CAPÍTULO 4 / TEMA 4

PROPORCIONALIDAD

Si compramos una gaseosa a $ 2, 2 gaseosas costarán $ 4 y 3 gaseosas costarán $ 6. Esto se llama proporcionalidad porque las dos magnitudes, precio y cantidad, tiene una relación directa entre sí. Esta relación sirve para hacer conversiones de unidades de medida. ¡Aprendamos a resolver problemas de proporcionalidad!

¿QUÉ ES LA PROPORCIONALIDAD?

La proporcionalidad es una relación que existe entre las magnitudes que podemos medir, como el tiempo, la longitud, la superficie o el peso.

Las proporciones son mucho más comunes de lo que pensamos. Las utilizamos al calcular la cantidad de ingredientes para hacer una torta, cuando convertimos unidades de medida o cuando vamos al cine con nuestros amigos y deseamos saber cuál es el costo total de las entradas.

Muchas de las cantidades que utilizamos cotidianamente están relacionadas entre sí. Por ejemplo, siempre que vamos a un kiosco, sabemos que mientras más productos compremos, más dinero tendremos que pagar. Eso es porque “la cantidad de productos que compramos” y “la cantidad que debemos pagar” tienen una relación directamente proporcional.

¿Sabías qué?
Existen dos tipos de proporcionalidad: la proporcionalidad directa y la proporcionalidad inversa.

PROPORCIONALIDAD DIRECTA

Cuando dos magnitudes están relacionadas mediante una proporcionalidad directa se comportan de tal manera que:

  • Cuando una cantidad aumenta, la otra también aumenta.
  • Cuando una cantidad disminuye, la otra también disminuye.

Si esto sucede, se dice que las cantidades son “directamente proporcionales”.

– Ejemplo:

Si una camiseta cuesta $ 3, ¿cuánto cuestan 2 camisetas?, ¿y 3 camisetas?

Cantidad de dinero $ 3 $ 6 $ 9
Cantidad de camisetas 1 2 3

Observa que al aumentar la cantidad de camisetas también aumenta la cantidad de dinero, por eso, ambas son directamente proporcionales.

Siempre que dos magnitudes sean directamente proporcionales el cociente entre ellas será constante. A esta relación la podemos escribir y comprobar por medio de una fracción:

\frac{{\color{Blue} 3}}{{\color{Red} 1}}=\boldsymbol{3}

\frac{{\color{Blue} 6}}{{\color{Red} 2}}=\boldsymbol{3}

\frac{{\color{Blue} 9}}{{\color{Red} 3}}=\boldsymbol{3}

Los numeradores en azul representan la cantidad de dinero y los denominadores en rojo representan la cantidad de camiseta. Todos los cocientes son iguales, es decir, la proporción es constante.

Razón de proporcionalidad

Si dividimos entre sí las magnitudes que aumentan o disminuyen, obtendremos como resultado un número llamado razón de proporcionalidad, y si dividimos ambas cantidades luego de que aumenten o disminuyan, también obtendremos como resultado al mismo número. Por lo tanto, dos magnitudes son directamente proporcionales si:

magnitud 1 ÷ magnitud 2 = razón de proporcionalidad

¿cómo resolver problemas de PROPORCIONALIDAD DIRECTA?

Un método para resolver problemas de proporcionalidad es la regla de tres. Esta se utiliza para hallar el cuarto término de una proporción cuando ya conoces tres valores.

– Ejemplo 1:

En cada paquete de chicles hay 8 chicles. ¿Cuántos chicles hay en 4 paquetes?

1. Escribimos la primera relación, que es la que tiene los dos valores conocidos:

 

2. Luego escribimos la segunda relación. En esta solo conocemos un valor y al desconocido lo representamos con la letra equis (x).

En conjunto, estas relaciones se leen así: “si un paquete de chicles tiene ocho chicles, ¿cuántos chicles tienen cuatro paquetes de chicles?”.

Observa que colocamos una magnitud debajo de otra magnitud: paquetes de chicles debajo de paquetes de chicles y cantidad de chicles debajo de cantidad de chicles. La “x” es una valor que desconocemos, pero la magnitud buscada es “cantidad de chicles”.

 

3. Multiplicamos en diagonal y luego dividimos por el valor que quede solo.

 

4. Resolvemos las operaciones.

Nota que las magnitudes que son iguales tanto en el numerador como en el denominador se tachan y queda la magnitud deseada: cantidad de chicles.

 

5. Damos respuesta a la interrogante.

En 4 paquetes de chicles hay 32 chicles.

Dos magnitudes directamente proporcionales son la cantidad de kilómetros recorridos en un automóvil y la cantidad de combustible gastado. Cuando una de estas cantidades se modifica, la otra lo hace de igual manera; pues si recorremos 110 kilómetros gastaremos 10 litros de combustible, pero si recorremos 330 kilómetros gastaremos 30 litros.

– Ejemplo 2:

Para pintar 6 edificios son necesarios 80 galones de pintura, ¿cuántos galones de pintura son necesarios para pintar 18 edificios?

  • Relaciones

  • Reflexión

Este problema de proporcionalidad se resuelve al multiplicar en forma diagonal las relaciones antes mostradas, y después al dividir entre 6. No debemos olvidar tachar las magnitudes iguales en el numerador y en el denominador.

  • Operaciones

  • Respuesta

Para pintar 18 edificios se necesitan 240 galones de pintura.


– Ejemplo 3:

Si 10 lápices cuestan $ 5, ¿cuánto costarán 70 lápices?

  • Relaciones

  • Reflexión

Hay que resolver la regla de tres, para esto multiplicamos en forma diagonal: 70 × 5 y luego dividimos este resultado entre 10. Tachamos las unidades repetidas en los numeradores y denominadores.

  • Operaciones

  • Respuesta

70 lápices costarán $ 35.


¿Sabías qué?
En la cocina también utilizamos la proporcionalidad. Si tenemos una receta que indica las cantidades para 1 persona, pero queremos hacer la receta para 5 personas, debemos multiplicar a todas las cantidades por 5.

USOS DE LA PROPORCIONALIDAD DE LA CONVERSIÓN DE MEDIDAS

La proporcionalidad nos puede ser útil a la hora de convertir unidades de medidas. Por ejemplo, cuando conocemos la longitud de un objeto en centímetros y queremos conocerla en metros, o cuando conocemos nuestro peso en kilogramos pero queremos conocerlo en gramos.

La conversión de unidades de medida es usada en múltiples oficios. Los costureros y diseñadores utilizan a menudo la cinta métrica: una cinta flexible con marcas que muestran los metros y los centímetros. Esta es de gran utilidad para medir grandes o pequeñas longitudes de tela. También es usada por arquitectos y médicos.

Equivalencias de interés

Masa

Unidad principal: gramo (g)

 

1 g = 1.000 mg

1 g = 100 cg

1 g = 10 dg

1 g = 0,1 dag

1 g = 0,01 hg

1 g = 0,001 kg

Longitud

Unidad principal: metro (m)

 

1 m = 1.000 mm

1 m = 100 cm

1 m = 10 dm

1 m = 0,1 dam

1 m = 0,01 hm

1 m = 0,001 km

Capacidad

Unidad principal: litro (L)

 

1 L = 1.000 mL

1 L = 100 cL

1 L = 10 dL

1 L = 0,1 daL

1 L = 0,01 hL

1 L = 0,001 kL

– Ejemplo 1:

Convierte 1,90 m a cm.

Ya sabemos que 1 metro = 100 centímetros, por lo tanto, esta es nuestra primera relación para la regla de tres. Luego resolvemos:

1,90 m equivalen a 190 cm.


– Ejemplo 2:

Convierte 5.600 ml a L.

5.600 mL equivalen a 5,6 L.


– Ejemplo 3:

Convierte 8,96 km a m.

9,96 km equivalen a 8.960 m.


¡A practicar!

1. Resuelve estos problemas de proporcionalidad por medio de reglas de tres.

a) Un automóvil recorre 200 km en 4 horas, ¿cuánto tiempo tardará en recorrer 500 km si la velocidad es constante?

Solución
Tardará 10 horas.

b) José compró 25 servilletas por $ 5, ¿cuántas servilletas podrá comprar con $ 30?

Solución
José podrá comprar 150 servilletas.

c) Si 60 segundos son iguales a 1 minuto, ¿cuántos minutos hay en 2.160 segundos?

Solución
Hay 36 minutos.

d) 8 obreros realizaron una obra de 200 m, ¿cuántos metros de obras pueden hacer 10 obreros?

Solución
Pueden hacer 250 metros.

 

2. Realiza las siguientes conversiones de unidades de medida.

a) 0,69 g a mg.

Solución
690 mg.

b) 5.896 mg a g.

Solución
5,896 g.

c) 5 kg a g.

Solución
5.000 g.

d) 0,94 L a mL.

Solución
940 mL.

e) 3.216 mL a L.

Solución
3,216 L.

f) 1,5 g a mg.

Solución
15.000 mg.

g) 7.415 g a kg.

Solución
7,415 kg.

h) 0,05 kg a g.

Solución
5.000 g.
RECURSOS PARA DOCENTES

Artículo “Regla de 3 simple y compuesta”

Este artículo trata sobre una herramienta que se utiliza para resolver problemas de proporcionalidad: la regla de 3 simple y compuesta.

VER

CAPÍTULO 2 / TEMA 3

Mínimo común múltiplo Y Máximo común divisor

Todo número natural se puede descomponer con la multiplicación de sus factores o números primos. La utilidad para descomponerlos de esta manera es que nos permitirá calcular el mínimo común múltiplo y el máximo común divisor de dos o más números. Y con ellos resolver diversos problemas.

mínimo común múltiplo Y Máximo común divisor

El mínimo común múltiplo (mcm), también conocido como múltiplo común menor de dos o más números naturales, es el menor múltiplo común de ambos números que sea distinto de cero.

El máximo común divisor (mcd), también conocido como divisor común mayor entre dos o más números naturales, es el mayor divisor entre ambos, es decir, el mayor número por el que son divisibles dos o más números.

CÁLCULO DEL Mínimo común múltiplo

Para calcular el mcm entre dos o más números podemos seguir los siguientes pasos:

  1. Descomponer los números en sus factores primos.
  2. Escribir los números como la multiplicación de sus factores primos.
  3. Escribir en en la parte inferior el mcm que será igual al producto de todos los factores comunes y no comunes de los números a la mayor potencia. Es decir, si entre los números a los que se le realizó la descomposición se observa un factor que se repite pero con exponente diferente, se considera el que tiene el mayor exponente.
  4. Resolver el producto del mcm.

Por ejemplo:

-Hallar el mcm entre 40 y 60.

Lo primero es descomponer los dos números en factores primos y expresar dicha descomposición en forma de multiplicación:

Luego se eligen los factores comunes y no comunes. En el caso del 2, está en ambas expresiones con diferente exponente, en este caso se considera el 23 porque es mayor. De esta forma, el mcm de ambos números es:

mcm (40, 60) = 2· 3 · 5

Al resolver el producto obtenido el resultado es:

mcm (40, 60) = 2· 3 · 5 = 2 · 2 · 2 ·3 · 5 = 120

De esta forma, el mínimo común múltiplo entre 40 y 60 es 120.

CÁLCULO DEL Máximo común divisor

Para calcular el mcd entre dos o más números se pueden seguir los siguientes pasos:

  1. Descomponer los números en sus factores primos.
  2. Escribir los números como la multiplicación de sus factores primos.
  3. Escribir en la parte inferior el mcd que será igual al producto de los factores que tienen en común a la menor potencia. Es decir, si se repite un factor se considera el que tiene la menor potencia.
  4. Resolver el producto del mcd.

Por ejemplo:

-Hallar el mcd entre 56 y 48.

Primero se descomponen ambos números en sus factores primos:

Luego se seleccionan únicamente los factores que tienen en común. En este caso, el factor en común entre ambos números es el 2 que se encuentra expresado en diferente potencia: 23 y 24. Para calcular el mcd se toma únicamente la menor potencia, en este caso sería 23. De esta manera, el mcd queda expresado de la siguiente manera:

mcd (56, 48) = 23

Al resolver la potencia se obtiene el resultado:

mcd (56, 48) = 8

De esta manera, el mcd entre 56 y 48 es el número 8.

¿Sabías qué?
Calculamos el máximo común divisor porque si calculamos el mínimo común divisor entre dos números siempre sería 1, porque el 1 es divisor de todos los números.

El mcd de los números de Fibonacci

Los números de la secuencia de Fibonacci son: 1, 1, 2, 3, 5, 8, 13, 21, 34, 89 y siguen hasta el infinito. Esta secuencia consiste en sumar los dos números anteriores para hallar el siguiente número. Por ejemplo, 1 + 1 = 2, 2 + 1 = 3, 2 + 3 = 5, y así sucesivamente hasta el infinito.

Lo curioso de estos números es que si calculamos el máximo común divisor de dos números de Fibonacci obtenemos otro número de la secuencia de Fibonacci. Por ejemplo, el mcd (3, 21) = 3.

VER INFOGRAFÍA

problemas de aplicación

Para resolver problemas de mcm y mcd hay que tener en cuenta los datos del problema y la pregunta que nos hace, en ella estará la clave para saber si el problema se resuelve con mcm y mcd. Veremos unos ejemplos donde se tenga que aplicar alguno de los dos cálculos:

1. En una ciudad, el reloj de la catedral indica la hora a través de campanadas que suenan cada 3 horas, y el reloj de la torre de la plaza lo hace cada 8 horas. ¿Cada cuántas horas ambos relojes sonarán al mismo tiempo?

Los datos del problema indican que el reloj de la catedral suena cada 3 horas y el de la municipalidad cada 8 horas. Al descomponer ambos números se obtiene:

En este caso, se trata de un problema de mínimo común múltiplo, y se debe calcular el mismo entre ambos números para determinar cada cuántas horas sonarán al mismo tiempo los relojes.

mcm (3, 8) = 3 · 23

mcm (3, 8) = 24

De esta manera, se determinó que los relojes suenan al mismo tiempo cada 24 horas.

2. En la tienda de Jorge hay una caja con 12 naranjas y otra con 18 peras. Jorge quiere distribuir las frutas en cajas más pequeñas de forma que todas las cajas tengan la misma cantidad de fruta. Cada caja solo puede tener peras o naranjas y las cajas deben ser lo más grande posible. ¿Cuántas frutas debe haber en cada caja?

Los datos del problema son cajas de 12 naranjas y 18 peras. Al descomponer dichos números en factores primos se obtiene:

En este problema debemos separar o dividir las frutas en diferentes cajas, por lo tanto se resuelve a través del mcd.

mcd (12, 18) = 2 · 3

mcd (12, 18) = 6

De esta manera, se determinó que en cada caja debe haber 6 frutas.

¡A practicar!

  1. Calcula el mínimo común múltiplo entre los siguientes números.

a) 30, 60 y 90 

SOLUCIÓN

mcm (30,60,90) = 23 . 32 . 5 = 180 

b) 15, 30, 20 y 40 

SOLUCIÓN

mcm (15,30,20,40) = 23 . 3 . 5 = 120

2. Calcula el máximo común divisor entre los siguientes números.

a) 18, 26 y 40 

SOLUCIÓN

mcd (18,26,40) = 2

b) 54, 60, 80 y 100 

SOLUCIÓN

mcd (54,60,80,100) = 2

3. Marcos tiene una cuerda de 120 metros y otra de 96 metros. Desea cortarlas de modo que todos los trozos sean iguales pero lo más largos posible. ¿Cuánto medirá cada trozo de cuerda? 

SOLUCIÓN

mcd (120,96) = 23 . 3 = 24

Cada trozo medirá 24 metros.

4. Un jardinero riega el césped de un parque cada 5 días y lo corta cada 8 días. ¿Cada cuántos días coincidirán sus funciones de riego y de corte del césped? 

SOLUCIÓN

mcm (5,8) = 23 . 5 = 40

Las funciones de riego y corte de césped coincidirán cada 40 días.

5. Una tienda compra memorias USB de diferentes colores. Para Navidad hizo un pedido de 84 memorias rojas, 196 azules y 252 verdes. Para guardar la mercancía de forma organizada, exigió que le enviaran las memorias en cajas iguales, sin mezclar los colores y con el mayor número posible de memorias. ¿Cuántas memorias habrá en cada caja? 

SOLUCIÓN

mcd (84,196,252) = 22 . 7 = 4 . 7 = 28

En cada caja habrá 28 memorias.

6. Adrián es un deportista de alto rendimiento que practica después del colegio. Cada 3 días recorre un trayecto en bicicleta por la ciudad, cada 4 días juega fútbol y cada 12 días juega al hockey. ¿Cuántos días pasarán para que realice las tres actividades en el mismo día? 

SOLUCIÓN

mcm (3,4,12) = 22 . 3 = 4 . 3 = 12

Pasarán 12 días para que haga las tres actividades el mismo día.

RECURSOS PARA DOCENTES

Artículo “Factorización de números”

Este recurso permite profundizar el tema de la factorización de números y el cálculo del mcm y el mcd.

VER

Artículo “Mínimo común múltiplo y Máximo común divisor”

Este recurso proporciona situaciones problemáticas en las que se aplica el cálculo del mcm y el mcd.

VER

CAPÍTULO 2 / TEMA 2

MÚLTIPLOS Y DIVISORES

Un múltiplo de un número es el resultado de multiplicar ese número por otro. Debido a esto, los múltiplos de un número son infinitos. Por otra parte, los divisores son los valores que dividen a un números en partes iguales y permiten saber si se trata de un número primo o compuesto.

nÚMEROS PRIMOS

Los números primos son aquellos números naturales que son divisibles por uno y por sí mismos, es decir, sus únicos divisores son ellos mismos y la unidad. Por ejemplo: 2, 3, 5, 7 y 11 son números primos.

Número Divisores
2 2 y 1
3 3 y 1
5 5 y 1
7 7 y 1
11 11 y 1

¿Sabías qué?
El matemático griego Euclides demostró que los números primos son infinitos.

La maravilla de los números primos

Los números primos son como los arquitectos de otros números, ya que la multiplicación de varios números primos da lugar a un número compuesto. Los números primos son equivalentes en las matemáticas a lo que los átomos son en la materia. Esta naturaleza los hace tan peculiares que muchos matemáticos los han estudiado a través de los años.

¿Sabías qué?
El número 2 es el único número primo que es par.

nÚMEROS COMPUESTOS

Los números compuestos son aquellos números naturales que tienen más de dos divisores, además del uno y de sí mismo. Estos números pueden ser expresados como un producto de números primos que es único para cada número.

Esta cuadrícula es conocida como “la criba de Eratóstenes” y muestra en celeste los números primos y en naranja los números compuestos. Recuerda que los números son infinitos. Aquí mostramos los números primos y compuestos mayores que 1 hasta el 100, pero los números siguen hasta el infinito. El número 1, está en verde porque no es primo ni compuesto, ya que tiene un solo divisor que es él mismo.

Algunos números compuestos

Número Divisores
4 4, 2 y 1
6 6, 3, 2 y 1
8 8, 4, 2 y 1
9 9, 3 y 1
10 10, 5, 2 y 1

DIVISORES

Un divisor es el número que divide a otro en una cantidad entera. Un número es divisible por otro si su división es exacta, es decir, el resto de la división es cero. Si un número “a” se divide por otro “b” y el resto de la división es cero quiere decir que “b” es divisor de “a” o que “a es divisible por b”. Por ejemplo, 4 es divisor de 8 porque 8 : 4 = 2 y el resto es cero. Por lo tanto, 8 es divisible por 4.

Para encontrar los divisores de un número se pueden usar las tablas de multiplicar o los criterios de divisibilidad. Por ejemplo, para buscar los divisores de 16 sabemos que se trata de un número par. Por lo tanto, va a ser divisible por 2. Por otra parte, el 16 se encuentra dentro de las tablas de multiplicar del 4 y del 8. Entonces, esos números forman parte de sus divisores. También sabemos que todos los números (primos o compuestos) son divisibles entre ellos mismos y entre 1, por lo tanto, los divisores de 16 son: 1, 2, 4, 8 y 16.

Números perfectos

El matemático griego Euclides estudiaba los números naturales y denominaba números perfectos a un tipo de números compuestos. Él describía a un número perfecto como aquel número natural que es igual a la suma de sus divisores excepto él mismo. Un ejemplo de número perfecto es el 6 ya que sus divisores son: 1, 2, 3 y 6. Si los sumamos a todos, menos al seis tenemos, el resultado es igual al mismo número: 1 + 2 + 3 = 6. El siguiente número con estas características es el 28. Sus divisores son 1, 2, 4, 7, 14 y 28. La cuenta sería: 1 + 2 + 4 + 7 + 14 = 28.

DESCOMPOSICIÓN DE NÚMEROS EN SUS FACTORES PRIMOS

Todos los números compuestos pueden descomponerse en un producto de sus factores primos. Para descomponer un número en sus factores primos, se divide por el menor de sus divisores primos. El cociente de esa división se vuelve a dividir por el menor divisor primo de este y así sucesivamente hasta conseguir como cociente el 1. La manera de representar la descomposición es a través de una raya vertical que separa la división del número y sus factores primos.

Por ejemplo, procedimiento para descomponer el número 84 en sus factores primos es el siguiente:

El menor divisor primo de 84 es 2, por lo tanto, se divide 84 : 2 = 42. El cociente se escribe en la parte inferior y se vuelve a repetir el procedimiento. El menor divisor primo de 42 es 2, se escribe el divisor y el resultado que es 21 se escribe debajo de 42. Luego, el menor divisor primo de 21 es 3, se escribe dicho divisor y el resultado, que es 7, se escribe en la parte inferior. Como 7 es un número primo, el mínimo divisor primo es sí mismo, por lo tanto, se escribe el divisor 7 y el resultado de la división es 1. Como el número 1 no es un número primo se da por concluida la descomposición.

De esta manera, el 84 se puede escribir como la multiplicación de todos sus factores primos:

84 = 2 · 2 · 3 · 7

En estos casos, las descomposiciones de factores primos suelen representarte en forma de potencia en aquellos factores que se repiten. Para este ejemplo, observamos que el número 2 se repite dos veces por lo tanto se puede expresar como 22. De esta forma, la descomposición quedaría expresada de la siguiente forma:

84 = 22 · 3 · 7

Códigos secretos

Los números se pueden descomponer en sus factores primos, pero cuando hablamos de números realmente grandes resulta casi imposible a menos que utilicemos herramientas informáticas o programas de computadora. Es por esto que los números primos son perfectos para crear códigos secretos indescifrables. Por ejemplo, cuando se hacen compras por internet, los datos de las personas que compran quedan ocultos por un código creado por números enormes que funcionan como una cerradura cuya llave son los factores primos de este número.

¡A ejercitar!

  1. Encierra en color azul los números primos y en rojo los números compuestos.

RESPUESTAS

2. Encuentra los divisores de los siguientes números.

a) 24 

RESPUESTAS
Divisores de 24: 1, 2, 3, 4, 6, 8, 12 y 24.

b) 60 

RESPUESTAS
Divisores de 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 y 60.

c) 73 

RESPUESTAS
Divisores de 73: 1 y 73

d) 48 

RESPUESTAS
Divisores de 48: 1, 2, 3, 4, 6, 8, 12, 16, 24 y 48.

3. Señala cuál de los siguientes números es un número compuesto.

a) 53

b) 63

c) 73

d) 83

RESPUESTAS
b) 63 

4. Descompone en factores primos los siguientes números:

a) 54 

RESPUESTAS

b) 150 

RESPUESTAS

c) 72 

RESPUESTAS

d) 100 

RESPUESTAS

e) 63 

RESPUESTAS

f) 132 

RESPUESTAS

RECURSOS PARA DOCENTES

Artículo “Criterios de divisibilidad”

El artículo propone una serie de reglas que permiten identificar los divisores de un número.

VER

CAPÍTULO 2 / TEMA 1

OPERACIONES BÁSICAS

Los seres humanos tenemos la capacidad de contar cosas. Para este proceso de conteo necesitamos un conjunto de operaciones que facilitan los cálculos. La adición, la sustracción, la multiplicación y la resta son conocidas como operaciones básicas y su uso va desde lo cotidiano hasta lo científico. 

Adición y sustracción por reagrupación

Las adiciones y las sustracciones las utilizamos todos los días para contar cantidades como los puntos que obtenemos en un juego o cuando necesitamos saber lo que nos tienen que dar de vuelto al hacer una compra. Existen diversos métodos para realizar estas operaciones pero el resultado siempre es el mismo.

Adición por reagrupación

A menudo hacemos uso de las adiciones para resolver distintas situaciones. Cuando los números son pequeños usamos cálculos mentales, pero cuando los números son grandes generalmente hacemos la cuenta en un papel.

Los siguientes pasos te ayudarán a resolver adiciones por reagrupación:

1. Se escriben los números a sumar uno debajo del otro, de manera que coincidan las unidades, decenas, centenas, unidades de mil, etc.

2. Se inicia la suma de derecha a izquierda, a partir de las unidades. Si el resultado de la suma de las unidades es mayor a 9, se anota el resultado de la unidad de dicha suma y el valor de la otra cifra se anota sobre la columna de la izquierda. De esta manera, al resultado de la columna siguiente se le suma la cifra que se anotó con antelación.

Luego se procede a sumar las siguientes columnas junto con los números de las llevadas que se hayan podido generar en sumas de columnas anteriores.

Sustracción por reagrupación

Para resolver las sustracciones por reagrupación se pueden seguir los siguientes pasos:

1. Se escriben los números a restar uno debajo del otro, de manera que coincidan las unidades, decenas, centenas, etc.

2. Igual que en la adición, la sustracción se resuelve de derecha a izquierda. Si el número de la cifra superior es menor que el de la cifra inferior, no se puede restar de forma directa. En este caso, se coloca un 1 delante del número de arriba y se resuelve la resta. A este tipo de operación se la conoce como “resta con llevada” porque al resolver la siguiente columna se le debe restar el 1 que se tomó prestado anteriormente.

3. Se repite el procedimiento hasta abarcar todas las columnas.

Multiplicación

Las multiplicaciones nos sirven para simplificar situaciones en las que tendríamos que sumar reiteradamente un mismo número. De hecho, la multiplicación consiste en calcular el resultado de sumar un número por sí mismo tantas veces como indique otro número o multiplicador. Existen dos tipos de multiplicación: sin reagrupación y con reagrupación.

Multiplicación sin reagrupación

Las multiplicaciones sin reagrupación son aquellas que no tienen llevada, es decir, que cuando multiplicamos cada una de las cifras del multiplicador por el multiplicando da como resultado un número de una cifra.

Para resolver estas multiplicaciones se siguen estos pasos:

1. Primero se calculan los productos intermedios. Se comienza con la multiplicación de las unidades del multiplicador por todas las cifras del multiplicando de derecha a izquierda y se anotan las cifras correspondientes en cada columna. En este caso se multiplica 3 × 62.312 = 186.936.

2. Luego se multiplica la decena del multiplicador por las cifras del multiplicando, se deja un espacio y se anota el número obtenido debajo del resultado anterior. Aquí se multiplica 1 × 62.312 = 62.312.

3. Luego de obtener los productos intermedios, estos se suman para obtener el resultado de la multiplicación.

 

Observemos ahora un ejemplo en donde el multiplicador posee tres cifras:

1. Igual que en el ejemplo anterior, lo primero que hacemos es multiplicar las unidades del multiplicador (2) por cada una de las cifras.

2. Luego dejamos un espacio en la fila de abajo y anotamos el resultado de la multiplicación de las decenas del multiplicador y el multiplicando.

3. Después dejamos dos espacios y anotamos el resultado de multiplicar las centenas del multiplicador y el multiplicando.

4. Finalmente sumamos los tres productos obtenidos y obtenemos el resultado 45.245.252.

¿Sabías qué?
La multiplicación es una suma abreviada de sumandos iguales. El resultado de la multiplicación se llama producto.
La multiplicación presenta varias propiedades, como la del elemento neutro, en la que todo número multiplicado por 1 es igual al mismo número. Otra propiedad es la conmutativa que explica que el orden de los factores no altera el resultado. También presenta la propiedad distributiva la cual indica que no importan cómo se reagrupen los factores, el resultado siempre será el mismo.

Multiplicación con reagrupación

A diferencia de los ejemplos anteriores, las multiplicaciones por reagrupación tienen llevadas. Se resuelven con los mismos pasos anteriores, pero esta vez las llevadas se suman al resultado de cada multiplicación al momento de anotar los productos intermedios.

Para resolver este tipo de multiplicación se siguen estos pasos:

1. Primero se calculan los productos intermedios. Se comienza con la multiplicación de las unidades del multiplicador por todas las cifras del multiplicando de derecha a izquierda y se anotan las cifras correspondientes en cada columna. Cuando el producto de una cifra del multiplicador por una cifra del multiplicando tiene dos cifras, se anota la unidad de dicho número y la cifra correspondiente a las decenas se suma al producto siguiente.

Nota que 5 × 5 = 25. Así que colocamos la unidad (5) en la columna de los resultados y la decena (2) sobre la columna de la izquierda. Por lo tanto, al multiplicar 5 × 0 = 0 y 0 + 2 = 2.

2. Luego se multiplica la decena del multiplicador por las cifras del multiplicando, se deja un espacio y se anota el número obtenido debajo del resultado anterior.

3. Repetimos el paso anterior con las centenas del multiplicador.

4. Finalmente sumamos los productos parciales y obtenemos el resultado de la multiplicación.

división

Muchas veces tenemos la necesidad de hacer repartos de manera equitativa. La operación que nos permite hacerlo es la división. Esta puede ser exacta o inexacta.

Si la resta es la operación opuesta a la suma, la división es la opuesta a la multiplicación. Para expresar una división se pueden emplear los símbolos de “÷”, “:” y “/”. Esta operación nos sirve para repartir cantidades en partes iguales y pueden ser de dos tipos: divisiones exactas cuando el resto es igual a cero y divisiones inexactas cuando no lo es.

Divisiones exactas

Las divisiones exactas son aquellas cuyo resto es igual a cero. Esto lo determinamos al resolver la división por medio de los siguientes pasos:

Para dividir 323 ÷ 17 lo primero que debemos hacer es escribir los datos en su respectiva ubicación para poder comenzar a realizar cálculos:

2. Como tenemos dos cifras de divisor, tomamos dos de dividendo para comenzar la división y comprobamos que la cantidad sea menor a la del divisor.

3. Pensamos un número que multiplicado por 17 se acerque lo máximo posible a 32. Sabemos que 1 × 17 = 17 y 2 × 17 = 34 y es mayor que 32. Así que colocamos el 1 en el cociente, escribimos el producto debajo del 32 y restamos 32 − 17 = 15.

4. Bajamos el siguiente dígito del dividendo, en este caso el 3:

5. Buscamos un número que multiplicado por 17 sea igual o se acerque lo máximo posible a 153. En este caso sería 9, porque 17 × 9 = 153. Luego restamos el producto. Como 153 − 153 = 0 no seguimos la división y el resto de esta es cero, lo que significa que es exacta.

Podemos escribir que 323 ÷ 17 = 19.

Divisiones no exactas

Las divisiones no exactas son aquellas que tienen un resto distinto de cero. El procedimiento para resolverlas es igual al anterior lo único que cambia es que la división termina cuando el resto obtenido es menor al divisor. Observemos el siguiente ejemplo:

Podemos escribir esta división de la siguiente forma:

5.584 ÷ 24 = 232 y resto = 16.

Historia de los símbolos matemáticos

Muchos países en la Antigüedad utilizaban abreviaturas para indicar algunas operaciones matemáticas. Los italianos, por ejemplo, utilizaban una “p” y una “m” para indicar la suma y la resta (plus y minus, en latín). Luego se impuso el uso de la abreviatura alemana ­”+” y “−”. Estos símbolos se usaron por primera vez en un libro alemán de Widman en 1489.

El primer símbolo que se utilizó para la multiplicación fue “×”, utilizado por Oughtred en 1631. Varios años después Leibniz impuso el punto “·” como símbolo de la multiplicación porque decía que el símbolo que se usaba era fácil de confundir con la letra equis “x”.

Fibonacci, en el siglo XIII, creó la barra horizontal para las fracciones. Esta separaba el numerador del denominador. En 1845, De Morgan ideó la barra oblicua (/) para denotar a la división. Antes de la barra oblicua, Rahn inventó para la división el signo ÷. Los dos puntos (:) los introdujo Leibniz en el caso de que se quisiese escribir una división en una sola línea.

¡A practicar!

1. Resuelve las siguientes adiciones y sustracciones.

a) 3.005.078 + 5.119.839 = 

Solución
8.124.917

b) 4.313.528 − 499.999 = 

Solución
3.813.529

c) 27.521.666 − 14.124.917 = 

Solución
13.396.739

d) 187.324.949 + 153.286.084 = 

Solución
340.611.033

2. Resuelve las siguientes multiplicaciones.

a) 2.321.231 × 231 = 

Solución
536.204.361

b) 1.639.121 × 452 = 

Solución
740.882.692

c) 3.141.243 × 221 = 

Solución
694.214.703

d) 796.467 × 734 = 

Solución
584.606.778

3. Resuelve las siguientes divisiones.

a) 48.321.564 : 12 = 

Solución
4.026.797

b) 240.526 : 18 = 

Solución
13.362 y su resto es 10.

c) 451.542 : 42 = 

Solución
10.751

d) 2.795.615 : 26 = 

Solución
107.523 y su resto es 17.

RECURSOS PARA DOCENTES

Artículo “Operaciones básicas de los números naturales y sus propiedades”

El siguiente artículo destacado explica cuáles son las principales propiedades de las operaciones básicas en números naturales.

VER

Artículo “Suma y resta utilizando el algoritmo de descomposición”

Este artículo explica uno de los métodos para resolver sumas y restas que se fundamenta en la descomposición de un número de acuerdo a los valores posicionales de sus cifras.

VER

Artículo “Divisiones por dos o más cifras”

Este artículo explica uno de los métodos usados para realizar divisiones de dos o más cifras.

VER

CAPÍTULO 4 / TEMA 5

RELACIONES DE TIEMPO

El tiempo es una magnitud que nos ayuda a medir la duración de un evento. Gracias al tiempo podemos ordenar sucesos y establecer un pasado, un presente y un futuro. Todas sus unidades de medidas pueden convertirse entre ellas. Aprender sus cálculos básicos permite saber, por ejemplo, en qué momento tenemos que hacer una tarea.

El tiempo es una de las magnitudes más utilizamos cotidianamente, por eso es normal que veas un reloj en todas las casa, escuelas y comercios. Las unidades menores a un día son las horas, minutos y segundo, y para medirlas usamos el reloj o un cronómetro; en cambio, las unidades mayores a un día, como los meses y los años, son medidas con un calendario.

UNIDADES DE Tiempo: equivalencias y conversiones

Todo lo que realizamos consume tiempo: sabemos que el recreo dura 10 minutos, que un partido de fútbol dura 90 minutos o que el día tiene 24 horas. Es una variable tan importante, que en todo el mundo se utilizan las mismas unidades para medir el tiempo, a diferencia de otras magnitudes, como la distancia o el volumen. A algunas de sus unidades más importantes puedes verlas en esta tabla, junto a sus equivalencias:

Unidades de tiempo y sus equivalencia
Menores a un día

 

1 día = 24 horas

1 hora = 60 minutos

1 minuto = 60 segundos

Mayores a un día

 

1 semana = 7 días

1 mes = 30 o 31 días

1 año = 365 días = 12 meses

Conversión de unidades de tiempo

Podemos hacer conversiones entre dos o más unidades de tiempo por medio de una regla de tres: método en el que establecemos relaciones, multiplicamos en forma diagonal y luego dividimos por la unidad restante.

– Ejemplo 1:

¿Cuánto días hay en 96 horas?

En 96 horas hay 4 días.


– Ejemplo 2:

¿Cuántos meses hay en 20 años?

En 20 años hay 240 meses.


– Ejemplo 3:

¿Cuántas horas tiene una semana?

Una semana (7 días) tiene 168 horas.

Otras unidades de tiempo

Para las medidas de tiempo más grandes, las equivalencias más prácticas son:

  • 1 lustro = 5 años
  • 1 década = 10 años
  • 1 siglo = 100 años
  • 1 milenio = 1.000 años

¿Sabías qué?
Hay una unidad de tiempo mucho menor que  el segundo: el microsegundo. Su símbolo es µs y es igual a una millonésima parte de un segundo, es decir, 10−6 s.
En un calendario o agenda representamos todos los días del mes. Son útiles para planificar las actividades a realizar cada día; incluso, algunas agendas dividen cada día en horas, de manera que podamos organizar aún mejor nuestro tiempo. También son útiles para conocer las fechas de cada mes y los días feriados que hay en cada uno de ellos.

el reloj

El reloj es una instrumento para medir el tiempo, gracias a él sabemos las horas, los minutos y los segundos de un día. Pueden ser digitales o analógicos.

Este es un reloj analógico e indica que son “las 6 y 15 minutos”.

 Este es un reloj digital e indica que son “las 10 y 20 minutos de la mañana”.

Abreviaturas am y pm

  • La abreviatura am significa que la hora leída corresponde a antes del mediodía.
  • La abreviatura pm significa que la hora leída corresponde a después del mediodía.

Sistema horario de 24 horas

Los relojes analógcos tienen un sistema de 12 horas, por lo que necesitan hacer dos ciclos completos para cubrir un día. En cambio, los relojes digitales pueden tener, además de un sistema de 12 horas, un sistema de 24 horas que se caracteriza por dividir al día en las 24 horas totales que lo conforman, por lo que no utiliza las abreviaturas am y pm.

La siguiente tabla muestra la relación entre ambos formatos:

Formato 24 horas Formato 12 horas
00:00 h 12:00 am
01:00 h 01:00 am
02:00 h 02:00 am
03:00 h 03:00 am
04:00 h 04:00 am
05:00 h 05:00 am
06:00 h 06:00 am
07:00 h 07:00 am
08:00 h 08:00 am
09:00 h 09:00 am
10:00 h 10:00 am
11:00 h 11:00 am
12:00 h 12:00 pm
13:00 h 01:00 pm
14:00 h 02:00 pm
15:00 h 03:00 pm
16:00 h 04:00 pm
17:00 h 05:00 pm
18:00 h 06:00 pm
19:00 h 07:00 pm
20:00 h 08:00 pm
21:00 h 09:00 pm
22:00 h 10:00 pm
23:00 h 11:00 pm

operaciones con unidades de tiempo

Suma

Los pasos a seguir para sumar horas y minutos son los siguientes:

  1. Sumamos los minutos y luego las horas.
  2. Si los minutos son 60, colocamos 00 en la columna de los minutos y sumamos 1 hora en la columnas de las horas.
  3. Si los minutos son más de 60, restamos 60 a ese resultado y sumamos 1 hora en la columnas de las horas.
  4. Escribimos la hora final.

– Ejemplo 1:

¿Cuánto es 2:36 + 5:15?

Así que:

2 h y 36 min + 5 h y 15 min = 7 h y 51 min

También podemos representarlo de esta manera:

02:36 + 05:15 = 07:51


– Ejemplo 2:

Marta salió de su casa a las 3: 45 pm y luego de 2 horas y 15 minutos llegó a la casa de su abuela, ¿a qué hora llegó?

  • Datos

Hora de salida: 3 h y 45 min

Duración del recorrido: 2 h y 15 min

  • Analiza

Tenemos que sumar la hora de salida con el tiempo que duró en el recorrido para saber la hora de llegada. Para esto sumamos primero los minutos y luego las horas.

  • Calcula

Primero sumamos los minutos: 45 min + 15 min = 60 min. Como 60 min son iguales a 1 h, escribimos 00 y sumamos 1 hora a la columna de las horas.

Luego sumamos las horas: 1 h + 3 h + 2 h = 6 h.

  • Responde

Marta llegó a las 6 pm en punto.


– Ejemplo 3:

Carla entró a un examen a las 8:50 am y tardó 2 horas y 39 minutos en hacerlo, ¿a qué hora salió del examen?

  • Datos

Hora de entrada: 8 h y 50 min

Duración en el examen: 2 h y 39 min

  • Analiza

Si sumamos la hora de entrada con el tiempo que duró en el examen tendremos la hora de salida del examen. Primero sumamos los minutos y luego las horas.

  • Calcula

Sumamos los minutos: 50 + 39 = 89. Pero ya sabemos que 60 minutos forman una hora, así que tenemos que “sacar” 60 min de 89 min, es decir, 89 − 60 = 29.

Escribimos 29 min en la columna de los minutos y sumamos 1 h en la columna de las horas.

Luego sumamos las horas: 1 h + 8 h + 2 h = 11 h.

  • Responde

Carla salió a las 11:29 am.

Una de las primeras formas de medir el tiempo fue por medio de un reloj solar. Este funciona gracias a la sombra que genera el Sol durante el día sobre un estilo ubicado encima de una superficie. El movimiento diurno del Sol hace que la sombra cambie de dirección y de este modo se podía saber con bastante precisión la hora del día.

Resta

Los pasos a seguir para restar horas y minutos son los siguientes:

  1. Restamos los minutos.
  2. Si el minuendo es menor que el sustraendo, sumamos 60 minutos (que es igual a 1 hora) a ese minuendo. Luego restamos una hora de la columna de las horas.
  3. Restamos las horas.
  4. Escribimos el resultado.

– Ejemplo 1:

¿Cuánto es 4:11 – 2:47?

Lo primero que debemos hacer es colocar una hora sobre otra.

Como 11 es menor que 47 y no lo puede restar, tomamos “prestado” 60 minutos (1 hora) de la columna de las horas, es decir, sumamos a 11 min + 60 min = 71 min. Luego restamos esa hora de la columna de las horas: 4 h − 1 h = 3 h.

Ahora sí podemos hacer la resta de minutos: 71 min − 47 min = 24 min.

Después restamos las horas: 3 h − 2 h = 1 h.

Entonces:

4 h y 11 min − 2 h y 47 min = 1 h y 24 min

También lo podemos escribir así:

4:11 − 2:47 = 1:24


– Ejemplo 2:

Después de 45 min, un tren llegó a las 16 h y 15 min, ¿a qué hora salió el tren?

  • Datos

Duración de recorrido: 45 min

Hora de llegada: 16 h y 15 min

  • Analiza

Hay que restar el tiempo recorrido a la hora de llegada para saber la hora exacta de salida.

  • Calcula

Como 15 es menor que 45, tomamos prestado 60 minutos (1 hora) de la columna de las horas. Por lo tanto: 15 min + 60 min = 75 min. Al prestar 1 hora, tenemos que restarla de la columna de las horas, así que: 16 h − 1 h = 15 h. Luego hacemos la resta de minutos y horas.

  • Responde

El tren salió a las 15:30.


– Ejemplo 3:

Francisco tomó el bus para visitar a sus primos en otra ciudad. El bus salió a las 8:30 am y llegó a las 10:45 am ¿cuánto duró el viaje?

  • Datos

Hora de salida: 8 h y 30 min

Hora de llegada: 10 h y 45 min

  • Analiza

Si restamos la hora de salida a la hora de llegada tendremos la diferencia de tiempo entre ambas. Restamos primero los minutos y luego las horas.

  • Calcula

  • Responde

El viaje duró 2 h y 15 min.

¡A practicar!

1. Resuelve las operaciones de tiempo:

  • 8:45 + 2:45
Solución
8:45 + 2:45 = 11:30
  • 4:25 − 3:42
Solución
4:25 − 3:42 = 00:43
  • 10:20 + 6:15
Solución
10:20 + 6:15 = 16:35
  • 8:23 − 5:15
Solución
8:23 − 5:15 = 3:08
  • 1:50 + 9:38
Solución
1:50 + 9:38 = 11:28
  • 12:12 − 6:30
Solución
12:12 − 6:30 = 5:42

 

2. Responde:

  • ¿Cuántas horas hay en 5 días?
Solución
120 horas.
  • ¿Cuántos días hay en 1 década?
Solución
3.650 días.
  • ¿Cuántos segundos hay en 2 horas?
Solución
7.200 segundos.
  • ¿Cuántos meses hay en 2 lustros?
Solución
240 meses.
  • ¿Cuántas décadas hay en 3 siglos?
Solución
30 décadas.
RECURSOS PARA DOCENTES

Artículo “Operaciones en el sistema sexagesimal”

Este artículo explica la forma de realizar operaciones con unidades de tiempo en el sistema sexagesimal.

VER

Artículo “Medidas de tiempo”

Con este recurso podrás ampliar la información sobre cómo hacer operaciones de suma y resta con las medidas de tiempo.

VER

CAPÍTULO 5 / TEMA 4 (REVISIÓN)

REPRESENTACIONES GRÁFICAS | ¿QUÉ APRENDIMOS?

PICTOGRAMAS

LOS PICTOGRAMAS SON GRÁFICOS QUE SIRVEN PARA REPRESENTAR A TRAVÉS DE DIBUJOS O SÍMBOLOS SENTIMIENTOS, PERSONAS, ANIMALES, ACCIONES U OBJETOS. EN SITUACIONES DE NUESTRA VIDA COTIDIANA PODEMOS ENCONTRARLOS EN SEÑALES DE TRÁNSITO, CARTELES, HISTORIETAS O EN PRODUCTOS. TAMBIÉN SON ÚTILES CUANDO HACEMOS TABLAS DE DATOS.

LOS PICTOGRAMAS SON USADOS EN LAS HISTORIETAS O CÓMICS PARA EXPRESAR SENTIMIENTOS O ACCIONES DE UN PERSONAJE.

TABLAS

LAS TABLAS DE DATOS SON UN RECURSO MUY ÚTIL PARA MOSTRAR INFORMACIÓN RECOLECTADA DE FORMA RESUMIDA Y CLARA. ESTAS TABLAS SON CUADROS FORMADOS POR COLUMNAS VERTICALES  Y FILAS HORIZONTALES QUE EXPRESAN LOS DATOS. ESTA DEBE SER SENCILLA PARA QUE CUALQUIER LECTOR PUEDA ENTENDERLA. LA UNIÓN DE UNA COLUMNA Y UNA FILA SE DENOMINA CELDA.

PARA LOS CIENTÍFICOS LAS TABLAS SON DE GRAN AYUDA PARA ORGANIZAR MUCHOS DATOS.

FRACCIONES Y SUS GRÁFICAS

LAS FRACCIONES SON NÚMEROS QUE REPRESENTAN UNA PARTE DE UN TODO O ENTERO. EN UN GRÁFICO EL ENTERO SE DIVIDE EN LAS PARTES QUE INDICA EL DENOMINADOR Y SE COLOREAN LAS PARTES QUE INDICA EL NUMERADOR. CUANDO PARTIMOS UN PASTEL EN 8 PARTES IGUALES Y COMEMOS UNA, CUANDO COMPRAMOS MEDIO KILOGRAMO DE PAPAS O CUANDO DECIMOS “SON LAS TRES Y MEDIA” HACEMOS USO DE LAS FRACCIONES.

SI DIVIDIMOS Y CORTAMOS UNA PIZZA EN 2 PARTES IGUALES PARA COMER UNA, LA FRACCIÓN QUE EXPRESA ESA PARTE SERÍA 1/2 Y SE LEE “UN MEDIO”.

CAPÍTULO 5 / TEMA 3

FRACCIONES Y SUS GRÁFICAS

CUANDO CONTAMOS NUESTROS JUGUETES O LÁPICES USAMOS LOS NÚMEROS NATURALES: 1, 2, 3, … PERO ¿QUÉ SUCEDE SI SOLO TENEMOS LA MITAD DE UN LÁPIZ? EN ESTOS CASOS USAMOS UN TIPO DE NÚMEROS LLAMADO FRACCIÓN. LAS FRACCIONES REPRESENTAN UNA PARTE DE UN ENTERO, ESTÁN FORMADAS POR DOS NÚMEROS NATURALES Y SON MÁS COMUNES DE LOS QUE CREES. ¡APRENDAMOS A GRAFICARLAS!

¿QUÉ ES UNA FRACCIÓN?

UNA FRACCIÓN REPRESENTA LA PARTE DE UN TODO O DE UNA UNIDAD DIVIDIDA EN PARTES IGUALES.

UNA NARANJA ENTERA ES IGUAL A UNA UNIDAD O EL “TODO”. OBSERVA LA IMAGEN, ¿LA NARANJA ESTÁ ENTERA? ¡NO! ESTÁ PICADA A LA MITAD Y HAY DOS MITADES. SI COMEMOS UNA DE ESTAS PARTES, DECIMOS QUE COMIMOS “MEDIA NARANJA”. ESTO ES UN EJEMPLO DE FRACCIÓN PORQUE COMIMOS UNA PARTE DE UN TODO. PIENSA: ¿EN QUÉ OTRA OCASIÓN USAMOS FRACCIONES?

VER INFOGRAFÍA

ELEMENTOS DE UNA FRACCIÓN

LA FRACCIÓN TIENE DOS ELEMENTOS SEPARADOS POR UNA RAYA: EL NÚMERO DE ARRIBA SE LLAMA NUMERADOR Y EL DE ABAJO SE LLAMA DENOMINADOR.

  • EL NUMERADOR ES IGUAL A LA CANTIDAD DE PARTES QUE SE HAN TOMADO DEL ENTERO.
  • EL DENOMINADOR ES IGUAL A LA CANTIDAD DE PARTES EN LAS QUE SE HA DIVIDIDO AL ENTERO.

TIPOS DE FRACCIONES

LAS FRACCIONES PUEDEN SER PROPIAS O IMPROPIAS.

  • LAS FRACCIONES PROPIAS TIENEN EL NUMERADOR MENOR AL DENOMINADOR.

POR EJEMPLO: \frac{1}{2}\frac{3}{5} Y \frac{8}{10}.

  • LAS FRACCIONES IMPROPIAS TIENEN EL NUMERADOR MAYOR AL DENOMINADOR.

POR EJEMPLO: \frac{7}{5}\frac{10}{4} Y \frac{5}{3}.

¿SABÍAS QUÉ?
LAS FRACCIONES TAMBIÉN SE PUEDEN EXPRESAR CON UNA DIAGONAL, POR EJEMPLO,\frac{1}{2} ES IGUAL A 1/2.

¿CÓMO GRAFICAR FRACCIONES?

AL SER LAS PARTES DE UN TODO O UNIDAD, PODEMOS DIBUJAR FRACCIONES POR MEDIO DE GRÁFICOS CON FIGURAS GEOMÉTRICAS.

SI QUEREMOS GRAFICAR LA FRACCIÓN \boldsymbol{\frac{1}{2}} LOS PASOS SON LOS SIGUIENTES:

1. DIBUJAMOS CUALQUIER FIGURA GEOMÉTRICA. EN ESTE CASO DIBUJAMOS UN RECTÁNGULO.

2. VEMOS EL DENOMINADOR DE LA FRACCIÓN. EL DENOMINADOR DE LA FRACCIÓN \boldsymbol{\frac{1}{{\color{Red} 2}}} ES 2, ASÍ QUE DIVIDIMOS EL RECTÁNGULO EN 2 PARTES IGUALES.

3. VEMOS EL NUMERADOR DE LA FRACCIÓN. EL NUMERADOR DE LA FRACCIÓN \boldsymbol{\frac{{\color{Red} 1}}{2}} ES 1, ASÍ QUE COLOREAMOS UNA SOLA PARTE DEL RECTÁNGULO.

 

– OTRO EJEMPLO:

GRAFIQUEMOS LA FRACCIÓN \boldsymbol{\frac{3}{4}}.

PRIMERO DIBUJAMOS LA FIGURA GEOMÉTRICA QUE REPRESENTA AL “TODO”.

¿CUÁL ES EL DE DENOMINADOR? EL DENOMINADOR ES 4. ASÍ QUE DIVIDIMOS LA FIGURA EN 4 PARTES IGUALES.

¿CUÁL ES EL NUMERADOR? EL NUMERADOR ES 3. ENTONCES, COLOREAMOS 3 PARTES DE LA FIGURA.

¡ES TU TURNO!

REALIZA EL GRÁFICO DE ESTAS FRACCIONES:

  • \boldsymbol{\frac{2}{5}}
SOLUCIÓN

  • \boldsymbol{\frac{2}{3}}
SOLUCIÓN

LAS FRACCIONES SON UN TIPO ESPECIAL DE NÚMEROS Y SE LEEN DE UNA MANERA DIFERENTE A LOS DEMÁS. PRIMERO LEEMOS EL NUMERADOR COMO CUALQUIER NÚMERO NATURAL. EL DENOMINADOR CAMBIA SEGÚN EL NÚMERO, SI ES 2 SE LEE “MEDIOS”, SI ES 3 SE LEE “TERCIOS” Y SI ES 4 SE LEE “CUARTOS”. ASÍ, LA FRACCIÓN 1/2 SE LEE “UN MEDIO” Y LA FRACCIÓN 1/3 SE LEE “UN TERCIO”.

FRACCIONES EN LA VIDA COTIDIANA

LAS FRACCIONES FORMAN PARTE DE NUESTRO DÍA A DÍA. USAMOS FRACCIONES CADA VEZ QUE COMPRAMOS PAN, FRUTAS O VEGETALES, PUES PODEMOS PEDIR MEDIO KILOGRAMO DE ALGO. TAMBIÉN USAMOS FRACCIONES CUANDO DAMOS LA HORA Y DECIMOS, POR EJEMPLO, “SON LAS DOS Y CUARTO” LO QUE SIGNIFICA QUE HA PASADO 1/4 DE HORA DESPUÉS DE LAS 2.

– OTRAS SITUACIONES:

  • AL CORTAR UNA FRUTA EN DOS PARTES Y COMER UNA: 
  • AL CORTAR UNA PIZZA EN 4 PARTES Y COMER 2: 
  • AL COMPRAR PRODUCTOS:  KILO DE HARINA.
  • AL REALIZAR UNA PARTE DE UN RECORRIDO. LAURA RECORRIÓ  DE UNA CARRERA.
EN VARIAS SITUACIONES DE NUESTRA VIDA ENCONTRAMOS FRACCIONES DE FORMA GRÁFICA. UN EJEMPLO COMÚN DE FRACCIONES ES CUANDO REPARTIMOS UN PASTEL. EN LA IMAGEN VEMOS UNO CORTADO EN 8 PARTES IGUALES, ES DECIR, EL DENOMINADOR ES 8. TAMBIÉN VEMOS QUE SE TOMA 1 PARTE, ASÍ QUE EL NUMERADOR ES 1 Y LA FRACCIÓN DE ESE PEDAZO ES 1/8. LA TORTA TIENE FORMA DE CÍRCULO Y ES SIMILAR AL GRÁFICO DE LA FRACCIÓN.

¡A PRACTICAR!

ESCRIBE LA FRACCIÓN PARA CADA GRÁFICO:

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 2

PARTES COLOREADAS: 1

FRACCIÓN: \boldsymbol{\frac{1}{2}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 5

PARTES COLOREADAS: 1

FRACCIÓN: \boldsymbol{\frac{1}{5}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 3

PARTES COLOREADAS: 2

FRACCIÓN: \boldsymbol{\frac{2}{3}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 4

PARTES COLOREADAS: 3

FRACCIÓN: \boldsymbol{\frac{3}{4}}

SOLUCIÓN

PARTES EN LAS QUE SE DIVIDE AL ENTERO: 4

PARTES COLOREADAS: 2

FRACCIÓN: \boldsymbol{\frac{2}{4}}

RECURSOS PARA DOCENTES

Artículo “Fracciones”

Este recurso cuenta con ejemplos didáctico sobre los tipos de fracciones y cómo graficarlos.

VER

CAPÍTULO 5 / TEMA 2

TABLAS

SI TIENES EN LA MESA MUCHOS LÁPICES DE COLORES, ¿PODRÍAS SABER A SIMPLE VISTA CUÁNTOS HAY DE CADA COLOR? ¡ES MUY DIFÍCIL! CUANDO TENEMOS SITUACIONES DE ESTE TIPO PODEMOS USAR UN RECURSO QUE NOS PERMITE ORGANIZAR DATOS DE MANERA SENCILLA Y RESUMIDA: LAS TABLAS DE DATOS. ¡HOY APRENDERÁS A ELABORARLAS!

¿QUÉ ES UNA TABLA DE DATOS?

LAS TABLAS DE DATOS SON ESTRUCTURAS CON COLUMNAS Y FILAS QUE EXPRESAN UNA INFORMACIÓN CLARA.

– EJEMPLO:

EN EL AULA DE 1° GRADO LOS NIÑOS DIJERON EN QUÉ MES CUMPLEN AÑOS Y LOS DATOS LOS COLOCARON EN LA SIGUIENTE TABLA:

CON LOS DATOS ORDENADOS EN UNA TABLA PODEMOS EXTRAER INFORMACIÓN CON PREGUNTAS:

  • ¿EN QUÉ MES DEL AÑO HAY MÁS NIÑOS QUE CUMPLEN AÑOS?

EN EL MES DE MAYO HAY MÁS NIÑOS QUE CUMPLEN AÑOS.

  • ¿CUÁLES SON LOS MESES QUE TIENEN UN SOLO CUMPLEAÑERO?

LOS MESES QUE TIENEN SOLO UN CUMPLEAÑERO SON MARZO, ABRIL, JUNIO, AGOSTO Y DICIEMBRE.

  • ¿EN QUÉ MES CUMPLE AÑOS HUGO?

HUGO CUMPLE AÑOS EN JULIO.

  • ¿EN QUÉ MES DEL AÑO CUMPLE AÑOS PAMELA?

PAMELA CUMPLE AÑOS EN FEBRERO.

¿PARA QUÉ SIRVEN LAS TABLAS?

LAS TABLAS SIRVEN PARA ORGANIZAR DATOS. TAMBIÉN PODEMOS OBSERVAR UNA IMAGEN Y EXTRAER INFORMACIÓN PARA COLOCARLA EN UNA TABLA. ¡VEAMOS!

OBSERVA ESTA IMAGEN, ¿CUÁNTAS PERSONAS HAY? HAY 6 PERSONAS, PERO ¿TODOS SON ADULTOS?, ¿TODOS SON NIÑOS? ¡NO! ASÍ QUE PODEMOS CREAR GRUPOS A PARTIR DE UNA IMAGEN Y ESCRIBIR ESTOS GRUPOS EN UNA TABLA. POR EJEMPLO, UNA TABLA PUEDE MOSTRAR LA CANTIDAD DE PERSONAS ADULTAS Y LA DE NIÑOS; Y OTRA TABLA PUEDE MOSTRAR LA CANTIDAD DE MUJERES Y HOMBRES.

CON ESTA INFORMACIÓN CREAMOS DOS TABLAS CON CATEGORÍAS DIFERENTES:

  • EN ESTA TABLA EXPRESAMOS LA CANTIDAD DE PERSONAS ADULTAS Y NIÑOS.

  • EN ESTA TABLA EXPRESAMOS LA CANTIDAD DE MUJERES Y HOMBRES.

¿SABÍAS QUÉ?
TODAS LAS TABLAS SON CUADROS QUE ORGANIZAN Y RESUMEN UNA INFORMACIÓN RECOLECTADA.

TABLAS: UNA HERRAMIENTA DE CONTEO

LAS TABLAS NOS AYUDAN A ORGANIZAR DATOS QUE YA FUERON CONTADOS. DE ESTE MODO PODEMOS SABER FÁCILMENTE CANTIDADES Y CARACTERÍSTICAS DE UN CONJUNTO. POR EJEMPLO, EN LA IMAGEN HAY MUCHAS FIGURAS, ¿DE CUÁL FIGURA HAY MÁS CANTIDAD? ¿Y DE CUÁL HAY MENOS CANTIDAD? TODA ESTA INFORMACIÓN LA REPRESENTAMOS DE MANERA ORDENADA EN UNA TABLA:

FIGURA ESTRELLA CUADRADO CÍRCULO CORAZÓN TRIÁNGULO
CANTIDAD 6 7 8 5 6

VEMOS QUE LA FIGURA CON MAYOR CANTIDAD ES EL CÍRCULO Y LA DE MENOR CANTIDAD ES EL CORAZÓN. ES MÁS SENCILLO VERLO EN UNA TABLA QUE EN LA IMAGEN.

LAS FILAS Y LAS COLUMNAS

LAS TABLAS DE DATOS ESTÁN COMPUESTAS POR FILAS EN FORMA HORIZONTAL Y COLUMNAS EN FORMA VERTICAL.

– EJEMPLO:

ESTA ES UNA TABLA QUE MUESTRA LA CANTIDAD DE NIÑOS Y NIÑAS DE 1º, 2º Y 3º GRADO QUE NO HICIERON LA TAREA EN UN DÍA.

LA TABLA TIENE 4 FILAS Y 3 COLUMNAS. POR LO GENERAL, LA PRIMERA FILA Y LA PRIMERA COLUMNA SE UTILIZAN PARA ESCRIBIR LAS CATEGORÍAS, POR EJEMPLO, NIÑOS, NIÑAS Y GRADOS.

LA UNIÓN DE UNA FILA Y UNA COLUMNA SE DENOMINA CELDA, LA QUE ESTÁ MARCADA EXPRESA QUE 1 NIÑA DE 2° GRADO NO HIZO LA TAREA ESE DÍA.

UNA UNIÓN DE FILA Y COLUMNA ES IGUAL A UNA INTERSECCIÓN.

¡ES TU TURNO!

OBSERVA DE NUEVO LA TABLA ANTERIOR Y RESPONDE:

  • ¿CUÁNTOS NIÑOS DE 2° GRADO NO HICIERON LA TAREA?
SOLUCIÓN
3
  • ¿CUÁNTOS NIÑAS DE 3° GRADO NO HICIERON LA TAREA?
SOLUCIÓN
6
  • ¿CUÁNTOS NIÑOS Y NIÑAS DE 1° A 3° GRADO NO HICIERON LA TAREA?
SOLUCIÓN
15

TABLAS DE PICTOGRAMAS Y TABLAS DE DATOS

LAS TABLAS DE PICTOGRAMAS EXPRESAN LA MISMA INFORMACIÓN QUE UNA TABLA DE DATOS, LA ÚNICA DIFERENCIA ES QUE USAMOS DIBUJOS O SÍMBOLOS EN LUGAR DE NÚMEROS.

– EJEMPLO:

TABLA DE DATOS:

TABLA DE PICTOGRAMAS:

¡A PRACTICAR!

1. EXPRESAR LA INFORMACIÓN DE ESTAS SITUACIONES EN TABLA DE PICTOGRAMAS Y TABLA DE DATOS.

A) ANTONIA Y JOSÉ FUERON AL PARQUE DE DIVERSIONES. CADA UNO SE SUBIÓ VARIAS VECES A LOS JUEGOS:

  • ANTONIA SUBIÓ 4 VECES A LA RUEDA DE LA FORTUNA Y 3 VECES AL CARRUSEL.
  • JOSÉ SUBIÓ UNA VEZ A LA RUEDA DE LA FORTUNA Y 2 VECES AL CARRUSEL.
SOLUCIÓN

TABLA DE PICTOGRAMA:

RUEDA DE LA FORTUNA CARRUSEL
ANTONIA
JOSÉ

TABLA DE DATOS:

RUEDA DE LA FORTUNA CARRUSEL
ANTONIA 4 3
JOSÉ 1 2

B) OMAR Y DARÍO JUGARON UN PARTIDO DE FÚTBOL. OMAR ANOTÓ 8 GOLES Y DARÍO 5 GOLES.

SOLUCIÓN

TABLA DE PICTOGRAMAS:

GOLES
OMAR
DARÍO

TABLA DE DATOS:

GOLES
OMAR 8
DARÍO 5

C) ANGELINA Y JULIÁN COMPRARON UNA BOLSA DE CARAMELOS. ANGELINA COMIÓ 8 Y JULIÁN COMIÓ 12.

SOLUCIÓN

TABLA DE PICTOGRAMAS:

CARAMELOS
ANGELINA
JULIÁN

TABLA DE DATOS:

CARAMELOS
ANGELINA 8
JULIÁN 12

2. OBSERVA LA SIGUIENTE IMAGEN Y COMPLETA LA TABLA DE DATOS:

SOLUCIÓN
GLOBOS NEGROS GLOBOS DORADOS
9 13
RECURSOS PARA DOCENTES

Artículo “Estadística: tabla de valores”

Con este recurso podrás profundizar sobre el uso de las tablas de datos en la estadística.

VER

CAPÍTULO 5 / TEMA 1

PICTOGRAMAS

HACE MUCHOS AÑOS ATRÁS, LOS HOMBRES UTILIZARON UN SISTEMA PARA COMUNICARSE BASADO EN DIBUJOS. DIBUJABAN TODO LO QUE VEÍAN EN LAS PAREDES DE LAS CAVERNAS. EN LA ACTUALIDAD TAMBIÉN USAMOS DIBUJOS PARA REPRESENTAR ALGUNA INFORMACIÓN, ESTOS SE LLAMAN PICTOGRAMAS.

¿QUÉ ES UN PICTOGRAMA?

EL PICTOGRAMA ES UN GRÁFICO O DIBUJO QUE REPRESENTA DATOS DE LA REALIDAD.

OBSERVA ESTAS IMÁGENES, TODAS TIENEN UN SIGNIFICADO Y TE HACEN PENSAR EN UN SONIDO. LA PRIMERA EN EL SONIDO DE UN MEGÁFONO, LA SEGUNDA EN EL DE UNA BOCA Y SU VOZ, EL TERCERO EN EL TIMBRE DE UNA NOTIFICACIÓN, EL CUARTO EN EL DE UNA BOMBA QUE VA A EXPLOTAR, EL QUINTO EN EL DESPERTADOR DE UN RELOJ Y EL ÚLTIMO EN EL TRUENO QUE VIENE TRAS UN RAYO. ¡TODOS SON PICTOGRAMAS!

¿SBÍAS QUÉ?
LOS PICTOGRAMAS REPRESENTAN OBJETOS, PERSONAS, ANIMALES, SITUACIONES, SENTIMIENTOS O ACCIONES.

USO DEL PICTOGRAMA

LOS PICTOGRAMAS SON UTILIZADOS EN TODO EL MUNDO PARA EXPRESAR UN MENSAJE COMPLETO DE MANERA SENCILLA. LOS DIBUJOS O SÍMBOLOS UTILIZADOS LOS PUEDEN ENTENDER PERSONAS DE TODAS LAS EDADES.

ESTE ES UN PICTOGRAMA EN EL QUE VEMOS UN HOMBRE Y UNA MUJER. POR LO GENERAL, LOS ENCONTRAMOS EN LOS ESPACIOS PÚBLICOS Y EN ZONAS EN LAS QUE SOLO PUEDEN INGRESAR HOMBRES O MUJERES, POR EJEMPLO, EN LOS BAÑOS PÚBLICOS. TAMBIÉN PODEMOS ENCONTRARLOS EN EMPRESAS DONDE LOS HOMBRES TRABAJAN EN UN SECTOR Y LAS MUJERES EN OTRO.

¿DÓNDE PODEMOS ENCONTRAR PICTOGRAMAS?

  • EN LAS SEÑALES DE TRÁNSITO.
  • EN CARTELES DE UN LUGAR PÚBLICO, COMO EN LOS BAÑOS
  • EN HISTORIETAS O CÓMICS.
  • EN PRODUCTOS.
  • EN ESTADÍSTICA, PARA REPRESENTAR DATOS.

PICTOGRAMAS EN LAS VÍAS

LOS PICTOGRAMAS SON MUY UTILIZADOS EN TODOS LOS PAÍSES PARA REPRESENTAR SITUACIONES QUE PODEMOS O NO PODEMOS HACER. LAS SEÑALES DE PROHIBICIÓN SIEMPRE TIENEN UN PICTOGRAMA Y UN CÍRCULO ROJO SOBRE ESTE CON UNA BANDA DEL MISMO COLOR, POR EJEMPLO, EN LA IMAGEN SE NOS INDICA QUE NO PODEMOS BOTAR BASURA.

PICTOGRAMAS COMUNES

ES COMÚN UTILIZAR LOS PICTOGRAMAS EN MATEMÁTICA PARA REPRESENTAR CANTIDAD DE DATOS. VEAMOS:

LOS NIÑOS DE 1° GRADO VAN DE PASEO AL ZOOLÓGICO Y DEBEN LLEVAR FRUTAS PARA COMPARTIR EN SU MERIENDA.

ESTA TABLA EXPRESA LA CANTIDAD DE FRUTAS, CADA FRUTA ES IGUAL A 1. ¿LAS CONTAMOS?

LOS NIÑOS DE 1° GRADO LLEVAN 7 NARANJAS Y 8 BANANAS.

¡A PRACTICAR!

1. LA MAESTRA DE 1° GRADO LES CONSULTÓ A SUS ALUMNOS A QUIENES LES GUSTA PINTAR Y A QUIENES LES GUSTA LEER. LA TABLA MUESTRA LOS RESULTADOS. OBSERVA Y RESPONDE.

  • ¿A CUÁNTOS NIÑOS DE 1° GRADO LES GUSTA PINTAR?
SOLUCIÓN
A 9 NIÑOS DE 1° GRADO LES GUSTA PINTAR.
  • ¿A CUÁNTOS NIÑOS DE 1° GRADO LES GUSTA LEER?
SOLUCIÓN
A 5 NIÑOS DE 1° GRADO LES GUSTA LEER.
  • ¿CUÁNTOS NIÑOS HAY EN TOTAL EN PRIMER GRADO?
SOLUCIÓN
EN 1° GRADO HAY 14 NIÑOS.

2. EL DOCTOR PABLO, REGISTRÓ LA CANTIDAD DE PERSONAS QUE FUERON A SU CONSULTORIO EN UNA SEMANA. OBSERVA LA TABLA Y RESPONDE LAS PREGUNTAS.

  • ¿CUÁNTAS PERSONAS FUERON EL DÍA LUNES?
SOLUCIÓN
EL DÍA LUNES FUERON 4 PERSONAS.
  • ¿CUÁNTOS HOMBRES FUERON EL DÍA MARTES?
SOLUCIÓN
EL DÍA MARTES FUERON 2 HOMBRES.
  • ¿CUÁNTAS MUJERES FUERON EL DÍA VIERNES?
SOLUCIÓN
EL DÍA VIERNES FUERON 2 MUJERES.
  • ¿EN QUÉ DÍA ASISTIERON MÁS PERSONAS?
SOLUCIÓN
EL DÍA VIERNES ASISTIERON MÁS PERSONAS.
  • ¿EN QUÉ DÍA ASISTIERON MENOS PERSONAS?
SOLUCIÓN
EL DÍA JUEVES ASISTIÓ ASISTIERON MENOS PERSONAS.
  • ¿A CUÁNTOS PACIENTES ATENDIÓ EL DOCTOR PABLO TODA LA SEMANA?
SOLUCIÓN
EL DOCTOR PABLO ATENDIÓ A 21 PERSONAS EN TODA LA SEMANA.
RECURSOS PARA DOCENTES

Artículo “Gráficos estadisticos”

Este recurso te brindará más información sobre los gráficos y sus tipos, incluidos los pictogramas.

VER

CAPÍTULO 2 / TEMA 5 (REVISIÓN)

OPERACIONES CON NATURALES | ¿QUÉ APRENDIMOS?

CÁLCULOS MATEMÁTICOS

LOS CÁLCULOS MATEMÁTICOS SON OPERACIONES QUE REALIZAMOS PARA CONOCER EL RESULTADO DE ALGO EXPRESADO EN NÚMEROS. LAS OPERACIONES QUE UTILIZAMOS CON MAYOR FRECUENCIA SON LA SUMA Y LA RESTA. PARA REGISTRARLAS EN FORMA ESCRITA UTILIZAMOS EL SÍMBOLO + (QUE SE LEE “MÁS”) Y EL SÍMBOLO − (QUE SE LEE “MENOS”). REALIZAMOS CÁLCULOS MATEMÁTICOS EN NUESTRA VIDA DIARIA: CUANDO PAGAMOS ALGO, AL MEDIR EL TIEMPO, PARA CONOCER UNA DISTANCIA Y HASTA PARA HACER MÚSICA.

LA MATEMÁTICA NO SOLO NOS SIRVE PARA LA ESCUELA, SINO QUE LA UTILIZAMOS A DIARIO EN NUESTRA VIDA COTIDIANA.

ADICIÓN O SUMA

LA ADICIÓN O SUMA ES LA OPERACIÓN DE AGREGAR O AGRUPAR CANTIDADES PARA OBTENER UN RESULTADO. ESAS CANTIDADES LLEVAN EL NOMBRE DE SUMANDOS, EL RESULTADO SE DENOMINA SUMA. AL SUMAR NÚMEROS DE DOS DÍGITOS A VECES ES CONVENIENTE ESCRIBIR LA OPERACIÓN EN FORMA VERTICAL. EN ESE CASO ES IMPORTANTE UBICAR EN LA COLUMNA DE LA DERECHA LAS UNIDADES Y EN LA DE LA IZQUIERDA LAS DECENAS.

CUANDO LOS NÚMEROS SON PEQUEÑOS PODEMOS USAR PALITOS O LOS DEDOS PARA HACER LA SUMA.

SUSTRACCIÓN O RESTA

LA SUSTRACCIÓN O RESTA ES LA OPERACIÓN CONTRARIA A LA SUMA. CONSISTE EN EXTRAER O QUITAR A UNA CANTIDAD MAYOR A UNA MENOR. AL NÚMERO MAYOR LO LLAMAMOS MINUENDO Y AL MENOR LO LLAMAMOS SUSTRAENDO, EL RESULTADO DE LA RESTA SE CONOCE COMO DIFERENCIA O RESTA.

EN LA RESTA USAMOS EL SIGNO − QUE SE LEE “MENOS”. POR EJEMPLO, 4 − 3 = 1 SE LEE “CUATRO MENOS TRES ES IGUAL A UNO”.

SITUACIONES PROBLEMÁTICAS

LAS SUMAS Y RESTAS SON LAS OPERACIONES MATEMÁTICAS MÁS USADAS POR TODOS DÍA A DÍA, ASÍ QUE ES POSIBLE QUE MUCHAS SITUACIONES LAS TENGAS QUE RESOLVER CON CÁLCULOS. CUANDO ESTO SUCEDE, ES IMPORTANTE QUE SIGAMOS UNA SERIE DE PASOS QUE NOS AYUDEN A RAZONAR Y ORGANIZAR LA INFORMACIÓN PARA RESOLVER EL PROBLEMA. ALGUNOS DE ESTOS PASOS SON IDENTIFICAR LOS DATOS, PENSAR EN EL PROCEDIMIENTO PARA LA RESOLUCIÓN, HACER LA OPERACIÓN Y DAR LA RESPUESTA. 

AUNQUE NO LO CREAS, LAS OPERACIONES MATEMÁTICAS LAS USAS SIEMPRE, ASÍ QUE DE TANTO PRACTICAR PODRÁS HACER TODOS ESTOS CÁLCULOS MENTALMENTE, ES DECIR, SIN NECESIDAD DE LÁPIZ Y PAPEL.