CAPÍTULO 6 / TEMA 1

REPRESENTACIÓN GRÁFICA DE DATOS

Habrás observado que muchas veces la información en los medios de comunicación está acompañada por una variedad de gráficos. Los gráficos son representaciones visuales de un conjunto de datos; por ejemplo, la cantidad de habitantes de cada ciudad del país o el porcentaje del crecimiento interanual de una economía. Son muy efectivos para mostrar relaciones entre diferentes valores y permiten comprender fácilmente distintas situaciones de la realidad.

Es frecuente encontrar gráficos en los análisis estadísticos que refuercen de forma visual la información necesaria. Estas representaciones se adaptan en cada caso a aquello que se busca transmitir y al objetivo de la investigación. Dichos resultados se presentan de forma rápida, directa, atractiva y comprensible para un conjunto amplio de personas.

LOS DATOS Y LAS GRÁFICAS

Un dato no es más que una información que permite describir alguna característica de una situación de estudio. Este puede ser un número, una palabra o cualquier símbolo. Si un dato describe una cualidad se dice que es cualitativo, pero si señala una cantidad se llama cuantitativo. Por ejemplo:

Datos cualitativos Datos cuantitativos
– Profesión: {médico, policía, ingeniero}

– Color de ojos: {negro, azul, verde, marrón}

– Estado civil: {soltero, casado, viudo}

– Edad: {10 años, 11 años, 13 años}

– Peso: {40 kg, 37 kg, 41 kg}

– Cantidad de hermanos: {1, 3, 4}

Cuando tenemos una cantidad numerosa de datos recurrimos a las tablas. Allí, organizamos en filas y columnas los valores obtenidos y luego los clasificamos de acuerdo a los objetivos de la investigación. Posteriormente graficamos la información, pues estas gráficas brindan una mayor rapidez en la comprensión de los datos porque los presentan de forma clara, organizada y llamativa.

– Ejemplo:

30 personas fueron encuestadas acerca de cuál era su fruta favorita. Las respuestas obtenidas fueron las siguientes:

Manzana Pera Ananá Ananá Naranja Naranja
Banana Fresa Naranja Manzana Naranja Manzana
Naranja Durazno Manzana Ananá Naranja Pera
Banana Fresa Banana Fresa Manzana Fresa
Ananá Naranja Manzana Ananá Naranja Banana

Con estos datos podemos realizar una tabla que muestre la frecuencia o al cantidad de veces que cada fruta se repite.

Fruta Frecuencia
Manzana 6
Banana 4
Naranja 8
Pera 2
Ananá 5
Fresa 4
Durazno 1
Total 30

Si bien los datos se ven claramente en esta tabla, podemos graficarlos para que sea aún más sencillo visualizar cuáles son las frutas más o menos preferidas por este grupo de personas.

Elementos de los gráficos

Existen diferentes tipos de gráficos y la selección dependerá de la información que se quiera mostrar, sin embargo todos los gráficos tienen algunos elementos en común:

  • Título: todo gráfico debe tener un título para saber rápidamente de qué se trata. El mismo se ubica en la parte superior de la gráfica, debe ser claro, breve e informar sobre el contenido del cuadro.
  • Cuerpo: el cuerpo varía en función al estilo de gráfico que se seleccione, entre los más usados se encuentran el lineal, el de barras y el circular.

VER INFOGRAFÍA

TIPOS DE GRÁFICOS

Gráficos de barras

En este tipo de gráficos se construyen barras cuyas longitudes permiten comparar las categorías, observar los diferentes valores y obtener información con respecto a lapsos de tiempo. Las variables estudiadas se colocan en el eje horizontal y las frecuencias se colocan en el eje vertical, luego ubicamos los puntos y trazamos barras verticales para cada variable.

– Ejemplo:

Esta gráfica muestra la cantidad de hombres y mujeres en cada grado de un colegio.

Con esta gráfica vemos de forma muy clara la cantidad de hombres y mujeres que hay en cada grado. Nota que las barras de colores azul corresponden a los hombres y las barras de color naranja corresponden a las mujeres.

De acuerdo a la tabla, el grado con mayor cantidad de hombres es 6º (20), y el grado con menor cantidad de hombres es 1º (9).

¡Es tu turno!

Realiza la tabla de datos de acuerdo a la gráfica anterior.

Solución
Grado Hombres Mujeres Total
9 11 20
10 15 25
14 14 28
15 17 32
14 10 24
20 11 31
18 15 33
Total 100 93 193

¿Sabías qué?
Los gráficos de barras pueden ser verticales, horizontales, agrupados o apilados.

Gráficos lineales

Los gráficos lineales, también llamados gráficos poligonales, se representan en un plano (dos dimensiones) mediante el uso de un sistema de coordenadas. Para construirlos basta con ubicar los puntos en el plano y luego unirlos por medio de líneas.

– Ejemplo:

Con los mismos datos del ejemplo anterior en el que realizamos un gráfico de barras podemos dibujar un gráfico lineal.

Gráficos circulares

También son conocidos como gráficos de torta o pastel. Se usan para comparar porcentajes con respecto a un total de datos. Son útiles cuando deseas mostrar una sola serie de datos, por ejemplo, el sexo de la población. Para hallar los porcentajes parciales se dividen los 360° del círculo de acuerdo a los valores dados.

– Ejemplo:

La siguiente tabla muestra la cantidad de huéspedes en un hotel según su nacionalidad:

Nacionalidad Cantidad de turistas
Colombiana 12
Argentina 23
Chilena 5
Venezolana 15
Italiana 18
Total 73

Es normal colocar los valores de porcentajes en los gráficos de este tipo, para calcularlos solo dividimos la cantidad de cada nacionalidad entre el total de turista. Luego multiplicamos por 100. La suma de todos los porcentajes debe ser igual a 100 %.

Nacionalidad Cantidad de turistas Porcentaje
Colombiana 12 (12/73) × 100 = 16,44 %
Argentina 23 (23/73) × 100 = 31,50 %
Chilena 5 (5/73) × 100 = 6,85 %
Venezolana 15 (15/73) × 100 = 20,55 %
Italiana 18 (18/73) × 100 = 24,66 %
Total 73 100 %

Ahora, para ilustrar los datos en un círculo multiplicamos la fracción de cada nacionalidad por 360°. La suma de todos los grados debe ser igual a 360°. Por conveniencia redondeamos a la unidad cada producto.

Nacionalidad Cantidad de turistas Grados
Colombiana 12 (12/73) × 360° = 59,18° ≈ 59°
Argentina 23 (23/73) × 360° = 113,42° ≈ 113°
Chilena 5 (5/73) × 360° = 24,66° ≈ 25°
Venezolana 15 (15/73) × 360° = 73,97° ≈ 74°
Italiana 18 (18/73) × 360° = 88,77° ≈ 89°
Total 73 360°

De ese modo, tras dibujar la circunferencia, medimos con el transportador los grados correspondientes a cada porción y anotamos el porcentaje redondeado que lo representa.

¿Qué es una muestra?

Se denomina población al conjunto de elementos estudiados, es decir, al total. Una muestra es una parte de esa población, es decir, es una porción seleccionada que resulta representativa del conjunto. Se toman muestras cuando la población que se quiere estudiar es muy amplia e inabarcable, entonces se decide realizar una selección estratégica que recorte la cantidad de individuos a estudiar y que mantengan los rasgos representativos de toda la población analizada.

IMPORTANCIA DE REPRESENTAR DATOS EN GRÁFICOS

La estadística, entre otras cosas, se encarga de recopilar, analizar y sistematizar datos. Luego, debe comunicar la información generada en este proceso. La presentación de datos es uno de los aspectos mayormente utilizados en la estadística descriptiva. Los gráficos son muy importantes ya que posibilitan un abordaje dinámico, claro y entretenido.

En este sentido, los gráficos son una gran herramienta ya que permiten:

  • Registrar datos de manera clara y concreta.
  • Comunicar la información en forma sencilla.
  • Comprender la estructura del conjunto de datos.
La cartografía tiene como objetivo la concepción, redacción y realización de los mapas, es decir, la representación plana y simplificada de toda o de una parte de la superficie terrestre. Los mapas estadísticos o cartogramas son aquellos que presentan datos por regiones o zonas. Al igual que en un mapa topográfico, los colores y las tramas indican áreas que están en el mismo rango de valores.

 

¡A practicar!

Observa los gráficos y responde:

1. Marta vendió magdalenas durante toda la semana. La cantidad de magdalenas vendidas se muestra en el siguiente gráfico:

  • ¿Cuántas magdalenas vendió Marta el lunes?
    Solución
    Vendió 10 magdalenas.
  • ¿Cuál día vendió más magdalenas?
    Solución
    El martes.
  • ¿Cuál día vendió menos magdalenas?
    Solución
    El domingo.
  • ¿Cuántas magdalenas vendió durante la semana?
    Solución
    Vendió 68 magdalenas durante la semana.
  • ¿Cuál día vendió solo 8 magdalenas?
    Solución
    El viernes.

 

2. Se hizo una encuesta sobre el deporte favorito de un grupo de estudiantes. Los resultados se muestran en este gráfico.

  • ¿Cuál es el deporte favorito de la mayoría de encuestados?
    Solución
    El fútbol.
  • ¿Qué porcentaje de encuestados prefiere el béisbol?
    Solución
    El 14 %.
  • ¿Qué porcentaje de encuestados prefiere el baloncesto?
    Solución
    El 23 %.
  • ¿Cuál es el deporte menos preferido por los encuestados?
    Solución
    El béisbol.
RECURSOS PARA DOCENTES

Artículo “Gráficos estadísticos”

Con el siguiente artículo podrás ampliar tu conocimiento sobre tipos de gráficos estadísticos y sus funciones.

VER

Artículo “Lectura de gráficos”

En el siguiente artículo encontrarás ejemplos claros y explicados para abordar la interpretación y lectura de gráficos.

VER 

CAPÍTULO 8 / TEMA 3

medidas de tendencia central

Son también denominadas medidas de posición o de centralización. Como su nombre lo indica, hacen referencia a los valores centrales de una determinada distribución de datos. La media aritmética, la mediana y la moda comprenden este grupo de medidas. Estas medidas cumplen la función de resumir en un solo número las características de un conjunto de datos.

la media ARITMÉTICA

La media aritmética (\fn_cm \small \overline{x}), también conocida como promedio, es el cálculo del valor característico de una distribución de datos. Se calcula al sumar todos los valores y luego dividir el resultado entre la cantidad total de datos. Si el cálculo se realiza con una muestra aleatoria, esta debe ser representativa de la muestra total.

Así que, dado un conjunto de números (n): x1, x2, x3, …xn. La media aritmética se determina por la siguiente fórmula:

\overline{x}=\frac{x_{1},\: x_{2},\: x_{3}...x_{n}}{n}

– Ejemplo:

Un grupo de 12 estudiantes obtuvo las siguientes calificaciones en una asignatura: 4, 6, 6, 10, 12, 12, 13, 15, 16, 17, 17 y 19. ¿Cuál es la media?

Aplicamos la fórmula de media aritmética:

\overline{x}=\frac{4+ 6+ 6+ 10+ 12+ 12+ 13+ 15+ 16+ 17+ 17 + 19}{12}

\overline{x}=\frac{147}{12}=\boldsymbol{12,25}

En Estadística podemos clasificar a las medidas en dos grandes grupos: medidas de posición y medidas de dispersión. Las medidas de posición nos permiten obtener un valor único (central) que representa las características del conjunto de datos. En cambio, las medidas de dispersión cuantifican las variaciones con respecto a la tendencia central.

Media aritmética para datos agrupados

Cuando los datos ya están agrupados en una tabla de frecuencia tenemos que:

  • Multiplicar cada dato (x) por su frecuencia (f).
  • Sumar el total de · x.
  • Sumar el total de f.
  • Dividir el total de · x. entre la suma total de f.

– Ejemplo:

La siguiente tabla muestra la frecuencia de notas obtenidas en una clase:

Notas (x) Frecuencia (f)
4 3
10 8
15 6
18 2

Multiplicamos cada dato (x) por su frecuencia, luego sumamos los productos y los dividimos entre las frecuencias totales:

Notas (x) Frecuencia (f) f · x
4 3 12
10 8 80
15 6 90
18 2 36
Total 19 218

\overline{x}=\frac{218}{19}\approx \boldsymbol{24,22}

¿Sabías qué?
La media aritmética presenta una desventaja: es sensible a datos atípicos, lo que arroja un valor promedio alejado de la realidad.

la moda

La moda (Mo) es el valor que tiene mayor frecuencia, es decir, es valor que más se repite. Para hallar la moda siempre es conveniente ordenar los datos que se obtienen para verificar la cantidad de veces que aparece cada uno.

– Ejemplo:

Las calificaciones obtenidas en un examen fueron: 10, 15, 4, 10, 10, 8, 10, 4, 15, 4, 10, 10, 15, 10, 10, 15, 15, 15 y 18. ¿Cuál es la moda?

Primero organizamos los datos:

4, 4, 4, 8, 10, 10, 10, 10, 10, 10, 10, 10, 15, 15, 15, 15, 15, 15 y 18.

Luego contamos la repetición o frecuencia de cada dato y elegimos el que más se repita:

4 3 veces
8 1 vez
10 8 veces
15 6 veces
18 1 veces

Por lo tanto,

Mo=\boldsymbol{8}

Distribución bimodal

La moda es el valor con mayor frecuencia en las distribuciones de los datos. Sin embargo, puede suceder que se encuentren dos modas, que reciben el nombre de “distribución bimodal”.

la mediana

La mediana (Md) corresponde al valor para el cual la cantidad de datos menores y mayores a él es igual. Cuando los elementos del conjunto de datos son un número impar, la mediana queda definida. Si la cantidad de datos es par, la mediana es el promedio entre los dos datos centrales.

– Ejemplo 1:

En un equipo de fútbol hay 11 jugadores, las edades de los mismos son: 20, 23, 19, 16, 18, 22, 19, 20, 21, 19 y 17. ¿Cuál es la mediana?

Primero organizamos los datos y ubicamos el valor que esté en el medio:

16, 17, 18, 19, 19, 20, 20, 20, 21, 22, 23

Nota que hay cinco valores a la izquierda y cinco valores a la derecha.

Entonces, Md=\boldsymbol{20}

 

– Ejemplo 2:

En un grupo de teatro hay 10 alumnos, halla la mediana correspondiente a las edades de los mismos: 15, 12,14, 10, 14, 13, 16, 12, 13 y 16.

Como la cantidad de datos es par, los organizamos y calculamos el promedio de los valores medios:

10, 12, 12, 13, 13, 14, 14, 15, 16, 16

\overline{x}=\frac{13+14}{2}=13,5

Por lo tanto, Md=\boldsymbol{13,5}

gráficas de medida de tendencia central

En distribuciones simétricas la media aritmética, mediana y moda coinciden.

Las distribuciones asimétricas pueden ser:

  • Asimétrica hacia la izquierda.

  • Asimétrica hacia la derecha.

Uno de los usos más frecuentes que le damos a las medidas de tendencia central es cuando calculamos nuestro promedio de calificaciones. Este nos indica cómo nos fue en una asignatura en particular o en todo un año escolar. Tener un buen promedio de calificaciones nos ayuda no solo a pasar al nivel superior, sino también a obtener becas académicas.

¡A practicar!

Calcula la media aritmética, la moda y la mediana de los siguientes conjuntos numéricos.

  • 1, 3, 6, 5, 6, 7, 4, 3, 4, 8, 3, 2, 7, 6, 3, 1, 5, 8, 9
Solución

1, 1, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 9

\overline{x}=\frac{91}{19}\approx \boldsymbol{4,79}

Mo=\boldsymbol{3}

Md=\boldsymbol{5}

  • 17, 25, 14, 26, 30, 15, 25, 16, 11, 13, 17, 18, 16, 22, 23, 25, 14
Solución

11, 13, 14, 14, 15, 16,16, 17, 17, 18, 22, 23, 25, 25, 25, 26, 30

\overline{x}=\frac{327}{17}\approx \boldsymbol{19,24}

Mo=\boldsymbol{25}

Md=\boldsymbol{17}

  • 18, 20, 22, 28, 28, 18, 27, 30, 32, 26, 27, 28, 26, 28
Solución

18,18, 20, 22, 26, 26, 27, 27, 28, 28, 28, 28, 30, 32

\overline{x}=\frac{358}{14}\approx \boldsymbol{25,57}

Mo=\boldsymbol{28}

Md=\boldsymbol{27}

  • 120, 100, 115, 100, 150, 110, 120, 130, 110, 140, 160, 120
Solución

100, 100, 110, 110, 115, 120, 120, 120, 130, 140, 150, 160,

\overline{x}=\frac{1.475}{12}\approx \boldsymbol{122,92}

Mo=\boldsymbol{120}

Md=\boldsymbol{120}

RECURSOS PARA DOCENTES

Artículo “Las medidas de tendencia central”

En el artículo se complementan ejemplos de medidas de tendencia central y se ilustran su gráficas representativas.

VER

CAPÍTULO 8 / TEMA 2

gráficos estadísticos

Después de recolectar datos, ordenarlos y presentarlos en una tabla, estos pueden representarse gráficamente. Existen distintos tipos de gráficos, sin embargo todos ellos cumplen los mismos objetivos: registrar datos de manera clara y concreta; comunicar la información en forma sencilla y comprender la estructura del conjunto de datos.

¿qué son los gráficos estadísticos?

Los gráficos estadísticos son una representación visual de datos. Estos tienen gran utilidad para manifestar relaciones matemáticas o correlaciones estadísticas a partir de recursos visuales. Los gráficos son complementos de las tablas (apoyo numérico) que ayudan a lograr la correcta interpretación de los datos.

Los gráficos estadísticos son un conjunto de herramientas visuales que nos permiten organizar y presentar datos de manera clara y atractiva. Esto es de gran ayuda para lograr la correcta interpretación de los mismos. Los gráficos pueden ser de diversos tipos y cada uno de ellos se puede adaptar a los datos a analizar.

VER INFOGRAFÍA

¿Sabías qué?
Los procedimientos estadísticos se remontan hacia el año 3050 a. C. cuando se intentó hacer un registro de la población en Egipto para preparar la construcción de las pirámides.

¿Cuáles son las ventajas de los gráficos estadísticos?

  • Captan la atención. Los datos representados de manera gráfica suelen ser mucho más llamativos visualmente que los bloques de texto o contenido.
  • Información puntual. La información mostrada se encuentra generalmente de manera resumida, precisa, clara y sencilla.
  • Fácil comprensión. La información desglosada y graficada tiene menos posibilidades de ser comprendida erróneamente por el lector.
  • Comparación eficaz. Los datos, al estar representados en forma de gráficos, se prestan a una fácil comparación ya que sus tendencias o diferencias se destacan claramente.
  • Complemento explicativo. Pueden ser utilizados como complemento de un párrafo o texto explicativo, lo que facilita la transmisión de ideas.

elementos de un gráfico

Los gráficos pueden ser muy útiles, pero para eso se requiere de la correcta utilización de cada uno de los elementos que los componen. Los principales elementos de un gráfico a tener en cuenta son: el título, la escala y el cuerpo.

  • El título contiene el resumen del contenido del gráfico estadístico.
  • La escala es el rango de valores de los ejes del gráfico estadístico.
  • El cuerpo constituye el tipo de gráfico (de barras, poligonal o circular).

Además de estos, merecen una distinción otros elementos como el título y las unidades de los ejes, la leyenda, y la etiqueta y la serie de los datos.

Proporciones de un gráfico

Las proporciones en un gráfico son lo primordial; es decir, el contenido debe estar equilibrado. Por lo general, la relación entre la base y la altura debe ser de 1,5 en 1. A continuación veremos dos ejemplos de gráficos, uno adecuado y el otro no.

tipos de gráficos estadísticos

Como se mencionó anteriormente, existen diferentes tipos de gráficos. En este caso, nos centraremos en tres: el gráfico de barras, el gráfico poligonal y el gráfico circular.

Gráfico de barras

En este tipo de gráficos, como su nombre lo indica, se construyen barras que pueden tener sus bases en el eje y o en el eje x. Las alturas de las mismas permiten comparar las categorías y obtener información con respecto a lapsos de tiempo.

Gráfico poligonal o lineal

El gráfico poligonal se utiliza para presentar la magnitud o frecuencia de diferentes variables. Este se forma a partir de histogramas: columnas verticales que reflejan cada una de las frecuencias. Luego de esto, se unen los puntos con líneas rectas.

Gráfico circular

También conocido como gráfico de torta o pastel, se usa para comparar porcentajes con respecto a un total de datos. Para hallar los porcentajes parciales se dividen los 360° del círculo de acuerdo a los valores dados.

Los censos proporcionan una estadística descriptiva del número de individuos, tamaño de la población y composición del hogar o de la familia, e información sobre la distribución por sexo y edad. A menudo incluyen otros temas demográficos, económicos y relacionados también con la salud. Todos suelen mostrarse en gráficos en un informe final.

construcción de diagramas de barra

Para la construcción del diagrama de barras se necesita, como en todos los casos, la tabla con los datos recolectados. Luego seguimos estos pasos:

  1. Dibujamos un plano cartesiano.
  2. Ubicamos los datos observados en el eje x.
  3. Ubicamos las frecuencias en el eje y.
  4. Dibujamos rectángulos sobre cada dato. La altura de cada barra corresponde a la frecuencia.
  5. Escribimos los títulos de cada eje.

¿Sabías qué?
La frecuencia es el número de veces que se repite cada fenómeno o suceso.

– Ejemplo:

Luego de realizar una recolección de datos en una escuela, se obtuvo la información de la cantidad de alumnos de diferentes cursos que le gustaba la asignatura de Matemática y Lengua. El análisis se hizo con 100 alumnos de cada grado y el resultado se observa en la siguiente tabla:

Alumnos que les gusta Matemática Alumnos que les gusta Lengua
Alumnos de 1º grado 45 55
Alumnos de 2º grado 70 30
Alumnos de 3º grado 60 40
Alumnos de 4º grado 25 75
Alumnos de 5º grado 55 45

 

 

¡A practicar!

Realiza el gráfico de barras para cada tabla.

1. Deporte favorito de un grupo entrevistado.

Deporte favorito Frecuencia
Béisbol 7
Fútbol 6
Baloncesto 9
Voleibol 3
Solución

 

2. Color favorito de un grupo entrevistado.

Color Frecuencia
Rojo 4
Azul 3
Amarillo 6
Verde 3
Blanco 5
Rosado 5
Solución

RECURSOS PARA DOCENTES

Artículo “Gráficos estadísticos”

En el artículo se mencionan diversos gráficos con los ejemplos y elementos correspondientes a cada uno. Allí se encontrarán características inherentes a los gráficos estadísticos y la explicación para la construcción de cada uno de ellos.

VER

CAPÍTULO 8 / TEMA 1

RECOLECCIÓN Y CONTEO DE DATOS

La estadística es una rama de las matemáticas que se ocupa de reunir y organizar datos relacionados con fenómenos colectivos, pero ¿cómo recolectar estos datos?, ¿qué tipo de datos existen? y luego de conseguirlos, ¿cómo representarlos? Todas estas interrogantes podrás responderlas después de leer el artículo a continuación.

¿QUÉ es un dato?

Es la información que permite describir alguna característica de una situación de estudio. Un dato puede ser un número, una palabra o cualquier símbolo.

– Ejemplos:

  • Los datos de una persona son la edad, el peso, la estatura, el color de cabello o la fecha de nacimiento.
  • Los datos de un país son el número de habitantes, la superficie, las fronteras o el producto interno bruto.
Los planes de desarrollo que elaboran los Gobiernos se basan en ciertos datos económicos, demográficos y sociales. Estos datos se reúnen por medio de diversos métodos, como los censos de población y vivienda; luego se registran y analizan, lo que permite la construcción de un plan ajustado a la realidad del país.

tipos de datos

Los datos pueden ser cualitativos o cuantitativos. Los datos cualitativos expresan una cualidad mientras que los cuantitativos expresan una cantidad. Por ejemplo, cuando te piden describir la experiencia que tuviste en un lugar es posible que uses términos como “agradable”, “divertida” o “incómoda”. Dichos términos son ejemplos de información cualitativa. En cambio, si te preguntan tu edad, tu estatura, tu peso o el número de hermanos que tienes, respondes con datos cuantitativos.

¡Es tu turno!

Lee los conjuntos de datos. Indica si son cualitativos o cuantitativos.

  • Soltero, casado, viudo.
    Solución
    Datos cualitativos.
  • 10 años, 15 años, 9 años.
    Solución
    Datos cuantitativos.
  • Ojos negros, ojos verdes, ojos azules.
    Solución
    Datos cualitativos.

Los datos cuantitativos pueden ser definidos como discretos o continuos. La diferencia entre estos es que los datos discretos solo pueden tomar valores fijos dentro de un rango determinado, mientras que los datos continuos pueden tomar valores intermedios en ese rango.

Datos continuos Datos discretos
  • Infinitos valores en un intervalo.
  • Pueden ser fraccionarios o decimales.
  • Ejemplo: altura de cada uno de los hijos de una persona, pesos de los animales de una granja o temperatura dentro de un aula con alumnos.
  • Solo ciertos valores de un intervalo.
  • No pueden ser fraccionarios ni decimales.
  • Ejemplo: cantidad de hijos de una persona, cantidad de animales en una granja o cantidad de alumnos en un aula.

¿Sabías qué?
Un dato continuo nunca puede ser medido con exactitud. Los valores de este dependen del error de los instrumentos de medición.

recolección de datos

No hay una única forma de recolectar datos, existen diversos métodos, como los siguientes:

  • Observación

La observación puede ser directa o experimental. Por ejemplo, los botánicos y zoólogos aplican la observación directa al estudiar plantas y animales, mientras que lo físicos y los químicos realizan una observación experimental al recabar datos por medio de experimentos ya planeados.

  • Cuestionarios

Son instrumentos de recolección de datos. Estos comprenden un conjunto de preguntas usadas para obtener información sobre un tema específico, por ejemplo, un científico social aplicaría un cuestionario para saber las opiniones o creencias de un grupo de personas.

  • Investigación documental

Consiste en la recolección de datos ya publicados por otros autores. Estos pueden estar en revistas, memorias o libros. Según el objetivo de la búsqueda se analizarán estos datos.

Muestreo

Todos los datos se recolectan de un grupo de elementos llamados población. Cuando la población es muy numerosa, se recurre a una muestra aleatoria de esta. A este proceso se lo denomina muestreo y se utiliza normalmente para la obtención de los resultados e información. Dicha muestra debe ser representativa de los datos recolectados.

Supongamos que queremos realizar un estudio estadístico para determinar el porcentaje de personas que están de acuerdo con la política medioambiental que se aplica en una ciudad con 200.000 habitantes. En este caso, la población es igual a la cantidad de habitantes: 200.000; y la muestra sería la cantidad de personas que vamos a encuestar, por ejemplo: 110.000.

tablas de datos

Luego de la recolección de datos se debe encontrar una manera de presentar la información y guardarla de forma organizada, para lo que se acude a una tabla de datos. Allí se organizan en filas y columnas los datos luego de obtenidos y clasificados respecto a los objetivos de la investigación.

Tras presentar los datos en la tabla se puede recurrir al empleo de diferentes tipos de gráficos. Estos permiten el análisis de la información recolectada y la muestra, de forma tal que podamos comparar, predecir y comprender las características del objeto de estudio. Algunos de estos gráficos pueden ser de barras, circulares o lineales.

– Ejemplo 1:

Se aplicó un cuestionario a un grupo de 25 personas acerca de su deporte favorito. Las respuestas obtenidas fueron las siguientes:

Baloncesto Béisbol Baloncesto Baloncesto Baloncesto
Fútbol Baloncesto Fútbol Fútbol Fútbol
Béisbol Fútbol Béisbol Béisbol Béisbol
Voleibol Baloncesto Baloncesto Voleibol Baloncesto
Béisbol Voleibol Baloncesto Fútbol Béisbol

Para organizar estos datos en una tabla seguimos estos pasos:

a. Construimos una tabla de dos columnas. La primera fila corresponde a las categorías “deporte favorito” y “número de personas”. Luego escribimos en la primera columna los deportes que se obtuvieron como respuestas.

b. Contamos cuántas personas prefieren cada deporte y escribimos el número en la celda de la derecha de cada uno.

Deporte favorito Número de personas
Béisbol 7
Fútbol 6
Baloncesto 9
Voleibol 3

De esta tabla podemos concluir que el deporte favorito de la mayoría de la clase es el baloncesto y el menos preferido fue el voleibol.

Nota que si sumamos los valores de la segunda columna obtendremos la cantidad total de personas que participaron en el cuestionario:

7 + 6 + 9 + 3 = 25


– Ejemplo 2:

A continuación se muestran las edades de todos los alumnos de séptimo grado:

12 12 13 14 12 11
13 12 11 12 12 12
12 13 12 12 11 12
14 11 12 13 13 12
11 12 12 13 13 12

Organicemos estos valores en una tabla de datos:

Edad Número de alumnos
11 5
12 16
13 7
14 2

¡Es tu turno!

Observa la tabla anterior y responde:

  • ¿Cuántos alumnos tienen 11 años?
    Solución
    5
  • ¿Cuántos alumnos tienen 12 años?
    Solución
    16
  • ¿Cuántos alumnos tienen 13 años?
    Solución
    7
  • ¿Cuántos alumnos tienen 14 años?
    Solución
    2
  • ¿Cuántos alumnos hay en séptimo grado?
    Solución
    30

– Ejemplo 3:

En una entrevista se le preguntó a un grupo de personas cuál era su color favorito. Las respuestas obtenidas fueron las siguientes:

Rojo Rosado Blanco Amarillo Rojo Rosado Anaranjado Rosado
Azul Blanco Amarillo Anaranjado Azul Blanco Rosado Amarillo
Amarillo Azul Verde Morado Amarillo Rojo Blanco Verde
Blanco Anaranjado Rojo Rosado Anaranjado Verde Amarillo Anaranjado

La tabla de datos quedaría así:

Color Número de personas
Rojo 4
Azul 3
Amarillo 6
Verde 3
Morado 1
Anaranjado 5
Blanco 5
Rosado 5

¡Es tu turno!

Observa esta la tabla anterior y responde:

  • ¿Cuántas personas prefieren el color verde?
    Solución
    3
  • ¿Cuántas personas prefieren el color blanco?
    Solución
    5
  • ¿Cuántas personas prefieren los colores azul y rojo?
    Solución
    7
  • ¿Cuál es el color favorito de la mayoría de los entrevistados?
    Solución
    Amarillo
  • ¿Cuál es el color favorito de una sola persona de los entrevistados?
    Solución
    Morado
  • ¿Cuántas personas fueron entrevistadas?
    Solución
    32

RECURSOS PARA DOCENTES

Artículo “La estadística”

El artículo refuerza las definiciones y la utilización de los datos. Aquí puedes ver ejemplos de los diferentes tipos de datos y variables.

VER

Artículo “Estadística: tabla de valores”

Con este recurso podrás profundizar sobre la elaboración de tabla de datos con y sin intervalos.

VER

CAPÍTULO 6 / TEMA 1

sISTEMA INTERNACIONAL DE UNIDADES

Desde el peso de una pelota hasta el tamaño de una estrella, los seres humanos han necesitado medir a través de unidades aplicables en magnitudes específicas como la longitud, el área o el volumen. En la actualidad, se emplea el Sistema Internacional de Unidades, que busca la uniformidad en las mediciones y que es adoptado en casi todos los países.

¿POR QUÉ MEDIMOS LAS COSAS?

Desde tiempos antiguos, el ser humano necesitó medir las raciones que tenía, el tamaño de un terreno o el peso de un animal. Esa realidad aún existe, solo que actualmente el ser humano emplea unidades de medida usadas para medir muchas más magnitudes como el tamaño de una bacteria o la velocidad del sonido.

Hoy en día el Sistema Internacional de Unidades cuenta con siete unidades básicas: el metro para medir la longitud, el kilogramo para medir la masa, el segundo para medir el tiempo, el amperio para medir la intensidad de la corriente eléctrica, el kelvin para medir la temperatura, el mol para medir la cantidad de sustancia, y la candela para medir la intensidad luminosa.

Cuando se quiere comparar y dimensionar objetos o cantidades, se debe recurrir a un equipo de medición. Un equipo de medición es una herramienta que nos brinda la información de una determinada magnitud. Sin embargo, para lograr la consistencia de los resultados se debe prestar especial atención a las unidades utilizadas. Algunos ejemplos de equipos de medición son:

Magnitud Equipo de medición usado
Tiempo Cronómetro
Longitud Regla graduada
Masa Balanza
Temperatura Termómetro
Ángulo Transportador

VER INFOGRAFÍA

Aplicación correcta de unidades

Para poder comparar dos valores pertenecientes a una misma magnitud física, ambos deben encontrarse en el mismo sistema de medición, es decir, poseer las mismas unidades de medición. Aunque numéricamente pueden ser iguales, cada unidad representa una proporción diferente de la magnitud que representa. Es por ello que, al momento de resolver un ejercicio con diferentes unidades de medida, se sugiere comenzar con la transformación de todas las unidades en una sola.

¿Qué unidad usar?

Imaginemos que se necesita calcular el volumen del siguiente cubo, cuyas longitudes de sus lados se encuentran expresadas en metros y en centímetros.

Si el ejercicio no lo especifica, el volumen se puede expresar en cualquiera de las dos medidas. Lo importante es aplicar las fórmulas usando una sola unidad:

V = L^{3} = \left (0,5\, m \right )^{3}=0,125\, m^{3}

V = L^{3} = \left (50\, cm \right )^{3}=125.000\, cm^{3}

Observa que 0,125 m3 representa el mismo volumen que 125.000 cm3.

Es por ello que el empleo de las unidades es importante porque nos permite entender la proporción de la cantidad medida. Imaginemos que un comentarista de fórmula 1 dice “la velocidad del auto es de 100”. Es una oración ambigua porque no especifica la unidad de medición. Pueden ser kilómetros por hora, metros por segundo, etc.

En el Sistema Internacional de Unidades también existen unidades derivadas que se usan para medir magnitudes físicas que dependen de las unidades básicas de medición, es decir, se pueden expresar matemáticamente en términos de magnitudes físicas básicas. Por ejemplo, el área es una unidad derivada porque se expresa en m2. La velocidad es otra unidad derivada y se expresa como m/s.

UNIDADES DE MEDICIÓN

Una unidad de medida es una cantidad o proporción estandarizada de una magnitud física que se ha definido y adoptado a través de una ley o por convención. En el pasado se usaban incontables unidades de medición que en la mayoría de los casos no contaban con coherencia. Por esta razón, apareció el Sistema Internacional de Unidades que busca una mayor homogeneidad en los procesos de medición. Las unidades de medición básicas de este sistema son:

Magnitud física Símbolo Nombre
Masa kg Kilogramo
Longitud m Metro
Tiempo s Segundo
Temperatura K Kelvin
Corriente eléctrica A Amperio
Cantidad de sustancia mol Mol
Intensidad luminosa cd Candela

El Sistema Internacional de Unidades nos ofrece las unidades básicas y la combinación de estas en unidades derivadas para lograr mediciones de variables más complejas.

¿Sabías qué?
El Newton (N) es una unidad derivada usada para medir la fuerza donde 1 N = 1 kg.m/s2

tipos de unidades

El Sistema Internacional de Unidades define las unidades básicas necesarias para medir cualquier objeto y en otros casos emplea potencias, productos y cocientes de unidades básicas para expresar otras magnitudes conocidas como unidades derivadas. En la siguiente tabla podrás encontrar las unidades derivadas más conocidas:

Medida Unidad Denominación
Velocidad m/s “metro por segundo”
Aceleración m/s2 “metro por segundo cuadrado”
Fuerza N = kg ·m/s2 Newton
Área m2 “metros cuadrados”
Volumen m3 “metros cúbicos”

¡A practicar!

1. Determinar si las siguientes mediciones pertenecen al Sistema Internacional de Unidades.

a) Una velocidad de 110 km/h.

RESPUESTAS
No pertenece al Sistema Internacional de Unidades porque la velocidad debería estar expresada en m/s para que fuera considerada dentro del Sistema Internacional de unidades.

b) La temperatura de 30 °C.

RESPUESTAS
No pertenece porque la unidad de medida del Sistema Internacional de Unidades es el kelvin (K).

c) Un volumen de 100 m3.

RESPUESTAS
Sí pertenece porque su unidad es una potencia del metro que es una unidad básica.

RECURSOS PARA DOCENTES

Artículo “Sistema Internacional de Unidades”

El artículo explica cómo y por qué se formó el Sistema Internacional de Unidades. También explica sus unidades básicas y el uso de este sistema a nivel mundial

VER

CAPÍTULO 7 / TEMA 7 (REVISIÓN)

ORDEN Y RELACIONES │ ¿QUÉ APRENDIMOS?

SUCESIONES

Las sucesiones son secuencias ordenadas de términos que siguen una determinada regla de recurrencia o patrón. Estas pueden ser aritméticas geométricas. Las aritméticas tienen una diferencia con el término anterior en una cantidad constante, por ejemplo, 2, 4, 6, 8,… En cambio, en las geométricas cada término (excepto el primero) es múltiplo del término anterior de la sucesión, por ejemplo, 2, 4, 8, 16, 32,… Las sucesiones se utilizan en las matemáticas, en entidades financieras, en ciencias naturales, en informática y hasta en el arte.

La espiral de Fibonacci se trata de una espiral áurea que podemos construir a partir de los números contenidos en la sucesión de Fibonacci: 1, 2, 3, 5, 8, 13,…

LA RECTA NUMÉRICA

La recta numérica es una representación gráfica unidimensional que nos permite ubicar los números reales (\mathbb{R}), lo cual resulta de gran utilidad para comparar valores o indicar soluciones de intervalos en las inecuaciones. Se caracteriza por poseer el cero centrado y se considera el origen de la recta; hacia la izquierda se ubican los números negativos y a la derecha los positivos. Entre dos números, será mayor el que esté más a la derecha. Existen métodos para representar con precisión algunos números radicales sobre la recta.

Las reglas graduadas son un ejemplo de rectas numéricas. En estas vemos las divisiones de las unidades enteras que equivalen a las décimas.

PLANO CARTESIANO

Es un sistema de representación bidimensional muy utilizado en matemática y otras áreas para la ubicación de puntos en el plano. Su nombre se debe al filósofo y matemático René Descartes, quien propuso su aplicación en el siglo XVII como una base del sistema de coordenadas rectangulares. Está formado por un eje horizontal denominado eje de las abscisas, que tradicionalmente denotamos con la letra x; y un eje vertical llamado eje de las ordenadas, que por lo general representamos con la letra y. Cada eje se comporta como una recta numérica que se prolonga hasta el infinito.

Por lo general, lo mapas contienen ejes de coordenadas que asemejan el plano cartesiano. Las unión de dos coordenadas dan la ubicación de un punto.

FUNCIONES

Son expresiones matemáticas que indican una relación de correspondencia entre un conjunto de partida y un conjunto de llegada. Para que una relación sea considerada función, debe cumplirse que cada elemento del dominio tenga una sola imagen en el conjunto de llegada. Las funciones pueden ser inyectivas, sobreyectivas o biyectivas.

Las funciones también se pueden clasificar de acuerdo con los operadores que contienen sus términos y estas pueden ser polinómicas, trigonométricas, exponenciales, logarítmicas, entre otras.

FUNCIÓN LINEAL

La función lineal es un tipo de función polinómica cuyo mayor grado de exponente es 1. Su representación gráfica es una línea recta que puede ser descrita a partir de la ecuación explícita: y = mx + b, donde m es la pendiente de la recta y b es su ordenada al origen. Si conocemos la función de la recta podemos graficarla por medio una tabla de valores que cumpla con las soluciones de la función.

Estas gráficas representan dos funciones lineales. Las que no pasan por el origen se llaman funciones afines. Con dos puntos como mínimo se puede construir la recta.

PROPORCIONES

Las proporciones son una medida que relaciona a dos razones mediante una constante. El cociente que resulta de dividir una razón de proporción se conoce como constante de proporcionalidad. Dos magnitudes son directamente proporcionales si al aumentar una cantidad, la otra también aumenta; o si al disminuir una cantidad, la otra también disminuye. En cambio, dos magnitudes son inversamente proporcionales si al incrementar el valor de una, el valor de la otra disminuye; o si al disminuir el valor de una, la otra aumenta.

La cantidad de productos que compramos son directamente proporcionales con el precio, ya que a medida que más compramos más dinero pagamos.

CAPÍTULO 7 / TEMA 6

PROPORCIONES

La proporción es una medida que utilizamos casi de manera intuitiva para expresar relaciones entre dos magnitudes, tales como la longitud, la masa, el tiempo o las unidades monetarias. El concepto de proporciones está implícito cuando graficamos funciones lineales o al aplicar una regla de tres.

Si para elaborar 10 panes se necesitan 300 g de harina y tú deseas preparar 20 panes, de seguro concluirás en que para duplicar la cantidad de panes, debes duplicar la cantidad de ingredientes, es decir, que utilizarás 600 g de harina. La relaciones (300 g de harina: 10 panes / 600 g de harina: 20 panes) se mantienen constantes, es decir, son proporcionales.

proporción numérica

Las proporciones expresan relaciones entre dos o más razones que se dan de manera constante, es decir, si el cociente entre dos razones (divisiones) diferentes da el mismo resultado, entonces, las dos razones son proporcionales. Supongamos que tenemos dos razones:

\frac{a}{b} \: y\: \frac{c}{d}

Decimos que ambas razones son proporcionales si se cumple que:

\frac{a}{b}=\frac{c}{d}

– Ejemplo:

\frac{3}{4}=\frac{21}{28}, ya que \frac{3}{4}=0,75 y \frac{21}{28}=0,75

Propiedad de las proporciones

En una proporción, siempre se debe cumplir que el producto de los valores medios, debe ser igual al producto de los valores extremos:

\frac{a}{b}=\frac{c}{d}\Leftrightarrow a\times d=b\times c

Donde:

a y d: valores extremos

b y c: valores medios

 

En el ejemplo anterior, \frac{3}{4}=\frac{21}{28} porque 3 × 28 = 84 y 4 × 21 = 84.

 

– Otro ejemplo:

Determina si los rectángulos A y B son proporcionales.

Para saber si ambos rectángulos son proporcionales debemos comparar la relación de sus lados, en otras palabras, dividir la base entre la altura (o puede ser también la altura entre la base) de cada rectángulo, y si dicho cociente es el mismo, decimos que los rectángulos A y B son proporcionales.

Rectángulo A: (9,50 ÷ 7,50) = 1,27

Rectángulo B: (4,75 ÷ 3,75) = 1,27

Puesto que ambos rectángulos tienen la misma relación de proporción, concluimos en que sí son proporcionales.

PROPORCIONALIDAD DIRECTA

Dos magnitudes son directamente proporcionales si al aumentar una cantidad, la otra también aumenta; o si al disminuir una cantidad, la otra también disminuye. La razón entre dos cantidades siempre será la misma y se llama constante de proporcionalidad.

– Ejemplo:

El boleto para entrar al cine cuenta $ 2, 2 boletos cuestan $ 4, 3 boletos cuestan $ 6, …

Cantidad de boletos Precio ($) Constante de proporcionalidad
1 2 2/1 = 2
2 4 4/2 = 2
3 6 6/3 = 2
4 8 8/4 = 2

Observa que al dividir el valor de una magnitud entre otra, el resultado siempre es el mismo, es decir, es constante. Como una magnitud aumenta a medida que la otra aumenta, esta relación (cantidad de boletos-precio) es directamente proporcional.

¿Sabías qué?
Una magnitud es cualquier cualidad de un objeto que podemos medir, como la masa, la longitud, el tiempo o el número de alumnos, por ejemplo.
En una empresa se conoce que por cada artículo que se venda se obtiene una ganancia de $ 2/artículo, de manera que si se realiza una gráfica que relacione las ventas de artículos en función de las ganancias obtenidas, observaremos una recta inclinada en sentido creciente, lo que indica que la proporción es directa.

Desde el punto de vista gráfico podemos deducir que una proporción es directa si la recta que relaciona a los valores de una proporción es creciente de izquierda a derecha, es decir, si su pendiente es positiva.

¿Cómo resolver problemas de proporcionalidad directa?

Las proporciones, al igual que la regla de tres, se utilizan para resolver problemas de proporcionalidad. Sirven para hallar el cuarto término de una proporción si conocemos tres valores.

– Ejemplo:

1. Si 3 lápices cuestan $ 9, ¿cuántos costarán 9 lápices?

Lo primero que debemos ver en este problema son las magnitudes que intervienen, y en este caso son dos: el número de lápices y el precio. Ambas magnitudes son directamente proporcionales porque a medida que una aumenta también lo hace la otra.

De este problema conocemos 3 cantidades de estas magnitudes y desconoces una cuarta: lo que cuestan 9 lápices.

Resolvemso de la siguiente manera:

Lápices Precio ($)
3 9
9 x

Planteamos la proporción, luego despejamos x:

\frac{3}{9}=\frac{9}{x}\: \: \Leftrightarrow\: \: 3x=9\times 9\: \: \Leftrightarrow \: \: 3x=81\: \: \Leftrightarrow \: \: x=\frac{81}{3}=\boldsymbol{27}

 

Por lo tanto, 9 lápices costarán $ 27.


2. Un ciclista recorre 80 kilómetros en 2 horas. Si mantiene siempre la misma velocidad, ¿cuántos kilómetros recorrerá en 4 horas?

Horas Kilómetros
2 80
4 x

Planteamos la proporción, luego despejamos x:

\frac{2}{4}=\frac{80}{x}\: \: \Leftrightarrow \: \: 2x=4\times 80\: \: \Leftrightarrow \: \: 2x=320\Leftrightarrow \: \: x=\frac{320}{2}=\boldsymbol{160}

 

El ciclista recorrerá 160 kilómetros en 4 horas.

PROPORCIONALIDAD INVERSA

Dos magnitudes son inversamente proporcionales si al incrementar el valor de una, el valor de la otra disminuye; o si al disminuir el valor de una, la otra aumenta. El producto entre dos cantidades siempre será la misma y se llama constante de proporcionalidad.

– Ejemplo:

Una empleada fabrica un paquete de cajas en 9 horas, dos empleadas fabrican un paquete en 4 horas y media, tres empleadas fabrican un paquete de cajas en 3 horas, …

Cantidad de empleadas Horas Constante de proporcionalidad
1 9 9 × 1 = 9
2 4,5 4, 5 × 2 = 9
3 3 3 × 3 = 9
4 2,25 2,25 × 4 = 9

Observa que al multiplicar el valor de una magnitud entre otra el resultado siempre es el mismo, es decir, es constante. Como una magnitud aumenta a medida que la otra disminuye, esta relación (cantidad de empleadas-horas) es inversamente proporcional.

Ciertas proporciones se dan de manera inversa. En la imagen observamos una gráfica que muestra una recta decreciente, la cual indica que al aumentar la dosis de antibiótico en un paciente, disminuye la concentración de bacterias en su organismo. La pendiente de esta recta sería negativa y su valor absoluto indicaría la constante de proporcionalidad.

 

¿Cómo resolver problemas de proporcionalidad inversa?

La regla de tres inversa o las mismas proporciones nos ayudan a resolver situaciones problemáticas que involucren magnitudes inversamente proporcionales.

– Ejemplo:

1. Si 10 albañiles pueden realizar una construcción en 30 días, ¿cuánto demorarán en realizar la misma construcción 20 albañiles?

Lo primero que vemos son las magnitudes: el número de albañiles y los días. Estas dos magnitudes son inversamente proporcionales porque a medida que una aumenta la otra disminuye.

Por lo tanto, planteamos las magnitudes conocidas y desconocidas:

Albañiles Días
10 30
20 x

A partir de estas relaciones, planteamos la proporción. Como la relación es inversamente proporcional invertimos la segunda razón. Luego despejamos x:

\frac{10}{20}=\frac{x}{30}\: \: \Leftrightarrow \: \: 30\times 10=20x\: \: \Leftrightarrow \: \: 300=20x\: \: \Leftrightarrow x=\frac{300}{20}=\boldsymbol{15}

 

Así que 20 albañiles demorarán 15 días en hacer la misma construcción.


2. En un campo, 12 caballos consumen una determinada cantidad de alimento en 3 días. Si la cantidad de caballos se triplica, ¿para cuántos días alcanza el alimento?

Como 12 × 3 = 36, realizamos la tabla con estos valores:

Caballos Días
12 3
36 x

Planteamos la proporción, invertimos la segunda razón y luego despejamos x:

\frac{12}{36}=\frac{x}{3}\: \: \Leftrightarrow \: \: 3\times 12=36x\: \: \Leftrightarrow \: \: 36=36x\: \: \Leftrightarrow \: \: x=\frac{36}{36}=\boldsymbol{1}

 

Por lo tanto, si se triplica la cantidad de caballo el alimento alcanzará para un día.

 

¡A practicar!

1. Determina si las siguientes razones son proporcionales:

a) \frac{5}{7}\; y\; \frac{35}{49}

Solución
Sí, porque 5 × 49 = 245 y 7 × 35 = 245. Entonces, \frac{5}{7}=\frac{35}{49}

b) \frac{64}{21}\, y\: \frac{8}{9}

Solución
No, porque 64 × 9 = 576 y 21 × 8 = 168. Entonces, \frac{64}{21}\neq \frac{8}{9} 

c) \frac{11}{13}\; y\; \frac{44}{52}

Solución
Sí, porque 11 × 52 = 572 y 13 × 44 = 572. Entonces, \frac{11}{13}=\frac{44}{52} 

 

2. Los rectángulos A y B son proporcionales, ¿qué altura debe tener X para que el rectángulo A sea proporcional al rectángulo B?

Solución

\frac{3}{4}=\frac{x}{8}\: \Leftrightarrow\: 3\times 8=4x\: \Leftrightarrow \: 24=4x\: \Leftrightarrow \: x=\frac{24}{4}=\boldsymbol{6}

X debe ser igual a 6 m.

3. Dada la siguiente tabla de valores, determina la constante de proporcionalidad que relaciona los valores:

x y Constante
2 3
5 7,5
6 9
8 12
Solución
x y Constante
2 3 3 ÷ 2 = 1,5
5 7,5 7,5 ÷ 5 = 1, 5
6 9 9 ÷ 6 = 1,5
8 12 12 ÷ 8 = 1,5
RECURSOS PARA DOCENTES

Artículo “Proporcionalidad directa e inversa”

En este artículo encontrarás una explicación y ejemplos relacionados con los cálculos de proporcionalidad.

VER

Vídeo “Proporcionalidad directa e inversa”

Este vídeo contiene la explicación para determinar la constante de proporcionalidad en una relación.

VER

CAPÍTULO 7 / TEMA 5

FUNCIÓN LINEAL

Cuando dos magnitudes se relacionan de manera directamente proporcional pueden representarse como una función de expresión algebraica y = mx + b. Estas funciones pueden identificarse rápidamente por medio de su gráfica, pues en el plano cartesiano siempre estarán representadas con una línea recta ascendente o descendente.

GRÁFICA DE UNA FUNCIÓN

Si conocemos la función matemática que relaciona a dos variables, podemos construir su gráfica, o al menos una aproximación de ella. Para esta tarea solo calculamos, a partir de la función, una serie de puntos que cumplan con la solución. Debemos tener en cuenta que cuantos más puntos utilicemos para graficar una función, mayor precisión obtendremos.

Algunas funciones matemáticas tienen gráficas características en el plano cartesiano, por ejemplo:

Funciones lineales

f(x) = mx + b

Funciones potenciales

f(x) = x2

 

Funciones exponenciales

f(x) = 2x

 

 

Funciones irracionales

f(x) = √x

 

Funciones racionales

f(x) = 1/x

 

Funciones trigonométricas

f(x) = sen x

Las funciones lineales se denominan de esta manera ya que su gráfica característica en el plano cartesiano se representa como una recta. Para trazar de forma correcta esta línea, basta con que conozcamos dos puntos en el plano. Por lo general se determinan si calculamos los cortes con los ejes o por medio de la ecuación de la recta.

¿Qué es una función lineal?

Una función lineal es una función cuya gráfica es igual a una línea recta que pasa por el origen de coordenadas. Su expresión algebraica es la siguiente:

f(x) = mx

Donde:

m = constante de proporcionalidad o pendiente de la recta

¿Sabías qué?
Las funciones lineales también son llamadas “funciones de proporcionalidad directa”.

– Ejemplo:

Un tren tiene una velocidad media de 160 km/h. La relación entre la distancia y el tiempo se puede observa en la siguiente tabla:

Tiempo (h) = x 0 1 2 3 4
Distancia (km) = y 0 160 320 480 640

Por medio de esta tabla vemos que las dos magnitudes (tiempo y distancia) son directamente proporcionales porque a medida que una aumenta, la otra también lo hace. Si realizamos una gráfica entre estas dos magnitudes nos resulta una línea recta como esta:

Nota que la recta pasa por el origen (0, 0) y va en aumento, por lo tanto, la recta es continua y creciente. La constante de proporcionalidad es 160, así que la expresión algebraica de esta función es:

f(x) = 160x

Función afín

Una función afín es un tipo de función lineal que no pasa por el origen de coordenadas. Su expresión algebraica es:

f(x) = mx + b

Donde:

m = pendiente de la recta

b = ordenada en el origen: la recta corta al eje de ordenada en el punto (0, n)

– Ejemplo:

Se ha determinado el pago de agua en una casa. Cada recibo indica que por cada metro cúbico de agua consumida se pagan $ 5, mientras que por la distribución y depuración se pagan $ 10. Con estos datos elaboramos la siguiente tabla:

Agua consumida (m3) = x 0 1 2 3 4
Pago ($) = y 10 15 20 25 30

La expresión algebraica de esta función es f(x) = 5x + 10, cuya gráfica se muestra a continuación:

Observa que la línea recta no pasa por el origen, sino que corta en el punto (0, 10).

La función de costo lineal se usa frecuentemente en las operaciones de las pequeñas empresas. El costo es el total de dinero necesario para producir q unidades de un producto. La función se representa con la expresión C(q) que incluye tanto a los costos fijos (independientes) como a los costos variables (dependientes).

ecuación de la recta

La ecuación de la recta es una expresión algebraica que describe una línea recta y relaciona la variación de y con respecto a x, la cual se puede graficar en el plano cartesiano según los componentes en cada uno de los ejes. De manera general la ecuación de una recta se representa así:

y = mx + b

Donde:

y = eje de las ordenadas

x = eje de las abscisas

m = pendiente de la recta

b = punto de intersección de la recta con el eje y

 

Para determinar la pendiente de la recta usamos la fórmula:

m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}

– Ejemplo:

Hallemos la pendiente de la recta que pasa por los puntos A (−1, 1) y B (1, 7).

Primero identificamos los valores de los ejes. Como ya sabemos, los pares ordenados siempre tienen primero la coordenada del eje x y luego de la coma va la coordenada del eje y; entonces:

En el punto A (−1, 1), x1 = −1 y y1 = 1

En el punto B (1, 7), x2 = 1 y y2 = 7

Ahora solo sustituimos en la fórmula general:

m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-1}{1-(-1)}=\frac{6}{2}=\boldsymbol{3}

Sabemos que la ecuación de esta recta es y = mx + b porque no pasa por el origen, es decir, representa una función afín. También sabemos que la pendiente (m) es 3, por lo tanto, y = 3x + b; así que faltaría hallar el valor de b.

Para calcula b podemos tomar cualquiera de los puntos A o B. Planteamos la ecuación y luego despejamos.

A(-1, \: 1): y=3x+b\rightarrow 1=3(-1)+b\rightarrow \boldsymbol{b=4}

B(1,\: 7):y=3x+b\rightarrow 7=3(1)+b\rightarrow \boldsymbol{b=4}

De este modo sabemos que la recta que pasa por los puntos A y B tiene por ecuación:

y = 3x + 4

Pendiente de la recta y = mx

Para un función lineal f(x) = mx, el coeficiente m se llama pendiente y representa el aumento o disminución de la variable dependiente en relación a la variable independiente.

– Ejemplo:

  • En la función f(x) = −3x, la pendiente es −3.
  • En la función f(x) = 5x, la pendiente es 5.

En una gráfica, la pendiente de una recta representa la inclinación de la misma respecto del eje x. La podemos hallar al dividir el valor de la variable dependiente entre el valor de la variable independiente.

m =\frac{y}{x}

– Ejemplo:

Esta gráfica muestra tres líneas rectas que pasan por el origen, así que cada una representa a un función lineal de forma f(x) = mx.

Para saber la pendiente de la recta solo debemos fijarnos en cualquiera de sus puntos y hallar su cociente.

Recta a Recta b Recta c
m=\frac{6}{-6}=\boldsymbol{-1} m=\frac{-2}{-2}=\boldsymbol{1} m=\frac{4}{6}=\boldsymbol{\frac{2}{3}}
f(x)=-x f(x)=x f(x)=\frac{2}{3}x

Valor de la pendiente

  • Si m es positiva, significa que la recta es creciente de izquierda a derecha.
  • Si m es negativa, significa que la recta es decreciente de izquierda a derecha.
  • Si m es cero, significa que la recta no posee inclinación respecto al eje horizontal, es decir, se trataría de una recta paralela al eje horizontal.
Una función lineal es una función polinómica de primer grado, es decir, el mayor exponente de x es 1. Para expresar cualquier tipo de recta, pase o no por el origen, se utiliza la ecuación explícita de la recta: y = mx + b. Donde y es la variable dependiente, x es la variable independiente, m es la pendiente y b es la ordenada al origen.

¿cómo Graficar una función lineal?

Dada la ecuación de la recta y = 2x + 3. La pendiente es 2 y el punto de intersección de la recta con el eje y es igual a 3. Para determinar el valor de y es necesario darle valores a x y efectuar la operación correspondiente, de la siguiente manera:

Si x = 1
y = 2(1) + 3
y = 2 + 3
y = 5
Si x = 2
y = 2(2) + 3
y = 4 + 3
y = 7
Si x = 3
y = 2(3) + 3
y = 6 + 3
y = 9
Si x = −1
y = 2(−1) + 3
y = −2 + 3
y = 1
Si x = −2
y = 2(−2) + 3
y = −4 + 3
y = −1
Si x = −3
y = 2(−3) + 3
y = −6 + 3
y = −3

Para obtener una recta bien definida es recomendable utilizar al menos tres puntos. Será de gran ayuda realizar una tabla de valores en la que observes las coordenadas de cada punto como esta:

x y Punto
−3 −3 (−3, −3)
−2 −1 (−2, −1)
−1 1 (−1, 1)
1 5 (1, 5)
2 7 (2, 7)
3 9 (3, 9)

Si usamos esta tabla como guía es más sencillo realizar la gráfica de la función.

Nota que la recta se corta en el punto (0, 3), pues b = 3.

¡A practicar!

1. Dadas las siguientes funciones, determina:

a. Pendiente (m)

b. Ordenada al origen (b)

  • f(x) = 2x − 6
Solución

b = −6

m = 2

  • f(x) = −x + 4
Solución

b = 4

m = −1

  • f(x) = 13/5x − 2
Solución

b = −2

m = 13/5

 

2. Construye una tabla con los siguientes valores de x para cada función.

x = −2, −1, 0, 1, 2, 3

  • f(x) = −x + 2
Solución
x y
−2 4
−1 3
0 2
1 1
2 0
3 −1
  • f(x) = 5x − 3
Solución
x y
−2 −13
−1 −8
0 −3
1 2
2 7
3 12
  • f(x) = 3x
Solución
x y
−2 −6
−1 −3
0 0
1 3
2 6
3 9
  • f(x) = −2x + 1
Solución
x y
−2 5
−1 3
0 1
1 −1
2 −3
3 −5

 

3. Realiza la gráfica de las siguientes funciones:

  • f(x) = −x + 2
  • f(x) = −2x + 1
Solución

f(x) = −x + 2

f(x) = −2x + 1

 

4. Dada la siguiente gráfica, determina:

a. Pendiente de la recta.

b. Ecuación de la recta.

Solución

a. m = −1

b. y = −x + 9

RECURSOS PARA DOCENTES

Artículo “Función Lineal”

En este artículo podrás encontrar ejercicios relacionados con la construcción de gráficas de funciones lineales a partir de su ecuación explícita, además de problemas de enunciados.

VER

Artículo “Aplicaciones de la función lineal”

Este artículo explica los conceptos de proporción, así como detalla el análisis y las aplicaciones de las funciones lineales.

VER

Artículo “Función lineal”

Este contenido ofrece una breve descripción de las características de una función lineal a partir de la ecuación explícita de la recta.

VER

CAPÍTULO 7 / TEMA 4

FUNCIONES

Una función es una relación entre variables en la que cada valor de una variable corresponde a un único valor de la otra. Por ejemplo, el peso en kilogramos de manzanas y el precio del kilogramo de ese producto son magnitudes relacionadas que representan una función, pues a cada número de kilogramos le corresponde un precio específico. La forma en las que las variables se relacionan determina el tipo de función.

Imagina que las funciones son máquinas que transforman números. Los valores del conjunto de entrada pasan por esta máquina y lo transforma en un nuevo producto que serían los valores del conjunto de salida. Este conocimiento sentó las bases del análisis del comportamiento teórico de las ondas de corriente alterna.

¿QUÉ ES UNA FUNCIÓN?

Es una expresión que indica una relación de correspondencia entre dos conjuntos. Siempre se debe cumplir que todo elemento del conjunto de partida tenga una única relación con algún elemento del conjunto de llegada.

  • Conjunto: es el grupo de elementos que no se repiten.
  • Dominio: es el conjunto de partida. Lo denotamos como Dom f.
  • Rango: son los elementos del codominio que se obtienen al aplicar la función. Se abrevia Rg f.
  • Codominio: es el conjunto de llegada. Se denota como Codom f.

Si denotamos al conjunto de partida con la letra A, al de llegada con la letra B y a la función que los relaciona con f, entonces, el diagrama sagital para indicar la relación entre A y B, sería:

Esta función se puede expresar como:

f: A → B = {(a, 3), (b, 2), (c, 6), (d, 1), (e, 4)}

Donde el dominio y el rango son:

Dom f = {a, b, c, d, e}

Rg f = {1, 2, 3, 4, 5, 6}

Si alguno de los elementos del conjunto de partida no tiene imagen en el conjunto de llegada, o bien, si posee más de una imagen en el conjunto de llegada, serían relaciones, pero no son funciones. Por ejemplo:

Esta relación no corresponde a la definición de función, ya que hay un elemento del conjunto de partida (a) que no tiene ninguna imagen en el conjunto de llegada.

Esta relación tampoco es una función, ya que un elemento del conjunto de partida (d) que tienen dos imágenes diferentes en el conjunto de llegada (1 y 5).

El estudio y uso de las funciones data del siglo XVII, cuando los matemáticos René Descartes y luego Leibniz y Newton las definieron como una manera de establecer relaciones entre dos variables. Posteriormente, el término “funciones” ha sido extendido a otras áreas de las ciencias e incluso en aplicaciones que contienen más de dos variables.

¿Cómo representar una función?

Existen diversas maneras de representar funciones matemáticas, entre ellas, las más comunes son las siguientes:

Diagrama sagital Forma algebraica Gráfico de la función
Es un gráfico compuesto por formas cerradas que representan los conjuntos que se relacionan a través de flechas. Es la expresión algebraica de la función. Es la relación gráfica de ambas variables. Cada eje representa un conjunto y la unión de los puntos muestra el comportamiento de la función.
f(x)=5x+8

TIPOS DE FUNCIONES

Función inyectiva

Es una función en la cual a cada elemento del rango le corresponde una única imagen en el dominio o conjunto de partida.

– Ejemplo:

f(x) = 3x − 2

Evaluada en los números enteros \mathbb{Z}, para:

x = −2, −1, 0, 1, 2

Al sustituir en f(x) = 3x − 2, tenemos:

f(−2) = 3(−2) − 2 = −8

f(−1) = 3(−1) − 2 = −5

f(0) = 3(0) − 2 = −2

f(1) = 3(1) − 2 = 1

f(2) = 3(2) − 2 = 4

Así que podemos expresar:

Dom f = {−2, −1, 0, 1, 2}

Rg f = {−8, −5, −2, 1, 4}

Función sobreyectiva

Una función es sobreyectiva cuando cada elemento del rango es imagen de al menos un elemento del dominio.

– Por ejemplo:

f(x) = 2x

Evaluada en los números enteros \mathbb{Z}, para:

x = −2, −1, 0, 1, 2

Sustituyendo en f(x) = 2x, tenemos:

f(-2) = 2(−2) = −4

f(−1) = 2(−1) = −2

f(0) = 2(0) = 0

f(1) = 2(1) = 2

f(2) = 2(2) = 4

Podemos expresar:

Dom f = {−2, −1, 0, 1, 2}

Rg f = {−4, −2, 0, 2, 4}

El diagrama sagital para el dominio y rango de la función sería:

Función biyectiva

Una función es biyectiva, cuando es inyectiva y sobreyectiva a la vez.

En la imagen observamos que cada botón del elevador está asociado a un único apartamento, de manera que si establecemos una analogía con las funciones biyectivas, el dominio estará formado por cada botón (enumerados del 1 al 8), y el rango está conformado por cada apartamento, desde la conserjería, hasta el apartamento 4º 2ª.

– Ejemplo:

f(x) = x

Evaluada en los números enteros \mathbb{Z}, para:

x = −2, −1, 0, 1, 2

Al sustituir en f(x) = x, tenemos:

f(−2) = −2 = −2

f(−1) = −1 = −1

f(0) = 0 = 0

f(1) = 1 = 1

f(2) = 2 = 2

Podemos expresar:

Dom f = {−2, −1, 0, 1, 2}

Rg f = {−2, −1, 0, 1, 2}

Otra clasificación

Si ahora clasificamos las funciones de acuerdo con los operadores matemáticos que contienen, podemos agrupar las funciones en algunas de las siguientes categorías:

  • Funciones polinómicas: son funciones compuestas por la suma o resta de términos que tienen la forma ax2, conocidos como monomios, por ejemplo:

f(x) = −6x4 + 11x3 − 7x2 − x − 5

  • Funciones logarítmicas: son funciones que contienen entre sus términos al logaritmo, por ejemplo:

f(x) = logax, para a ˃ 1, y 0 ˂ a ˂ 1

¿Sabías qué?
La función logarítmica solo está definida para los números reales positivos (\mathbb{R}^{+}), ya que no existe para los números negativos.

La función logarítmica es la inversa de la función exponencial.

  • Funciones exponenciales: son aquellas que están formadas por una base constante y la variable independiente se encuentra en el exponente, digamos:

f(x) = −125x

  • Funciones trigonométricas: son las que se caracterizan por contener funciones trigonométricas en al menos uno de sus términos, por ejemplo:

f(x) = 9 · cos(−6x2) + sen2(8x) = 17

FUNCIONES EN LA VIDA COTIDIANA

Muchos avances tecnológicos y científicos han involucrado el uso de funciones. Tal es el caso del lanzamiento de cohetes, satélites y naves al espacio. En este tipo de aplicaciones, se requiere del conocimiento y dominio de varios tipos de funciones matemáticas como las logarítmicas y exponenciales, además de estudios avanzados en el área de física.

Son infinitas las utilidades que tienen las funciones tanto en la vida diaria como en ciertas áreas del conocimiento, que van desde las ciencias exactas, hasta la medicina y las ciencias naturales. A continuación, te mencionamos algunos ejemplos:

  • Para describir el movimiento de un cuerpo. Por ejemplo, si estudiamos el movimiento de un vehículo que se desplaza por una carretera recta, podemos determinar la distancia horizontal a la que se encuentra de un origen en cualquier instante de tiempo. Esto es posible mediante una ecuación polinómica que describe la posición horizontal de una partícula en función del tiempo.
  • Para determinar el crecimiento demográfico. Algunas poblaciones muestran crecimientos que los científicos has demostrado que obedecen a funciones exponenciales. Mediante dichas funciones es posible estimar la cantidad de habitantes que habrá en una zona en un determinado periodo de tiempo.
  • Para saber la velocidad de reproducción de colonias de bacterias. Muchas colonias de bacteria se reproducen a una tasa exponencial, por lo que si se determina la función que describe este comportamiento, los científicos pueden calcular la cantidad de colonias de bacterias en un espacio y tiempo específico.

¡A practicar!

1. Indique si la siguiente relación de conjuntos es una función. Justifique su respuesta.

 

Solución
Sí es una función, ya que cada elemento del conjunto de partida tiene una sola imagen en el conjunto de llegada.

2. Evalúa la función f(x) = 5x − 4 para el conjunto de los números enteros en el dominio Dom f = {−2, −1, 0, 1, 2}, e indica si es una función inyectiva, sobreyectiva o biyectiva.

Solución
Evaluada en los números enteros \mathbb{Z}, para:

x = −2, −1, 0, 1, 2

Al sustituir en f(x) = 5x − 4, tenemos:

f(−2) = 5(−2) − 4 = −14

f(−1) = 5(−1) − 4 = −9

f(0) = 5(0) − 4 = −4

f(1) = 5(1) − 4 = 1

f(2) = 5(2) − 4 = 6

Podemos expresar:

Dom f = {−2, −1, 0, 1, 2}

Rg f = {−14, −9, −4, 1, 6}

Es una función inyectiva, ya que a cada elemento del dominio le corresponde una imagen diferente del rango.

RECURSOS PARA DOCENTES

Artículo “Función inyectiva, sobreyectiva y biyectiva”

En este artículo encontrarás la descripción general de los tipos de funciones a partir de su definición, características, representación y ejemplos.

VER

Artículo “Función”

Este documento contiene el concepto de función matemática y su clasificación de acuerdo a la relación entre los conjuntos de partida y de llegada.

VER

Artículo “Función numérica”

Este artículo ofrece ejemplos de funciones lineales y muestra la representación de funciones en diagramas sagitales.

VER

CAPÍTULO 5 / REVISIÓN

geometría

áreas y perímetros

El cálculo de áreas y perímetros de figuras geométricas se hace a partir de la longitud de sus lados. El área de los rectángulos se calcula como la multiplicación de la base por la altura, y la de los triángulos se define como la multiplicación de la base por la altura dividido por dos. Cuando se calculan los perímetros se recurre a la sumatoria de la longitud de los lados, independientemente de la figura que sea.

Las figuras pueden ser simples o compuestas. Sin embargo, el cálculo del perímetro se realiza de la misma manera a través de la suma de las longitudes del contorno de la figura.

triángulos

Los triángulos son clasificados respecto a sus lados como equiláteros, isósceles y escalenos; y respecto a sus ángulos como acutángulos, rectángulos y obtusángulos. La suma de los ángulos internos de un triángulo es siempre igual a 180º. Los triángulos congruentes son aquellos que son isométricos entre sí, es decir, poseen las mismas dimensiones.

Para la construcción de los triángulos se puede usar el compás. En primer lugar, se traza un segmento con la longitud de los lados, luego se trazan dos arcos y desde el punto de intersección se trazan dos rectas hasta los extremos del segmento inicial.

plano, punto y segmento

Un plano es un conjunto infinito de puntos y segmentos dispuestos de manera bidimensional. Para formar un plano se precisan tres puntos, una recta y un punto o dos rectas no coincidentes. Para ubicar un punto se utiliza un sistema de coordenadas denominado eje cartesiano, en el cual se deben considerar los valores de X e Y. En el sistema de coordenadas, se pueden distinguir cuatro cuadrantes delimitados por los ejes.

Para ubicar un punto se intersecta un eje vertical en el valor de X y un eje horizontal en el valor de Y del punto.

Circunferencia

La circunferencia es una figura geométrica que mantiene todos sus puntos equidistantes de su centro.  Para calcular el área de una circunferencia se recurre a la siguiente fórmula \inline A = \pi \times r^{2}. Donde r es el radio, y π corresponde al número pi. Para la construcción de circunferencias se utiliza un compás: se realiza un segmento con la longitud del radio y a partir de allí se genera el arco completo.

El número pi es un número irracional que se obtiene al dividir la longitud de la circunferencia por su diámetro.

Transformaciones isométricas

La ampliación y la reducción son transformaciones en las dimensiones de las figuras geométricas sin alterar las propiedades de la figura original. Las transformaciones isométricas como la rotación y la traslación permiten variar la posición de la figura en el plano sin alterar sus dimensiones. Hay figuras geométricas que poseen uno o más ejes de simetría en donde cada uno de sus puntos opuestos se encuentran a una misma distancia entre sí.

Las reducciones son usadas generalmente en los planos para expresar longitudes a una menor escala.

PRISMAS Y PIRÁMIDES

Los prismas son figuras geométricas tridimensionales formadas por dos caras o bases iguales y paralelas que se encuentran unidas por paralelogramos. Las pirámides presentan una base en la que todas sus caras son triángulos que se encuentran unidos en un vértice. Para su construcción se realiza primero la base y luego la base paralela (en el caso de un prisma) o el vértice (en el caso de una pirámide) a una determinada altura. Por último, se unen las bases por paralelogramos o triángulos según corresponda al tipo de figura.

La Gran Pirámide de Guiza es una pirámide rectangular y fue construida hace 4.600 años.