CAPÍTULO 4 / TEMA 6 (REVISIÓN)

potenciación y radicación | ¿qué aprendimos?

potencia

La potencia es una operación matemática de multiplicación condensada formada por una base y un exponente. El resultado se obtiene al multiplicar por sí misma la base la cantidad de veces que lo señale el exponente, el cual es un número entero positivo o negativo. Cuando una potencia está elevada a la 2 o a la 3 se lee “elevado al cuadrado” y “elevado al cubo” respectivamente.

La potencia de base 10 es usada en la notación científica: método en el que expresamos números muy grandes, como la cantidad de estrellas de la galaxia; o cantidades muy pequeñas, como el tamaño de una bacteria.

radicales

La operación opuesta a la potenciación es la radicación, en esta se hallan las raíces de orden n de un determinado número. Cuando el radicando es un cuadrado perfecto decimos que la raíz es exacta, en cambio, si el radicando no es un cuadrado perfecto, la raíz es inexacta. Cuando el índice es 2 y 3 las raíces son llamadas “raíz cuadrada” y “raíz cúbica” respectivamente.

Los elementos de la radicación son el índice, el radicando y la raíz. Cuando el radicando es negativo, el índice debe ser impar para que el resultado (raíz) pertenezca a los números reales.

propiedades de la potencia

Las propiedades de la potencia pueden aplicarse siempre y cuando esta operación esté combinada con la multiplicación o la división, nunca con la suma o la resta. Cuando hay sumas y restas cada propiedad se aplica a cada término por separado. Algunas de estas propiedades son: producto de potencia de igual base, cociente de potencia de igual base, potencia de potencia, producto de potencias con bases diferentes y exponentes iguales, cociente de potencias con bases diferentes y exponentes iguales, y exponente negativo.

 

El exponente negativo en una potencia de base 10 nos indica que el número es muy pequeño y que debemos colocar tantos ceros a la izquierda del número como indique este exponente. Por ejemplo, una mitocondria tiene una longitud aproximada de 8 × 10−6 metros.

propiedades de las raíces

Las propiedades de la radicación tienen gran similitud con las de la potenciación. Algunas de ellas son producto y cociente de radicales de igual índice, potencia de un radical y raíz de raíces. Estas son parte fundamental de la representación de números irracionales. Los radicales se suman o restan siempre y cuando estos sean semejantes, es decir, que tengan el mismo índice y el mismo radicando.

Las propiedades de la radicación también pueden expresarse de forma combinada para la resolución de ejercicios matemáticos más complejos.

aplicación de la potencia y la radicación

La potenciación y la radicación nos ayudan a ver números irracionales o muy grandes de manera sencilla. Algunos procedimientos útiles para esta tarea son la descomposición en factores primos y la notación científica. Cuando factorizamos un número lo expresamos como producto de sus números primos; y cuando usamos la notación científica resumimos un número que puede ser muy grande o muy pequeño por medio de la potencia de base 10.

Los números primos son aquellos que solo tienen dos divisores: el 1 y él mismo. Al descomponer un número hacemos uso de ellos, por ejemplo, 12 = 22 × 3.

CAPÍTULO 4 / TEMA 4

Propiedades de las Raíces

La radicación consiste en la obtención de un número que se ha multiplicado por sí mismo n cantidad de veces bajo el operador de la raíz, por eso también se conoce como “raíz enésima de un número”. De este modo, también podemos decir que la radicación es la operación inversa a la potenciación y, al igual que esta última, presenta propiedades importantes que aprenderás a continuación.

El origen del símbolo radical es incierto. Algunos autores coinciden en que provino de los árabes, mientras que otros afirman que fue introducido en siglo XVI por Christoph Rudolff, cuyo uso es evidenciado en su libro Coss. Muchos otros asocian el origen del signo de la raíz con la letra r, de la palabra latina radix que significa “raíz”.

¿Qué es la radicación?

Es una operación que consiste en hallar números que multiplicados por sí mismos tantas veces como indica el índice de la raíz den como resultado al radicando. Puede verse como la operación inversa a la potenciación.

\boldsymbol{\sqrt[n]{a} = b\; \; \Leftrightarrow \; \; b^{n}=a}

– Ejemplo:

\boldsymbol{\sqrt{81}=9}\: \: \: porque\: \: \: \boldsymbol{9^{2}=9\times 9=81}

\boldsymbol{\sqrt[3]{27} = 3}\; \; porque\; \; \boldsymbol{ 3^{3} = 3\times 3\times 3 =27}

Elementos de una raíz

Toda raíz cuenta con tres elementos:

\huge \boldsymbol{\sqrt[n]{a}=b}

  • Índice (n): orden de la raíz que se aplica al radicando. Indica cuántas veces multiplicamos un número por sí mismo para obtener el radicando.
  • Radicando (a): número sometido a la raíz del orden determinado por el índice.
  • Raíz (b): resultado de la radicación, el cual elevado al orden de la raíz da como resultado el radicando.

principales propiedades de la radicación

Las propiedades de la radicación tienen una gran cantidad de aplicaciones y, del mismo modo que en la potenciación, no se deben aplicar las propiedades a las operaciones de suma y resta, sino solo a las de multiplicación y división.

Propiedades de la radicación
Raíz de cero \boldsymbol{\sqrt[n]{0}=0\; \: \: \: \: \: n\neq 0}
Raíz de la unidad \boldsymbol{\sqrt[n]{1}=1}
Raíz de un producto \boldsymbol{\sqrt[n]{a\times b}=\sqrt[n]{a}\times \sqrt[n]{b}}
Raíz de un cociente \boldsymbol{\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}}
Potencia de una raíz \boldsymbol{\left ( \sqrt[n]{a} \right )^{x}=\sqrt[n]{a^{x}}}
Raíz de una raíz \boldsymbol{\sqrt[n]{\sqrt[m]{a}}=\sqrt[n\times m]{a}}

¿Sabías qué?
La mayoría de los números irracionales pueden ser expresados a partir de una raíz, por ejemplo, \sqrt{2} o \sqrt{3}.

raíz cuadrada de números negativos

La raíz cuadrada de números negativos no tiene solución dentro de los números reales (\boldsymbol{\mathbb{R}}) porque no existe un número (positivo o negativo) que al ser multiplicado por sí mismo resulte en otro negativo. Por ejemplo, la raíz cuadrada de 4 es igual a 2 porque 22 es igual a 4.

\boldsymbol{\sqrt{4}=2}\: \: \: porque \: \: \: \boldsymbol{2^{2}=2\times 2=4}

Pero esta raíz también tiene otra solución negativa:

\boldsymbol{\sqrt{4}=-2} \: \: \: porque\: \: \: \boldsymbol{\left ( -2 \right )^{2}=\left ( -2 \right )\times \left ( -2 \right )=4}

Recuerda que la regla de los signos indica que al multiplicar símbolos iguales el resultado es positivo.

Ahora, ¿cuál será la raíz cuadrada de −4?

\boldsymbol{\sqrt{-4}=} no \: \: existe

La raíz cuadrada de −4 no existe en los números reales porque no hay un número que al multiplicarse por sí mismo resulte en −4.

Sin embargo, esto no significa que no tenga solución posible, sino que pertenece a otro grupo numérico: los números complejos. Los números complejos incluyen una parte imaginaria que sirve para obtener resultados que no pertenecen a los reales.

Soluciones de una raíz

Siempre que el radicando sea negativo, la raíz tendrá solución real solo si el índice es impar, en cambio, si el índice es par, el resultado pertenecerá a los números imaginarios. Esto se debe a la regla de los signos, pues si multiplicamos por sí mismo un número negativo una cantidad de veces par (2, 4, 6, 8,…) el resultado será igualmente positivo.

aplicación de las propiedades de la radicación

Raíz de cero

Toda raíz cuyo radicando sea cero es igual a cero, siempre y cuando su índice sea diferente de dicho número.

\boldsymbol{\sqrt[n]{0}=0\; \: \: \: \: \: n\neq 0}

– Ejemplo:

\sqrt[3]{0}=0

\sqrt[5]{0}=0

Raíz de la unidad

La raíz de la unidad es igual a uno.

\boldsymbol{\sqrt[n]{1}=1}

– Ejemplo:

\sqrt[3]{1}=1

\sqrt{1}=1

Raíz de un producto

La raíz de un producto es igual al producto de las raíces de los factores.

\boldsymbol{\sqrt[n]{a\times b}=\sqrt[n]{a}\times \sqrt[n]{b}}

– Ejemplo:

\sqrt[3]{64\times 8}=\sqrt[3]{64}\times \sqrt[3]{8}=4\times 2=8

\sqrt{9\times 25}=\sqrt{9}\times \sqrt{25}=3\times 5=15

Raíz de un cociente

La raíz de un cociente es igual al cociente de las raíces del dividendo y del divisor.

\boldsymbol{\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}}

– Ejemplo:

\sqrt{\frac{576}{4}}=\frac{\sqrt{576}}{\sqrt{4}}=\frac{24}{2}=12

\sqrt[3]{\frac{64}{8}}=\frac{\sqrt[3]{64}}{\sqrt[3]{8}}=\frac{4}{2}=2

Potencia de una raíz

La potencia de una raíz es igual a la misma raíz con el radicando elevado a dicha potencia.

\boldsymbol{\left ( \sqrt[n]{a} \right )^{x}=\sqrt[n]{a^{x}}}

– Ejemplo:

\left ( \sqrt{4} \right )^{4}=\sqrt{4^{4}}=\sqrt{256}=16

\left ( \sqrt[3]{3} \right )^{9}=\sqrt[3]{3^{9}}=\sqrt[3]{19.683}=27

¡Existe otro método!

La potencia de una raíz es igual al radicando elevado al cociente de las potencias.

\left ( \sqrt{4} \right )^{4}=4^{\frac{4}{2}}=4^{2}=16

\left ( \sqrt[3]{3} \right )^{9}=3^{\frac{9}{3}}=3^{3}=27

Raíz de una raíz

La raíz de una raíz es igual otra raíz con el mismo radicando y cuyo índice es igual al producto de los índices.

\boldsymbol{\sqrt[n]{\sqrt[m]{a}}=\sqrt[n\times m]{a}}

– Ejemplo:

\sqrt{\sqrt[3]{64}}=\sqrt[2\times 3]{64}=\sqrt[6]{64}=2

\sqrt{\sqrt{81}}=\sqrt[2\times 2]{81}=\sqrt[4]{81}=3

Números irracionales

Existen números que no se pueden expresar como el cociente de dos enteros. Estos reciben el nombre de número irracionales y las raíces son un ejemplo de ellos. Uno de los números irracionales más famosos es el número pi (π). A lo largo de la historia el valor de pi ha tenido distintas aproximaciones y se lo usa, entre otras cosas, para el cálculo de superficies y volúmenes de circunferencias y esferas.

Suma y resta de radicales

Podemos sumar y restar radicales siempre y cuando estos sean semejantes, es decir, que tengan el mismo índice y el mismo radicando. Cuando esto sucede, solo sumamos o restamos los coeficientes y mantenemos el radical igual.

\boldsymbol{{\color{Red} b}\sqrt[n]{a}+{\color{Red} c}\sqrt[n]{a}=({\color{Red} b+c})\sqrt[n]{a}}

– Ejemplo:

5\sqrt{8}+\sqrt{8}+2\sqrt{8}=(5+1+2)\sqrt{8}=8\sqrt{8}

3\sqrt{25}+\sqrt{25}+\sqrt[3]{25}=4\sqrt{25}+\sqrt[3]{25}

¡A practicar!

Resuelve estas raíces y aplica las propiedades.

  • \sqrt{4}\times \sqrt{9}
Solución

\sqrt{4}\times \sqrt{9}=\sqrt{4\times 9}=\sqrt{36}=6

  • \frac{\sqrt[4]{64}}{\sqrt[4]{4}}
Solución

\frac{\sqrt[4]{64}}{\sqrt[4]{4}}=\sqrt[4]{\frac{64}{4}}=\sqrt[4]{16}=2

  • \sqrt{\sqrt[4]{256}}

Solución

\sqrt{\sqrt[4]{256}}=\sqrt[2\times 4]{256}=\sqrt[8]{256}=2

  • \sqrt[4]{3}\times \sqrt[4]{27}
Solución

\sqrt[4]{3}\times \sqrt[4]{27}=\sqrt[4]{3\times 27}=\sqrt[4]{81}=3

  • \frac{\sqrt[3]{16}}{\sqrt[3]{2}}
Solución

\frac{\sqrt[3]{16}}{\sqrt[3]{2}}=\sqrt[3]{\frac{16}{2}}=\sqrt[3]{8}=2

  • \sqrt{3}\times \sqrt{12}
Solución

\sqrt{3}\times \sqrt{12}=\sqrt{3\times 12}=\sqrt{36}=6

  • \sqrt{\frac{16}{9}}
Solución

\sqrt{\frac{16}{9}}=\frac{\sqrt{16}}{\sqrt{9}}=\frac{4}{3}

  • \frac{\sqrt{98}}{\sqrt{2}}
Solución

\frac{\sqrt{98}}{\sqrt{2}}=\sqrt{\frac{98}{2}}=\sqrt{49}=7

  • \sqrt{8}\times \sqrt{2}
Solución

\sqrt{8}\times \sqrt{2}=\sqrt{8\times 2}=\sqrt{16}=4

RECURSOS PARA DOCENTES

Artículo “Los números irracionales”

En el artículo podrá encontrar los números irracionales más conocidos y su representación en la recta numérica. Es un buen complemento para afianzar la importancia de la radicación y experimentar sus aplicaciones.

VER

Artículo “Propiedades de las raíces”

Este recurso contiene ejemplos prácticos muy útiles para profundizar sobre las propiedades de la radicación.

VER

CAPÍTULO 6 / TEMA 1

REPRESENTACIÓN DE DATOS

Representamos datos en tablas y gráficos para interpretar la información de manera clara, precisa y ordenada. Esta tarea nos permite comparar y relacionar cantidades entre sí. Existe una variedad de gráficos: lineales, de barras, circulares o pictogramas. Todos tienen características particulares que los diferencian entre sí.

Los gráficos estadísticos son un conjunto de herramientas visuales que nos permiten organizar y presentar de manera más clara y atractiva datos que han sido tomados previamente. Su campo de aplicación no se limita solo al numérico, de hecho, se puede utilizar en casi cualquier estudio de investigación.

¿qué son los Gráficos?

Los gráficos son representaciones que nos permiten comprender distintas situaciones de la realidad. En matemática, particularmente en la estadística, brindan información a simple vista de los datos recopilados.

Los gráficos permiten el análisis de datos obtenidos y los presenta en forma tal que permita comparar, predecir y comprender las características del objeto de estudio.

Existen distintos tipos de gráficos, y la elección de uno en particular depende de la naturaleza de los datos y de lo que se quiera analizar. No obstante, los objetivos generales en todos ellos son los mismos:

  • Registrar datos de manera clara y concreta.
  • Comunicar la información en forma sencilla.
  • Comprender la estructura del conjunto de datos.

¿Sabías qué?
Los gráficos pueden funcionar como complementos explicativos de un texto para facilitar la transmisión de ideas.

gráfico de barras

En este tipo de gráficos, como su nombre lo indica, se emplean barras que pueden tener sus bases en el eje y o en el eje x. Las categorías se ubican en el eje horizontal y los datos numéricos en el eje vertical. La altura de cada barra muestra la cantidad de veces que se eligió una categoría. Para hacer el diagrama, generalmente la información se obtiene de una tabla de frecuencias en la que fueron volcados los datos recopilados.

– Ejemplo:

En una escuela iniciaron las inscripciones para los juegos olímpicos intercolegiales. La siguiente tabla muestra el deporte que eligió cada alumno:

Deporte Alumnos inscritos
Atletismo 20
Fútbol 30
Baloncesto 16
Béisbol 24
Voleibol 10

Con los datos que aporta la tabla se representa el gráfico de barras. Las categorías son los deportes y se grafican en el eje horizontal, y los alumnos inscritos van en el eje vertical.

Por medio del gráfico de barras podemos ver rápidamente que el deporte más elegido por los estudiantes fue el fútbol, seguido del béisbol y del atletismo. Por otro lado, el deporte menos elegido fue el voleibol.

gráficos lineales

Los gráficos lineales se representan en un plano (dos dimensiones) mediante el uso de un sistema de coordenadas. Se grafica sobre un plano cartesiano donde dos variables son relacionadas y los puntos son unidos por una línea continua e irregular.

Estos gráficos se utilizan para mostrar la evolución o los cambios que le ocurren a un fenómeno durante algún período de tiempo, como por ejemplo la estatura de un niño, la variación del precio de un producto y otros fenómenos.

– Ejemplo:

Se registró el clima de la ciudad de Buenos Aires durante una semana y las temperaturas promedio del día fueron las siguientes:

Día Temperatura (°C)
Lunes 17
Martes 19
Miércoles 12
Jueves 10
Viernes 14
Sábado 16
Domingo 16

A partir de estos datos podemos representar un gráfico lineal. Los días van en el eje horizontal y las temperaturas en el eje vertical.

Este tipo de gráfico permite distinguir de manera clara el desarrollo de la temperatura con el paso de los días. Notamos que el día con mayor temperatura fue el martes y el día con menor temperatura fue el jueves.

La estadística en otras ciencias

No solo en las matemáticas se utilizan gráficos estadísticos, sino también las ciencias sociales. La demografía y la sociología usan estas herramientas para comprender múltiples y diferentes fenómenos, como el crecimiento de la población mundial y la influencia de los los avances en ciencia, higiene y medicina en el proceso.

gráficos circulares

Los gráficos circulares muestran porciones y porcentajes. También son conocidos como gráficos de torta o pastel y se usan para comparar porcentajes con respecto a un total de datos. Para hallar los porcentajes parciales, se dividen los 360° del círculo de acuerdo a los valores dados.

– Ejemplo:

En un zoológico contaron la cantidad de animales que tienen por grupos de especie. Los datos fueron los siguientes:

Especie Cantidad de animales Porcentaje
Mamíferos 250 25 %
Reptiles 200 20 %
Anfibios 150 15 %
Aves 400 40 %

Como se puede observar, cada porción representa a una especie y el porcentaje que hay de ella en el zoológico con respecto al total.

¿Cómo obtener el porcentaje?

Una manera de hacerlo es por medio de una regla de tres. Para el ejemplo anterior seguimos los siguientes pasos:

1. Calculamos la cantidad total de animales por medio de una suma de cada grupo de especie.

Especie Cantidad de animales
Mamíferos 250
Reptiles 200
Anfibios 150
Aves 400
1.000

 

2. Empleamos una regla de tres simple en la que el total de animales es igual al 100 %. Luego hacemos el cálculo con cada grupo, por ejemplo, con los mamíferos sería así:

1.000 → 100 %

250 → x

x = (250 × 100 %) : 1.000 = 25 %

Y con las aves sería así:

1.000 → 100 %

400 → x

x = (400 × 100 %) : 1.000 = 40 %

pictogramas

Un pictograma es un tipo de gráfico que incluye figuras o dibujos relacionados con los datos que se van a analizar. El pictograma se elabora del mismo modo que el gráfico de barras pero se sustituyen los rectángulos por dibujos.

– Ejemplo:

Sofía registró todas las llamadas que hizo durante la semana.

Día Cantidad de llamadas
Lunes 3
Martes 2
Miércoles 1
Jueves 3
Viernes 4
Sábado 7
Domingo 2

 

Cada dibujo representa una llamada, es decir que el día que más llamadas hizo fue el sábado y el día que hizo menos llamadas fue el miércoles.

Existen muchos más gráficos, como los de dispersión, de burbujas, radiales o mapas estadísticos, también conocidos como cartograma. Los cartogramas presentan datos por regiones o zonas. Al igual que en un mapa topográfico, los colores y las tramas indican áreas que están en el mismo rango de valores.

¡A practicar!

1. Observa el gráfico de barras y responde:

En un curso se ha decidido recolectar botellas de plástico para reciclar. El gráfico muestra la cantidad de botellas recolectadas en una semana.

 

a) ¿Cuántos botellas se recolectaron esa semana?

Solución
1.150

b) ¿Cuál día se recolectó mayor cantidad de botellas plásticas?

Solución
El día martes.

c) ¿El día jueves se recolectaron 250 botellas plásticas?

Solución
No. El jueves se recolectaron 150 botellas plásticas.

d) ¿Cuál día recolectaron menos cantidad de botellas?

Solución
El día miércoles.

 

2. Este gráfico lineal representa la asistencia de los estudiantes al taller de carpintería. Responde las preguntas.

a) ¿Cuántos estudiantes asistieron al taller de carpintería la semana 4?

Solución
5 estudiantes.

b) ¿En cuál semana asistieron más estudiantes al taller de carpintería?

Solución
En la semana 1.

c) ¿En cuál semana asistieron menos estudiantes al taller de carpintería?

Solución
En la semana 4.

 

3. El siguiente gráfico muestra la cantidad de población mundial por continente para 2006. Responde las preguntas.

 

a) ¿Cuál continente tiene más población? ¿Y qué porcentaje representa?

Solución
Asia tiene más población y representa el 60 %.

b) ¿Cuál continente tiene menos población?

Solución
Oceanía.

c) ¿Qué lugar, ordenado de mayor a menor, ocupa la población de Europa?

Solución
Europa ocupa el cuarto lugar. 

d) ¿Qué continente tiene mayor población después de Asia?

Solución
América y África.
RECURSOS PARA DOCENTES

Artículo “Gráficos estadísticos”

El siguiente recurso te permitirá complementar la información sobre los diferentes tipos de gráficos estadísticos.

VER

CAPÍTULO 5 / TEMA 4

LOS TRIÁNGULOS

En la vida cotidiana es común observar triángulos. Los vemos en las porciones de pizza, en las señales de tránsito, en la vela de un velero, en las pirámides e incluso cuando estudiamos matemáticas. Los triángulos son figuras geométricas de tres lados y, aunque son los polígonos más simples, presentan ciertas particulares que los diferencian del resto. 

 

Los triángulos forman parte de nuestro día a día y los vemos en múltiples objetos. Al triángulo también se lo conoce como trígono; en ambos casos su nombre indica la presencia de tres ángulos. La disciplina encargada de estudiar las relaciones y las características de estos polígonos regulares de tres lados es la trigonometría.

El triángulo y sus ELEMENTOS

Los triángulos son figuras geométricas que cuentan con tres lados, tres ángulos y tres vértices.

  • Vértice: es el punto de unión de dos lados de un polígono o un ángulo.
  • Lado: es cada uno de los segmentos que une un vértice con el siguiente.
  • Ángulo: es el formado por la unión de dos rectas con un vértice en común. Pueden ser interno o externos.
    • La suma de los ángulos interiores de un triángulo es igual a 180°.
    • Un ángulo interior y exterior de un triángulo son suplementarios, por lo tanto, suman 180°.

Ángulos

Todos los triángulos tienen tres ángulos, estos pueden ser:

  • Agudos, cuando son menores a 90°.
  • Rectos, cuando son iguales a iguales a 90°.
  • Obtusos, cuando son mayores a 90°.

¿Cómo nombrar un triángulo?

Los vértices de los triángulos se designan con letras mayúsculas, mientras que los lados se denominan por la misma letra que el vértice opuesto, pero en minúscula. Por ejemplo:

  • El lado a es el segmento que une los vértices B y C.
  • El lado b es el segmento que une los vértices A y C.
  • El lado c es el segmento que une los vértices A y B.

[/su_note]

CLASIFICACIÓN de los triángulos

Son varios los criterios de clasificación que permiten agrupar a los triángulos de acuerdo a ciertas particularidades, los más utilizados son la medida de sus lados y la medida de sus ángulos.

Triángulos según sus lados

  • Triángulo equilátero: tiene 3 lados con la misma longitud.
  • Triángulo isósceles: tiene 2 lados con la misma longitud.
  • Triángulo escaleno: tiene todos sus lados desiguales.

Triángulos según sus ángulos

  • Triángulo rectángulo: tiene un ángulo recto, es decir, que mide 90°.
  • Triángulo acutángulo: tiene todos sus ángulos agudos, es decir, ángulos menores que 90°.
  • Triángulo obtusángulo: tiene un ángulo obtuso, es decir, un ángulo mayor a 90°.

Los triángulos pueden cumplir con ambos criterios de clasificación. Así, un triángulo isósceles también puede ser un triángulo rectángulo.

¡A practicar!

Observa los siguientes triángulos y clasifícalos según sus lados:

Solución

A) Escaleno

B) Equilátero

C) Isósceles

Observa los siguientes triángulos y clasifícalos según sus ángulos:

Solución

A) Rectángulo

B) Obtusángulo

C) Rectángulo

El Triángulo de las Bermudas es un área ubicada en el océano Atlántico, se forma al trazar una línea imaginaría entre el estado de la Florida (EE. UU.), la isla de Puerto Rico y las Bermudas. Es conocido como un triángulo equilátero, ya que, las distancias geográficas entre cada uno de los puntos que lo conforman son iguales.

Perímetro de un triángulo

El perímetro es la medida del contorno de una figura. Lo calculamos al sumar la longitud de todos sus lados.

P = l_{1}+l_{2}+l_{3}

Donde:

P = perímetro

l = lados

 

– Ejemplo:

El perímetro de este triángulo isósceles es igual a la suma de la longitud de sus lados.

P=3\: cm+3\: cm+5\: cm

 

P=\boldsymbol{11\: cm}

 

 

Este triángulo tiene un perímetro de 11 cm.

¿Sabías qué?
Para calcular el perímetro de un triángulo equilátero solo se debe multiplicar la longitud de un lado por 3. Esto se debe a que los tres lados miden lo mismo. Entonces, puedes utilizar la fórmula: P = 3 × l

área de un triángulo

El área es la medida de la superficie de la figura. La calculamos por medio de una expresión matemática que considera la longitud de la base y su altura:

A=\frac{b\cdot h}{2}

Donde:

A = área

b = base

h = altura

– Ejemplo:

La base de este triángulo mide 6 cm y la altura 4 cm, así que solo sustituimos los valores en la fórmula y resolvemos:

A = \frac{6\: cm\cdot 4\: cm}{2}

A=\frac{24\: cm^{2}}{2}

 

A=\boldsymbol{12\: cm^{2}}

 

 

Este triángulo tiene un área de 12 cm2.

Teorema de Pitágoras y el triángulo rectángulo

Pitágoras de Samos, un matemático griego del siglo VI a. C. descubrió que los triángulos rectángulos guardaban una relación respecto a sus lados. Él llegó a la conclusión de que el cuadrado del lado mayor de un triángulo rectángulo, es decir, la hipotenusa, siempre era igual a la suma del cuadrado de sus otros dos lados o catetos. A esta relación se la conoce como teorema de Pitágoras.

VER INFOGRAFÍA

¡A practicar!

Calcula el área y el perímetro del siguiente triángulo:

Solución

A=\frac{10\: cm\cdot 5\: cm}{2}=\frac{50\: cm^{2}}{2}=\boldsymbol{25\: cm^{2}}

P=10\: cm+12\: cm+\: 12\: cm=\boldsymbol{34\: cm}

TRAZADO DE un triángulo dado dos lados y una ángulo

Si queremos dibujar una triángulo que tiene un ángulo de 40° y lado de 12 cm y otro de 8 cm seguimos estos pasos:

1. Dibujamos el ángulo de 40° y al vértice lo llamamos A.

2. Con la ayuda de una regla graduada marcamos el segmento AB de 12 cm.

3. Luego marcamos el segmento AC de 8 cm.

4. Unimos los puntos B y C. Después coloreamos el triángulo.

Rectas notables de un triángulo

  • La altura es una recta perpendicular en cualquiera de los lados del triángulo que pasa por el vértice opuesto.
  • La mediana es aquella recta que une el vértice de un triángulo con el punto medio del lado opuesto.
  • La mediatriz es la perpendicular que pasa por el punto medio de un lado del triángulo.
  • Una bisectriz es una recta que pasa por el vértice de un triángulo y divide a su ángulo en dos partes iguales.

¡A practicar!

1. Traza los siguientes triángulos:

  • Triángulo con un ángulo de 90°, un lado de 4 cm y otro lado de 2 cm.
Solución

  • Triángulo con un ángulo de 80°, un lado de 4,5 cm y otro lado de 4 cm.
Solución

  • Triángulo con un ángulo de 110°, un lado de 4 cm y otro lado de 3 cm.
Solución

 

2. Clasifica cada triángulo según sus ángulos y lados:

Solución

A) Isósceles y rectángulo.

B) Isósceles y obtusángulo.

C) Escaleno y acutángulo.

D) Isósceles y acutángulo.

E) Equilátero y acutángulo.

F) Escaleno y obtusángulo.

G) Escaleno y rectángulo.

 

3. Calcula el área y el perímetro de estos triángulos:

Solución

A=\frac{9\: cm\cdot 5\: cm}{2}=\frac{45\: cm^{2}}{2}=\boldsymbol{22,5\: cm^{2}}

P= 4\: cm+8\: cm+9\: cm=\boldsymbol{21\: cm}

Solución

A=\frac{4\: cm\cdot 4\: cm}{2}=\frac{16\: cm^{2}}{2}=\boldsymbol{8\: cm^{2}}

P=4\: cm+4\: cm+6\: cm=\boldsymbol{14\: cm}

 

RECURSOS PARA DOCENTES

Artículo “Triángulos”

En este artículo encontrarás una síntesis de las características y clasificaciones de los triángulos.

VER

Artículo “Perímetro de triángulos y cuadriláteros”

En este recurso encontrarás información detallada sobre el perímetro de figuras geométricas, como triángulos y cuadriláteros.

VER

Video “Tipos de triángulos según sus ángulos”

Este material audiovisual te ayudará a acompañar y complementar sus clases de manera ilustrativa.

VER

CAPÍTULO 4 / TEMA 2

ORDEN DE NÚMEROS NATURALES Y DECIMALES

A cada número natural le corresponde una única posición en la recta numérica y a medida que nos movemos en ella hacia la derecha encontramos números mayores. Esto también sucede con los números decimales, es decir, aquellos más pequeños que la unidad. Todos tienen un orden y, por lo tanto, unos representan una mayor cantidad que otros.

números naturales en la recta numérica

Los números naturales son aquellos que usamos para contar y su conjunto se presenta como:

\mathbb{N}=\left \{ 0,\: 1,\: 2,\: 3,\: 4,\: 5,\: 6,\: 7,... \right \}

Como nuestro sistema de numeración decimal es posicional, cada cifra dentro de un número tiene un valor relativo. Así, un número de siete cifras está formado por unidades de millón, centenas de mil, decenas de mil, unidades de mil, centenas, decenas y unidades. Por ejemplo:

En la tabla vemos que el número 1.895.632 tiene:

  • 1 unidad de millón = 1.000.000
  • 8 centenas de mil = 800.000
  • 9 decenas de mil = 90.000
  • 5 unidades de mil = 5.000
  • 6 centenas = 600
  • 3 decenas = 30
  • 2 unidades = 2

Para representar este tipo de números en la recta numérica lo primero que hacemos es ubicar en ella un punto arbitrario, este será el origen y la posición del cero (0). Luego hacemos marcas con rayas verticales de igual distancia entre una y otra.

Cada uno de los pequeños segmentos simboliza una unidad, por lo que en la línea vertical que se encuentra inmediatamente a la derecha del 0 se coloca el 1, después el 2 y así se continúa con el resto de los números naturales:

¿Siempre se comienza desde el 0?

No necesariamente. Podemos utilizar solo una parte de la recta y mostrar el intervalo de números. Por ejemplo, entre el 726.580 y el 726.590 está ubicado el número 726.586.

Los números naturales son los primeros números utilizados en la historia del hombre. Los usaban principalmente para contar objetos. Algunos autores coinciden en que el cero no es un número natural, pero algunos otros prefieren incluirlo por ser la ausencia de algo. Los números naturales no incluyen a las fracciones ni a los números decimales.

COMPARACIÓN DE NÚMEROS NATURALES

Todos los números naturales tienen un orden, es decir, siguen una secuencia en la que un número es mayor o menor que otro. Para mostrar esta relación usamos los siguientes símbolos:

> que significa “mayor que”.

< que significa “menor que”.

= que significa “igual a”.

 

En una recta numérica, el número que se encuentre más a la derecha será el mayor.

– Ejemplo:

Compara los números 726.589 con 726.592, ¿cuál es mayor?

Como 756.592 está más a la derecha en la recta numérica, decimos que 756.592 es mayor que 756.589. Se escribe así:

756.592 > 726.589

 

– Otros ejemplos:

  • Compara los números 1.252 y 1.256.

 

 

1.252 < 1.256

1.256 > 1.252

 

  • Compara los números 500, 590 y 540.

 

500 < 540 < 590

590 > 540 > 500

 

Comparación de números naturales por el método aritmético

  • Si uno de los dos números tiene más cifras que el otro, entonces el que tenga mayor cantidad de cifras será el mayor. Por ejemplo, 1.225.988 > 899.999 ya que el primer número tiene 7 cifras y el segundo tiene 6.
  • Si los dos tienen la misma cantidad de cifras, comparamos cifra por cifra de izquierda a derecha. Por ejemplo, 8.225.988 y 8.225.899 tienen la misma cantidad de cifras, así que comparamos una por una:

Como 9 > 8, podemos afirmar que 8.225.988 > 8.225.899.

PROBLEMAS DE APLICACIÓN CON NÚMEROS NATURALES

1. Máximo, Joaquín y Lucía quieren comprar una guitarra. Máximo tiene $ 1.000, Lucía $ 2.000 y Joaquín $ 6.000. La guitarra cuesta $ 11.000. ¿Cuánto dinero falta para poder comprar la guitarra?

  • Datos

Dinero de Máximo: $ 1.000

Dinero de Lucía: $ 2.000

Dinero de Joaquín: $ 6.000

  • Pregunta

¿Cuánto dinero falta para poder comprar la guitarra?

  • Piensa

Para poder calcular la cantidad de dinero que falta debemos saber cuánto hay en total, así que sumamos las cantidades de Máximo, Lucía y Joaquín. Luego, por medio de una recta numérica, contamos los espacio que faltan desde el punto que representa la cantidad total de dinero hasta los $ 11.000.

  • Calcula

Total de dinero:

$ 1.000 + $ 2.000 + $ 6.000 = $ 9.000

Dinero que falta:

Faltan dos espacios para llegar a $ 11.000 y como cada espacio es igual a 1 unidad de mil: 2 × 1.000 = 2.000.

  • Respuesta

Faltan $ 2.000 para poder comprar la guitarra.

 


2. La cantidad de habitantes de la ciudad de Córdoba es 1.329.604 y la de Montevideo es 1.319.108. ¿Cuál ciudad tiene mayor cantidad de habitantes?

  • Datos

Habitantes de Córdoba: 1.329.604

Habitantes de Montevideo: 1.319.108

  • Pregunta

¿Cuál ciudad tiene mayor cantidad de habitantes?

  • Piensa

Como ambos número son grandes y tienen la misma cantidad de cifras, tenemos que comparar cifra por cifra. El primer dígito que sea diferente nos indicará cuál número es mayor.

  • Resuelve

Por lo tanto, 1.329.604 > 1.319.108

  • Respuesta

La ciudad de Córdoba tiene más habitantes que la de Montevideo.

 


3. Carla tiene 10 años. José es su hermano y tiene 5 años más que ella. Martina es su hermana y tiene 7 años menos que José. ¿Cuántos años tiene José y y cuántos tiene Martina? ¿Cuál es el hermano mayor?

  • Datos

Edad de Carla: 10 años

Edad de José: 5 años más que Carla

Edad de Martina: 7 años menos que José

  • Preguntas

¿Cuántos años tiene José y cuántos tiene Martina? ¿Cuál es el hermano mayor?

  • Piensa

Tenemos que realizar una recta numérica y ubicar la edad de Carla que es la única conocida. Luego nos movemos 5 espacios a la derecha para saber la edad de José y desde allí nos movemos 7 espacios a la izquierda para saber la edad de Martina. Finalmente comparamos cantidades.

  • Resuelve

15 > 10 > 8

  • Respuesta

José tiene 15 años y Martina tiene 8 años.

José es el hermano mayor.

Primeros números arábigos

La actual representación de los números arábigos encuentra su origen en la India, aunque se introdujo en Europa a través de textos árabes. El Codex Vigilanus es el primer texto europeo que los contiene, aunque no en el estado actual y, además, sin el 0. El nombre de este texto se debe a su autor, el monje Vigila, que lo redactó en el año 976, en Albelda, España.

 

NÚMEROS DECIMALES en la recta numérica

Los números decimales están formados por dos partes: una entera y una decimal, ambas separadas por una coma. Después de la coma, cada cifra tiene una valor según su posición.

Podemos observar en la tabla que el número 632,549 tiene:

  • 6 centenas = 600
  • 3 decenas = 30
  • 2 unidades = 2
  • 5 décimas = 0,5
  • 4 centésimas = 0,04
  • 9 milésimas = 0,009

Unidades decimales

Décimas Centésimas Milésimas
Es igual a la unidad dividida en 10 partes iguales. Es igual a la unidad dividida en 100 partes iguales. Es igual a la unidad dividida en 1.000 partes iguales.
\frac{1}{10}=0,1 \frac{1}{100}=0,01 \frac{1}{1.000}=0,001

Como los números decimales se encuentran entre los enteros, también podemos representarlos en una recta numérica, solo tenemos que crear subdivisiones. Por ejemplo, para ubicar las décimas entre los enteros 1 y 2 basta con dividir en diez partes iguales el espacio entre ambos números:

 

– Ejemplo:

El número 1,7 está ubicado entre los números 1 y 2.

 

También podemos representar las centésimas si subdividimos el espacio entre dos décimas.

– Ejemplo:

El número 1,74 está ubicado entre los números 1,7 y 1,8.

 

Los números decimales expresan números no enteros. Contienen una parte entera y una parte decimal. Para compararlos, debemos tomar en cuenta la parte entera. Siempre será mayor el número decimal que tenga mayor parte entera. En el caso de que las partes enteras sean iguales, procedemos a comparar las cifras decimales de izquierda a derecha.

COMPARACIÓN DE NÚMEROS DECIMALES

Los números decimales siguen un orden y tal como en el caso de los números naturales usamos < y > para indicar que una cantidad es menor o mayor que otra. En una recta numérica, mientras más a la derecha esté el número mayor será su valor.

– Ejemplo:

Compara los números 4,31 y 4,35.

El número 4,35 es mayor que 4,31 porque está más a la derecha en la recta numérica. Se escribe así:

4,35 > 4,31

– Otros ejemplos:

  • Compara los números 9,5 y 9,3.

9,5 > 9,3

9,3 < 9,5

  • Compara los números 6,72 y 6,79.

 

6,79 > 6,72

6,72 < 6,79

¿Sabías qué?
Aunque en los números naturales la cantidad de cifras determina si un número es mayor que otro, en los números decimales no sucede lo mismo, por ejemplo, 3,5 > 3,359875.

Comparación de números decimales el método aritmético

En este método, primero comparamos las parte enteras. Si las partes enteras son iguales, seguimos con las décimas, y así sucesivamente hasta hallar las cifras que sean diferentes. Por ejemplo, 9,125 < 9,145 porque la centésima 2 es menor que 4.

PROBLEMAS DE APLICACIÓN CON NÚMEROS DECIMALES

1. Para un examen físico se midieron las estaturas de algunos estudiante. La estatura de Luis es 1,78 m, la de Carlos es 1,86 m y la de Juan 1,77 m. ¿Quién es el más alto de los tres?, ¿quien es el más bajo de los tres?

  • Datos

Estatura de Luis: 1,78 m

Estatura de Carlos: 1,86 m

Estatura de Juan: 1,76 m

  • Pregunta

¿Quién es el más alto de los tres?, ¿quien es el más bajo de los tres?

  • Piensa

Hay que saber quién es el más alto y el más bajo, así que solo tenemos que compara esos tres números por medio de una recta numérica.

  • Resuelve

1,86 > 1,78 > 1,76

  • Respuesta

Carlos es el estudiante más alto y Juan es el estudiante más bajo.

 


2. Varios estudiantes participaron en una prueba de saltos de longitud. María saltó 1,58 m; Pedro salto 1,62 m y Santiago saltó 1,56 m. Si Juan saltó más que Santiago y menos que María, ¿qué longitud pudo saltar Juan? ¿Quién hizo el salto de mayor longitud?

  • Datos 

Salto de María: 1,58 m

Salto de Pedro: 1,62 m

Salto de Santiago: 1,56 m

Salto de Juan: mayor al de Santiago y menor al de María

  • Preguntas

¿Qué longitud pudo saltar Juan? ¿Quién hizo el salto con mayor longitud?

  • Piensa

Para saber la longitud del salto de Juan debemos dibujar una recta numérica y ver las posibles opciones entre 1,58 (salto de María) y 1,56 (salto de Santiago). Luego, para saber quién hizo el salto de mayor longitud, comparamos todos lo valores y el que esté más a la derecha en la recta numérica será el mayor.

  • Resuelve

1,62 > 1,58 >1,57 > 1,56

  • Respuesta

Juan saltó 1,57 m.

Pedro hizo el salto de mayor longitud.

 


3. En una carrera, Araceli tardó 8 minutos y 6 décimas en llegar a la meta; Francisco tardó 8 minutos y 6 centésimas y Agustín tardó 8 minutos y 6 milésimas. ¿Quién llegó primero a la meta? ¿quién llegó de último?

  • Datos

Tiempo que tardó Araceli: 8 minutos y 6 décimas = 8,6

Tiempo que tardó Francisco: 8 minutos y 6 centésimas = 8,06

Tiempo que tardó Agustín: 8 minutos y 6 milésimas = 8,006

  • Preguntas

¿Quién llegó primero a la meta? ¿quién llegó de último?

  • Piensa

Para comparar estos números debemos fijarnos solo en la parte decimal porque la parte entera es igual en los tres casos. Entonces vemos cifra por cifra, la primera que sea mayor o menor que otra indicará el valor del número.

  • Resuelve

Como 6 > 0, podemos decir que 8,6 > 8,06 > 8,006.

  • Respuesta

Agustín llegó primero y Araceli llegó última.

 

La coma y el punto son usados como separadores de los números decimales y ambos son válidos. La diferencia en usar una u otra radica en el lugar en donde te encuentres. En gran parte de Europa y América del Sur se emplea la coma, pero algunos países como Estados Unidos, Canadá, México y Reino Unido emplean el punto.

 

¡A practicar!

1. Escribe el símbolo de relación que sea necesario.

  • 1.893.697 ____ 999.265
Solución
1.893.697 > 999.265
  • 56,98 ____ 56,09
Solución
56,98 > 56,09
  • 678.654 ____ 678.655
Solución
678.654 < 678.655
  • 9.625.369 ____ 9.630.999
Solución
9.625.369 < 9.630.999
  • 2.369.845 ____ 2.369.835
Solución
2.369.845 > 2.369.835
  • 23,896 ____ 23,9
Solución
23,896 < 23,9
  • 198.654,023 ____ 198.654,003
Solución
198.654,023 > 198.654,003
  • 1.268,96 ____ 1.278,99
Solución
1.268,96 < 1.278,99

 

2. Ordena de mayor a menor los siguientes números. Usa los símbolos de relación necesarios.

1.893.697      678.654      9.625.369      1.268,96      2.369.845      23,896      198.654,023      56,98

Solución
9.625.369 > 2.369.845 > 1.893.697 > 678.654 > 198.654,023 > 1.268,96 > 56,98 > 23,896
RECURSOS PARA DOCENTES

Artículo “Redondeo de números naturales”

En este artículo encontrarás el procedimiento a realizar para redondear tanto números enteros como números decimales.

VER

Artículo “Operaciones con números decimales”

En este artículo podrás encontrar el procedimiento a realizar en la suma, resta, multiplicación y división de números decimales.

VER

Artículo “Recta numérica”

Este recurso te permitirá complementar la explicación sobre cómo ubicar los números en una recta numérica.

VER

CAPÍTULO 1 / TEMA 5 (REVISIÓN)

números | ¿qué aprendimos?

Lectura y representación de números

Cada número está formado por diferentes cifras y cada una de estas cifras tiene un valor según la posición que ocupan dentro del número. Por ejemplo, el 300 se lee “trescientos” porque el 3 se ubica en el lugar de las centenas, pero el 30 se lee “treinta” porque el 3 está en el lugar de las decenas. Además de los números naturales que usamos para contar, también existen otros que representan orden, como los ordinales; y otros que podemos ver en relojes antiguos, como los números romanos.

Con los diez dígitos de nuestro sistema de numeración podemos crear cualquier número.

Valor posicional

El valor posicional es el valor que tiene una cifra dentro de un número, por ejemplo, el número 555, a pesar de tener tres cifras iguales, cada una tiene un valor distinto: 500, 50 y 5. Estos valores los podemos representar en una tabla posicional en la que están los órdenes (unidades, decenas, centenas) y las clases (miles, millones, etc.). Por otro lado, la descomposición aditiva nos ayuda a expresar un número como la suma de sus valores posicionales.

El ábaco es un instrumento que sirve para realizar diferentes operaciones matemáticas. Una esfera de color puede representar una unidad, una decena o una centena.

Recta numérica

La recta numérica, como su nombre lo indica, es una recta que contiene infinitos números. Para graficarla basta con hacer una línea recta, dibujar flechas a los lados, ubicar el cero (0) y hacer separaciones de igual distancia en las que colocaremos los puntos que simbolizan los números. Es importante recordar que cada número tiene un orden y pueden ser mayores o menores que otros. Para esto usamos símbolos de relación como mayor que (>), menor que (<) o igual a (=).

Con una regla graduada o escuadra podemos dibujar una recta numérica. Este instrumento nos ayudará no solo con el trazo de la línea recta, sino también con las separaciones entre punto y punto.

series

Las series numéricas son conjuntos de números organizados bajo una misma regla o patrón, pueden ser ascendentes y descendentes. Una serie es ascendente cuando los números están ordenados de menor a mayor y el patrón es una suma sucesiva; mientras que una serie numérica descendente es aquella en la que los números están ordenados de mayor a menor y el patrón es una resta sucesiva. A estos patrones los podemos identificar si restamos dos números contiguos de la serie. También vemos patrones en las tablas de 100 números.

Contar es una de las primeras tareas que aprendemos a hacer. Gracias al conteo con nuestros dedos podemos realizar operaciones básicas como la suma y resta de números pequeños.

CAPÍTULO 1 / TEMA 4

SERIES

Contamos desde hace miles de años y lo hacemos por diferentes razones, por ejemplo, para saber cuántos juguetes tenemos, cuánto tiempo falta para una película o cuántos deberes nos faltan por hacer. Las series numéricas son una forma de conteo y están creadas por varios números ordenados que siguen un patrón. Sin duda alguna, el conteo está presente en nuestro día a día.

conteo

Contar significa enumerar distintos elementos de manera ordenada y en orden creciente o decreciente.

El uso de los números y aprender a contar ha sido algo tan importante como lo fue aprender a cazar en la Antigüedad. Desde pequeños aprendemos cuáles son los números y cómo ordenarlos, lo que nos permite saber la cantidad de objetos que tenemos a nuestro alrededor. Para contar más rápido solemos contar de tanto en tanto, por ejemplo, de 2 en 2; de 5 en 5, etc.

– Ejemplo:

  • Cuando contamos las estrellas, contamos de manera creciente, es decir, de menor a mayor:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, … 

  • Cuando contamos los segundos que faltan para que sea año nuevo, contamos de manera decreciente, es decir, de mayor a menor:

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.

 

También podemos contar de 3 en 3, de 4 en 4, de 5 en 5, etc.

  • Cuando contamos de 3 en 3 solo sumamos 3 a un número, luego volvemos a sumar 3 al siguiente, y así sucesivamente. Por ejemplo:

En cada recuadro hay 3 mariposas, entonces hay 3 grupos de 3 mariposas. Otra forma de verlo es que hay un recuadro dentro de otro y la cantidad total de mariposas la podemos contar así: 3, 6 y 9 mariposas. El conteo va de 3 en 3.

¿Sabías qué?
Los diez dígitos de nuestro sistema de numeración decimal fueron inventados en la India.

series numéricas y sus tipos

Las series numéricas son un conjunto de números ordenados que siguen un patrón o regla determinada. Pueden ser ascendentes y descendentes.

Series ascendentes

Son las que se forman por sumas sucesivas y que van de menor a mayor. Por ejemplo, si al número 1 le sumamos 1 obtenemos 2 (1 + 1 = 2), luego a ese resultado le sumamos 1 y resulta en 3 (2 + 1 = 3). Seguimos el mismo proceso en cada resultado.

Series descendentes

Son las que se forman por restas sucesivas y van de mayor a menor. Por ejemplo, en esta serie cada número es tres unidades menor que el siguiente.

 

Miles de años de conteo

Desde hace miles de años los humanos contamos números. Las culturas primitivas utilizaban el conteo para registrar el número de personas en una comunidad o grupo; para contar animales o presas cazadas; para saber la cantidad de propiedades que poseían o las deudas contraídas. Con el paso del tiempo se desarrollaron sistemas numéricos de escritura y el uso de símbolos matemáticos.

¿cómo identificar el patrón numérico?

El patrón numérico es la regla que sigue toda la serie. En la siguiente serie el patrón es “sumar 5”, por que cada número es 5 unidades mayor al siguiente.

5, 10, 15, 20, 25, 30

Para identificar el patrón numérico de una serie restamos cada par de números consecutivos, si cada operación da como resultado el mismo número el patrón será la suma o resta de ese número. Por lo tanto:

  • Si la serie es ascendente, el patrón es sumar el resultado obtenido.
  • Si la serie es descendente, el patrón es restar el resultado obtenido.

A modo de ejemplo observemos la siguiente serie:

3,  7,  11,  15,  ___,  23

Restamos los primeros pares consecutivo:

7 − 3 = 4

11 − 7 = 4

Como los resultados son iguales y la serie es ascendente el patrón es “sumar 4”. Ahora podemos completar la serie. Como 15 + 4 = 19, colocamos el 19 en el espacio en blanco:

3,  7,  11,  15,  19,  23

¡Es tu turno!

Identifica el patrón de estas series.

  • 8, 14, 20, 26, 32, 38, 44
Solución
Patrón: + 6
  • 22, 20, 18, 16, 14, 12, 10
Solución
Patrón: − 2
  • 39, 30, 21, 12, 3
Solución
Patrón: − 9

patrones numéricos en tablas de 100

Podemos ver patrones numéricos en las tablas que van del 1 al 100. Observa esta tabla:

Puedes ver en la tabla que los números marcados en azul van de 9 en 9. Si comienzas en el 9 la serie tiene una patrón + 9, pero si comienzas en el 81, la serie tiene una patrón − 9.

¡A practicar!

1. Observa la imagen y luego responde:

  • ¿Cuántos grupos de caracoles hay? 
    Solución
    Hay 5 grupos de caracoles.
  • ¿Cuántos caracoles hay en total? 
    Solución
    Hay 20 caracoles en total.
  • ¿De cuánto en cuánto se agruparon los caracoles? 
    Solución
    Los caracoles se agruparon de 4 en 4.

 

2. Escribe de cuánto en cuánto van las siguientes series:

  • 586, 686, 786, 886, 986
    Solución
    La serie va de 100 en 100.
  • 3.443, 3.453, 3.463, 3.473, 3.483
    Solución
    La serie va de 10 en 10.
  • 675, 680, 685, 690, 695
    Solución
    La serie va de 5 en 5.
  • 7.702, 7.722, 7.742, 7.762, 7.782
    Solución
    La serie va de 20 en 20.

 

3. Completa la siguiente serie y escribe el patrón numérico:

  • 101, 104, 107, 110, ___, ___, ___, ___.
Solución

101, 104, 107, 110, 113, 116, 119, 122.

Patrón: + 3

  • 1.500, 2.500, 3.500, ___, ___, ___.
Solución

1.500, 2.500, 3.500, 4.500, 5.500, 6.500.

Patrón: + 1.000

  • 3.650, 3.640, 3.630, ___, ___, ___, ___.
Solución

3.650, 3.640, 3.630, 3.620, 3.610, 3.600, 3.590.

Patrón: − 10

 

4. Observa la tabla del 1 al 100 y luego resuelve los siguientes puntos:

  • Colorea en rojo una fila, columna o diagonal en la que los números vayan de 1 en 1.
  • Colorea en morado una fila, columna o diagonal en la que los números vayan de 11 en 11.
  • Colorea en verde una fila, columna o diagonal en la que los números vayan de 10 en 10.

Solución
Hay otras posibilidades, ¡descúbrelas!
RECURSOS PARA DOCENTES

Artículo “Sucesiones y series”

Con este artículo podrás complementar la información relacionada a las series y las sucesiones.

VER

CAPÍTULO 1 / TEMA 3

RECTA NUMÉRICA

Todos los números se pueden representar en una recta numérica. Esta nos permite comparar números y saber si uno es mayor o menor que otro; como también redondear las decenas o centenas más cercana. Es probable que la hayas visto en las reglas de tu escuela, hoy sabrás cómo graficarlas y usarlas.

La regla graduada es un instrumento que usamos para medir distancias y para trazar líneas rectas. Es graduada porque tiene marcas que simbolizan la distancia entre un punto y otro. Estas marcas hacen que la regla sea lo más parecido a una recta numérica.

¿qUÉ ES LA RECTA NUMÉRICA?

Es una línea recta que tiene una sola dimensión y está compuesta por una sucesión de puntos que se prolongan en una misma dirección hasta el infinito, es decir, que no tiene fin. Si empezamos a contar los números de uno en uno, no terminaríamos nunca porque los números son infinitos.

¿Sabías qué?
El símbolo del infinito es ∞. 

¿Cómo graficar una recta numérica?

En un recta numérica podemos graficar los números como puntos que están separados por una misma distancia unos de otros. Los pasos son los siguientes:

1. Dibuja una línea recta con flechas en ambos extremos. Las flechas se colocan para representar que hay números sin fin tanto a la derecha como a la izquierda.

2. Ubica el cero. Ese será el inicio de la recta numérica.

3. Divide la recta en segmentos de la misma distancia y agrega los números.

4. Si deseas representar números grandes, también puedes hacerlo en la recta numérica. Por ejemplo:

De 10 en 10:

De 100 en 100:

De 1.000 en 1.000:

 

Recuerda que entre número y número hay divisiones más pequeñas que representan las cantidad intermedias. Por ejemplo, entre 1.000 y 2.000 podemos dibujar la recta así:

Aunque originalmente solo se colocaban los números naturales sobre la recta numérica, es decir, los números que usamos para contar: 1, 2, 3, 4, 5, … Hoy en día podemos representar cualquier tipo de número en ella. Así, podemos encontrar números decimales, como 6,5; números fraccionarios, como 1/2; o números negativos como −9.

representación de números en la recta numérica

En una recta numérica podemos ubicar cualquier número. Por ejemplo, si queremos representar el 7.500 tenemos que pensar que se encuentra entre el 7.000 y el 8.000, justo en el medio de ambos. Veamos cómo queda:

– Otro ejemplo:

 

También podemos representar los valores entre decenas de números grandes. Por ejemplo, para ubicar el número 2.130 tenemos que pensar que está entre el 2.100 y el 2.200. La recta quedaría así:

– Otro ejemplo:

Creación de la recta numérica

La recta numérica es un gráfico unidimensional de una línea recta, fue creada por John Wallis, un matemático Inglés que alrededor de 1670 la empleó para mostrar de modo gráfico los números naturales. A medida que nos movemos hacia la derecha sobre la recta vamos a encontrar números más grandes.

redondeo

Redondear un número significa llevarlo al número natural más cercano terminado en cero, es decir, consiste en encontrar la decena o centena más cercana al número. Por ejemplo, el redondeo del número 2.320 a la centena más cercana es 2.300, porque 2.320 está más cerca de 2.300 que de 2.400.

– Otro ejemplo:

El punto color rojo está ubicado en 4.870, entre el 4.800 y el 4.900, pero ¿a qué centena más cercana está? Como ves, en la recta, el punto rojo está más cerca de 4.900, por lo tanto, el redondeo a la centena de 4.870 es 4.900.

orden numérico

Hay números naturales mayores o menores que otros, a esta relación la llamamos orden. Para representar que un número es mayor, menor o igual a otro usamos los siguientes símbolos:

Símbolo Significado
> Mayor que
< Menor que
= Igual a

En una recta numérica, los números mayores están más a la derecha y los menores están más a la izquierda.

– Ejemplo:

  • 9.000 es mayor que 1.000 porque está más a la derecha en la recta numérica. Lo representamos así:

9.000 > 1.000

 

  • 4.840 es menor que 4.890 está más a la izquierda en la recta numérica. Lo representamos así:

4.840 < 4.890

– Otros ejemplos:

2.551 > 2.550

7.013 < 7.020

1.500 > 1.000

¿Sabías qué?
La boca más ancha de los símbolos < y > siempre mira al número más grande; y la parte más fina al número más pequeño.

¡A practicar!

  1. Representa en la recta numérica los siguientes números:
  1. 2.160
    Solución
  2. 9.540 
    Solución
  3. 5.365
    Solución
  4. 7.615 
    Solución

2. Observa la recta numérica y luego responde las preguntas:

  1. ¿Qué número está representado en el punto de color azul? 
    Solución
    3.300
  2. ¿Qué número está representado en el punto de color rosa? 
    Solución
    4.100
  3. ¿Qué número está representado en el punto de color lila? 
    Solución
    6.400
  4. ¿Qué número está representado en el punto de color negro? 
    Solución
    3.600
  5. ¿Qué número está representado en el punto de color verde? 
    Solución
    5.500
  6. ¿Qué número está representado en el punto de color naranja? 
    Solución
    6.900
  7. ¿Qué número está representado en el punto de color rojo? 
    Solución
    4.100
  8. ¿Qué número está representado en el punto de color celeste? 
    Solución
    5.800

3. Redondea las siguientes cantidades a la centena más cercana por medio de la recta numérica.

a. 2.530

Solución

El redondeo a la centena más cercana es 2.500.

b. 5.590

Solución

El redondeo a la centena más cercana es 5.600.

c. 9.970

Solución

El redondeo a la centena más cercana es 10.000.

4. Completa con >, < o = según corresponda.

  1. 3.550 ­­­_____ 3.549 
    Solución
    3.550 ­­­> 3.549
  2. 6.701 ­­­­_____ 6.711 
    Solución
    6.701 ­­­­< 6.711
  3. 1.566 _____ 1.566 
    Solución
    1.566 = 1.566
  4. 8.987 _____ 8.985 
    Solución
    8.987 > 8.985
  5. 9.620 _____ 9.625 
    Solución
    9.620 < 9.625
  6. 4.213 _____ 4.213 
    Solución
    4.213 = 4.213
RECURSOS PARA DOCENTES

Artículo “Recta numérica”

Este recurso te permitirá complementar la información sobre la representación en la recta numérica.

VER

Artículo “Redondeo de números naturales”

El siguiente recurso te permitirá enriquecer el redondeo de números en la recta numérica.

VER

CAPÍTULO 2 / TEMA 3

ECUACIÓN

Cuando vemos operaciones matemáticas con valores desconocidos es muy probable que estemos frente a ecuaciones. Estas son relaciones equivalentes con dos miembros separados por un símbolo de igualdad. Para saber cuánto valen estos términos desconocidos debemos despejar, es decir, dejar “sola” a la incógnita, lo que se hace por medio de diversos pasos mostrados a continuación.

La ecuación y sus elementos

Una ecuación es una igualdad que posee uno o más términos desconocidos llamados incógnitas. El valor numérico de dichas incógnitas es el único que cumple la igualdad.

Los elementos de toda ecuación son los siguientes:

  • Primer miembro: es el conjunto de términos que se encuentra del lado izquierdo de la igualdad.
  • Segundo miembro: es el conjunto de términos que se encuentra del lado derecho de la igualdad.
  • Términos: son todos los números y letras que conforman la ecuación.
  • Incógnita: es el valor desconocido en la igualdad. En una ecuación puede haber más de una incógnita.

¿Sabías qué?
Si una incógnita aparece sola se sobreentiende que el coeficiente es 1, es decir, que está multiplicada por 1.
Una ecuación es una igualdad establecida que permite determinar alguno de sus elementos respecto a los valores de los demás. Pueden ser literales o numéricas. Son literales cuando por lo menos un elemento conocido está representado por una letra; y son numéricas cuando sus elementos conocidos son números.

Ecuaciones según el grado

El grado de una ecuación es la mayor potencia a la que está elevada la incógnita. Según el grado las ecuaciones pueden ser:

Ecuaciones de primer grado

Son aquellas ecuaciones donde la incógnita está elevada a la primera potencia. También se las conoce como ecuaciones lineales. Por ejemplo:

\boldsymbol{2x+5=3x-1}

Ecuaciones de segundo grado

Son las igualdades cuya incógnita está elevada a la segunda potencia, es decir, al cuadrado. Por ejemplo:

\boldsymbol{2x^{{\color{Red} 2}}+3x=-5x}

Ecuaciones de tercer grado

Son aquellas que contienen la incógnita elevada al cubo en al menos uno de sus términos. Por ejemplo:

\boldsymbol{4x^{{\color{Red} 3}}+3x=5-x^{2}}

¡Es tu turno!

Observa esta ecuación y responde:

\boldsymbol{x^{3}-7x^{2}+4x+12=0}

  • ¿Cuántos términos tiene en el primer miembro?
Solución
Tiene 4 términos.
  • ¿De qué grado es la ecuación?
Solución
La ecuación es de tercer grado.
  • ¿Cuántas incógnitas tiene?
Solución
Tiene una sola incógnita: x.

¿Sabías qué?
Las incógnitas aparecen en las ecuaciones con una letra, generalmente es la x, pero puede ser cualquiera.
Las ecuaciones pueden estar conformadas por una o más incógnitas y su solución no siempre es un número. De hecho, hay ecuaciones que tienen varias soluciones o incluso, hay otras que no tienen solución. En todos los casos, es imprescindible dominar los procedimientos de despejes para poder analizarlas.

REGLAS DE DESPEJE DE ECUACIONES

Para hallar la solución de una ecuación de primer grado debemos despejar la incógnita, esto significa que es necesario dejar a la incógnita “sola” en un miembro de la igualdad. Para esto seguimos las siguientes reglas:

Regla de la suma

Consiste en sumar la misma expresión algebraica en ambos lados de la igualdad, de este modo obtenemos una ecuación equivalente y por ende el mismo resultado. Por ejemplo:

x-8=24

Si sumamos 8 en ambos miembros de la ecuación tenemos:

x-8+\boldsymbol{8}=24+\boldsymbol{8}

Al resolverlo:

x=\boldsymbol{32}

A partir de ese principio, la regla de la suma también se denomina regla de transposición de términos debido a que, para cambiar un término a otro miembro, se tiene que cambiar su signo. Por lo tanto, todo número que se encuentre en forma de suma en un miembro de la igualdad pasa al otro miembro en forma de resta y viceversa.

Entonces, para despejar la incógnita lo único que debemos hacer es pasar el −8 como +8 al segundo miembro de la ecuación.

x-8=24

x=24+8

x=\boldsymbol{32}

Regla del producto

Establece que al multiplicar o dividir por un mismo número en ambos miembros de la ecuación el resultado es una ecuación equivalente de la primera. Por ejemplo:

5x=20

Si dividimos entre 5 ambos miembros de la ecuación tenemos:

\frac{5x}{\boldsymbol{5}}=\frac{20}{\boldsymbol{5}}

Al resolverlo:

x=\boldsymbol{4}

Por medio de esta regla se deduce que los elementos que multiplican pasan al otro lado a dividir y los elementos que dividen pasan al otro lado a multiplicar. En el ejemplo anterior basta con pasar el 5 que multiplica a la incógnita a dividir el segundo miembro de la ecuación.

5x=20

x=\frac{20}{5}

x=\boldsymbol{4}

¿cómo solucionar una ecuación de primer grado?

Las ecuaciones de primer grado o lineales se caracterizan por tener su incógnita elevada a la primera potencia. Los pasos para solucionar este tipo de ecuación son:

  1. Quita los paréntesis en caso de que existieran (a través de la propiedad distributiva u otras operaciones).
  2. Quita los denominadores en caso de que existieran.
  3. Ubica los términos que tienen incógnitas en un miembro y los que no tienen incógnita en otro.
  4. Suma los términos semejantes.
  5. Despeja la incógnita a través de la regla del producto.
  6. Simplifica el resultado obtenido en caso de que sea una fracción.
El valor o los valores de la incógnita de una ecuación que hacen que la igualdad de la misma sea cierta, se denominan solución de la ecuación o raíces de la ecuación. Cuando una ecuación tiene solución, se denomina compatible, en caso contrario, se denomina incompatible. Las ecuaciones que presentan la misma solución son llamadas ecuaciones equivalentes.

– Ejemplo:

5(2x+3)-4x=-3+3(x-4)

Primero eliminamos los paréntesis. Para eso, aplicamos la propiedad distributiva. En el primer caso, multiplicamos 5 por cada término dentro de los paréntesis (2x + 3), en el segundo caso, multiplicamos 3 por cada término dentro de los paréntesis (x − 4).

10x+15-4x=-3+3x-12

Después ubicamos los términos que tienen incógnitas en un mismo miembro y los que no tienen incógnitas en otro. Para lograrlo aplicamos la regla de la suma o de transposición.

10x-4x-3x=-3-12-15

Luego sumamos o restamos los términos semejantes.

3x=-30

Despejamos la incógnita. Para lograrlo, aplicamos la regla del producto por medio de la cual el 3 que multiplica pasa a dividir al otro miembro de la ecuación.

x=\frac{-30}{3}=\boldsymbol{-10}

Observa que simplificamos el resultado al resolver la fracción.

– Otro ejemplo:

5(x+2)=1+\frac{x}{2}

Eliminamos los paréntesis por medio de la propiedad distributiva.

5x+10=1+\frac{x}{2}

Quitamos el denominador al multiplicar todos los términos de la ecuación por ese denominador, en este caso es 2.

2 (5x+10)=2(1+\frac{x}{2})\: \: \Rightarrow \: \: 10x+20=2+\frac{2x}{2}

Luego efectuamos las divisiones correspondientes.

10x+20=2+x

Ubicamos los términos que tienen incógnitas en un mismo miembro y los que no tienen incógnitas en otro. Para lograrlo, aplicamos la regla de la suma o de transposición.

10x-x=2-20

Sumamos o restamos los términos semejantes.

9x=-18

Despejamos la incógnita. Para lograrlo, aplicamos la regla del producto por medio de la cual el 9 que multiplica pasa a dividir al otro miembro de la ecuación.

x=-\frac{18}{9}=\boldsymbol{-2}

¿Cómo comprobar una ecuación?

¡Muy sencillo! Solo tienes que sustituir en la ecuación el valor de la incógnita y resolver. Si la igualdad se cumple, el ejercicio está resuelto correctamente. En caso contrario, debes revisar dónde estuvo el error.

Despejemos esta ecuación:

2x+6=10\: \: \Rightarrow \: \: 2x=10-6\: \: \Rightarrow \: \: 2x=4\: \: \Rightarrow \: \: x=\frac{4}{2}\: \: \Rightarrow \: \: \boldsymbol{x=2}

Como x = 2, sustituimos y comprobamos.

2(2)+6=10\: \: \Rightarrow \: \: 4+6=10\: \: \Rightarrow \: \: \boldsymbol{10=10}

Por lo tanto, como las igualdades se cumplen, la ecuación está despejada correctamente.

APLICACIÓN DE LAS ECUACIONES

Las ecuaciones son aplicables en mucho ámbitos de la vida, por ejemplo, para planificar nuestro dinero o para determinar cantidades por medio de igualdades. En otras áreas del saber, como la física, la química o la economía, las ecuaciones son de gran utilidad, pues sirven para expresar fórmulas y leyes que describen muchos fenómenos.

En general, algunas aplicaciones de las ecuaciones pueden ser:

  • Calcular longitudes, áreas, volúmenes y otras dimensiones de objetos.
  • Expresar cantidades físicas como densidad, peso específico o concentraciones de sustancias.
  • Formular algebraicamente un planteamiento teórico
  • Expresar leyes como la ley de gravitación universal en física o la ley para gases ideales en química.
  • Calcular ganancias y utilidades en el área de finanzas, entre otras aplicaciones.

¡A practicar!

Despeja la incógnita.

  • 2(1+2x)=10
Solución

2(1+2x)=10

2+4x=10

4x=10-2

4x=8

x=\frac{8}{4}

x=\boldsymbol{2}

  • 1-\frac{x}{3}=\frac{5x}{3}
Solución

1-\frac{x}{3}=\frac{5x}{3}

3\left ( 1-\frac{x}{3} \right )=3\left ( \frac{5x}{3} \right )

3-\frac{3x}{3}=\frac{15x}{3}

3-x=5x

5x+x=3

6x=3

x=\frac{3}{6}=\boldsymbol{\frac{1}{2}}

  • 15-6\left ( 2x-4 \right )=8+2\left ( 5x-1 \right )
Solución

15-6\left ( 2x-4 \right )=8+2\left ( 5x-1 \right )

15-12x+24=8+10x-2

15+24-12x=8-2+10x

39-12x=6+10x

12x-10x=6-39

-22x=-33

x=\frac{-33}{-22}=\boldsymbol{\frac{3}{2}}

  • x+\frac{x}{5}=18
Solución

x+\frac{x}{5}=18

5\left ( x+\frac{x}{5} \right )=5\left ( 18 \right )

5x+\frac{5x}{5}=90

5x+x=90

6x=90

x=\frac{90}{6}=\boldsymbol{15}

  • x+\frac{1}{3}=\frac{x}{3}
Solución

x+\frac{1}{3}=\frac{x}{3}

3\left ( x+\frac{1}{3} \right )=3\left ( \frac{x}{3} \right )

3x+\frac{3}{3}=\frac{3x}{3}

3x+1=x

3x-x=-1

2x=-1

x=\boldsymbol{-\frac{1}{2}}

  • x+7=12x-3-8x+1
Solución
x+7=12x-3-8x+1x+7=12x-3+8x+1

x-12x+8x=-3+1-7

-3x=-9

x=\frac{-9}{-3}=\boldsymbol{3}

RECURSOS PARA DOCENTES

Artículo “Ecuaciones y despejes”

Este artículo contiene información complementaria referente al manejo de las ecuaciones y los despejes. También presenta una serie de ejercicios resueltos y propuestos de ecuaciones lineales.

VER

Artículo “Ecuaciones”

Con este recurso podrá complementar la información y los ejemplos sobre ecuaciones de primer grado con una incógnita.

VER

 

CAPÍTULO 3 / TEMA 2

adición y sustracción de fracciones

Las fracciones son divisiones no resueltas que representan las partes de un todo. Pertenecen a los números racionales y, como cualquier otro tipo de número, pueden ser sumadas o restadas. Las características de cada fracción hacen que las operaciones tengan reglas distintas. A continuación, aprenderás los métodos posibles para realizar estos cálculos.

Una fracción simboliza una división entre un número y otro, y a su vez indica las partes tomadas de un todo. Una fracción tiene dos partes: un numerador y un denominador separados por una línea horizontal. El denominador señala en cuántas partes se divide la unidad, y el numerador señala cuántas de esas partes se han tomado.

VER INFOGRAFÍA

adición y sustracción de fracciones homogéneas

Cuando dos fracciones tienen el mismo denominador se las llama homogéneas. Para sumar y restar este tipo de fracciones solo se suman o restan lo numeradores y se mantiene el mismo denominador.

Adición

\frac{{\color{Red} 12}}{{\color{Blue} 7}}+\frac{{\color{Red} 4}}{{\color{Blue} 7}} = \frac{{\color{Red} 12+4}}{{\color{Blue} 7}}=\boldsymbol{\frac{16}{7}}

– Otros ejemplos:

\frac{{\color{Red} 31}}{{\color{Blue} 17}}+\frac{{\color{Red} 41}}{{\color{Blue} 17}}=\frac{{\color{Red} 31+41}}{{\color{Blue} 17}}=\boldsymbol{\frac{72}{17}}

\frac{{\color{Red} 15}}{{\color{Blue} 11}}+\frac{{\color{Red} 10}}{{\color{Blue} 11}}+\frac{{\color{Red} 21}}{{\color{Blue} 11}}= \frac{{\color{Red} 15+10+21}}{{\color{Blue} 11}}=\boldsymbol{\frac{46}{11}}

Sustracción

\frac{{\color{Red} 23}}{{\color{Blue} 7}}-\frac{{\color{Red} 14}}{{\color{Blue} 7}}=\frac{{\color{Red} 23-14}}{{\color{Blue} 7}}=\boldsymbol{\frac{9}{7}}

– Otros ejemplos:

\frac{{\color{Red} 3}}{{\color{Blue} 5}}-\frac{{\color{Red} 1}}{{\color{Blue} 5}}=\frac{{\color{Red} 3-1}}{{\color{Blue} 5}}=\boldsymbol{\frac{2}{5}}

\frac{{\color{Red} 24}}{{\color{Blue} 13}}-\frac{{\color{Red} 8}}{{\color{Blue} 13}}-\frac{{\color{Red} 10}}{{\color{Blue} 13}}=\frac{{\color{Red} 24-8-10}}{{\color{Blue} 13}}=\boldsymbol{\frac{6}{13}}

fracciones equivalentes

Las fracciones equivalentes son aquellas que, a pesar de tener distintos numeradores y denominadores, representan la misma cantidad. Dos fracciones son equivalentes si al multiplicar sus términos en forma de cruz el resultado es el mismo.

– Ejemplo:

\frac{3}{6} y \frac{6}{12} son fracciones equivalentes porque:

        3\times 12=\boldsymbol{36}

        6\times 6=\boldsymbol{36}

Podemos escribir las fracciones equivalentes de la siguiente manera:

\frac{3}{6}=\frac{6}{12} porque 3\times 12 = 6\times 6

– Otro ejemplo:

\frac{8}{3} y \frac{2}{4} no son fracciones equivalentes porque:

         8\times 4=\boldsymbol{32}

         3\times 2=\boldsymbol{6}

Podemos escribir las fracciones no equivalentes de la siguiente manera:

\frac{8}{3}\neq \frac{2}{4} porque 8\times 4\neq 3\times 2

¡Practiquemos! 

Laura, Tomás y Daniela tienen cada uno un chocolate. Laura comió 1/2, Tomás comió 3/6 y Daniela comió 6/12. ¿Quién comió más chocolate?

Si representamos en gráficos cada fracción tenemos que:

\boldsymbol{\frac{1}{2}=}  

\boldsymbol{\frac{3}{6}=}  

\boldsymbol{\frac{6}{12}=}

Laura partió el chocolate en 2 pedazos y comió uno de esos; Tomás lo cortó en 6 pedazos y comió 3; y Daniela lo cortó en 12 pedazos y comió 6.

Sin importar la cantidad de trozos en las que se dividió el chocolate, cada uno comió lo mismo: la mitad.

Además de comprobarlo con los gráficos y por el método cruzado, podemos corroborar que una fracción es equivalente a otra si resolvemos la división. De este modo, tenemos que:

\frac{1}{2}=\boldsymbol{0,5}

\frac{3}{6}=\boldsymbol{0,5}

\frac{6}{12}=\boldsymbol{0,5}

Como todas las fracciones representan la misma cantidad, se pueden escribir de la siguiente forma:

\frac{1}{2}=\frac{3}{6}=\frac{6}{12}

¿Cómo podemos obtener fracciones equivalentes?

Por medio de dos métodos: amplificación y simplificación.

Amplificación

Consiste en multiplicar el numerador y el denominador por un mismo número distinto de cero.

– Ejemplo:

Ambas fracciones, 2/5 y 6/15 son equivalentes. Observa que tanto el numerador como el denominador se multiplicaron por 3.

– Otro ejemplo:

Simplificación

Consiste en dividir al numerador y al denominador por un mismo número distinto de cero. Este número debe ser un divisor común entre el numerador y el denominador.

– Ejemplo:

Como el número 2 es un divisor común entre el numerador y denominador, podemos hacer una simplificación de la fracción.

– Otro ejemplos:

¿Sabías qué?
Cuando una fracción no puede simplificarse más se la llama fracción irreducible.
Juan y Carlos compraron una pizza cada uno. Si Juan comió 2/3 de pizza y Carlos 3/4 de pizza, ¿quién comió más? Hallar la fracción equivalente con igual denominador de estas fracciones puede ayudarnos a comparar las cantidades y responder la pregunta. 2/3 = 8/12 y 3/4 = 9/12, entonces comparamos los numeradores y, como 9 > 8, decimos que Carlos comió más que Juan.

adición y sustracción de fracciones heterogéneas

Las fracciones heterogéneas son las que tienen distinto denominador. Para sumar o restar fracciones heterogéneas podemos emplear tres métodos distintos.

Método 1: con fracciones equivalentes

En este método hallamos la fracción equivalente de las fracciones para que todas tengan el mismo denominador, es decir, para que sean homogéneas. Luego las sumamos como se explicó al inicio: sumamos los numeradores y mantenemos el mismo denominador.

– Ejemplo:

\frac{1}{2}+\frac{3}{4}

1. Hallamos la fracción equivalente a 1/2 con denominador igual a 4.

Ya sabemos que el producto cruzado de los términos debe ser el mismo. Así que multiplicamos el primer numerador por el segundo denominador, el cual necesitamos que sea 4.

\frac{{\color{Red} 1}}{2}=\frac{a}{{\color{Red} 4}}\; \; \; \; \;\; \; 1\times 4=\boldsymbol{4}

Luego planteamos la segunda multiplicación como una ecuación. Esta corresponde a la del primer denominador con el primer numerador.

\frac{1}{{\color{Blue} 2}}=\frac{{\color{Blue} a}}{4}\; \; \; \; \;\; \; 2\times a=\boldsymbol{4}

Despejamos la incógnita a y obtenemos el numerador de la fracción equivalente.

2\times a=4\: \Rightarrow a=4\div 2=\boldsymbol{2}

Por lo tanto,

\frac{1}{2}=\frac{\boldsymbol{2}}{4}

2. Reescribimos la suma con la nueva fracción equivalente. En lugar de la fracción 1/2 escribimos su fracción equivalente 2/4.

\frac{2}{4}+\frac{3}{4}

3. Resolvemos la suma de fracciones homogéneas.

\frac{2}{4}+\frac{3}{4}=\frac{2+3}{4}=\boldsymbol{\frac{5}{4}}

El procedimiento es igual con la sustracción, solo cambiamos el signo más (+) por el signo menos (−).

Método 2: con mínimo común múltiplo

Consiste en hallar el mínimo común múltiplo de los denominadores de las fracciones, el cual será el nuevo denominador. El cociente entre este valor y los denominadores se multiplica con los numeradores.

– Ejemplo:

\frac{1}{2}+\frac{3}{4}

1. Calculamos el mínimo común múltiplo de los denominadores. Ese será el denominador de la fracción resultante.

mcm (2, 4) = 2 × 2 = 4

2. Dividimos al mcm con el denominador de la primera fracción (4 ÷ 2 = 2) y multiplicamos ese resultado por su numerador.

\frac{1}{2}+\frac{3}{4} = \frac{{\color{Red} 2} \times 1\:}{4}+

3. Realizamos el mismo procedimiento con la segunda fracción. Esta vez dividimos el mcm entre el segundo denominador (4 ÷ 4 = 1) y multiplicamos ese resultado por el segundo numerador. Sumamos este resultado con el obtenido anteriormente.

\frac{1}{2}+\frac{3}{4} = \frac{{\color{Red} 2}\times 1}{4}+\frac{{\color{Blue} 1}\times 3}{4}

4. Resolvemos las operaciones y obtenemos el resultado final.

\frac{1}{2}+\frac{3}{4} = \frac{{\color{Red} 2}\times 1}{4}+\frac{{\color{Blue} 1}\times 3}{4}=\frac{2+3}{4}=\boldsymbol{\frac{5}{4}}

El procedimiento es igual con la sustracción, solo cambiamos el signo más (+) por el signo menos (−).

Método 3: con productos cruzados

En este método multiplicamos de manera cruzada los numeradores y denominadores de las fracciones. Sumamos los resultados y los colocamos en el numerador resultante. El denominador de la fracción final será igual al producto de la multiplicación de los denominadores.

– Ejemplo:

\frac{1}{2}+\frac{3}{4}

1. Multiplicamos el primer numerador por el segundo denominador.

\frac{{\color{Red} 1}}{2}+\frac{3}{{\color{Red} 4}}=\frac{{\color{Red} 1\times 4}}{}

2. Multiplicamos el primer denominador por el segundo numerador. Sumamos esta operación con la primera.

\frac{{\color{Red} 1}}{{\color{Blue} 2}}+\frac{{\color{Blue} 3}}{{\color{Red} 4}}=\frac{{\color{Red} 1\times 4}+{\color{Blue} 2\times 3}}{}

3. Multiplicamos los denominadores. El resultado lo colocamos en el lugar del denominador.

\frac{{\color{Red} 1}}{{\color{Blue} 2}}+\frac{{\color{Blue} 3}}{{\color{Red} 4}}=\frac{{\color{Red} 1\times 4}+{\color{Blue} 2\times 3}}{{\color{Blue} 2}\times {\color{Red} 4}}

4. Resolvemos las operaciones y obtenemos el resultado final.

\frac{1}{2}+\frac{3}{4}=\frac{1\times 4+2\times 3}{2\times 4}=\frac{4+6}{8}=\frac{10}{8}=\boldsymbol{\frac{5}{4}}

Observa que al resolver las operaciones el resultado es 10/8, pero esta fracción se puede simplificar al dividir ambos términos entre 2, el cual es un divisor común.

El procedimiento es igual con la sustracción, solo cambiamos el signo más (+) por el signo menos (−).

Las fracciones heterogéneas son las que tienen distinto denominador. Para sumar o restar este tipo de fracciones podemos emplear tres métodos diferentes: por medio de fracciones equivalentes, mínimo común múltiplo o productos cruzados. Sin importar el método que escojas el resultado será el mismo.

¡A practicar!

1. ¿Cuáles de las siguientes fracciones son equivalentes a \frac{2}{5}?

\frac{6}{15}\ ,\ \frac{6}{9}\ ,\ \frac{10}{25}\ ,\ \frac{14}{30}\ ,\ \frac{8}{20}

Solución

\frac{6}{15}\ ,\ \frac{10}{25}\ ,\ \frac{8}{20}

2. ¿Cuáles de las siguientes fracciones son equivalentes a \frac{25}{40}?

\frac{50}{80}\ ,\ \frac{5}{8}\ ,\ \frac{75}{110}\ ,\ \frac{75}{120}\ ,\ \frac{5}{4}

Solución

\frac{50}{80}\ , \frac{5}{8}\ , \frac{75}{120}

3. ¿Cuál es la fracción equivalente? Coloca el numerador que falta.

  • \frac{1}{2}=\frac{?}{8}

Solución

\frac{1}{2}=\frac{{\color{Red} 4}}{8}

  • \frac{3}{5}=\frac{?}{25}

Solución

\frac{3}{5}=\frac{{\color{Red} 15}}{25}

  • \frac{4}{5}=\frac{?}{12}

Solución

No es posible conseguir una fracción equivalente de denominador 12 porque el 12 no es múltiplo del 5.

  • \frac{2}{7}=\frac{?}{21}

Solución

\frac{2}{7}=\frac{{\color{Red} 6}}{21}

4. Realizar los siguientes cálculos con fracciones:

  • \dfrac{1}{5}+\dfrac{3}{10}-\dfrac{1}{2}+\dfrac{2}{5}=
Solución

\dfrac{1}{5}+\dfrac{3}{10}-\dfrac{1}{2}+\dfrac{2}{5}=\boldsymbol{\frac{2}{5}}

  • \frac{4}{5}+\frac{1}{3}+\frac{1}{2}=
Solución

\frac{4}{5}+\frac{1}{3}+\frac{1}{2}=\boldsymbol{\frac{49}{30}}

  • \frac{3}{10}-\frac{1}{12}=
Solución

\frac{3}{10}-\frac{1}{12}=\boldsymbol{\frac{13}{60}}

  • \frac{1}{2}+\frac{1}{3}-\left ( \frac{1}{4}+\frac{1}{5} \right )=
Solución

\frac{1}{2}+\frac{1}{3}-\left ( \frac{1}{4}+\frac{1}{5} \right )=\boldsymbol{\frac{23}{60}}

RECURSOS PARA DOCENTES

Artículo “Adición y sustracción de fracciones”

Puedes realizar la adición o la sustracción de fracciones por medio de varios métodos. Este recurso le permitirá ampliar información sobre estos.

VER

Artículo “Fracciones equivalentes”

Con este artículo podrá profundizar sobre las fracciones y cómo obtenerlas por amplificación y simplificación.

VER