La matemática presenta cuatro operaciones básicas: adición o suma, sustracción o resta, multiplicación y división. La adición consiste en combinar dos o más números para obtener un total. Esta operación emplea el símbolo “+” y tiene dos elementos: los sumandos, que son los números que se van a sumar, y la suma, que consiste en el resultado en sí. La sustracción, por su parte, es una operación que consiste en quitar una cantidad a otra, por esto es considerada como la operación inversa a la adición, y emplea el símbolo “−”. Los elementos de una resta son: el minuendo que es el número al que se le va a quitar la cantidad, el sustraendo que es el número que resta y la diferencia que es el resultado de la operación.
Multiplicación y división
La multiplicación y la división son otras operaciones fundamentales de la matemática. Se dice que la multiplicación es una suma abreviada porque permite sumar tantas veces un número como indique otro, a menudo se usa la equis (x) para indicar esta operación pero también se usa el punto (·). Está formada por los factores, que son los números que se multiplican y por el producto que es el resultado de dicha operación. Por otro lado, la división es la operación opuesta a la multiplicación y consiste en repartir grupos de elementos en partes iguales. Su símbolo es “÷” y sus elementos principales son: el dividendo, que es el número que se reparte; el divisor, que es el número que indica las partes en las que se va a dividir el dividendo; el cociente, que es el resultado; y el resto, que es la cantidad que no se puede dividir.
Operaciones combinadas
Las operaciones combinadas son aquellas en las que aparecen dos o más operaciones matemáticas. Aunque pueden incluir símbolos como los paréntesis, corchetes y llaves, cuando se aplican a números naturales estos símbolos no son necesarios. Para resolver cálculos combinados de suma y resta, se resuelven los números de izquierda a derecha en función de la operación que se indique. Cuando existan operaciones combinadas que además de suma o resta incluyan multiplicación, división o ambas, se resuelven las multiplicaciones y divisiones primero para luego sumar o restar de la manera mencionada anteriormente.
Hay ocasiones en las que pueden aparecer varias operaciones matemáticas en un mismo problema: estas expresiones se conocen como operaciones combinadas. Para resolverlas, es importante que tengas buenas bases en las propiedades de la suma, la resta, la multiplicación y la división, así como también que sepas priorizar entre ellas.
¿Qué es una operación combinada?
Es una expresión que contiene dos o más operaciones matemáticas, como la suma, la resta, la división y la multiplicación. Algunas veces puede aparecer con paréntesis para separar términos dentro de la expresión.
Para estos problemas se deben tener en cuenta dos cosas:
La regla de los signos.
La prioridad de operaciones, lo que significa que hay operaciones que deben resolverse antes que otras.
Ley de los signos en suma y resta
Para resolver operaciones combinadas es indispensable comprender ciertos criterios que cumplen los números en relación a su signo, a estos criterios se los conoce como “ley de los signos”. A continuación, te mostramos aquellos orientados únicamente a operaciones de suma y resta.
Cuando se suman números positivos, el resultado es otro número con signo positivo:
10 + 13 = 23
Cuando se suman números negativos, se mantiene el signo negativo y suman los números:
(−3) + (−2) = −5
Cuando se tienen números con diferente signo, se restan y se coloca el signo que corresponda al número mayor:
15 − 3 = 12 → El número mayor es 15 y como no tiene signo se entiende que es positivo, ya que por convención los números que no presentan signo se asumen como números positivos, así que al resultado no se le coloca signo.
3 − 7 = −4 → El número mayor es el 7 y, por tener el signo menos, el resultado debe ser negativo.
¿Sabías qué?
El símbolo “÷” algunas veces es reemplazado por dos puntos “:” para indicar una división.
Ejercicios combinados de sumas y restas
Las operaciones combinadas de sumas y restas con números naturales son fáciles de reconocer porque no llevan paréntesis. En los ejercicios de este tipo, la resolución se hace de izquierda a derecha en el orden en que aparecen los números.
– Por ejemplo:
458 − 352 + 157 − 235 + 784 − 568
Primero debes resolver los dos primeros términos: 458 − 352 = 106, y colocar el resultado como reemplazo de esos números. Luego escribe los números siguientes con sus signos:
106 + 157 − 235 + 784 − 568
Suma el resultado anterior con el siguiente término:
106 + 157 − 235 + 784 − 568
Como el resultado de 106 + 157 es igual a 263, sustituye esos números y anota los números siguientes:
263 − 235 + 784 − 568
Debido a que el número que le sigue a 263 está precedido por un signo menos, la operación a realizar es una resta, es decir, 263 − 235, cuyo resultado es 28. Anota este resultado y resuelve con el número siguiente:
28 + 784 − 568
De 28 + 784 resulta 812, entonces, escribe este resultado junto con el último número que queda y resuelve:
812 − 568 = 244
Con esta última operación obtendrás el resultado del ejercicio. También puedes escribir la solución de esta forma:
458 − 352 + 157 − 235 + 784 − 568 = 244
Ejercicios combinados de multiplicación y división
Los ejercicios combinados que involucran multiplicación y división sin paréntesis se resuelven en este orden:
Realiza las multiplicaciones y las divisiones primero.
Realiza las sumas y restas de la manera en la que fue explicado en el punto anterior.
– Por ejemplo:
112 + 3 x 15 − 85
Resuelve primero la multiplicación 3 x 15:
112 + 3 x 15 − 85
Como 3 x 15 = 45, coloca el 45 como reemplazo de la expresión y respeta el orden de los demás números:
112 + 45 − 85
Ahora tenemos una operación combinada de suma y resta que puedes solucionar de izquierda a derecha como se explicó anteriormente:
112 + 45 − 85
157 − 85 = 72
El resultado es el siguiente:
112 + 3 x 15 − 85 = 72
– Otro ejemplo:
21 + 25 ÷ 5 − 12 + 8 x 6
Primero debes identificar los números que multiplican y dividen:
21 + 25 ÷ 5 − 12 + 8 x 6
Resuelve las operaciones de multiplicación y división y reemplaza por sus respectivos resultados. El orden y los signos del resto de los números se mantiene. Recuerda que 25 ÷ 5 = 5 y que 8 x 6 = 48. Al sustituir estos números queda:
21 + 5 − 12 + 48
Ya puedes resolver la operación combinada de suma y resta de la manera explicada anteriormente:
21 + 5 − 12 + 48
26 − 12 + 48
14 + 48 = 62
Expresa el resultado de la siguiente manera:
21 + 25 ÷ 5 − 12 + 8 x 6 = 62
¡A practicar!
1. Resuelve las siguientes operaciones combinadas de sumas y restas sin paréntesis:
a) 115 − 94 + 525 − 32 =
Solución
514
b) 350 − 257 − 50 + 117 =
Solución
160
c) 450 − 358 + 15 + 452 − 527 + 13 =
Solución
45
d) 1.975 − 1.875 + 252 =
Solución
352
e) 759 − 651 + 875 − 532=
Solución
451
2. Resuelve las siguientes operaciones combinadas con multiplicaciones y divisiones sin paréntesis:
a) 14 − 6 x 3 − 11 =
Solución
−15
b) 28 − 12 ÷ 3 + 10 =
Solución
34
c) 42 + 5 x 5 − 48 + 42 ÷ 6 =
Solución
26
d) 272 − 105 + 6 x 6 − 15 + 2 x 2 =
Solución
192
e) 3.615 ÷ 15 + 9 − 90 + 5 x 2 =
Solución
170
RECURSOS PARA DOCENTES
Artículo “Ley de los signos: suma y resta”
Este artículo explica la ley de los signos para la suma y la resta. También muestra ejemplos de ejercicios para cada caso.
Este artículo ayuda a ampliar el conocimiento sobre los números negativos y algunas de sus aplicaciones. También incluye una serie de ejercicios para resolver.
La multiplicación y la división son operaciones básicas de la matemática. La primera consiste básicamente en sumar varias veces un mismo número y la segunda, en cambio, consiste en repartir cantidades. Ambas están muy relacionadas entre sí y su manejo es necesario para resolver otros tipos de problemas.
Elementos de la multiplicación
La multiplicación es una operación en la que se suma tantas veces un número como indica otro número, por ejemplo, 3 x 4 = 12 se puede representar como 3 + 3 + 3 + 3 = 12. El signo usado en la multiplicación es “x” y se lee “por”. Los elementos principales de una multiplicación son:
Factores o coeficientes: son los números que se multiplican, estos son multiplicando y multiplicador. El multiplicando es el número a sumar y el multiplicador es el número de veces que se suma al multiplicando. En la multiplicación 3 x 4 = 12, el número 3 es el multiplicando y el 4 corresponde al multiplicador.
Producto: es el resultado de la multiplicación de dos o más factores. Hay ocasiones en las que las multiplicaciones son largas y deben realizarse por medio de la suma de productos parciales.
¿Sabías qué?
En la multiplicación además de la equis también suele usarse el punto “·” como símbolo.
Propiedades de la multiplicación
Son cuatro propiedades: la conmutativa, la asociativa, la distributiva y la del elemento neutro.
Propiedad conmutativa
Esta propiedad permite que al multiplicar dos números el resultado sea el mismo sin importar el orden de los factores. Por ejemplo:
3 x 10 = 30
10 x 3 = 30
Por lo tanto, 3 x 10 = 10 x 3. Observa:
Propiedad asociativa
Esta propiedad permite que al multiplicar tres o más factores el producto siempre sea el mismo, sin importar como se agrupen estos. Por ejemplo, 2 x 4 x 6 se puede agrupar de estas formas:
(2 x 4) x 6 = 8 x 6 = 48
2 x (4 x 6) = 2 x 24 = 48
Por lo tanto, (2 x 4) x 6 = 2 x (4 x 6). Observa:
Propiedad distributiva
Esta propiedad permite que la suma de dos o más números multiplicada por otro número sea igual a la multiplicación de ese número por cada elemento de la suma. Por ejemplo:
Elemento neutro
El uno es el elemento neutro de la multiplicación, cualquier número multiplicado por él será igual a sí mismo. Por ejemplo:
0 x 1 = 0
3 x 1= 3
10 x 1 =10
113 x 1 = 113
¿Sabías qué?
La propiedad distributiva también puede aplicarse a números que se restan.
Modelos de multiplicación
Una multiplicación es una suma abreviada y puede ser representada a través del modelo grupal, modelo lineal y modelo geométrico. Estas son diferentes formas de dar sentido a las multiplicaciones y se pueden aplicar en situaciones simples de la vida.
Modelo grupal
En este modelo se construyen secuencias con la misma cantidad de elementos, estos grupos de elementos representan la multiplicación.
Observa la representación del modelo en los siguientes ejemplos:
4 pelotas de tenis = 4
1 vez 4 = 4 1 x 4 = 4
4 + 4 = 8 raquetas de tenis
2 veces 4 = 8 2 x 4 = 8
4 + 4 + 4 = 12 pelotas de baloncesto
3 veces 4 = 12 3 x 4 = 12
¿Sabías qué?
En el modelo grupal, 3 x 4 se lee como “tres veces cuatro”.
Modelo lineal
En este modelo se emplea la semirrecta numérica para representar las multiplicaciones. Se comienza desde cero y se cuenta de acuerdo al número de elementos que tenga el conjunto a estudiar y al número de conjuntos. Por ejemplo:
Un árbol crece 2 metros cada año. ¿Cuántos metros crecerá en 4 años?
Planteado el sistema en la gráfica sería:
4 veces 2 = 8 metros 4 x 2 = 8
Modelo geométrico
En este método se comparan las cuadrículas en columnas y filas para representar una multiplicación. Se colocan tantas filas como indique el primer factor y el número de columnas será igual al segundo factor. Por ejemplo:
La multiplicación 3 x 4 = 12 se representa geométricamente de la siguiente manera:
Si se cuentan cada una de las cuadrículas se obtiene el resultado: 3 x 4 = 12
Pasos para resolver ejercicios con el algoritmo de la multiplicación
Multiplica las unidades del multiplicador por cada una de las cifras del multiplicando y coloca el resultado en la fila de abajo. Será el primer producto parcial.
Multiplica las decenas del multiplicador por cada una de las cifras del multiplicando y coloca el resultado en la fila de abajo pero con la diferencia que se debe desplazar una posición hacia la izquierda. Este será el segundo producto parcial.
Suma los dos productos parciales. El número que obtengas será el total de la multiplicación.
– Resuelve la multiplicación 453 x 24
Por tratarse de una multiplicación con números grandes no sería tan fácil de resolver a través de los modelos grupal, lineal y geométrico. En estos casos debes emplear el algoritmo de la multiplicación y seguir los pasos mencionados anteriormente.
Para iniciar, el multiplicando y el multiplicador tienen que estar uno debajo del otro:
Luego multiplica las unidades del multiplicador por el multiplicando, es decir, multiplica 4 por 453:
Después multiplica las decenas del multiplicador por el multiplicando, es decir, 2 por 453:
Por último, suma los dos productos parciales que se calcularon para obtener el resultado de la multiplicación:
Elementos de la división
La división consiste en repartir grupos de elementos en partes iguales. Sus elementos principales son:
Dividendo: es el número que se va a dividir, es decir, la cantidad que se quiere repartir.
Divisor: es el número que divide, este indica cuántas veces se va a repartir el dividendo.
Cociente: es el resultado de la división.
Resto: es la cantidad que sobra de la división o la que no se puede repartir por ser menor que el divisor.
La división también se expresa con el símbolo “÷“, por ejemplo:
Método para comprobar una división
En una división se cumple la relación:
Dividendo = (cociente x divisor) + resto
De esta manera es muy fácil comprobar que una división esté correcta, solo se debe multiplicar el cociente que se obtuvo por el divisor y luego sumarle el resto. Si el resultado que se obtiene es igual al número del dividendo, entonces la división es correcta.
¿Sabías qué?
Cuando el resto de una división es igual a cero la división es exacta y cuando no lo es se denomina división inexacta.
Algoritmo de división
Los pasos para resolver una división son los siguientes:
– Resuelve la división 3.654 ÷ 25
Lo primero que hay que hacer es tomar las dos primeras cifras del dividendo, si estas dos cifras forman un número menor que el divisor entonces se toman tres cifras del dividendo. En este caso, las dos primeras cifras son 36 y como es mayor que 25 se puede continuar.
Divide el primer número del dividendo (si tomaste tres cifras, entonces divide los dos primero) entre el primer número del divisor. Coloca el número resultado en el cociente. Como el primer número del dividendo es 3 y el primer número del divisor es 2, el resultado de dividirlo es 1.
Multiplica el número del cociente por el divisor y coloca el resultado debajo de los dos números seleccionados al principio del dividendo. Luego haz la resta y anota el resultado:
Baja la cifra siguiente del dividendo.
5. Si divides 11 entre 2, el resultado es 5; y cuando multiplicas 5 por 25 se obtiene 125 que no puede restarse con 115. Por esta razón, coloca 4 en el cociente y continúa con los pasos anteriores.
Baja la cifra siguiente del dividendo.
Si divides 15 entre 2, obtienes 6. Colócalo en el cociente y repite los pasos anteriores.
Como no existen más cifras del dividendo para bajar y el número que se obtuvo de la resta es menor que el divisor, entonces se culmina el ejercicios: 3.654 ÷ 25 = 146 y sobraron 4 unidades sin repartir (resto).
¡A practicar!
1. Resuelve las siguientes multiplicaciones:
a) 296 x 18
Solución
5.328
b) 593 x 29
Solución
17.197
c) 332 x 74
Solución
24.568
d) 375 x 16
Solución
6.000
e) 613 x 59
Solución
36.167
2. Resuelve las siguientes divisiones:
a) 4.739 ÷ 88
Solución
Cociente = 53; Resto = 75
b) 7.049 ÷ 41
Solución
Cociente = 171; Resto = 38
c) 9.370 ÷ 58
Solución
Cociente = 161; Resto = 32
d) 3.830 ÷ 40
Solución
Cociente = 95; Resto = 30
e) 5.378 ÷ 65
Solución
Cociente = 82; Resto = 48
RECURSOS PARA DOCENTES
Artículo “Trucos para aprender las tablas de multiplicar”
El siguiente artículo muestra algunas sugerencias para que el aprendizaje de las tablas de multiplicar sea más sencillo y significativo.
En matemática existen cuatro operaciones básicas: adición, sustracción, multiplicación y división. De las dos primeras se desprenden las otras, lo que quiere decir que aprender a sumar y a restar es fundamental para resolver la mayoría de los ejercicios matemáticos y para realizar cuentas cotidianas como, por ejemplo, en compras del supermercado.
Elementos de la adición
La adición es una de las operaciones básicas de la aritmética que permite combinar dos o más números para obtener un total. Esta operación se representa con el símbolo “+” y es aplicada en los diferentes tipos de números: naturales, enteros, racionales, reales y complejos.
Una adición presenta dos partes básicas: los sumandos y la suma. Los sumandos son todos los números que se van a sumar y la suma se refiere al resultado.
La adición anterior tiene dos sumandos: 352 y 431, y el resultado o suma es 783. Es importante tener presente que en estos casos la palabra “suma” se emplea para hablar de la operación de adición y también para referirse al resultado.
¿Sabías qué?
La aritmética es una rama de la matemática que estudia los números y las operaciones elementales que se realizan con ellos.
Propiedades de la adición
La suma de números enteros cumple tres propiedades básicas:
Propiedad conmutativa
Sin importar cómo se ordenen los sumandos de una suma, el resultado siempre será el mismo. Por ejemplo:
Por lo tanto:
15 + 3 = 18
3 + 15 = 18
Propiedad asociativa
No importa como se agrupen los elementos de una suma, el resultado siempre será el mismo. Por ejemplo:
En el problema: 8 + 2 + 6, se pueden sumar primero el 8 y 2 para luego sumar el 6, o se pueden sumar el 2 y el 6 y después sumar el 8. Entonces:
8 + 2 = 10, 10 + 6 = 16
2 + 6 = 8; 8 + 8 = 16
Propiedad del elemento neutro
El cero es el único número que no altera el resultado en una suma, es decir, la suma de cualquier número con el cero es igual al mismo número:
Es un método en el que se agrupan las unidades, decenas, centenas, etc., de un número. Para resolver problemas de este tipo se suman primero las unidades, luego las decenas, después las centenas y así sucesivamente.
Pasos para resolver adiciones por reagrupación
Colocar los sumandos uno debajo del otro de manera que los valores posicionales iguales estén ubicados en una misma columna: unidades con unidades, decenas con decenas, centenas con centenas…
Sumar cada columna por separado a partir de las unidades. El resultado de la suma de cada columna se escribe en la parte inferior de esta.
En caso de obtener un número de dos cifras al momento de sumar una columna, se anotará el número de la unidad de dicho número y la decena se sumará a la columna siguiente.
Con estos ejemplos podrás ver mejor cómo resolver una suma por reagrupación:
– Sumar 242 + 351
Lo primero es colocar los números uno debajo del otro según sus mismos valores posicionales.
Luego suma la columna de las unidades y anota el resultado debajo de dicha columna.
Repite el procedimiento anterior en las demás columnas de derecha a izquierda hasta completarlas todas. En este caso el resultado es: 242 + 351 = 593.
– Sumar 198 + 23
Ordena los números de la siguiente manera:
Cuando sumas la columna de las unidades tienes que 8 + 3 = 11, entonces solo debes colocar el 1 de la unidad y el 1 de la decena lo sumas en la siguiente columna. Anota el número en la parte superior de la columna para no olvidar sumarlo al final.
Suma la segunda columna. Allí tienes que 9 + 2 = 11, pero hay que sumarle 1 de la columna anterior, entonces el resultado de la segunda columna es 12. Anota el 2 de la unidad y el 1 de la decena lo sumas a la siguiente columna.
En la tercera columna solamente está el número 1, así que el 1 de la columna anterior se suma a este. Anota el resultado.
El resultado de la suma anterior es: 198 + 23 = 221. En caso de sumar la última columna y obtener un número de dos cifras, este se anotará exactamente igual en el resultado.
Elementos de la sustracción
La sustracción es otra operación básica de la aritmética que consiste en quitar una cantidad a otra, por eso se considera como la operación opuesta a la suma. Se representa con el símbolo “−”.
Este tipo de operación cuenta con un minuendo, número al cual se le quita cierta cantidad; un sustraendo, número que resta al minuendo; y la diferencia, resultado de la operación.
¿Sabías qué?
La diferencia de una resta es la cantidad que falta para que ambos números sean iguales.
Propiedades de la sustracción
La sustracción cumple con dos propiedades básicas:
Elemento neutro
El resultado de cualquier número y cero da como resultado el mismo número. Por ejemplo:
3 − 0 = 3
157 − 0 = 157
Elemento simétrico
El resultado de restar un número con su opuesto (número del mismo valor con signo opuesto) da como resultado el número cero.
5 − 5 = 0
74 − 74 = 0
¿Sabías qué?
En la sustracción no existen ni la propiedad conmutativa ni la asociativa.
Sustracción por reagrupación
Este tipo de problemas se realizan mediante la agrupación de los números uno debajo del otro de forma tal que valores posicionales entre las cifras de los números que se restan sean los mismos. Para las restas con naturales, el número mayor debe estar ubicado en la parte de arriba (minuendo) y el número menor debajo (sustraendo).
¿Sabías qué?
La resta por reagrupacion también es conocida como resta con llevada y sirve para restar una cifra mayor a una menor.
Pasos para resolver restas por reagrupación
Colocar el minuendo y el sustraendo uno debajo del otro de manera que los valores posicionales iguales estén ubicados en la misma columna. El número mayor siempre debe estar ubicado en la parte de arriba.
Comenzar a restar desde la columna de las unidades, de derecha a izquierda.
Si en una columna se tiene que la cifra de arriba es menor que la de abajo, esta cifra toma prestado un valor posicional a la columna del minuendo de la izquierda.
En caso de que la cifra del minuendo le haya “prestado” un valor posicional a la cifra de al lado, esta se reduce en una unidad y se debe considerar el nuevo valor de la cifra al momento de restar en su columna.
Con estos ejemplos podrás apreciar mejor cómo resolver una resta por reagrupación:
– Restar 425 − 263
Lo primero es colocar los números uno debajo del otro con sus valores posicionales iguales, todos ubicados en la misma columna.
Luego resta las cifras en la columna de las unidades.
Repite la resta en la columna de las decenas, pero como en este caso el 2 es menor que el 6, el 4 presta una centena al 2. De este modo, 4 centenas y 2 decenas, se convierten en 3 centenas y 12 decenas. Ahora sí es posible restar 12 menos 6 en la columna de las decenas.
Resta las cifras en la columna de las centenas. Como el 4 le prestó 1 al 2, entonces quedó en 3 centenas que al restarse con el 2 el resultado de la columna es 1.
Ejercicios
1. Resuelve las siguientes sumas:
a) 452 + 395 =
Solución
847
b) 256 + 122 =
Solución
378
c) 603 + 113 =
Solución
716
d) 126 + 460 =
Solución
586
e) 1.830 + 2.178 =
Solución
4.008
2. Resuelve las siguientes restas:
a) 853 − 741 =
Solución
112
b) 544 − 35 =
Solución
509
c) 1.789 − 1.354 =
Solución
435
d) 957 − 362 =
Solución
595
e) 4.780 − 3541 =
Solución
1.239
RECURSOS PARA DOCENTES
Artículo “Operaciones básicas de los números naturales y sus propiedades”
El presente artículo permite profundizar el tema de las operaciones básicas y de sus diferentes propiedades.
El ser humano ha creado muchos inventos, pero uno de los más significativos han sido los números. En la actualidad, el sistema de numeración más usado es el decimal, llamado así porque emplea diez dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. Este sistema es posicional porque cada cifra adquiere un valor distinto de acuerdo a la posición en donde se encuentre. A lo largo del tiempo han existido otros sistemas de numeración como el romano, que es usado hoy en día en ciertas situaciones.
Números primos y compuestos
Los números enteros que solo son divisibles entre ellos mismos y la unidad se denominan números primos. Hay números que además de ser divisibles entre ellos mismos y la unidad pueden ser divisibles por otros números, y se conocen como números compuestos. Por convención, el 1 no es clasificado como número primo ni compuesto; por otro lado, el 0, al no poder ser dividido entre él mismo, tampoco entra en dichas clasificaciones.
Un vistazo a los números decimales
Los números que se encuentran entre dos números enteros consecutivos se denominan números decimales y se caracterizan por una parte entera y otra parte decimal. La parte entera puede ser igual o diferente de cero y la parte decimal está ubicada después del separador decimal que puede ser un punto o una coma de acuerdo a la convención de cada país. La suma y resta de decimales se hace igual que con los números enteros, pero se debe tener la precaución que cada cifra esté ordenada de acuerdo a su mismo valor posicional.
Valor posicional
Cada cifra adquiere un valor dentro de un número y por medio de una tabla posicional se pueden representar dichos valores. Para números de seis dígitos estos son, de mayor a menor: centena de mil, decena de mil, unidad de mil, centena, decena y unidad. Conocer los valores posicionales facilita realizar operaciones como la descomposición aditiva de un número.
Secuencias
Al conjunto de elementos que guardan relación y conservan un orden particular se lo denomina “secuencia”. El orden de una secuencia viene dado por una regla que puede ser, por ejemplo, su forma, tamaño o color. Además, en el caso de las secuencias numéricas, la regla puede implicar que los números incrementen o disminuyan su valor, en estos casos se denominan secuencias ascendentes y descendentes respectivamente. Conocer las secuencias permite realizar operaciones como las divisiones con restas sucesivas.
Al contar los números naturales, ya sea de 1 en 1, 2 en 2, o de 5 en 5, se aplican secuencias de números ordenados que se rigen por ciertas reglas, de manera que cumplen con un orden establecido. Una de las más conocidas es la sucesión de Fibonacci, pero las secuencias pueden ser de varios tipos: finitas o infinas, ascendentes o descendentes.
SeCUENCIAS con figuras
Una secuencia es un conjunto de elementos que están relacionadas entre sí y que se encuentran ordenadas según un criterio.
En las secuencias ordenadas en función de un patrón de figuras, se observa que los objetos están organizados de acuerdo a uno o más atributos. Algunos ejemplos son:
Por tamaño:
Por color:
Por forma:
También pueden contener imágenes y patrones más complejos:
El orden de una secuencia numérica no siempre es el mismo, por ejemplo, los elementos pueden estar ordenados de forma ascendente, de manera alternada o de manera decreciente.
Partes de una secuencia numérica
Una de las primeras secuencias que la mayoría de las personas aprende es la secuencia de los números naturales y se expresa de la siguiente forma: = {1, 2, 3, 4 ,…} en donde cada uno de los números denominados elementos, se encuentran ordenados de 1 en 1. Los tres puntos suspensivos al final de la secuencia indican que los números continúan.
Las secuencias pueden ser infinitas, como pasa con los números naturales, que siguen la secuencia de manera ilimitada, y también pueden ser finitas como sucede con la secuencia de las vocales: {a, e, i, o, u}.
¿Sabías qué?
Las secuencias numéricas permiten desarrollar el razonamiento matemático.
Secuencias ascendentes y descendentes
– Secuencias ascendentes
Las secuencias numéricas tienen una regla que permite determinar el valor de cada término o elemento de la misma. Por ejemplo, cuando se cuentan los números de 2 en 2, en realidad se incrementan 2 números por cada elemento, es decir, la regla en este caso sería sumar 2 a cada elemento:
En la imagen se puede observar como cada elemento de la secuencia se incrementa por 2, esto significa que es una secuencia ascendente porque todos sus elementos van en aumento, por lo tanto, cada número es mayor que el anterior. Si a 2 se le suma 2, el resultado es 4 y si a este número se le suma 2 el resultado es 6, y así sucesivamente. En este caso, la secuencia numérica se representa como: {2, 4, 6, 8, …}.
– Secuencia descendente
Las secuencias descendentes, en cambio, se desarrollan en forma regresiva y cada número es menor que el anterior. En la siguiente imagen se puede observar un ejemplo de secuencia descendente:
La regla en esta secuencia descendente es restar 3 a cada número, de manera que es fácil calcular el número a continuación del 9, para ello realizamos la regla: 9 – 3 = 6, así, el número siguiente a 9 en esta secuencia es 6.
¿Sabías qué?
Hay secuencias ascendentes cuya regla consiste en multiplicar un número a cada elemento y secuencias descendentes donde se divide un número a cada elemento.
Números de Fibonacci
Son conocidos también como secuencia de Fibonacci. Su nombre proviene de quien la describió por primera vez en Europa: el matemático italiano Leonardo Fibonacci. Es una secuencia en la cual el número siguiente se obtiene al sumar los dos números anteriores a este y se detalla a continuación {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 ,…}. En la secuencia se puede observar que, por ejemplo, los dos números anteriores al 13 son el 5 y el 8, que al sumarlos dan como resultado al número siguiente: 5 + 8 = 13. Esto se cumple para todos los números de la secuencia.
Antes de comenzar con este tema es importante recordar que multiplicar es lo mismo que sumar muchas veces el mismo número, por ejemplo:
4 x 3 = 12 es igual a 4 + 4 + 4= 12
Esto se debe a que la multiplicación está muy relacionada con la adición. Algo similar sucede con la división, la cual guarda relación con la resta. Por ejemplo, si se tiene la división 12 ÷ 3, hay que restarle 3 a 12 tantas veces como sea posible:
Al observar la imagen se razona que 12 fue restado 4 veces por el número 3. De esta manera se tiene que 12 ÷ 3 = 4.
Pasos para dividir a través de restas sucesivas
Las divisiones pueden realizarse a través de restas sucesivas de la siguiente manera:
Resta el divisor al dividendo tantas veces como sea posible. Hazlo hasta que el resultado sea 0 o un número menor al divisor.
Se cuenta el número de veces que se restó el divisor.
El cociente de la división será igual al número de veces que se restó el divisor y el resto será igual al último número que dio como resultado la resta.
Otro ejemplo:
– Resuelve la división 30 ÷ 5
Se resuelve a través de los pasos anteriores, para simplificar se sugiere utilizar una tabla similar a esta:
El resultado es 30 ÷ 5 = 6, y se trata de una división exacta porque el resto es igual a 0.
A continuación se muestra otro ejemplo de división pero en este caso es inexacta:
En el ejercicio anterior 27 ÷ 4 = 6 pero existe un resto igual a 3, como 3 es menor que el divisor no se puede continuar las restas en este método.
Ejercicios
Completa las siguientes oraciones:
a. En las secuencias ________ todos sus elementos van en aumento.
Solución
ascendentes
b. La secuencia {25, 20, 15, 10 , …} es una secuencia ______.
Solución
descendente
c. Las divisiones pueden calcularse con el método de ______.
Solución
restas sucesivas
Completa las siguientes secuencias numéricas:
a. {50, 40, ___, 20, …}
Solución
30
b. {12, ___, 8, 6, …}
Solución
10
c) {15, 30, ___, 60, 75, …}
Solución
45
d) { ___, 5.000, 4.000, 3.000, 2.000, …}
Solución
6.000
Resuelve las siguientes divisiones a través de restas sucesivas
a. 20 ÷ 5
b. 24 ÷ 6
c. 16 ÷ 5
d. 20 ÷ 3
Solución
RECURSOS PARA DOCENTES
Artículo “Sucesiones y series”
El siguiente artículo explica la diferencia entre una serie y una sucesión:
El video muestra cómo realizar restas por descomposición que el docente puede emplear para relacionar la secuencias de sistema decimal con las secuencias numéricas estudiadas.
El sistema de numeración decimal es el más usado en todo el mundo. Se caracteriza por ser posicional, es decir, cada cifra toma un valor diferente de acuerdo al lugar que ocupe dentro de un número. Esta característica es conocida como valor posicional, y es aplicable a todos los números incluidos los enteros y decimales.
Valor posicional de cifras hasta 100.000
Como se mencionó al comienzo, las cifras de un número adquieren distinto valor según la posición que ocupen. No es lo mismo una cifra ubicada en la columna de las unidades de mil que la misma localizada en la columna de las decenas. Por ejemplo, la posición que ocupa la cifra 1 en los números 1.524 y 4.314 no tiene el misma valor. En el número 1.524 está en la columna de las unidades de mil y en el número 4.314 ocupa el lugar de las decenas. Aunque es la misma cifra, representa magnitudes diferentes: 1.000 y 10 respectivamente. Por eso se dice que el valor de las cifras depende de la posición que ocupen.
Valores de una cifra
Toda cifra tiene dos valores: uno absoluto y otro relativo. El valor absoluto es el valor de la cifra en sí mismo, es decir, el que tiene por su figura. El valor relativo es el que tiene una cifra de acuerdo a la posición que ocupa dentro de un número. Por ejemplo, en el caso del número 5.050 el valor absoluto de los dos 5 es el mismo, es decir 5. Pero el valor relativo no es igual. Para el primer cinco, el valor relativo es 5.000 por estar en el lugar de las unidades de mil y para el segundo cinco el valor relativo es de 50 por estar ubicado en la columna de las decenas.
¿Sabías qué?
Conocer el valor posicional de un número facilita su descomposición, que es de gran ayuda al momento de realizar operaciones y de escribir en letras un número.
Tabla posicional
Permite ver de manera sencilla la ubicación de las cifras de un número. En la tabla se muestra por columna cada valor posicional correspondiente: centena de mil, decena de mil, unidad de mil, centena, decena y unidad.
La tabla posicional para un número de seis cifras se presenta así:
Representación de números en la tabla posicional
Las cifras de un número se ubican en la tabla posicional en la columna a la que corresponda su valor, de derecha a izquierda. De este modo, si quisiéramos representar el número 195.632 en la tabla posicional, quedaría de la siguiente forma:
Se puede observar el valor posicional de cada cifra:
El 1 pertenece a las centenas de mil.
El 9 pertenece a las decenas de mil.
El 5 pertenece a las unidades de mil.
El 6 pertenece a las centenas.
El 3 pertenece a las decenas.
El 2 pertenece a las unidades.
Es por ello que si se deseas conocer el valor relativo de una cifra es aconsejable emplear la tabla posicional.
¿Sabías qué?
Las centenas de mil, decenas de mil y unidades de mil también son conocidas como centenas de millar, decenas de millar y unidades de millar respectivamente.
Descomposición aditiva de un número
Cualquier número puede expresarse a través de la suma, en lo que se conoce como descomposición aditiva. Este tipo de descomposición expresa en forma de suma el valor posicional de cada una de sus cifras.
Por ejemplo, el número 1.458 se descompone de la siguiente manera:
1.458 = 1.000 + 400 + 50 + 8
Toda esta descomposición parte de que el número 1.458 esta formado por:
1 unidad de mil = 1 x 1.000 = 1.000
4 centenas = 4 x 100 = 400
5 decenas = 5 x 10 = 50
8 unidades = 8 x 1 = 8
Otros ejemplos son:
254.331 = 200.000 + 50.000 + 4.000 + 300 + 30 + 1
85.417 = 80.000 + 5.000 + 400 + 10 + 7
30.154 = 30.000 + 100 + 50 + 4
100.540 = 100.000 + 500 + 40
¿Sabías qué?
Cuando se descomponen números de forma aditiva las cifras iguales a cero se omiten en los sumandos.
Valor posicional de decimales
La tabla posicional de los decimales es similar a la que se usa en los números enteros, la diferencia es que incluyen las cifras de la parte decimal: las décimas, centésimas y milésimas:
El procedimiento para ubicar los números en la tabla posicional es exactamente igual y se debe verificar que la coma o punto decimal se encuentre en su columna correspondiente.
El número 128.457,639 se expresa en la tabla de la siguiente forma:
En la tabla se puede observar el valor de cada cifra:
El 1 pertenece a las centenas de mil.
El 2 pertenece a las decenas de mil.
El 8 pertenece a las unidades de mil.
El 4 pertenece a las centenas.
El 5 pertenece a las decenas.
El 7 pertenece a las unidades.
El 6 pertenece a las décimas.
El 3 pertenece a las centésimas.
El 9 pertenece a las milésimas.
Descomposición aditiva de decimales
Los números decimales contienen dos partes: la parte entera y la parte decimal. La parte entera se descompone de la misma forma como se descomponen los números enteros; en la parte decimal por ser menor que la unidad se debe considerar el valor posicional que es diferente:
1 décima equivale a 0,1 unidades.
1 centésima a 0,01 unidades.
1 milésima equivale a 0,001 unidades.
Al aplicar esto, la descomposición aditiva del número 0,584 sería: 0,584 = 0,5 + 0,08 + 0,004.
Ejercicios
¿Qué valor posicional tiene la cifra 2 en el número 125.534?
Solución
Decena de mil.
¿Qué valor posicional tiene la cifra 5 en el número 24,25?
Solución
Centésima.
¿Qué valor posicional tiene la cifra 1 en el número 102.345?
Solución
Centena de mil.
¿Qué valor posicional tiene la cifra 7 en el número 1.007,468?
Solución
Unidad.
Expresa la descomposición aditiva de los siguientes números:
a) 1.865
Solución
1.865 = 1.000 + 800 + 60 + 5
b) 198.456
Solución
198.056 = 100.000 + 90.000 + 8.000 + 50 + 6
c) 74.600
Solución
74.600 = 70.000 + 4.000 + 600
d) 0,54
Solución
0,54 = 0,5 + 0,04
e) 105.111
Solución
105.111 = 100.000 + 5.000 + 100 + 10 + 1
f) 3.333
Solución
3.333 = 3.000 + 300 + 30 + 3
g) 15.287
Solución
15.287 = 10.000 + 5.000 + 200 + 80 +7
d) 0,025
Solución
0,025 = 0,02 + 0,005
RECURSOS PARA DOCENTES
Artículo “Valores absolutos y relativos”
El presente artículo permite ampliar el conocimiento del valor absoluto y relativo de una cifra.
Artículo “Composición y descomposición de números”
Este artículo explica qué es una composición aditiva y su diferencia con la descomposición aditiva, así como la aplicación de esta última en problemas cotidianos.
Hay ocasiones en las que los números enteros no son útiles para expresar ciertas magnitudes; los números decimales, en cambio, permiten indicar una cantidad ubicada entre dos enteros y por este motivo son usados a diario en diversas situaciones, como por ejemplo en los precios de los productos y la lectura de la temperatura del cuerpo.
¿Qué son los números decimales?
Son números formados por una parte entera y otra parte menor que la unidad. Los números decimales generalmente se representan con una coma (,) para indicar la separación entre la parte entera que puede ser igual a cero y la parte menor a la unidad.
Los decimales de un número pueden ser finitos o infinitos.
Por ejemplo:
– El número 3,15 es un decimal con un número finito de decimales.
– El número pi es un número con infinitos decimales: 3,1415926535… Al observar sus decimales se puede apreciar que no son periódicos, por lo tanto no siguen un patrón de repetición, a este tipo de números se lo conoce como número irracional.
Los puntos suspensivos (…) son usados para indicar que los decimales de un número son infinitos.
Elementos de un decimal
Como ya sabemos, los números decimales están formados por una parte entera y otra menor a la unidad (conocida también como parte decimal), la parte entera se ubica a la izquierda y la parte decimal a la derecha de la coma.
La parte entera puede ser igual a cero, como por ejemplo 0,5, que es la mitad del número 1.
La parte decimal es conocida también como parte fraccionaria, y siempre representa cantidades menores a la unidad.
Lectura de decimales
Antes de aprender a leer números decimales es importante conocer los conceptos de décima, centésima y milésima.
Décima: es el resultado de dividir la unidad en diez partes iguales. En la tabla de valor posicional se muestra con la letra d minúscula.
Centésima: es el resultado de dividir la unidad en cien partes iguales. En la tabla de valor posicional se muestra con la letra c minúscula. La centésima es menor que la décima.
Milésima: es el resultado de dividir la unidad en mil partes iguales. En la tabla de valor posicional se muestra con la letra m minúscula. La milésima es menor que la centésima.
La tabla de valor posicional para un número decimal es:
Para leer un número decimal debes seguir estos pasos:
Lee su parte entera de la misma forma como se hace en la lectura de números enteros en el siguiente orden: centena de mil, decena de mil, unidad de mil, centena, decena, unidad.
Agrega la palabra “unidades” o “enteros”.
Coloca una coma.
Lee la parte decimal de la misma manera en la que se leen los enteros y al final nombra el orden decimal que ocupa la última cifra (décimas, centésimas o milésimas).
Por ejemplo, 535,42 se lee: “quinientas treinta y cinco unidades, cuarenta y dos centésimas“.
En el ejemplo anterior, el 2 corresponde a la última cifra y ocupa el orden de las centésimas por eso se agrega dicho orden al final del número.
Si el decimal tiene una parte entera igual a cero solo se nombra la parte decimal de acuerdo al orden de la última cifra. Por ejemplo, 0,579 se lee: “quinientas setenta y nueve milésimas“.
¿Sabías qué?
Cuando un número decimal termina en cero este número puede omitirse sin alterar su valor. Así, 1,50 es igual a 1,5.
Utilidad de los decimales
Gracias a que permiten expresar números menores a la unidad, uno de sus principales usos son en las mediciones, desde la lectura de la temperatura hasta la determinación del tamaño de una bacteria, por ejemplo. Por esta razón, los decimales son indispensables en los cálculos empleados en disciplinas como la arquitectura, la medicina, la ingeniería y muchas otras más.
¿Se usa punto o coma?
La respuesta es simple: ¡cualquiera de las dos! La diferencia en usar una u otra radica en el lugar en donde te encuentres. La coma y el punto son usados como separadores de los números decimales y ambos son válidos. En gran parte de Europa y América del Sur se emplea la coma, pero algunos países como Estados Unidos, Canadá, México y Reino Unido emplean el punto.
Sumas y restas de decimales
Las sumas y restas de números decimales se hacen del mismo modo que con los números enteros. En estos casos se deben colocar los números que se vayan a sumar o restar uno debajo del otro, de manera tal que las cifras del mismo orden se encuentren en la misma columna, es decir, las centenas con las centenas, las decenas con las decenas, las unidades con las unidades, las décimas con las décimas y así sucesivamente. De igual forma, las comas deben estar ubicadas en la misma columna.
Observa la manera correcta de sumar los números 124,32 + 267,11:
Luego, la suma se realiza como una suma normal sin considerar la coma, al final, la coma en el resultado estará ubicada en la columna correspondiente.
Si las cifras que se suman no tiene la misma cantidad de decimales, se completa con cero la cifra de menor número de decimales. Por ejemplo, 74,874 +41,41 se calcula de la siguiente manera:
En el caso de una resta se cumplen los mismos pasos para restar enteros y las cifras se ubican una debajo de la otra de acuerdo a su valor posicional. Si es necesario se agregan ceros en la parte decimal de forma tal que los números tengan la misma cantidad de decimales.
Por ejemplo, al realizar la resta de 945,5 − 307,182 el procedimiento sería:
¡A practicar!
¿Cómo se leen los siguientes números decimales?
a) 457,5
Solución
Cuatrocientas cincuenta y siete unidades, 5 décimas.
b) 8,742
Solución
Ocho unidades, setecientas cuarenta y dos milésimas.
c) 0,92
Solución
Noventa y dos centésimas.
d) 100,102
Solución
Cien unidades, ciento dos milésimas.
Calcula el resultado de las siguientes sumas:
a) 178,45 + 278,73
Solución
457,18
b) 14,2 + 29,178
Solución
43,378
c) 402,745 + 61,45
Solución
464,195
d) 652,314 + 174,074
Solución
826,388
Calcula el resultado de las siguientes restas:
a) 279,3 − 142,1
Solución
137,2
b) 542,22 − 419,1
Solución
123,12
c) 547,943 − 390,451
Solución
157,492
d) 482,1 − 125,748
Solución
356,352
RECURSOS PARA DOCENTES
Artículo “Números decimales”
El siguiente artículo profundiza la información sobre los números decimales y explica su relación con las fracciones.
El video muestra ejemplos de sumas y restas de números decimales, así como los elementos a tener en cuenta durante la realización de este tipo de ejercicios.
Los números naturales son usados comúnmente para contar y se clasifican según sus divisores. Aquellos que solo pueden dividirse de forma exacta entre ellos mismos y entre el 1, es decir, tienen solo dos divisores, se denominan números primos; mientras que los que tienen más de dos divisores se denominan números compuestos.
Divisores de un número
Antes de abordar el tema de los números primos y números compuestos, es indispensable comprender el concepto de divisor. Este es un número natural que al dividir a otro natural da como resultado una división con cociente entero y resto igual a cero.
¿Sabías qué?
El divisor de un número siempre lo divide en partes exactas, por eso el resto siempre es igual a cero.
En este sentido, si deseas saber si un número es o no divisor de otro, debes realizar una división entre el número en cuestión y el posible divisor. Si el resultado es un cociente entero (no decimal) y si el resto es igual a cero (división exacta) entonces decimos que efectivamente es divisor de dicho número.
Por ejemplo:
– Para determinar si el número 2 es divisor del número 6:
Lo primero es dividir 6 entre 2.
En este caso, el número 2 es divisor del número 6 porque el cociente de la división es un número entero (no es decimal) y la división es exacta con el resto igual a cero.
Otro ejemplo:
– Para determinar si el número 3 es divisor del número 14:
Aunque la división es exacta, el número 4 no es divisor del número 14, porque el cociente de la división es un número decimal, en este caso se dice que el número 14 no es divisible entre 4.
Criterios de divisibilidad
Son simples reglas que permiten determinar de manera rápida si un número es divisor o no de otro sin necesidad de realizar la división. Algunos de estos criterios son:
– Un número es divisible entre 2 si es un número par o termina en 0.
Por ejemplo: 20, 54, 12, 1.050, 76 y 80.
– Un número es divisible entre 5 si termina en 5 o en 0.
Por ejemplo: 15, 225, 3.110 y 400.
– Un número es divisible entre 10 si termina en 0.
Por ejemplo: 10, 500, 3.410 y 780.
¡A practicar!
¿Cuáles de los siguientes números es divisor del número 12?
a) 5
b) 2
c)10
RESPUESTAS
2
¿Cuáles de los siguientes números es divisor del número 25?
a) 3
b) 7
c) 5
RESPUESTAS
5
¿Cuáles de los siguientes números es divisor del número 200?
a) 10
b) 3
c) 6
RESPUESTAS
10
¿Cuáles de los siguientes números es divisor del número 16?
a) 5
b) 4
c) 9
RESPUESTAS
4
Números primos
Son números que poseen únicamente dos divisores: ellos mismos y el 1.
Por ejemplo, el número 2 es un número primo porque solamente es divisible entre 2 y entre 1.
El número uno es divisor de todos los números enteros pero solo es divisible por sí mismo.
Números compuestos
Los números compuestos son números divisibles por ellos mismos, por el uno (1) y por otros números, es decir, tienen más de dos divisores y son más frecuentes que los números primos.
Por ejemplo, el número 24 es un número compuesto, ya que es divisible entre 1, 2, 3, 4, 6, 8, 12 y 24. En total tiene 8 números divisores.
Números especiales
Los números 1 y 0 son números muy particulares. En el caso del 1, su único divisor es él mismo y en el caso del número 0, aunque puede ser dividido entre infinitos números, no puede dividirse entre sí mismo porque la división entre cero no esta determinada. Por estas razones, los números 1 y 0 no se consideran números primos ni compuestos.
Tabla de los números primos y compuestos
Existe un simple procedimiento que permite determinar con facilidad los conjuntos de números primos y compuestos; se conoce como Criba de Eratóstenes y aunque su nombre parezca complicado, su procedimiento no lo es.
1. Lo primero que hay que hacer es realizar una tabla con los números del 1 al 100 y se deberán tachar los números que no son primos. El primer número que se tacha es el 1 al no ser considerado número primo.
2. Luego, el siguiente número es el 2, al ser un número primo no se tacha pero a partir de él se empieza a contar de dos en dos al mismo tiempo que se tachan los números que resulten de dicho conteo.
3. Luego del 2, el siguiente número que no se ha tachado es el 3, a partir de él se empieza a contar de 3 en 3 y se tachan los números al mismo tiempo.
4. El siguiente número sin tachar es el 5, se deja sin tachar y se empieza a contar de 5 en 5 mientras se tachan los números.
5. El siguiente número sin marcar el el 7, se mantiene en la tabla sin tachar y se empieza a contar de 7 en 7 mientras se tachan los números.
Los números que no fueron tachados corresponden a números primos, y los números tachados son los compuestos, es una manera gráfica de identificar estos tipos de números del 1 al 100.
¡A practicar!
1. ¿Qué número tiene infinitos divisores?
RESPUESTAS
El número cero.
2. ¿Cómo se llaman los números que solo tienen dos divisores?
RESPUESTAS
Números primos.
3. ¿Qué números no son considerados ni primos ni compuestos?
RESPUESTAS
El cero y el uno.
4. Un número es divisible entre dos si es par o termina en __________.
RESPUESTAS
cero
5. ¿Cuáles de estos números no es primo?
a) 7
b) 19
c) 25
d) 2
RESPUESTAS
25
6. El número 32 es un número _________.
a) impar
b) primo
c) compuesto
RESPUESTAS
compuesto
7. Clasifica cada uno de los siguientes números como “primo” o “compuesto”:
a) 21
b) 59
c) 18
d) 13
RESPUESTAS
a) Compuesto.
b) Primo.
c) Compuesto.
d) Primo.
RECURSOS PARA DOCENTES
Artículo “Números primos y compuestos”
En el siguiente artículo se desarrolla el tema de números primos y compuestos. Además se explica qué son los coprimos, y se señalan algunos números especiales.
La vida sería más complicada si no existieran los números. Tareas como contar o sumar cosas no serían posibles y eso traería muchos problemas. A lo largo de la historia el ser humano ha inventado diferentes sistemas de numeración, porque si hay algo que no ha cambiado es nuestra necesidad de contar.
Lectura y representación de números naturales
El sistema de numeración usado en la actualidad presenta dos características principales: es decimal, porque emplea diez dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) y es posicional, porque el valor de cada cifra obedece al lugar que ocupa dentro de un número. Como ya sabemos, a los números los agrupamos de diez en diez, de menor a mayor.
10 U = 1 D
10 D = 1 C
10 C = 1 UM
Donde:
U: unidad
D: decena
C: centena
UM: unidad de mil
¡Y así sucesivamente hasta el infinito!
En el número 3.145 la cifra 1 ocupa la posición de las centenas, como puede verse en el siguiente esquema:
¿Sabías qué?
La palabra “dígito” proviene del latín dígitus, que significa dedo, y surge al comparar el número de dedos de las manos con el número de dígitos.
En números de 6 cifras el esquema sería el siguiente:
Donde:
DM: decena de mil
CM: centena de mil
Para leer un número de seis cifras se comienza leer la cantidad del orden de los miles y luego se lee el resto de la cantidad.
Por ejemplo el número 254.873 se lee de la siguiente forma: doscientos cincuenta y cuatro milochocientos setenta y tres.
¡A practicar!
¿Cómo se leen estos números?
145.254
Solución
Ciento cuarenta y cinco mil doscientos cincuenta y cuatro.
927.630
Solución
Novecientos veintisiete mil seiscientos treinta.
501.588
Solución
Quinientos un mil quinientos ochenta y ocho.
470.625
Solución
Cuatrocientos setenta mil seiscientos veinticinco.
Sistema de numeración romana
Hace muchos años, se desarrolló en la Antigua Roma un sistema de numeración basado en letras, dicho sistema fue implementado en todo el Imperio romano. La extensión de este era tal que ocupaba gran parte de los países europeos actuales y de algunos países de África y Asia, esto permitió que su influencia se mantuviera por mucho tiempo después de la caída del imperio.
A pesar de que se encuentran en desuso, todavía existen ciertas aplicaciones de los números romanos. Tanto en capítulos de libros como incluso en relojes están presentes los números romanos.
Características de los números romanos
– Es un sistema predominantemente aditivo, es decir; los valores de cada signo se suman (aunque hay ocasiones en los que se restan).
– Emplea letras del abecedario para representar a los números, por eso, podría catalogarse como un sistema alfanumérico.
– Los romanos, para ese momento, no conocían el número cero (que fue introducido más adelante a Europa con la numeración arábiga) y por ello no lo representaban.
– Las letras en este sistema siempre deben escribirse en mayúscula.
Reglas para escribir números romanos
Lo primero que se debe tener en cuenta es que este sistema emplea 7 letras del abecedario que se suman o restan entre ellas de acuerdo a ciertos criterios.
I = 1
V = 5
X = 10
L = 50
C = 100
D = 500
M = 1.000
Con los símbolos anteriores y a veces con algún símbolo auxiliar se pueden construir el resto de los números de acuerdo a los siguientes criterios:
Valores que se suman
– Las letras que se escriben a la derecha de otra de igual o mayor valor se suman:
Números mayores a 3.999 (MMMCMXCIX) necesitan símbolos auxiliares, en estos caso se emplea una raya horizontal arriba de la letra para multiplicar su valor por 1.000.
¿Sabías qué?
Si se colocan dos rayas horizontales sobre un número romano su valor se multiplica por 1 millón.
Ejercicios
1. Escribe con letra los siguientes números
45.987
Solución
Cuarenta y cinco mil novecientos ochenta y siete.
120.501
Solución
Ciento veinte mil quinientos uno.
197.234
Solución
Ciento noventa y siete mil doscientos treinta y cuatro.
100.985
Solución
Cien mil novecientos ochenta y cinco.
2. Escribe en número:
Doscientos mil.
Solución
200.000
Setenta y nueve mil ochocientos treinta y dos.
Solución
79.832
Ciento veinticuatro mil quinientos sesenta y nueve.
Solución
124.569
Cuarenta mil trescientos uno.
Solución
40.301
3. Escribe el valor de cada número:
XXIV
Solución
24
CLX
Solución
160
MMMCLIX
Solución
3.159
MMCMLXIV
Solución
2.964
CLVIII
Solución
158
4. Escribe los siguientes números en número romanos:
2.157
Solución
MMCLVII
739
Solución
DCCXXXIX
1.199
Solución
MCXCIX
3.578
Solución
MMMDLXXVIII
5.000
Solución
RECURSOS PARA DOCENTES
Artículo destacado “Sistema de numeración”
El siguiente artículo destacado te permitirá conocer más sobre los sistemas de numeración, desde los más antiguos hasta los más actuales.