASA?

LA MASA ES LA CANTIDAD DE MATERIA QUE CONTIENE UN CUERPO. TODOS LOS OBJETOS O CUERPOS TIENEN MASA, YA SEA EN ESTADO SÓLIDO, LÍQUIDO O GASEOSO. POR EJEMPLO, UN LÁPIZ, EL AGUA Y EL AIRE TIENEN MASA.

TODOS LOS CUERPOS ESTÁN HECHOS DE MATERIA Y ALGUNOS TIENEN MÁS O MENOS QUE OTROS. POR EJEMPLO, UN CARRO TIENE MÁS MASA QUE UNA PELOTA, O UN HOMBRE ADULTO TIENE MÁS MASA QUE UN BEBÉ RECIÉN NACIDO. NO SIEMPRE PODEMOS SABER QUÉ CUERPO ES MÁS PESADO POR OBSERVACIÓN, EN ESOS CASOS USAMOS INSTRUMENTOS COMO LA BALANZA O LA BÁSCULA.

CUANDO ALGUIEN PREGUNTA CUÁL ES EL PESO DE UNA PERSONA, ESTE SE EXPRESA EN KILOGRAMOS. ESTO SUCEDE PORQUE LA ACCIÓN DE DETERMINAR LA MASA DE UN CUERPO EN UNA BALANZA SE LLAMA “PESAR”.

¿SABÍAS QUÉ?
EL PESO Y LA MASA NO SON LO MISMO. LA MASA ES INDEPENDIENTE DEL LUGAR DONDE LA MIDAMOS, SIN EMBARGO, EL PESO NO. CUANTO MÁS ALEJADOS DEL CENTRO DE LA TIERRA NOS ENCONTREMOS, MENOR SERÁ NUESTRO PESO.

¿CON QUÉ SE MIDE LA MASA?

LA MASA SE MIDE CON UN INSTRUMENTO LLAMADO BALANZA. LA BALANZA MIDE LA MASA DE CUERPOS Y OBJETOS. TAMBIÉN SE UTILIZAN OTROS INSTRUMENTOS COMO LOS PLATILLOS EN LOS LABORATORIOS O LAS BALANZAS ELECTRÓNICAS PARA PESAR ALIMENTOS.

LAS BALANZAS SE UTILIZAN PARA PESAR LOS ALIMENTOS QUE SE VENDEN EN LOS COMERCIOS, YA SEA CARNE, PESCADO O FRUTAS. TAMBIÉN SE EMPLEAN EN LOS LABORATORIOS PARA PESAR PEQUEÑAS CANTIDADES SUSTANCIAS, Y EN LOS HOGARES PARA PESAR LOS ALIMENTOS QUE COMPONEN UNA RECETA. HAY MUCHOS TIPOS DE BALANZA, UNAS MÁS PRECISAS QUE OTRAS.

 

LAS BALANZAS DE DOS PLATILLOS SON DE MUCHA AYUDA PARA COMPARAR MASAS, POR EJEMPLO:

  • LAS DOS MACETAS TIENEN IGUAL MASA PORQUE LA BALANZA ESTÁ EN EQUILIBRIO.

  • LA PIÑA TIENE MAYOR MASA QUE LA FRESA PORQUE LA BALANZA ESTÁ INCLINADA HACIA SU LADO.

  • LA CALABAZA TIENE MAYOR MASA QUE EL LIMÓN PORQUE LA BALANZA ESTÁ INCLINADA HACIA SU LADO.

 

TIPOS DE BALANZA

LA BALANZA ES UN INSTRUMENTO QUE PODEMOS VER EN LOS COMERCIOS, EN LOS CONSULTORIOS MÉDICOS, EN LOS LABORATORIOS O HASTA EN NUESTRAS CASAS. HAY MUCHOS TIPOS, PERO LAS MÁS COMUNES SON LAS MECÁNICAS, CON PLATILLOS Y ESFERAS O REGLAS CON MARCAS; Y LAS ELECTRÓNICAS CON PANTALLAS QUE MUESTRAN DIRECTAMENTE EL VALOR DE LA MASA.

KILOGRAMO Y GRAMO

EL SISTEMA INTERNACIONAL DE MEDIDAS SOSTIENE QUE LA UNIDAD DE MEDIDA PRINCIPAL DE LA MASA ES EL KILOGRAMO. EN ALGUNOS CASOS TAMBIÉN SE UTILIZAN SUS UNIDADES DERIVADAS MENORES, COMO LO SON EL GRAMO O EL MILIGRAMO.

¿SABÍAS QUÉ?
LA ABREVIATURA DEL KILOGRAMO ES “kg” Y LA DE LOS GRAMOS ES “g”.

UN PERRO PUEDE PESAR 20 KILOGRAMOS.

UNA BANANA PUEDE PESAR 150 GRAMOS.

UNA HORMIGA PUEDE PESAR 3 MILIGRAMOS.

ALGUNAS EQUIVALENCIAS DE INTERÉS SON LAS SIGUIENTES:

  • 1 KILOGRAMOS ES IGUAL A DOS MEDIOS KILOS.

  • 1 KILOGRAMO ES IGUAL A CUATRO CUARTOS DE KILO.

OTRAS EQUIVALENCIAS

  • 1 KILOGRAMO = 1.000 GRAMOS
  • ½ KILOGRAMOS = 500 GRAMOS
  • ¼ KILOGRAMOS = 250 GRAMOS

¿CÓMO CONVERTIR KILOGRAMOS A GRAMOS?

LA MASA DE MUCHOS PRODUCTOS DEL MERCADO PUEDEN ESTAR MEDIDAS EN KILOGRAMOS, POR EJEMPLO, 2 KILOGRAMOS DE HARINA. PERO SI NECESITAMOS LA MASA EN GRAMOS PARA PREPARAR UNA RECETA, ¿CÓMO HACEMOS?

CAMBIAR UNA MISMA CANTIDAD A OTRA UNIDAD ES MUY FÁCIL. PARA CONVERTIR KILOGRAMOS A GRAMOS SOLO TIENES QUE AGREGAR TRES CEROS A LA CIFRA DE LOS KILOGRAMOS. POR EJEMPLO:

1 KILOGRAMO = 1.000 GRAMOS

2 KILOGRAMOS = 2.000 GRAMOS

3 KILOGRAMOS = 3.000 GRAMOS

 

OBSERVA ESTAS CAJAS, ¿CUÁNTOS GRAMOS PESAN EN TOTAL?

A) 

HAY DOS CAJAS. CADA CAJA PESA 1 KILOGRAMO.

YA SABEMOS QUE:

1 KILOGRAMO = 1.000 GRAMOS

 

ASÍ QUE:

2 KILOGRAMOS = 2.000 GRAMOS

 

RESPUESTA: EN TOTAL LAS CAJAS PESAN 2 KILOGRAMOS.

 


B) 

HAY DOS CAJAS. UNA CAJA PESA 1 KILOGRAMO Y LA OTRA PESA ½ KILOGRAMO.

YA SABEMOS QUE:

1 KILOGRAMO = 1.000 GRAMOS

½ KILOGRAMO = 500 GRAMOS

 

ASÍ QUE:

1.000 GRAMOS + 500 GRAMOS = 1.500 GRAMOS

 

RESPUESTA: EN TOTAL LAS CAJAS PESAN 1.500 GRAMOS.


C) 

HAY TRES CAJAS. UNA CAJA PESA 1 KILOGRAMO Y LAS OTRAS DOS PESAN ¼ DE KILOGRAMO CADA UNA.

YA SABEMOS QUE:

1 KILOGRAMOS = 1.000 GRAMOS

¼ DE KILOGRAMO = 250 GRAMOS

 

ASÍ QUE:

1.000 GRAMOS + 250 GRAMOS + 250 GRAMOS = 1.500 GRAMOS

 

RESPUESTA: EN TOTAL LAS CAJAS PESAN 1.500 GRAMOS.

 

¡A PRACTICAR!

1. ¿CUÁNTOS GRAMOS PESAN EN TOTAL ESTAS CAJAS?

SOLUCIÓN

HAY TRES CAJAS.

1 CAJA DE 1 KILOGRAMO = 1.000 GRAMOS

1 CAJA DE ½ KILOGRAMO = 500 GRAMOS

1 CAJA DE ¼ DE KILOGRAMO = 250 GRAMOS

ASÍ QUE:

1.000 GRAMOS + 500 GRAMOS + 250 GRAMOS = 1.750 GRAMOS

EN TOTAL LAS CAJAS PESAN 1.750 GRAMOS. 

 

2. CONVIERTE LOS KILOGRAMOS A GRAMOS:

  • 7 KILOGRAMOS Y MEDIO = _____ GRAMOS

SOLUCIÓN
7.500
  • 8 KILOGRAMOS = _____ GRAMOS

SOLUCIÓN
8.000
  • 9 KILOGRAMOS = _____ GRAMOS

SOLUCIÓN
9.000
  • 9 KILOGRAMOS Y MEDIO = ____ GRAMOS

SOLUCIÓN
9.500