CAPÍTULO 3 / TEMA 1

UNIDADES DE MEDIDA

CASI TODO LO QUE NOS RODEA PUEDE SER MEDIDO, INCLUSO NUESTRO PROPIO CUERPO, POR EJEMPLO, ¿QUÉ TAN ALTO ERES?, ¿CUÁNTO PESAS?, ¿CUÁNTA AGUA BEBES AL DÍA? TODAS ESTAS SON PREGUNTAS QUE PODEMOS RESPONDER CON UNIDADES DE MEDIDA COMO EL METRO, EL KILOGRAMO O EL LITRO. ¡APRENDAMOS LAS UNIDADES DE MEDIDA!

¿QUÉ ES UNA UNIDAD DE MEDIDA?

¿PUEDES MEDIR TU ESTATURA? ¡CLARO! SABEMOS QUÉ TAN ALTOS SOMOS GRACIAS A UNA UNIDAD LLAMADA METRO. PERO TAMBIÉN SABEMOS QUE TAN PESADOS SOMOS POR UNIDAD LLAMADA KILOGRAMO.

LAS UNIDADES DE MEDIDA SON LAS CANTIDADES ESTABLECIDAS PARA UNA MAGNITUD, ES DECIR, LAS MEDIDAS ACEPTADAS EN TU PAÍS PARA SABER LA LONGITUD, LA MASA, LA CAPACIDAD O EL TIEMPO DE ALGO.

¿SABÍAS QUÉ?
UNA MAGNITUD ES UNA CANTIDAD QUE PUEDE SER MEDIDA, COMO LA LONGITUD, LA MASA O EL TIEMPO.
LA UNIDAD DE MEDIDA PRINCIPAL DE LA LONGITUD ES EL METRO. EXISTEN UNIDADES DE MEDIDA MAYORES, COMO EL KILÓMETRO, O MENORES, COMO EL CENTÍMETRO. LA REGLA ES UN INSTRUMENTO QUE SIRVE PARA MEDIR DISTANCIAS CORTAS DESDE UN PUNTO A OTRO O LA LONGITUD DE LOS OBJETOS PEQUEÑOS, COMO LA DE UN LÁPIZ. POR LO GENERAL LAS REGLAS MIDEN HASTA 30 CENTÍMETROS.

¿POR QUÉ MEDIMOS LAS COSAS?

MEDIR ES IMPORTANTE PORQUE NOS PERMITE COMPRENDER CÓMO FUNCIONA EL MUNDO QUE NOS RODEA. GRACIAS A LAS MEDIDAS HACEMOS COMPARACIONES PARA SABER QUÉ TAN ALTO, LARGO O PESADO ES UN OBJETO. DEL MISMO MODO, PODEMOS SABER A QUÉ DISTANCIA NOS ENCONTRAMOS DE UN LUGAR O CUÁNTOS LITROS DE PINTURA SE NECESITAN PARA PINTAR UNA CASA. LA FACILIDAD DE HACER COSAS HA LLEGADO CON LAS UNIDADES DE MEDIDA Y SU APLICACIÓN.

CUANDO VAMOS AL MERCADO, ¿CÓMO PEDIMOS LAS FRUTAS, EL QUESO O LA CARNE? ¡EN KILOGRAMOS! POR EJEMPLO, PODEMOS PEDIR 1 KILOGRAMO DE CARNE, 1/2 KILOGRAMO DE QUESO O 300 GRAMOS DE FRESAS. PARA ESTO, LAS PERSONAS UTILIZAN UN INSTRUMENTO LLAMADO BALANZA. LA BALANZA SIRVE PARA MEDIR LA MASA DE LOS ALIMENTOS Y DE CUALQUIER OBJETO.

UNIDADes CONVENCIONALes

LAS UNIDADES CONVENCIONALES SON AQUELLAS RECONOCIDAS EN LA MAYORÍA DE LOS PAÍSES. LAS CUATRO MAGNITUDES MÁS CONOCIDAS SON LA LONGITUD, LA MASA, LA CAPACIDAD Y EL TIEMPO.

EL SISTEMA INTERNACIONAL DE UNIDADES, TAMBIÉN CONOCIDO COMO “SI”, ES EL CONJUNTO DE UNIDADES DE MEDIDAS ACEPTADAS EN CASI TODOS LOS PAÍSES DEL MUNDO. ESTE SISTEMA ESTABLECE LAS UNIDADES PARA SIETE MAGNITUDES, ENTRE ESAS, EL SEGUNDO PARA EL TIEMPO; EL METRO PARA LA LONGITUD, EL KILOGRAMO PARA LA MASA; Y EL KELVIN PARA LA TEMPERATURA.

LONGITUD

SE UTILIZA PARA MEDIR LA DISTANCIA ENTRE DOS CUERPOS. CUANDO ESTAS DISTANCIAS SON GRANDES, USAMOS LOS METROS, PERO SI SON MUY PEQUEÑAS USAMOS LOS CENTÍMETROS.

POR EJEMPLO, UN NIÑO PUEDE MEDIR MÁS DE 1 METRO DE ALTURA Y UN BEBÉ PUEDE MEDIR UNOS 60 CENTÍMETROS.

MASA

SE UTILIZA PARA MEDIR LA CANTIDAD DE MATERIA DE UN CUERPO. CUÁNDO LA MASA ES GRANDE USAMOS LOS KILOGRAMOS, PERO SI SON PEQUEÑAS USAMOS LOS GRAMOS.

POR EJEMPLO, UN BEBÉ PUEDE PESAR DE 3 A 4 KILOGRAMOS Y UNA MANZANA PUEDE LLEGAR A PESAR 250 GRAMOS.

CAPACIDAD

SE UTILIZA PARA ESTABLECER LA CANTIDAD DE LÍQUIDO QUE TIENE UN RECIPIENTE. CUANDO LA CANTIDAD ES GRANDE USAMOS LOS LITROS, PERO SI ES PEQUEÑA USAMOS LOS MILILITROS.

POR EJEMPLO, UNA JARRA TIENE CAPACIDAD PARA UN LITRO DE LECHE Y UNA CUCHARADITA TIENE CAPACIDAD PARA 5 MILILITROS.

TIEMPO

SE UTILIZA PARA ORDENAR SECUENCIAS DE SUCESOS. PARA TIEMPOS MENORES A UN DÍA USAMOS LAS HORAS, LOS MINUTOS Y LOS SEGUNDOS, PERO CUANDO SON MAYORES A UN DÍA USAMOS LOS DÍAS, LAS SEMANAS, LOS MESES Y LOS AÑOS.

POR EJEMPLO, CON EL RELOJ MEDIMOS LOS MINUTOS DE UN DÍA Y CON UNA CALENDARIO MEDIMOS LOS DÍAS DE LA SEMANA Y DEL MES.

¡ES TU TURNO!

RESPONDE:

  • ¿QUÉ UNIDAD DE MEDIDA USARÍAS PARA MEDIR CANTIDAD DE HARINA?
    SOLUCIÓN
    LOS KILOGRAMOS.
  • ¿QUÉ UNIDAD DE MEDIDA USARÍAS PARA MEDIR EL JUGO EN UNA JARRA?
    SOLUCIÓN
    LOS LITROS.
  • ¿QUÉ UNIDAD DE MEDIDA USARÍAS PARA MEDIR LA DISTANCIAS ENTRE UNA MESA Y UNA SILLA?
    SOLUCIÓN
    LOS METROS.
  • ¿QUÉ UNIDAD DE MEDIDA USARÍAS PARA MEDIR CUÁNTO DURA EL RECREO?
    SOLUCIÓN
    LOS MINUTOS.

UNIDAD NO CONVENCIONAL

LAS UNIDADES DE MEDIDAS NO CONVENCIONALES SON LAS QUE NO PERTENECEN AL SISTEMA INTERNACIONAL DE UNIDADES Y SON INFORMALES. POR EJEMPLO, SI SE QUIERE MEDIR EL LARGO DE UNA PARCELA DE TIERRA PODEMOS USAR EL LARGO DE LOS PIES. ESTO NO PERMITÍA QUE SEA UNA MEDIDA UNIVERSAL Y EXACTA YA QUE LOS PIES DE LAS PERSONAS NO SON TODOS IGUALES.

¿SABÍAS QUÉ?
OTRAS MEDIDAS NO CONVENCIONALES SON LOS PALMOS DE LA MANO O LOS PASOS.

LAS UNIDADES DE MEDIDA EN LA VIDA COTIDIANA

USAMOS LAS MEDIDAS DE LONGITUD CUANDO MEDIMOS EL LARGO DE UN PANTALÓN, EL ANCHO DE UNA VENTANA O LA PROFUNDIDAD DE UNA CAJA. LAS MEDIDAS DE CAPACIDAD SON USADAS CADA VEZ QUE COMPRAMOS UNA BOTELLA DE AGUA O CUANDO LLENAMOS UNA BAÑERA O PISCINA. LAS MEDIDAS DE MASA SON APLICADAS CUANDO PESAMOS NUESTRO CUERPO O CUANDO PEDIMOS COMIDA POR KILO.

POR OTRO LADO, LAS MEDIDAS DE TIEMPO SON PROBABLEMENTE LAS MÁS USADAS DIARIAMENTE, PUES CADA VEZ QUE VEMOS EL RELOJ PARA SABER LA HORA DE IR A CLASES LAS USAMOS. TAMBIÉN SE APLICAN CUANDO CONTAMOS LOS SEGUNDOS PARA FIN DE AÑO O LOS DÍAS PARA QUE INICIE EL VERANO.

LOS DÍAS Y LOS AÑOS

EL TIEMPO ESTÁ RELACIONADO CON EL MOVIMIENTO DE NUESTRO PLANETA TIERRA. CUANDO LA TIERRA GIRA SOBRE SU PROPIO EJE PRODUCE EL DÍA Y LA NOCHE. EN CAMBIO, TRAS EL GIRO QUE HACE EL PLANETA ALREDEDOR DEL SOL SE PRODUCE UN AÑO.

¡A PRACTICAR!

RESPONDE LAS SIGUIENTES PREGUNTAS:

  • ¿QUÉ ES MAYOR? ¿UN KILOGRAMO DE HARINA O UN KILOGRAMO DE LIBROS?
    SOLUCIÓN
    AMBOS PESAN LO MISMO, 1 KILOGRAMO.
  • ¿CON CUÁL UNIDAD MEDIRÍAS EL LARGO DE UN LÁPIZ?
    SOLUCIÓN
    CON LOS CENTÍMETROS.
  • SI TENEMOS UNA BOTELLA DE 1 LITRO DE AGUA Y UNA JARRA CON 2 LITROS DE JUGO. ¿CUÁL ALMACENA MÁS LÍQUIDO?
    SOLUCIÓN
    LA JARRA.
  • ¿CON CUÁL UNIDAD MEDIRÍAS LA MASA DE UNAS PAPAS?
    SOLUCIÓN
    CON LOS KILOGRAMOS.
  • SI EL TERRENO DE PEDRO MIDE 45 METROS Y EL DE JOSÉ MIDE 26 METROS. ¿CUÁL TERRENO ES EL MÁS GRANDE?
    SOLUCIÓN
    EL TERRENO DE PEDRO.
  • ¿CON CUÁL UNIDAD MEDIRÍAS LA DISTANCIA DE TU CASA A LA ESCUELA?
    SOLUCIÓN
    CON LOS KILÓMETROS.

RECURSOS PARA DOCENTES

Artículo: Sistema Internacional de Unidades

En el siguiente artículo podrás ampliar tus conocimientos sobre el Sistema Internacional de Medidas.

VER

CAPÍTULO 2 / TEMA 5 (REVISIÓN)

OPERACIONES CON NATURALES | ¿QUÉ APRENDIMOS?

ADICIÓN

LA ADICIÓN ES UNA OPERACIÓN MATEMÁTICA QUE UNE O AGRUPA DOS O MÁS CANTIDADES. EN DICHA UNIÓN SE FORMA OTRA CANTIDAD QUE ES DENOMINADA SUMA O RESULTADO. LOS ELEMENTOS DE LA ADICIÓN SON LOS SUMANDOS Y LA SUMA. LA ADICIÓN ES UNA DE LAS CUATRO OPERACIONES BÁSICAS DE LAS MATEMÁTICAS.

EL SIGNO USADO PARA LA SUMA ES + Y SE LEE “MÁS”. EN LA IMAGEN VEMOS QUE “UNO MÁS TRES ES IGUAL A CUATRO”.

SUSTRACCIÓN

LA RESTA, TAMBIÉN LLAMADA SUSTRACCIÓN, ES UNA OPERACIÓN MATEMÁTICA EN LA QUE QUITAMOS UNA CANTIDAD LLAMADA SUSTRAENDO A OTRA LLAMADA MINUENDO. SIEMPRE EL SUSTRAENDO DEBE SER MENOR AL MINUENDO Y EL RESULTADO QUE SE OBTIENE SE DENOMINA RESTA. LA RESTA ES UNA DE LAS CUATRO OPERACIONES MATEMÁTICAS MÁS IMPORTANTES.

UNA MANERA SENCILLA DE RESTAR CANTIDADES PEQUEÑAS ES CON LOS DEDOS. CUENTA 4 DEDOS Y LUEGO QUITA 3 DEDOS, ¿CUÁNTOS QUEDAN? ¡1! ES DECIR: 4 V 3 = 1.

¿QUÉ ES LA MULTIPLICACIÓN?

LA MULTIPLICACIÓN ES UNA SUMA REPETIDA. ESTA OPERACIÓN CONSISTE EN SUMAR UN NÚMERO TANTAS VECES COMO INDICA OTRO NÚMERO, POR EJEMPLO, 3 × 5 ES IGUAL A SUMAR 3 VECES EL NÚMERO 5, ASÍ QUE 5 + 5 + 5 = 15 Y POR LO TANTO 3 × 5 = 15. SUS ELEMENTOS SE DENOMINAN FACTORES, Y EL RESULTADO OBTENIDO PRODUCTO.

LA MULTIPLICACIÓN SIRVE PARA ABREVIAR SUMAS REPETIDAS CON IGUALES CANTIDADES. 2 × 2 ES IGUAL A 2 VECES 2 QUE ES IGUAL A 4.

FRACCIONES

CADA VEZ QUE CONTAMOS OBJETOS USAMOS LOS NÚMEROS NATURALES: 1, 2, 3, 4,… PERO NO SIEMPRE ES POSIBLE USARLOS, PUES SI TENEMOS UNA PARTE DE UN ENTERO TENEMOS QUE USAR UN TIPO ESPECIAL DE NÚMERO LLAMADO FRACCIÓN. LAS FRACCIONES REPRESENTAN UNA PARTE DE UN TODO QUE SE HA DIVIDIDO EN PARTES IGUALES Y TIENEN DOS ELEMENTOS: UN NUMERADOR Y UN DENOMINADOR.

EL REPARTO ES LA BASE DE LAS FRACCIONES Y SURGE DE LA NECESIDAD DE PARTIR ALIMENTOS.

CAPÍTULO 2 / TEMA 4

fracciones

SI TIENES UN ALFAJOR Y DESEAS COMPARTIRLO CON UN AMIGO ¿CÓMO LO REPARTES? LO PARTES A LA MITAD ¿CIERTO? ES NORMAL QUE DIVIDAMOS ALIMENTOS PARA COMPARTIR Y PARA ESTOS CASOS USAMOS UN TIPO ESPECIAL DE NÚMEROS: LAS FRACCIONES. SON MÁS COMUNES DE LO QUE PIENSAS Y HOY APRENDERÁS A REPRESENTARLAS.

¿EN CUÁNTOS PEDAZOS ESTÁ CORTADO ESTE PASTEL? PARA RESPONDER ESTA PREGUNTA SOLO TENEMOS QUE CONTAR DE 1 EN 1: 1, 2, 3, …¡ESTÁ CORTADA EN 10 PEDAZOS! ESOS SON NÚMEROS NATURALES. PERO SI COMEMOS UNA DE ESAS PARTES ¿CÓMO REPRESENTARÍAS ESA CANTIDAD? EN ESTE CASO TENEMOS QUE USAR FRACCIONES: NÚMEROS QUE NOS AYUDAN A EXPRESAR PARTES DE UN TODO.

LA FRACCIÓN Y SUS ELEMENTOS

UNA FRACCIÓN ES UN NÚMERO QUE REPRESENTA LA PARTE O LAS PARTES QUE SE HAN TOMADO DE UN TODO CUANDO EL TODO ESTÁ DIVIDIDO EN PARTES IGUALES.

– EJEMPLO 1:

¿EN CUÁNTAS PARTES ESTÁ DIVIDIDA ESTA FIGURA?, ¿CUÁNTAS PARTES ESTÁN PINTADAS?

ESTE CUADRADO ESTÁ DIVIDIDO EN 4 PARTES IGUALES. UNA SOLA PARTE ESTÁ PINTADA.

¿QUÉ NÚMERO USARÍAS PARA REPRESENTAR QUE UNA PARTE SE HA TOMADO DE 4 PARTES IGUALES? PARA ESO ESTÁN LAS FRACCIONES, LAS CUALES SIEMPRE TIENEN DOS ELEMENTOS: UN NUMERADOR Y UN DENOMINADOR.

  • EL NUMERADOR ES IGUAL A LA CANTIDAD DE PARTES QUE SE TOMARON DEL TODO.
  • EL DENOMINADOR ES IGUAL A LA CANTIDAD DE PARTES EN LAS QUE SE HA DIVIDO EL ENTERO.

AMBOS ELEMENTOS SE COLOCAN UNO SOBRE OTRO CON UNA RAYA EN EL MEDIO, OBSERVA:

EN ESTE EJEMPLO, EL 1 ES EL NUMERADOR PORQUE REPRESENTA LA CANTIDAD DE PARTES QUE SE TOMARON DEL TODO Y EL 4 ES EL DENOMINADOR PORQUE REPRESENTA LA CANTIDAD DE PARTES EN LA QUE SE DIVIDIÓ AL TODO.


– EJEMPLO 2:

¿EN CUÁNTAS PARTES SE DIVIDIÓ EL CÍRCULO?

EN 5 PARTES. EL DENOMINADOR ES 5.

 

¿CUÁNTAS PARTES ESTÁN PINTADAS?

2 PARTES ESTÁN PINTADAS. EL NUMERADOR ES 2.

 

¿QUÉ FRACCIÓN REPRESENTA ESTE GRÁFICO?

\boldsymbol{\frac{2}{5}}

 


– EJEMPLO 3:

¿EN CUÁNTAS PARTES SE DIVIDIÓ EL RECTÁNGULO?

EN 8 PARTES. EL DENOMINADOR ES 8.

 

¿CUÁNTAS PARTES ESTÁN PINTADAS?

3 PARTES ESTÁN PINTADAS. EL NUMERADOR ES 3.

 

¿QUÉ FRACCIÓN REPRESENTA ESTE GRÁFICO?

\boldsymbol{\frac{3}{8}}


LAS FRACCIONES SON MUY UTILIZADAS EN LA VIDA COTIDIANA. EXISTEN SITUACIONES COMUNES DONDE PODEMOS ENCONTRARLAS, POR EJEMPLO, CUANDO PEDIMOS MEDIO KILOGRAMO DE PAN O CUANDO COMEMOS PIZZA. IMAGINA QUE LA PIZZA ES EL TODO Y ESTÁ PICADA EN 4 PARTES IGUALES; SI NOS COMEMOS UN TROZO ES IGUAL A DECIR QUE NOS COMIMOS 1/4 DE PIZZA.
¿SABÍAS QUÉ?
LAS FRACCIONES TAMBIÉN SE PUEDEN REPRESENTAR CON UNA DIAGONAL, ES DECIR, \boldsymbol{\frac{1}{4}} ES IGUAL A 1/4.

¿CÓMO GRAFICAR FRACCIONES?

SI QUEREMOS GRAFICAR UNA FRACCIÓN COMO \boldsymbol{\frac{5}{6}} DEBEMOS SEGUIR ESTOS PASOS:

1. DIBUJAMOS UNA FIGURA GEOMÉTRICA. POR EJEMPLO, UN RECTÁNGULO.

2. DIVIDIMOS EL RECTÁNGULO EN TANTAS PARTES COMO INDIQUE EL DENOMINADOR. EN ESTE CASO EL DENOMINADOR ES 6, ASÍ QUE LO DIVIDIMOS EN 6 PARTES IGUALES.

3. PINTAMOS LA CANTIDAD DE PARTES QUE INDIQUE EL NUMERADOR. AQUÍ PINTAMOS 5 PARTES. ¡ESE SERÁ EL GRÁFICO DE LA FRACCIÓN!

¡ES TU TURNO!

GRAFICA ESTAS FRACCIONES. DIBUJA UN CÍRCULO COMO EL TODO.

  • \boldsymbol{\frac{1}{3}}
SOLUCIÓN

  • \boldsymbol{\frac{3}{4}}
SOLUCIÓN

  • \boldsymbol{\frac{4}{6}}
SOLUCIÓN

FRACCIONES IGUALES A LA UNIDAD

TODA FRACCIÓN QUE TENGA EL NUMERADOR IGUAL A SU DENOMINADOR SERÁ IGUAL A 1. EJEMPLO:

ESTE GRÁFICO REPRESENTA A LA FRACCIÓN \boldsymbol{\frac{3}{3}} QUE ES IGUAL A 1.

ESTE GRÁFICO REPRESENTA A LA FRACCIÓN \boldsymbol{\frac{6}{6}} QUE ES IGUAL A 1.

¿CÓMO LEER FRACCIONES?

LAS FRACCIONES SE LEEN DIFERENTES A LOS NÚMEROS NATURALES. ES IMPORTANTE QUE SIGAMOS ESTOS PASOS:

  1. LEEMOS EL NUMERADOR COMO CUALQUIER NÚMERO NATURAL.
  2. LEEMOS EL DENOMINADOR DE ACUERDO A LA SIGUIENTE TABLA:
DENOMINADOR SE LEE
2 MEDIOS
3 TERCIOS
4 CUARTOS
5 QUINTOS
6 SEXTOS
7 SÉPTIMOS
8 OCTAVOS
9 NOVENOS
10 DÉCIMOS

– EJEMPLOS:

\boldsymbol{\frac{2}{3}} SE LEE “DOS CUARTOS”.

 

\boldsymbol{\frac{4}{10}} SE LEE “CUATRO DÉCIMOS”.

 

\boldsymbol{\frac{5}{7}} SE LEE “CINCO SÉPTIMOS”.

 

\boldsymbol{\frac{1}{8}} SE LEE “UN OCTAVO”.

LAS PARTES DE UN TODO

CADA PARTE DE UN TODO SE PUEDE REPRESENTAR POR MEDIO DE UNA FRACCIÓN. SEGÚN EL DENOMINADOR CADA PORCIÓN TENDRÁ UN NOMBRE DISTINTO. OBSERVA ESTA IMAGEN CON UN TODO DIVIDIDO DE 1 A 10 PARTES IGUALES.

¡A PRACTICAR!

1. ¿QUÉ FRACCIÓN REPRESENTAN ESTOS GRÁFICOS?

A. 

SOLUCIÓN
 

B. 

SOLUCIÓN
 

C. 

SOLUCIÓN
 

D. 

SOLUCIÓN

2. ¿CÓMO SE LEEN LAS SIGUIENTES FRACCIONES:

  • \frac{2}{10}
SOLUCIÓN
DOS DÉCIMOS.
  • \frac{1}{10}
SOLUCIÓN
UN DÉCIMO.
  • \frac{1}{4}
SOLUCIÓN
UN CUARTO.
  • \frac{4}{5}
SOLUCIÓN
CUATRO QUINTOS.
  • \frac{3}{6}
SOLUCIÓN
TRES SEXTOS.
RECURSOS PARA DOCENTES

Artículo “Fracciones”

En el siguiente artículo podrás encontrar un abordaje de las fracciones con diferentes estrategias didácticas.

VER

CAPÍTULO 1 / TEMA 4

NÚMEROS ROMANOS

DESDE QUE EXISTE EL SER HUMANO, TAMBIÉN EXISTE LA NECESIDAD DE CONTAR. DISTINTAS CIVILIZACIONES CREARON SUS PROPIOS SISTEMAS DE NUMERACIÓN, ESTE ES EL CASO DE LA CIVILIZACIÓN ROMANA. LOS NÚMEROS ROMANOS SOLO CUENTAN CON SIETE SÍMBOLOS, PERO CON ELLOS PUEDES FORMAR INFINIDAD DE NÚMEROS.

HISTORIA DE LOS NÚMEROS ROMANOS

HACE MUCHOS AÑOS ATRÁS, LOS ROMANOS EMPLEARON UN SISTEMA DE NUMERACIÓN EN EL CUAL SUS SIGNOS ERAN LETRAS: LOS NÚMEROS ROMANOS. CADA LETRA DE ESTE SISTEMA TIENE UN VALOR PROPIO SEA CUAL SEA LA POSICIÓN DEL NÚMERO. EN LA ACTUALIDAD PODEMOS ENCONTRARLOS CAPÍTULOS DE LIBROS O EN ALGÚN RELOJ ANTIGUO.

 

EL SISTEMA DE NUMERACIÓN ROMANO TIENE SUS ORÍGENES EN LOS ETRUSCOS, UN ANTIGUO PUEBLO UBICADO EN LA ACTUAL ITALIA CENTRAL. LOS SÍMBOLOS DE ESTE SISTEMA SURGIERON EN LA ANTIGUA ROMA Y SE MANTUVIERON DURANTE TODO EL IMPERIO ROMANO.

SI BIEN SU USO DISMINUYÓ TRAS LA CAÍDA DEL IMPERIO, AÚN ERAN EMPLEADOS EN MUCHAS OCASIONES. CON EL TIEMPO, EL SISTEMA DE NUMERACIÓN ROMANO FUE SUSTITUIDO POR EL SISTEMA DECIMAL, EL CUAL USAMOS DÍA A DÍA Y CONSTA DE DIEZ CIFRAS: 1, 2, 3, 4, 5, 6, 7, 8, 9 Y 10.

¿QUÉ SON LOS NÚMEROS ROMANOS?

LOS NÚMEROS ROMANOS SON NÚMEROS EXPRESADOS EN LETRAS QUE INDICAN UNA CANTIDAD. ESTE SISTEMA DE NUMERACIÓN SOLO TIENE SIETE SÍMBOLOS:

NÚMERO ROMANO VALOR
I 1
V 5
X 10
L 50
C 100
D 500
M 1.000

¿SABÍAS QUÉ?

EN EL SISTEMA DE NUMERACIÓN ROMANO EL 1 SIEMPRE VALDRÁ UNO 1,  YA SEA QUE LO SUMEMOS O LO RESTEMOS. EN CAMBIO, EN NUESTRO SISTEMA DE NUMERACIÓN DECIMAL, EL UNO 1 PUEDE TENER VALORES DISTINTOS SEGÚN EL LUGAR QUE OCUPE EN EL NÚMERO, POR EJEMPLO, EN 21, EL 1 ES UNIDAD Y VALE 1, PERO EN 15, ESE 1 NO VALE 1, VALE 10.

ESCRITURA Y LECTURA DE LOS NÚMEROS ROMANOS

PARA LEER Y ESCRIBIR NÚMEROS ROMANOS DEBEMOS SEGUIR LAS SIGUIENTES REGLAS:

 

  • LOS SÍMBOLOS SE ESCRIBEN DE IZQUIERDA A DERECHA. SI UN NÚMERO UBICADO A LA DERECHA DE OTRO ES IGUAL O MENOR A ESTE, SE SUMAN.

XVII = 10 + 5 + 1 + 1 = 17

VIII = 5 + 1 + 1 + 1 = 8

 

  • SI UN SÍMBOLO DE MENOR VALOR ESTÁ A LA IZQUIERDA DE UNO DE MAYOR VALOR, ENTONCES SE RESTAN.

IV = 5 − 1 = 4

IX = 10 − 1 = 9

¿SABÍAS QUÉ?

LOS SÍMBOLOS I (1) Y X (10) SÓLO PUEDEN RESTAR A SUS DOS SÍMBOLOS INMEDIATAMENTE SUPERIORES, ES DECIR:

I SÓLO PUEDE RESTAR A V Y X.

X SÓLO PUEDE RESTAR A L Y A C.

  • LOS SÍMBOLOS V (5) Y L (50) SIEMPRE SUMAN Y NUNCA PUEDEN ESTAR A LA IZQUIERDA PARA RESTAR A UN VALOR MAYOR:

XCV = 100 − 10 + 5 = 95

XLV = 50 − 10 + 5 = 45

  • LOS SÍMBOLOS PUEDEN REPETIRSE TRES VECES DE MANERA CONSECUTIVA COMO MÁXIMO. V Y L NO SE REPITEN.

III = 1 + 1 + 1 = 3

XXX = 10 + 10 + 10 = 30

 

  • UN SÍMBOLO QUE RESTA NO PUEDE REPETIRSE DE MANERA CONSECUTIVA.

 

¡A PRACTICAR!

EXPRESA LOS SIGUIENTES NÚMEROS ARÁBIGOS EN NÚMEROS ROMANOS:

  • 58
SOLUCIÓN
LVIII
  • 86
SOLUCIÓN
LXXXVI
  • 73
SOLUCIÓN
LXXIII
  • 61
SOLUCIÓN
LXI
  • 48
SOLUCIÓN
XLVIII
  • 36
SOLUCIÓN
XXXVI

APLICACIÓN DE LA NUMERACIÓN ROMANA

HOY DÍA AÚN USAMOS LOS NÚMEROS ROMANOS EN DIVERSAS CIRCUNSTANCIA. ESTOS SON ALGUNOS EJEMPLOS:

  • PARA DAR LA HORA EN ALGUNOS TIPOS RELOJES.
  • PARA NOMBRAR PAPAS, POR EJEMPLO, EL PAPA BENEDICTO XVI.
  • PARA NOMBRAR REYES, POR EJEMPLO, LA REINA ISABEL II.
  • PARA NOMBRAR SIGLOS, POR EJEMPLO, EL SIGLO XXI.
  • PARA NOMBRAR EVENTOS, POR EJEMPLO, LA V EDICIÓN DEL FESTIVAL DE MÚSICA.

 

A PESAR DE QUE NUESTRO SISTEMA DE NUMERACIÓN DECIMAL ES EL MÁS USADO EN TODO EL MUNDO, EL SISTEMA DE NUMERACIÓN ROMANO TODAVÍA SE APLICA. NOMBRES DE PAPAS, DE REYES, DE SIGLOS Y DE EVENTOS SON SOLO ALGUNOS EJEMPLOS. TAMBIÉN SE LOS PUEDE VER EN TALLADOS O PLACAS CONMEMORATIVAS.

ACTIVIDADES

1. ORDENA LOS SIGUIENTES NÚMEROS ROMANOS DE MENOR A MAYOR:

XIII – LXX – XXIV – IV – VIII – XXXI

SOLUCIÓN
IV (4)- VIII (8)- XIII (13)- XXIV (24)- XXXI (31) – LXX (70)

2. EXPRESAR LOS SIGUIENTES NÚMEROS ROMANOS EN NÚMEROS CARDINALES:

III – IX – XII – XXII – LXXIX – LXV – LIII

SOLUCIÓN
3 – 9 – 12 – 22 – 79 – 65 – 53
RECURSOS PARA DOCENTES

Artículos “Números romanos”

En el siguiente artículo hay más estrategias de enseñanza para ampliar los conocimientos acerca del sistema de numeración romana.

VER

CAPÍTULO 1 / TEMA 3

NÚMEROS ORDINALES

LOS NÚMEROS ORDINALES NOS INDICAN EL ORDEN O POSICIÓN DE LOS OBJETOS, LAS PERSONAS O LAS COSAS. ESTOS SON MUY UTILIZADOS EN LA VIDA COTIDIANA, POR EJEMPLO, CUANDO SUBIMOS AL ASCENSOR DE UN EDIFICIO Y TENEMOS QUE REFERIRNOS AL PRIMERO, SEGUNDO O TERCER PISO.

TODOS LOS EDIFICIOS CUENTAN CON UNA PLANTA BAJA, VARIOS PISOS HACIA ARRIBA Y POSIBLEMENTE UNO O MÁS PISOS EN EL SUBSUELO. PODEMOS INGRESAR A UN EDIFICIO POR LA PLANTA BAJA, PERO TAMBIÉN PODEMOS HACERLO POR EL SUBSUELO. PARA SUBIR Y BAJAR USAMOS EL ASCENSOR, ESTE TIENE NÚMEROS QUE NOS MUESTRAN LA POSICIÓN DE LOS PISOS.

NÚMEROS ORDINALES

LOS NÚMEROS ORDINALES ESTABLECEN UN ORDEN. LOS PODEMOS NOMBRAR TANTO EN FEMENINO COMO EN MASCULINO, SEGÚN LO NECESITEMOS. VEAMOS CÓMO SE ESCRIBEN LOS PRIMEROS VEINTE NÚMEROS ORDINALES.

FEMENINO MASCULINO
PRIMERA PRIMERO
SEGUNDA SEGUNDO
TERCERA TERCERO
CUARTA CUARTO
QUINTA QUINTO
SEXTA SEXTO
SÉPTIMA SÉPTIMO
OCTAVA OCTAVO
NOVENA NOVENO
DÉCIMA DÉCIMO
DECIMOPRIMERA DECIMOPRIMERO
DECIMOSEGUNDA DECIMOSEGUNDO
DECIMOTERCERA DECIMOTERCERO
DECIMOCUARTA DECIMOCUARTO
DECIMOQUINTA DECIMOQUINTO
DECIMOSEXTA DECIMOSEXTO
DECIMOSÉPTIMA DECIMOSÉPTIMO
DECIMOCTAVA DECIMOOCTAVO
DECIMONOVENA DECIMONOVENO
VIGÉSIMA VIGÉSIMA

 

LAS PALABRAS USADAS PARA NOMBRAR A LOS NÚMEROS ORDINALES PUEDEN TENER GÉNERO, ES DECIR, PODEMOS USARLAS PARA REFERIRNOS TANTO A CANTIDADES MASCULINAS COMO FEMENINAS. POR EJEMPLO, PODEMOS DECIR “MARTÍN LLEGÓ PRIMERO” Y “CARLA LLEGÓ SEGUNDA”.

¿SABÍAS QUÉ?
LOS NÚMEROS ORDINALES INDICAN UN ORDEN Y LOS NÚMEROS CARDINALES INDICAN UNA CANTIDAD. A AMBOS LOS UTILIZAMOS MUCHO EN SITUACIONES COTIDIANAS.
EN LA DIVISIÓN DE GRADOS DE LA ESCUELA SE UTILIZAN LOS NÚMEROS ORDINALES. LA ESCUELA PRIMARIA COMIENZA CON PRIMER GRADO, LUEGO SEGUNDO, TERCERO, CUARTO, QUINTO Y SEXTO. EN EL NIVEL SECUNDARIO TAMBIÉN SE CLASIFICAN LOS GRADOS DE LA MISMA MANERA. ESTA SECUENCIA PERMITE DETERMINAR EL NIVEL DE ESCOLARIDAD DE UN NIÑO. SI ESTÁ EN PRIMERO SIGNFICA QUE RECIÉN COMIENZA LA ETAPA ESCOLAR.

 

VEAMOS DOS EJEMPLOS DONDE PODEMOS UTILIZAR ESTOS NÚMEROS:

1. EN UNA ESCUELA PRIMARIA LOS GRADOS SE DIVIDEN CON NÚMERO ORDINALES. POR EJEMPLO:

MARÍA ESTE AÑO VA A SEGUNDO GRADO, EL AÑO QUE VIENE IRÁ A TERCERO.

 

2. EN UNA CARRERA. POR EJEMPLO:

JUAN SALIÓ PRIMERO Y EL QUE LLEGÓ DETRÁS DE ÉL SALIÓ SEGUNDO.

 

¡A PRACTICAR!

PIENSA Y RESPONDE.

1. CARLOS TIENE QUE SUBIR LAS ESCALERAS DE SU CASA. SI TIENE 15 ESCALONES, ¿EN QUÉ POSICIÓN ESTÁ EL ÚLTIMO ESCALÓN?

SOLUCIÓN
DECIMOQUINTO.

2. LA FILA DE NIÑOS DE SEGUNDO GRADO TIENE 20 ALUMNOS, LARA ESTÁ EN LA POSICIÓN 4, ELENA EN LA POSICIÓN 12 Y JULIO EN LA POSICIÓN 19. ¿EN QUÉ ORDEN SE ENCUENTRAN?

SOLUCIÓN

LARA: CUARTA

ELENA: DECIMOSEGUNDA

JULIO: DECIMONOVENO

3. MILENA SE COMIÓ OCHO CHOCOLATES. LOS PRIMEROS 4 ERAN CON MANÍ Y LOS OTROS 4 ERAN CON LECHE.

A) ¿DESDE Y HASTA QUÉ ORDEN LOS CHOCOLATES ERAN CON MANÍ?

SOLUCIÓN
DESDE EL PRIMERO HASTA EL CUARTO.

B) ¿DESDE Y HASTA QUÉ ORDEN LOS CHOCOLATES ERAN CON LECHE?

SOLUCIÓN
DESDE EL CUARTO HASTA EL OCTAVO.

APLICACIÓN EN LA VIDA COTIDIANA

LOS NÚMEROS ORDINALES SON MUY ÚTILES A LA HORA DE ORDENAR DIFERENTES ELEMENTOS O SITUACIONES QUE ESTÁN PRESENTES EN NUESTRA VIDA COTIDIANA. PODEMOS ENCONTRAR MUCHAS SITUACIONES DONDE SE UTILIZAN ESTOS NÚMEROS. NOMBRAMOS ALGUNOS EJEMPLOS:

  • ALGUNOS LIBROS ESTÁN DIVIDIDOS EN CAPÍTULOS CON NÚMEROS ORDINALES.

POR EJEMPLO: CAPÍTULO PRIMERO, CAPÍTULO SEGUNDO Y CAPÍTULO TERCERO.

  • EN LA COMPETENCIA DE ALGÚN DEPORTE SUS PUESTOS SE POSICIONAN CON NÚMEROS ORDINALES.

POR EJEMPLO: PRIMER PUESTO, SEGUNDO PUESTO Y TERCER PUESTO.

  • CUANDO QUEREMOS COCINAR UNA TORTA, LOS PASOS A SEGUIR TIENEN UN ORDEN.

POR EJEMPLO: PRIMER PASO, SEGUNDO PASO Y TERCER PASO.

LAS COMPETENCIAS ORDENAN A LOS CONCURSANTES POR UN MÉRITO. EL QUE MEJOR SE DESEMPEÑA EN LA ACTIVIDAD ES EL GANADOR. ESTE SALE PRIMERO, DETRÁS, UN PARTICIPANTE SALE SEGUNDO Y LUEGO EL QUE SIGUE, TERCERO. TODAS LAS COMPETENCIAS UTILIZAN EL ORDEN DE MENOR A MAYOR, DESDE EL PRIMER PUESTO HASTA EL ÚLTIMO, SEGÚN CUÁNTOS CONCURSANTES SEAN.

ABREVIATURA DE LOS NÚMEROS ORDINALES

EN LA ESCRITURA DE ESTOS NÚMEROS EXISTE UNA MANERA ABREVIADA DE EXPRESARLOS. SE UTILIZA EL NÚMERO CARDINAL CON UNA LETRA PEQUEÑA A SU LADO DERECHO SUPERIOR: “º” PARA EL GÉNERO MASCULINO Y “ª” PARA EL GÉNERO FEMENINO. OBSERVA EL SIGUIENTE CUADRO:

ABREVIATURA NÚMERO ORDINAL
FEMENINO MASCULINO FEMENINO MASCULINO
1.ª 1.º PRIMERA PRIMERO
2.ª 2.º SEGUNDA SEGUNDO
3.ª 3.º TERCERA TERCERO
4.ª 4.º CUARTA CUARTO
5.ª 5.º QUINTA QUINTO
6.ª 6.º SEXTA SEXTO
7.ª 7.º SÉPTIMA SÉPTIMO
8.ª 8.º OCTAVA OCTAVO
9.ª 9.º NOVENA NOVENO
10.ª 10.º DÉCIMA DÉCIMO
11.ª 11.º DECIMOPRIMERA DECIMOPRIMERO
12.ª 12.º DECIMOSEGUNDA DECIMOSEGUNDO
13.ª 13.º DECIMOTERCERA DECIMOTERCERO
14.ª 14.º DECIMOCUARTA DECIMOCUARTO
15.ª 15.º DECIMOQUINTA DECIMOQUINTO
16.ª 16.º DECIMOSEXTA DECIMOSEXTO
17.ª 17.º DECIMOSÉPTIMA DECIMOSÉPTIMO
18.ª 18.º DECIMOCTAVA DECIMOCTAVO
19.ª 19.º DECIMONOVENA DECIMONOVENO
20.ª 20.º VIGÉSIMA VIGÉSIMO

 

¿CUÁLES SON SUS POSICIONES?

OBSERVA LA IMAGEN Y RESPONDE.

                                                IZQUIERDA                                                     DERECHA

EXPRESA LOS NÚMEROS ORDINALES CON SU ESCRITURA Y ABREVIATURA.

1. DESDE LA IZQUIERDA, ¿EN QUÉ POSICIÓN ESTÁ MARA?

SOLUCIÓN
MARA ESTÁ EN LA TERCERA POSICIÓN O MARA ESTÁ EN LA 3ª POSICIÓN.

2. DESDE LA IZQUIERDA, ¿EN QUÉ POSICIÓN ESTÁ LIS?

SOLUCIÓN
LIS ESTÁ EN LA SEXTA POSICIÓN O LIS ESTÁ EN LA 6ª POSICIÓN.

3. DESDE LA IZQUIERDA, ¿EN QUÉ POSICIÓN ESTÁ ALAN?

SOLUCIÓN
ALAN ESTÁ EN LA OCTAVA POSICIÓN O ALAN ESTÁ EN LA 8ª POSICIÓN.

4. DESDE LA IZQUIERDA, ¿EN QUÉ POSICIÓN ESTÁ LEO?

SOLUCIÓN
LEO ESTÁ EN LA DECIMOPRIMERA POSICIÓN O LEO ESTÁ EN LA 11ª POSICIÓN.

 

CAPÍTULO 2 / TEMA 3

¿QUÉ ES LA MULTIPLICACIÓN?

CUANDO UNA CANTIDAD SE REPITE VARIAS VECES PODEMOS ACUDIR A UNA OPERACIÓN BÁSICA DE LAS MATEMÁTICAS: LA MULTIPLICACIÓN. ESTA ES IGUAL A UNA SUMA RESUMIDA Y LA USAMOS CADA VEZ COMPRAMOS VARIOS PRODUCTOS IGUALES, POR EJEMPLO, 4 HELADOS A $ 2 ES IGUAL A 4 × 2 Y SE LEE “CUATRO POR DOS”.

TANTA VECES TANTO

SI TENEMOS LA MISMA CANTIDAD DE ELEMENTOS EN VARIOS GRUPOS PODEMOS SABER LA CANTIDAD TOTAL SI CONTAMOS CUÁNTOS GRUPOS HAY Y LUEGO CONTAMOS CUÁNTO HAY EN CADA GRUPO.

– EJEMPLO 1:

¿CUÁNTOS GRUPOS HAY?, ¿CUÁNTAS CEREZAS HAY EN CADA GRUPOS?, ¿CUÁNTAS CEREZAS HAY EN TOTAL?

  • HAY 3 GRUPOS.
  • HAY 2 CEREZAS EN CADA GRUPO.
  • HAY 6 CEREZAS EN TOTAL PORQUE 2 + 2 + 2 = 6

PODEMOS DECIR QUE:

3 VECES 2 ES IGUAL A 6


– EJEMPLO 2:

¿CUÁNTOS GRUPOS HAY?, ¿CUÁNTAS PALETAS HAY EN CADA GRUPO?, ¿CUÁNTAS PALETAS HAY EN TOTAL?

  • HAY 2 GRUPOS.
  • HAY 4 PALETAS EN CADA GRUPO.
  • HAY 8 PALETAS EN TOTAL PORQUE 4 + 4 = 8

PODEMOS DECIR QUE:

2 VECES 4 ES IGUAL A 8

¡ES TU TURNO!

¿CUÁNTOS GRUPOS HAY?, ¿CUÁNTAS BANANAS HAY EN CADA GRUPO?, ¿CUÁNTAS BANANAS HAY EN TOTAL?

SOLUCIÓN
  • HAY 3 GRUPOS.
  • HAY 3 BANANAS EN CADA GRUPO.
  • HAY 9 BANANAS EN TOTAL PORQUE 3 + 3 + 3 = 9

ASÍ QUE:

3 VECES 3 ES IGUAL A 9

LA MULTIPLICACIÓN Y SUS ELEMENTOS

CUANDO SABEMOS LA CANTIDAD DE GRUPOS Y LA CANTIDAD DE ELEMENTOS EN CADA GRUPO PODEMOS HACER UNA OPERACIÓN LLAMADA MULTIPLICACIÓN. LA USAMOS CADA VEZ QUE LA CANTIDAD DENTRO DE CADA GRUPO SEA LA MISMA. LA MULTIPLICACIÓN ESTÁ FORMADA POR FACTORES Y UN PRODUCTO.

¿SABÍAS QUÉ?
EL SIGNO DE MULTIPLICACIÓN ES × Y SE LEE “POR”.

– EJEMPLO 1:

¿CUÁNTAS FRESAS HAY EN TOTAL?

LA CANTIDAD TOTAL DE FRESAS EN ESTA IMAGEN LA PODEMOS REPRESENTAR ASÍ:

3 + 3 + 3 + 3 = 12

4 VECES 3 ES IGUAL A 12

O COMO UNA MULTIPLICACIÓN:

4 × 3 = 12

  • EL 4 REPRESENTA LA CANTIDAD DE GRUPOS. ES UN FACTOR.
  • EL 3 REPRESENTA LA CANTIDAD DE FRESAS EN CADA GRUPO. ES UNA FACTOR.
  • EL 12 REPRESENTA EL TOTAL DE FRESAS. ES EL PRODUCTO O RESULTADO.

RESPUESTA: HAY 12 FRESAS.


– EJEMPLO 2:

¿CUÁNTAS LAZOS HAY EN TOTAL?

4 + 4 + 4 + 4 = 16

4 VECES 4 ES IGUAL A 16

4 × 4 = 16

RESPUESTA: HAY 16 LAZOS.

LA MULTIPLICACIÓN ES UNA OPERACIÓN QUE SE UTILIZA PARA ABREVIAR SUMAS REPETIDAS. LA SUMA 4 + 4 ES IGUAL QUE 2 × 4, YA QUE SON 2 VECES LAS QUE SE REPITE EL 4. POR EJEMPLO, SI TENEMOS 5 CAJAS DE ALFAJORES CON 9 EN CADA UNA. LA SUMA REPETIDA SERÍA: 9 + 9 + 9 + 9 + 9 Y EN MULTIPLICACIÓN 9 × 5. AMBAS EXPRESIONES DARÁN EL MISMO RESULTADO: 45 ALFAJORES EN TOTAL.

EL ORDEN DE LOS FACTORES NO MODIFICA EL PRODUCTO

NO IMPORTA EN QUÉ ORDEN ESCRIBAS LOS FACTORES EN UNA MULTIPLICACIÓN, EL RESULTADO SIEMPRE SERÁ EL MISMO. EJEMPLO:

3 × 4 = 12 PORQUE 4 + 4 + 4 = 12

4 × 3 = 12 PORQUE 3 + 3 + 3 + 3 = 12

EL DOBLE

EL DOBLE DE UNA CANTIDAD ES IGUAL A ESA CANTIDAD MULTIPLICADA POR 2.

– EJEMPLO 1:

SI TENEMOS 5 MANZANAS, ¿CUÁL ES EL DOBLE?

PRIMERO DIBUJAMOS LAS 5 MANZANAS:

COMO DEBEMOS SABER EL DOBLE, REPETIMOS EL CONJUNTO PARA TENERLO 2 VECES:

CONTAMOS LAS MANZANAS O REPRESENTAMOS COMO UNA MULTIPLICACIÓN:

5 + 5 = 10

2 VECES 5 ES IGUAL A 10

2 × 5 = 10

LUEGO RESPONDEMOS:

EL DOBLE DE 5 MANZANAS SON 10 MANZANAS.


– EJEMPLO 2:

¿CUÁL ES EL DOBLE DE 8?

COMO YA SABEMOS EL PROCESO, BASTA CON QUE SUMEMOS DOS VECES EL MISMO NÚMERO (8) O QUE MULTIPLIQUEMOS 8 POR 2.

8 + 8 = 16

2 × 8 = 16

EL DOBLE DE 8 ES 16.


– EJEMPLO 3:

¿CUÁL ES EL DOBLE DE 7?

7 + 7 = 14

2 × 7 = 14

EL DOBLE DE 7 ES 14.

LAS TABLAS DE MULTIPLICAR

SON UN RECURSO EXPRESADO EN UNA CUADRÍCULA DONDE PODEMOS VER LA RELACIÓN DE LOS PRODUCTOS ENTRE DOS FACTORES. LAS TABLAS DE MULTIPLICAR MUESTRAN DE FORMA RESUMIDA EL RESULTADO DE LAS MULTIPLICACIONES.

¡CONSTRUYAMOS LA TABLA DEL 2!

EN CADA CUADRO HAY 2 PELOTAS.

2 × 1 = 2
2 × 2 = 4
2 × 3 = 6
2 × 4 = 8
2 × 5 = 10
2 × 6 = 12
2 × 7 = 14
2 × 8 = 16
2 × 9 = 18

OBSERVA LOS PRODUCTOS (2, 4, 6, 8, 10, …). TODOS AUMENTAN DE 2 EN 2.

¡ES TU TURNO!

CONSTRUYE LA TABLA DE MULTIPLICAR DEL 3.

EN CADA CUADRO HAY 3 NUECES.

3 × 1 = 3
SOLUCIÓN
3 × 1 = 3
3 × 2 = 6
3 × 3 = 9
3 × 4 = 12
3 × 5 = 15
3 × 6 = 18
3 × 7 = 21
3 × 8 = 24
3 × 9 = 27

UNA GRAN HERRAMIENTA

PARA HACER CÁLCULOS DE MULTIPLICACIONES SE IDEARON LAS TABLAS DE MULTIPLICAR, QUE NO SON MÁS QUE UN ATAJO PARA REALIZAR SUMAS LARGAS DE FORMA RÁPIDA. LA FORMA MÁS COMÚN DE REPRESENTAR LAS TABLAS DE MULTIPLICACIÓN ES, COMO SU NOMBRE LO INDICA, A TRAVÉS DE TABLAS. NORMALMENTE SE MUESTRAN LAS TABLAS DEL 1 AL 10 Y CADA UNA DE ELLAS INDICA LAS MULTIPLICACIONES DEL NÚMERO QUE REPRESENTAN DEL 1 AL 10 O DEL 0 AL 10.

 

¡A PRACTICAR!

1. OBSERVA LOS GRUPOS. RESUELVE COMO SUMA REPETIDA, TANTAS VECES TANTO Y MULTIPLICACIÓN.

SOLUCIÓN

5 + 5 + 5 = 15

3 VECES 5 ES IGUAL A 15

3 × 5 = 15

SOLUCIÓN

2 + 2 + 2 + 2 = 8

4 VECES 2 ES IGUAL A 8

4 × 2 = 8

SOLUCIÓN

4 + 4 + 4 + 4 = 16

4 VECES 4 ES IGUAL A 16

4 × 4 = 16

 

2. RESPONDE:

  • ¿CUÁL ES EL DOBLE DE 9?
SOLUCIÓN
18
  • ¿CUÁL ES EL DOBLE DE 2?
SOLUCIÓN
4
  • ¿CUÁL ES EL DOBLE DE 6?
SOLUCIÓN
12
RECURSOS PARA DOCENTES

Artículo “Trucos para aprender las tablas de multiplicar”

En el siguiente artículo encontrarás un conjuntos de consejos para aprender las tablas de multiplicar.

VER

CAPÍTULO 2 / TEMA 2

sustracción

LA RESTA O SUSTRACCIÓN ES LA OPERACIÓN INVERSA A LA SUMA. EN ESTE CÁLCULO “QUITAMOS” UNA CANTIDAD A OTRA, POR EJEMPLO, SI TENEMOS 8 CARAMELOS Y NOS COMEMOS 3, AL FINAL TENDREMOS SOLO 5. AUNQUE TIENE MUCHA RELACIÓN CON LA SUMA, NO CUMPLE CON LAS MISMAS PROPIEDADES. EN ESTE ARTÍCULO APRENDERÁS CÓMO RESTAR NÚMEROS DE HASTA TRES CIFRAS.

LA SUSTRACCIÓN Y SUS ELEMENTOS

LA SUSTRACCIÓN ES UNA OPERACIÓN QUE CONSISTE EN RESTAR O QUITAR UNA CANTIDAD LLAMADA SUSTRAENDO A OTRA LLAMADA MINUENDO.

– EJEMPLO:

MARÍA TENÍA 10 MAGDALENAS Y REGALÓ 8 MAGDALENAS A SUS AMIGOS, ¿CUÁNTAS MAGDALENAS LE QUEDARON?

ESTE PROBLEMA LO SOLUCIONAMOS POR MEDIO DE UNA SUSTRACCIÓN. AL MINUENDO 10 LE “QUITAMOS” EL SUSTRAENDO 8 (10 − 8). POR ESTO, LA RESTA O DIFERENCIA ES 2.

UNA DE LAS FORMAS MÁS SENCILLAS DE HACER RESTAS DE PEQUEÑAS CANTIDADES ES CON LOS DEDOS O CON PALITOS. POR EJEMPLO, SI DESEAS RESTARLE 4 A 9, DEBES TOMAR 9 PALITOS, LUEGO QUITAS 4 PALITOS Y LA CANTIDAD DE PALITOS QUE TE QUEDEN SERÁ LA DIFERENCIA O RESTA. LO REPRESENTAMOS ASÍ: 9 − 4 = 5. SEGURO TIENES PALITOS EN TU CASA. ¡INTÉNTALO!

 

RESTA CON TABLAS POSICIONALES

ES UNA MANERA DE REPRESENTAR LAS RESTAS O SUSTRACCIONES. CONSISTE EN COLOCAR EN COLUMNAS LAS UNIDADES, LAS DECENAS Y LAS CENTENAS DE CADA NÚMERO. POR EJEMPLO:

COMO VES, PRIMERO RESTAMOS LA UNIDADES (9 − 8 = 1) Y LUEGO LAS DECENAS (4 − 0 = 4).

¡ES TU TURNO!

REALIZA LAS SIGUIENTES RESTAS:

  • 79 − 6
  • 36 − 4
  • 25 − 2
SOLUCIÓN

¿SABÍAS QUÉ?
SI NO HAY UN NÚMERO EN LA CASILLA DE LAS DECENAS O CENTENAS SE ENTIENDE QUE HAY UN CERO. 

RESTAS PRESTANDO

CUANDO LA UNIDAD DEL MINUENDO ES MENOR QUE LA DEL SUSTRAENDO TENEMOS QUE “PRESTAR” UNA DECENA. SI SUCEDE CON LA DECENA DEL MINUENDO, PRESTAMOS UNA CENTENA. LOS PASOS SON LOS SIGUIENTES:

1. COLOCAMOS EL MINUENDO SOBRE EL SUSTRAENDO. DIBUJAMOS LA LÍNEA Y EL SIGNO “MENOS”.

 

2. COMO A 3 NO SE LE PUEDE RESTAR 7, PRESTAMOS UNA DECENA A LA POSICIÓN DE LAS UNIDADES. DE ESTE MODO, EL 3 SE TRANSFORMA EN 13. COMO 6 PRESTÓ UNA DECENA, LO TACHAMOS Y AHORA SE CONVIERTE EN 5.

 

3. RESTAMOS LAS UNIDADES. TENEMOS QUE 13 − 7 = 6.

 

4. RESTAMOS LA DECENAS. TENEMOS QUE 5 − 2 = 3.

 

– OTROS EJEMPLOS:

 

TAMBIÉN PUEDE OCURRIR CON LAS CENTENAS. OBSERVA:

PROPIEDADES DE LA SUSTRACCIÓN

LA SUSTRACCIÓN NO CUMPLE CON LAS MISMAS PROPIEDADES DE LA ADICIÓN. LA SUSTRACCIÓN NO CUMPLE CON LA PROPIEDAD CONMUTATIVA, NI CON LA PROPIEDAD ASOCIATIVA.

ELEMENTO NEUTRO

LA RESTA DE CUALQUIER NÚMERO CON CERO DA COMO RESULTADO EL NÚMERO INICIAL.

¿CÓMO COMPROBAR UNA RESTA?

CON LA SUMA DEL SUSTRAENDO Y LA DIFERENCIA O RESTA.

¡ES TU TURNO!

REALIZA ESTAS RESTAS Y LUEGO COMPRUEBA EL RESULTADO.

  • 966 − 82
SOLUCIÓN
966 − 82 = 884

COMPROBACIÓN:

82 + 884 = 966

  • 32 − 27
SOLUCIÓN
32 − 27 = 5

COMPROBACIÓN:

27 + 5 = 32

LA RESTA NO TIENE LAS MISMAS PROPIEDADES DE LA SUMA YA QUE SU OPERACIÓN ES LA INVERSA. LA RESTA NO ES CONMUTATIVA PORQUE SI CAMBIAMOS DE POSICIÓN EL SUSTRAENDO Y EL MINUENDO SU RESULTADO NO VA A SER UN NÚMERO NATURAL. LA RESTA NO ES ASOCIATIVA PORQUE AL CAMBIAR EL ORDEN DE LAS CANTIDADES CAMBIA SU RESULTADO.

¡PRACTIQUEMOS LO APRENDIDO!

1. JOSÉ QUIERE COMPRAR UNOS INSTRUMENTOS QUE CUESTAN $ 257. SI HA AHORRADO $ 129, ¿CUÁNTO DINERO LE FALTA  PARA PODER COMPRAR LOS INSTRUMENTOS?

  • DATOS

PRECIO DE LOS INSTRUMENTOS: $ 257

DINERO AHORRADO: $ 129

  • PREGUNTA

¿CUÁNTO DINERO LE FALTA A JOSÉ PARA PODER COMPRAR LOS INSTRUMENTOS?

  • ANALIZA

TENEMOS QUE HACER UNA RESTA. EL MINUENDO ES 257 Y EL SUSTRAENDO ES 129. RESTAMOS PRIMERO LAS UNIDADES, LUEGO LAS DECENAS Y LAS CENTENAS.

  • CALCULA

  • RESPUESTA

A JOSÉ LE FALTAN $ 128 PARA PODER COMPRAR LOS INSTRUMENTOS.

 


2. UNA ESCUELA PLANIFICA UN VIAJE ESCOLAR. EN TOTAL VAN 240 PERSONAS ENTRE ESTUDIANTES Y PROFESORES. SI HAY 25 PROFESORES, ¿CUÁNTOS ESTUDIANTES VAN AL VIAJE?

  • DATOS

TOTAL DE ESTUDIANTES Y PROFESORES: 240

TOTAL DE PROFESORES: 25

  • PREGUNTA

¿CUÁNTOS ESTUDIANTES VAN AL VIAJE?

  • ANALIZA

TENEMOS QUE HACER UNA RESTA. EL MINUENDO ES 240 Y EL SUSTRAENDO ES 25. RESTAMOS PRIMERO LAS UNIDADES, LUEGO LAS DECENAS Y LAS CENTENAS.

  • CALCULA

  • RESPUESTA

VIAJAN 215 ESTUDIANTES.

 


3. A UN MUSEO ASISTIERON 389 PERSONAS EN UN DÍA. SI DURANTE LA MAÑANA SOLO FUERON 19 PERSONAS, ¿CUÁNTAS PERSONAS FUERON EN LA TARDE?

  • DATOS

ASISTENTES EN UN DÍA: 389

ASISTENTES DE LA MAÑANA: 19

  • PREGUNTA

¿CUÁNTAS PERSONAS FUERON EN LA TARDE?

  • ANALIZA

TENEMOS QUE HACER UNA RESTA. EL MINUENDO ES 389 Y EL SUSTRAENDO ES 19. RESTAMOS PRIMERO LAS UNIDADES, LUEGO LAS DECENAS Y LAS CENTENAS.

  • CALCULA

  • RESPUESTA

EN LA TARDE FUERON 370 PERSONAS AL MUSEO.

 


4. EL SEÑOR PEDRO TIENE 436 MANZANAS VERDES Y ROJAS PARA VENDER. 184 MANZANAS SON VERDES Y LAS DEMÁS SON ROJAS. ¿CUÁNTAS MANZANAS SON ROJAS?

  • DATOS

CANTIDAD DE MANZANAS: 436

CANTIDAD DE MANZANAS VERDES: 184

  • PREGUNTA

¿CUÁNTAS MANZANAS SON ROJAS?

  • ANALIZA

DEBEMOS RESTAR ESTAS CANTIDADES. 436 ES EL MINUENDO Y 184 ES EL SUSTRAENDO.

  • CALCULA

  • RESPUESTA

252 MANZANAS SON ROJAS.

 


LA SUSTRACCIÓN ES UNA OPERACIÓN QUE CONSISTE EN RESTAR O QUITAR UNA CANTIDAD LLAMADA SUSTRAENDO A OTRA LLAMADA MINUENDO. LAS PODEMOS REPRESENTAR DE MANERA HORIZONTAL O DE MANERA VERTICAL POR MEDIO DE UNA TABLA POSICIONAL. EL SIGNO MENOS (−) ES UN POCO MÁS LARGO QUE EL GUIÓN (-) Y UN POCO MÁS CORTO QUE LA RAYA (—).

¡A PRACTICAR!

1. RESUELVE LAS SIGUIENTES RESTAS:

  • 48 − 12
SOLUCIÓN
48 − 12 = 36 
  • 589 − 354
SOLUCIÓN
589 − 354 = 235
  • 16 − 14
SOLUCIÓN
16 − 14 = 2
  • 708 − 573
SOLUCIÓN
708 − 573 = 135
  • 86 − 45
SOLUCIÓN
86 − 45 = 41
  • 78 − 28
SOLUCIÓN
78 − 28 = 50
  • 337 − 182
SOLUCIÓN
337 − 182 = 155

 

 

2. ¿QUÉ NÚMERO FALTA?

  • ____ − 342 = 484
SOLUCIÓN
826 − 342 = 484
  • ____ − 182 = 155
SOLUCIÓN
337 − 182 = 155
  • ____ − 82 = 464
SOLUCIÓN
546 − 82 = 464
  • ____ − 6 = 315
SOLUCIÓN
321 − 6 = 315
  • ____ − 14 = 313
SOLUCIÓN
327 − 14 = 313
  • ____ − 317 = 227
SOLUCIÓN
544 − 317 = 227

 

3. COLOREA EL DIBUJO SEGÚN EL RESULTADO DE LAS SUMAS Y RESTAS.

 

RECURSOS PARA DOCENTES

Artículo “Resta de números naturales”

Con el siguiente artículo podrás ampliar las estrategias de enseñanza para la resta de números naturales.

VER

CAPÍTULO 5 / TEMA 4

Sistemas de referencia

Son convencionalismos adoptados por el ser humano para medir la posición y otras magnitudes físicas. Se usan para hallar cuerpos celestes en el espacio y son la base para determinar nuestra ubicación en el planeta. También permiten establecer comparaciones y transformaciones entre las figuras representadas.

Ejes de coordenadas

El sistema de coordenadas cartesianas es uno de los sistemas de referencias usados para ubicar puntos en el espacio. En este caso específicamente se explicarán estas coordenadas orientadas al plano, es decir, en dos dimensiones.

El plano donde ubicamos los puntos se denomina plano cartesiano y está formado por los siguientes elementos:

  • Eje X: es también denominado eje de las abscisas, y se encuentra ubicado dentro del plano en forma horizontal.
  • Eje Y: es conocido también como eje de las ordenadas y está ubicado en sentido vertical dentro del plano.
  • Origen: es el punto de intersección entre los ejes de coordenadas X e Y.

 

Los ejes de coordenadas permiten ubicar puntos, gráficos o figuras dentro del plano cartesiano. Al tratarse de dos ejes: el de las abscisas o eje X y el de las ordenadas o eje Y, se requieren de dos coordenadas para ubicar un punto, es decir, un punto está definido dentro del plano si, y solo si, se conocen sus coordenadas en el eje X y en el eje Y.

 

¿Sabías qué?
El nombre de las coordenadas cartesianas proviene de la persona que las empleó por primera vez: René Descartes.

VER INFOGRAFÍA

¿Cómo graficar un punto en el plano cartesiano?

Un punto está definido por un par de números que hacen referencia a su posición respecto al eje X y al eje Y. Estos puntos son denominados coordenadas cartesianas y permiten graficarlo.

Para hacerlo, dividimos los ejes en segmentos con la misma longitud y a cada uno le asignamos el valor de un número entero. A la derecha del origen, escribimos los números de menor a mayor, esos serán los valores del eje X. Arriba del origen escribimos los números que le siguen al cero de menor a mayor, esos serán los valores del eje Y:

¿Sabías qué?
Los números negativos se representan a la izquierda del origen (eje X) y debajo del origen (eje Y).

Para ubicar un punto en el plano necesitamos las coordenadas de cada eje, que de ahora en adelante llamaremos coordenada en X y coordenada en Y para hacer mención a cuál eje se refieren. La coordenada X determina cuán a la derecha del origen está ubicado el punto; mientras que la coordenada Y, cuán arriba del origen está el punto.

La manera más frecuente de representar un punto es a través de paréntesis, y dentro indicamos la coordenada X y la coordenada Y, separadas por una coma:

\left ( Coordenada \, X,\, Coordenada\, Y \right )

El punto desde dónde se empieza a contar es en el origen porque se encuentra en la coordenada (0,0) lo que quiere decir que está a 0 posiciones de la derecha y a 0 posiciones hacia arriba.

Por ejemplo:

El punto A (3,2) se encuentra a tres posiciones a la derecha y a dos posiciones hacia arriba. Si lo queremos graficar, cada coordenada debe estar representada en el respectivo eje y el punto de intersección de ambas sería el punto A:

Cuando algunas de las coordenadas del punto sea igual a cero, significa que el punto se encuentra sobre el eje al cual corresponde la coordenada diferente de cero. Por ejemplo, el punto B (0,3) indica que se movió cero posiciones a la derecha y tres posiciones hacia arriba, por lo tanto se ubica sobre el eje Y que es el que tiene la coordenada diferente de cero:

Ejes de simetrías

La simetría es una relación proporcionada entre las partes que componen un todo. Así, por ejemplo, decimos que una imagen es simétrica cuando su forma no cambia si es girada o volteada. Para que exista simetría entre dos objetos, ambos deben ser del mismo tamaño y de la misma forma y uno debe estar en una orientación diferente a la del primero.

La forma de una mariposa es un ejemplo de simetría: si trazamos una línea imaginaria de forma vertical en el centro de la mariposa (eje de simetría), obtendríamos dos imágenes iguales pero con diferente orientación. Nuestros cuerpos también son simétricos: esto se debe a que contamos con la misma cantidad de miembros a cada lado.

El eje de simetría es una línea imaginaria que divide al dibujo en dos partes idénticas pero con diferente orientación. Los ejes de simetría pueden ser horizontales, verticales o inclinados.

 

De acuerdo a la figura geométrica, algunas pueden presentar uno o más ejes de simetría. Otras, en cambio, no presentan ninguno. Cuando una figura no es simétrica se denomina asimétrica.

Por ejemplo, no todos los triángulos tienen ejes de simetría, todo depende de su tipo. Si son equiláteros tienen tres ejes de simetría; si son isósceles tienen dos ejes de simetría, y si son escalenos no tienen ningún eje de simetría.

Transformaciones isométricas

Las transformaciones isométricas son los cambios de posición u orientación que experimenta una figura sin alterar su forma.

Traslación

Es un tipo de transformación isométrica donde se mueven todos los puntos de una figura en una misma dirección, sentido y longitud.

Rotación

También es conocida como giro. Es una transformación isométrica en la que la figura se mueve alrededor de un punto sin alterar su forma. El movimiento es determinado por un ángulo de rotación y puede ser en sentido de las agujas del reloj o en sentido contrario.

La simetría como transformación isométrica

La simetría entre dos objetos es un tipo de transformación isométrica porque a cada punto del objeto o figura se lo asocia a otro conocido como imagen. Cada punto está a una misma distancia del otro respecto al eje de simetría. Este tipo de transformación también se conoce como reflexión.

 

¡A practicar!

1. ¿Cuál es la posición de estos números?

a)

Solución
C (4,3)

b) 

Solución
D (1,2)

c) 

Solución
E (5,0)

d) 

Solución
F (4,5)

e) 

Solución
G (3,3)

2. ¿A cuál de los siguientes puntos corresponde la coordenada (6,3)?

Solución

Corresponde al punto K (6,3).

3. ¿Cuál de estas figuras no es simétrica?

a) 

b)

c)

d)

Solución
d) No es simétrica porque no tiene ningún eje de simetría.

4. ¿A qué tipo de transformación isométrica corresponde la gráfica?

Solución
Traslación.

RECURSOS PARA DOCENTES

Artículo “Simetrías”

Este artículo explica qué es una simetría, sus tipos y su relación con los ejes. También incluye algunos ejemplos de simetría.

VER

Artículo “Plano cartesiano”

Este artículo explica qué es el plano cartesiano, sus características y divisiones por cuadrante. También incluye ejemplos sobre como ubicar puntos en este sistema.

VER

 

CAPÍTULO 1 / TEMA 1

Universo de los números

El universo de los números es muy amplio y diverso. Si nos sumergimos en él, encontraremos una gran variedad de situaciones en las que aplicamos distintos números. Por ejemplo, usamos los números ordinales para indicar las posiciones de los ganadores de una carrera, pero usamos los números binarios para procesar datos informáticos. En definitiva, los distintos tipos de números nos ayudan a representar diferentes aspectos de la vida cotidiana.

El sentido numérico nos permite comprender los números y sus operaciones, de manera tal que podamos aplicarlos de forma eficiente para resolver problemas día a día. En la vida cotidiana disponemos de los números para distintos usos, por este motivo existen varias clasificaciones, como los números romanos, los números cardinales o los números ordinales.

Secuencia de números naturales

Las secuencias son sucesiones de números que van hacia una dirección establecida. Pueden avanzar o retroceder una cantidad determinada de espacios dentro de la recta numérica.

Dichas secuencias pueden ser de 1 en 1, de 5 en 5, de 10 en 10, de 100 en 100, o de cualquier cantidad de espacios que haya sido establecida.

Estos son los ejemplos de distintas secuencias de números naturales:

1 en 1

10 en 10

100 en 100

Algunas rectas pueden estar incompletas. En ese caso debemos tener en cuenta cuál es la regularidad de la recta para poder completarla.

Por ejemplo:

Esta recta va de 10 en 10, por lo tanto debemos completarla por medio de sumas o restas de a 10 unidades según corresponda.

¡A practicar!

Completa la siguiente recta numérica:

Solución

Las secuencias son sucesiones de números que van hacia una dirección establecida. Las mismas pueden avanzar o retroceder una cantidad determinada de espacios dentro de la recta numérica. Dichas secuencias pueden ser de 1 en 1, de 5 en 5, de 10 en 10, de 100 en 100, o de cualquier cantidad de espacios que hayan sido establecidos.

¿Sabías qué?
Aunque para nosotros sea normal tenerlo, algunas civilizaciones no utilizaban el concepto del número cero (0) porque creían que no les hacía falta un número para referirse a la nada.

Números ordinales

Los números ordinales nos sirven para establecer un orden. Con ellos podemos ordenar de una manera determinada distintas cosas. Por ejemplo, podemos ordenar un grupo de personas en una fila, las posiciones de los autos en las carreras o también o las cosas que queremos hacer este fin de semana. 

Si queremos nombrar los resultados de las carreras de autos debemos utilizar números ordinales. Así, decimos que los ganadores obtuvieron el “primer” y el “segundo” lugar en la competencia. A su vez, si queremos expresar que una cosa va antes que otra, también debemos utilizar los números ordinales de la siguiente manera: “esta muñeca va primera y esta otra va segunda”.

 

A este tipo de números los nombramos y escribimos de la siguiente manera:

1°/1ª = primero/primera 11°/11ª = décimo primero/primera
2°/2ª = segundo/segunda 12°/12ª = décimo segundo/segunda
3°/3ª = tercero/tercera 13°/13ª = décimo tercero/tercera
4°/4ª = cuarto/cuarta 14°/14ª = décimo cuarto/cuarta
5°/5ª = quinto/quinta 15°/15ª = décimo quinto/quinta
6°/6ª = sexto/sexta 16°/16ª = décimo sexto/sexta
7°/7ª = séptimo/séptima 17°/17ª = décimo séptimo/séptima
8°/8ª = octavo/octava 18°/18ª = décimo octavo/octava
9°/9ª = noveno/novena 19°/19ª = décimo noveno/novena
10°/10ª = décimo/décima 20°/20ª = vigésimo/vigésima

 

Por ejemplo, en este grupo alineado de figuras podemos decir que, de izquierda a derecha, la primera tiene forma de sol y la segunda es un cuadrado.

 

¡A practicar!

¿En qué orden están todas las figuras del grupo anterior?

Solución
Posición Figura
Primero Sol
Segundo Cuadrado
Tercero Corazón
Cuarto Círculo
Quinto Estrella
Sexto Triángulo
Séptimo Luna
Octavo Nube

¿Qué son los números cardinales?

Son aquello que nos indican cantidades numéricas de elementos que pertenecen a un grupo o conjunto. Aparecen en nuestra vida cotidiana en diversas situaciones: al contar los goles que le hizo un equipo a otro o para saber si alcanzan las galletas que compartiremos con nuestros amigos.

Números romanos

El sistema de numeración romano se utilizó durante muchos años a lo largo de todo el Imperio romano. Los números romanos, a pesar de ser muy antiguos, aparecen todavía en nuestra vida cotidiana, por ejemplo en capítulos de libros, en los nombres de los reyes, en relojes o en las numeraciones de los siglos.

En este sistema se utilizan siete letras mayúsculas de nuestro alfabeto para representar a los números.

VER INFOGRAFÍA

Muchos relojes utilizan un sistema de numeración para señalar la hora. El reloj solar de la imagen utiliza la sombra que da un estilete para medir el paso del tiempo. Los más antiguos tenían las inscripciones en números romanos para leer la hora, los minutos y los segundos. Este sistema de numeración se mantiene vigente en la actualidad en diferentes sitios.

Algunas reglas de este sistema son las siguientes

  • Un número romano ubicado a la derecha de otro de mayor valor se suma.

XI = 10 + 1 = 11

  • Las símbolos I, X, C y M son los únicos que pueden repetirse, pero solo hasta 3 veces.

XXX = 10 + 10 + 10 = 30

  • Algunas letras se pueden ubicar a la izquierda de otras para restarlas.

IV = 5 − 1 = 4

  • A partir del 4.000 se coloca una pequeña raya arriba del símbolo para indicar que debe multiplicarse por 1.000.

\overline{V} = 5 x 1.000 = 5.000

¡Para ejercitar!

Marca cuáles de las siguientes escrituras son incorrectas:

  • VV = 10
  • XV = 15
  • LXXXX = 90
  • CCCIII = 303
Solución
  • VV = 10 X = 10
  • XV = 15
  • LXXXX = 90 XC = 90
  • CCCIII = 303

Números binarios

Los números binarios son utilizados en un sistema que contiene solo dos símbolos: el cero (0) y el uno (1). Este sistema es usado en el ámbito de la informática.

El sistema binario es el lenguaje de la informática. Si queremos leer un número binario, lo que debemos hacer es nombrar dígito por dígito, los cuales serán siempre cero (0) y uno (1). Por ejemplo, el número natural catorce (14) en el sistema binario se escribe de la siguiente manera: 1110, y se lee “uno, uno, uno, cero”.

Transformar a número binario

Para convertir un número del sistema decimal al sistema binario, solo debemos dividir por 2 el número natural. El cociente de esa división se vuelve a dividir por 2 en sucesivas divisiones hasta que el cociente sea igual a uno (1). Luego leemos el número binario de derecha a izquierda, de abajo hacia arriba.

En el caso del 30, su número binario equivalente es 11110.

¿Sabías qué?
Un dígito binario por sí solo se llama “bit”.

Ejercicios

1. Completa la secuencia numérica con los números correspondientes del sistema numérico romano.

De 1 en 1

  1. X – XI – ____ –  XIII – ____ – XV – ____ – XVII
  2.  CL – ____ – ____ – CLIII – CLIV – ____ – CLVI

De 10 en 10 

  1. I – ____ – XXI – ____ – XLI – LI  – ____ – LXXI – ____ –
  2. V – XV – ____ – XXXV – ____ – ____ –  LXV – ____ – LXXXV

De 100 en 100

  1. II – CII – ____ – CCCII – ____ – DII – ____ – ____ – DCCCII
Solución

De 1 en 1

  1. X – XI – XII –  XIII – XIV – XV – XVI – XVII
  2.  CL – CLICLII – CLIII – CLIV – CLV – CLVI

De 10 en 10 

  1. I – XI – XXI – XXXI – XLI – LI  – LXI – LXXI – LXXXI
  2. V – XV – XXV – XXXV – XLV – LV –  LXV – LXXV– LXXXV

De 100 en 100

  1. II – CII – CCII – CCCII – CDII – DII – DCII DCCII– DCCCII

2. Escribe los siguientes números en sistema romano:

  1. 421
  2. 9
  3. 109
  4. 1.003
  5. 70
  6. 299
Solución
  1. 421 = CDXXI
  2. 9 = IX
  3. 109 = CIX
  4. 1.003 = MIII
  5. 70 = LXX
  6. 299 = CCXCIX

3. Transforma los siguientes números naturales en números binarios:

  1. 50
  2. 13
  3. 46
  4. 28
Solución
  1. 50 = 110010
  2. 13 = 1101
  3. 46 = 101110
  4. 28 = 11100

4. Completa la siguientes secuencias numéricas de números naturales:

b. 

Solución

 

RECURSOS PARA DOCENTES

Artículo destacado “Recta numérica”

El siguiente artículo te permitirá ampliar la noción de “recta numérica” por medio de su uso en distintos contextos.

VER

Artículo destacado “Números romanos (Sistemas de numeración)”

El siguiente artículo te proporcionará más información acerca del sistema de numeración romano.

VER 

Artículo destacado “Sistemas posicionales de numeración”

Este recurso te ayudará a conocer las características de los sistemas posicionales de numeración, como el decimal o el binario.

VER

 

 

 

 

 

 

CAPÍTULO 4 / TEMA 6

TRANSFORMACIONES ISOMÉTRICAS

Las figuras geométricas pueden sufrir diversas alteraciones y una de estas es la isométrica. Una transformación isométrica es el cambio de posición que puede sufrir una figura sin alterar su tamaño o forma. Existen tres tipos de transformaciones: la rotación, la traslación y la reflexión.

¿Qué es la isometría?

La palabra “isometría” significa “igual medida”, por esta razón cuando una figura recibe una transformación isométrica resulta que la figura original y la final son semejantes y congruentes, es decir no cambian ni de forma ni tamaño.

Las transformaciones isométricas que puede recibir una figura plana son la rotación, la traslación y la reflexión.

rOTACIÓN

Para rotar una figura se la gira en torno a un punto fijo llamado punto de rotación, alrededor de este punto la figura se moverá una cantidad de grados respecto de un ángulo. En este movimiento la figura mantiene la forma y el tamaño.

En la imagen, el triángulo azul giró 60° en sentido contrario a las agujas del reloj y se obtuvo otro triángulo de color rosa que no ha perdido sus dimensiones ni tamaño.

TRaslación

La traslación es un movimiento directo de una figura en la que todos sus puntos se mueven en la misma dirección y distancia. Al transformar una figura por traslación la misma no pierde la medida de sus lados ni ángulos como tampoco su orientación, no gira ni se refleja.

Podemos desplazar una figura de la siguiente manera:

  • En una dirección, ya sea horizontal, vertical u oblicua.
  • En un sentido, esto puede ser a la izquierda, a la derecha, arriba o abajo.
  • A una distancia, que es la longitud en la que se va a desplazar la figura inicial de la figura final.

En muchas situaciones de la vida cotidiana utilizamos el movimiento de traslación, por ejemplo, cuando movemos un mueble, subimos un ascensor o recorremos una ciudad en subterráneo (metro).

Movimientos de la Tierra

La Tierra se mueve constantemente en el espacio y posee dos movimientos principales: el movimiento de rotación y el movimiento de traslación. Cuando se produce el movimiento de rotación la Tierra da vueltas sobre su propio eje y tarda 24 horas en completarlo. Al mismo tiempo en el que la Tierra gira sobre su eje también se produce el movimiento de traslación alrededor del Sol que tarda 365 días.

REFLEXIÓN

La reflexión es un movimiento en la que dos figuras quedan reflejas respecto de un eje. Sobre una misma línea están todos los puntos que se asocian de una figura y la figura que se refleja. Los puntos también se encuentran a la misma distancia del eje pero en direcciones opuestas. Diferentes objetos que nos rodean se pueden reflejar en el agua, en un espejo y hasta en un vidrio de cristal.

 

¿Sabías qué?

El eje de simetría es una línea vertical que divide a dos figuras y funciona como “espejo” para mostrar que ambas son iguales pero invertidas.

Reflexión en el espejo

Cuando nos situamos frente a un espejo, la imagen que se refleja de nosotros mismos es una transformación isométrica: la reflexión. Para que esta reflexión ocurra la luz nos debe iluminar y rebotar hacia la superficie del espejo. Una vez que los rayos rebotan, cambian de dirección y son captados por nuestros ojos listos para observar nuestro reflejo.

Actividades

  1. A las siguientes figuras se les aplicó un movimiento:
  • Observa esta imagen, ¿de qué forma se movió la figura verde?

Solución
La figura verde se movió hacia arriba y a la derecha.
  • ¿La figura verde cambió de sentido respecto a la figura roja? ¿Cómo se llama el movimiento?
Solución
Sí, cambió de sentido. El movimiento se llama traslación.
  • Observa esta imagen, ¿la figura verde se movió de la misma manera que la anterior?

Solución
No.
  • ¿Cuál es el movimiento que se le aplicó a esta figura?
Solución
Se le aplicó el movimiento de reflexión.
  • Observa esta imagen, ¿qué movimiento se le aplicó a la figura roja?

Solución
Se le aplicó el movimiento de rotación.

2. A la mariposa de la izquierda se le aplicaron distintas transformaciones isométricas que aparecen en las imágenes de la derecha. Responde las preguntas.

  • ¿Qué transformación isométrica tuvo la mariposa A?
    Solución
    Una rotación.
  • ¿Qué transformación isométrica tuvo la mariposa B?
    Solución
    Una traslación.
  • ¿Qué transformación isométrica tuvo la mariposa C?
    Solución
    No hay transformación isométrica porque la figura cambia de tamaño.
  • ¿Qué transformación isométrica tuvo la mariposa D?
    Solución
    Una rotación.

 

RECURSOS PARA DOCENTES

Artículo “Simetría”

Este artículo le permitirá reforzar el concepto de simetría y su aplicación el a vida cotidiana.

VER