CAPÍTULO 5 / TEMA 4

Sistemas de referencia

Son convencionalismos adoptados por el ser humano para medir la posición y otras magnitudes físicas. Se usan para hallar cuerpos celestes en el espacio y son la base para determinar nuestra ubicación en el planeta. También permiten establecer comparaciones y transformaciones entre las figuras representadas.

Ejes de coordenadas

El sistema de coordenadas cartesianas es uno de los sistemas de referencias usados para ubicar puntos en el espacio. En este caso específicamente se explicarán estas coordenadas orientadas al plano, es decir, en dos dimensiones.

El plano donde ubicamos los puntos se denomina plano cartesiano y está formado por los siguientes elementos:

  • Eje X: es también denominado eje de las abscisas, y se encuentra ubicado dentro del plano en forma horizontal.
  • Eje Y: es conocido también como eje de las ordenadas y está ubicado en sentido vertical dentro del plano.
  • Origen: es el punto de intersección entre los ejes de coordenadas X e Y.

 

Los ejes de coordenadas permiten ubicar puntos, gráficos o figuras dentro del plano cartesiano. Al tratarse de dos ejes: el de las abscisas o eje X y el de las ordenadas o eje Y, se requieren de dos coordenadas para ubicar un punto, es decir, un punto está definido dentro del plano si, y solo si, se conocen sus coordenadas en el eje X y en el eje Y.

 

¿Sabías qué?
El nombre de las coordenadas cartesianas proviene de la persona que las empleó por primera vez: René Descartes.

VER INFOGRAFÍA

¿Cómo graficar un punto en el plano cartesiano?

Un punto está definido por un par de números que hacen referencia a su posición respecto al eje X y al eje Y. Estos puntos son denominados coordenadas cartesianas y permiten graficarlo.

Para hacerlo, dividimos los ejes en segmentos con la misma longitud y a cada uno le asignamos el valor de un número entero. A la derecha del origen, escribimos los números de menor a mayor, esos serán los valores del eje X. Arriba del origen escribimos los números que le siguen al cero de menor a mayor, esos serán los valores del eje Y:

¿Sabías qué?
Los números negativos se representan a la izquierda del origen (eje X) y debajo del origen (eje Y).

Para ubicar un punto en el plano necesitamos las coordenadas de cada eje, que de ahora en adelante llamaremos coordenada en X y coordenada en Y para hacer mención a cuál eje se refieren. La coordenada X determina cuán a la derecha del origen está ubicado el punto; mientras que la coordenada Y, cuán arriba del origen está el punto.

La manera más frecuente de representar un punto es a través de paréntesis, y dentro indicamos la coordenada X y la coordenada Y, separadas por una coma:

\left ( Coordenada \, X,\, Coordenada\, Y \right )

El punto desde dónde se empieza a contar es en el origen porque se encuentra en la coordenada (0,0) lo que quiere decir que está a 0 posiciones de la derecha y a 0 posiciones hacia arriba.

Por ejemplo:

El punto A (3,2) se encuentra a tres posiciones a la derecha y a dos posiciones hacia arriba. Si lo queremos graficar, cada coordenada debe estar representada en el respectivo eje y el punto de intersección de ambas sería el punto A:

Cuando algunas de las coordenadas del punto sea igual a cero, significa que el punto se encuentra sobre el eje al cual corresponde la coordenada diferente de cero. Por ejemplo, el punto B (0,3) indica que se movió cero posiciones a la derecha y tres posiciones hacia arriba, por lo tanto se ubica sobre el eje Y que es el que tiene la coordenada diferente de cero:

Ejes de simetrías

La simetría es una relación proporcionada entre las partes que componen un todo. Así, por ejemplo, decimos que una imagen es simétrica cuando su forma no cambia si es girada o volteada. Para que exista simetría entre dos objetos, ambos deben ser del mismo tamaño y de la misma forma y uno debe estar en una orientación diferente a la del primero.

La forma de una mariposa es un ejemplo de simetría: si trazamos una línea imaginaria de forma vertical en el centro de la mariposa (eje de simetría), obtendríamos dos imágenes iguales pero con diferente orientación. Nuestros cuerpos también son simétricos: esto se debe a que contamos con la misma cantidad de miembros a cada lado.

El eje de simetría es una línea imaginaria que divide al dibujo en dos partes idénticas pero con diferente orientación. Los ejes de simetría pueden ser horizontales, verticales o inclinados.

 

De acuerdo a la figura geométrica, algunas pueden presentar uno o más ejes de simetría. Otras, en cambio, no presentan ninguno. Cuando una figura no es simétrica se denomina asimétrica.

Por ejemplo, no todos los triángulos tienen ejes de simetría, todo depende de su tipo. Si son equiláteros tienen tres ejes de simetría; si son isósceles tienen dos ejes de simetría, y si son escalenos no tienen ningún eje de simetría.

Transformaciones isométricas

Las transformaciones isométricas son los cambios de posición u orientación que experimenta una figura sin alterar su forma.

Traslación

Es un tipo de transformación isométrica donde se mueven todos los puntos de una figura en una misma dirección, sentido y longitud.

Rotación

También es conocida como giro. Es una transformación isométrica en la que la figura se mueve alrededor de un punto sin alterar su forma. El movimiento es determinado por un ángulo de rotación y puede ser en sentido de las agujas del reloj o en sentido contrario.

La simetría como transformación isométrica

La simetría entre dos objetos es un tipo de transformación isométrica porque a cada punto del objeto o figura se lo asocia a otro conocido como imagen. Cada punto está a una misma distancia del otro respecto al eje de simetría. Este tipo de transformación también se conoce como reflexión.

 

¡A practicar!

1. ¿Cuál es la posición de estos números?

a)

Solución
C (4,3)

b) 

Solución
D (1,2)

c) 

Solución
E (5,0)

d) 

Solución
F (4,5)

e) 

Solución
G (3,3)

2. ¿A cuál de los siguientes puntos corresponde la coordenada (6,3)?

Solución

Corresponde al punto K (6,3).

3. ¿Cuál de estas figuras no es simétrica?

a) 

b)

c)

d)

Solución
d) No es simétrica porque no tiene ningún eje de simetría.

4. ¿A qué tipo de transformación isométrica corresponde la gráfica?

Solución
Traslación.

RECURSOS PARA DOCENTES

Artículo “Simetrías”

Este artículo explica qué es una simetría, sus tipos y su relación con los ejes. También incluye algunos ejemplos de simetría.

VER

Artículo “Plano cartesiano”

Este artículo explica qué es el plano cartesiano, sus características y divisiones por cuadrante. También incluye ejemplos sobre como ubicar puntos en este sistema.

VER

 

CAPÍTULO 5 / TEMA 1

Perímetro

El contorno de una figura geométrica se denomina perímetro. De acuerdo al tipo de figura, el contorno puede ser calculado por medio de la suma de sus lados o a través de diferentes fórmulas. Estas operaciones tienen muchas aplicaciones en la vida cotidiana: por ejemplo, sirven para determinar la longitud de la cerca de una casa.

Cálculo de perímetro en figuras planas

El perímetro es la longitud del contorno de una figura. Para calcular el perímetro de una figura, simplemente tenemos que sumar cada uno de sus lados.

Es importante tener presente que existen figuras con lados regulares como el cuadrado, y figuras con lados irregulares como en el caso de un rectángulo. Las figuras regulares son conocidas como polígonos regulares y los más comunes son:

POLÍGONO NÚMERO DE LADOS
Triángulo equilátero 3
Cuadrado 4
Pentágono 5
Hexágono 6
Heptágono 7
Octágono 8
Eneágono 9
Decágono 10

¿Sabías qué?
De acuerdo a sus lados, los triángulos son clasificados en: equiláteros (tres lados iguales), isósceles (dos lados iguales) y escalenos (ningún lado igual).

VER INFOGRAFÍA

La ventaja de los polígonos regulares es que al tener todos sus lados iguales su perímetro es igual a la longitud de uno de sus lados multiplicada por la cantidad de lados que este tiene. La fórmula sería:

 P=n\times L

Donde:
P = perímetro.
n = número de lados de la figura.
L = longitud de un lado de la figura.

Un ejemplo de cálculo de perímetro

– Calcula el perímetro de un cuadrado cuyos lados miden 5 cm:

El cuadrado es un polígono regular de cuatro lados iguales, por lo tanto, calculamos su perímetro de la siguiente forma:

P = 4 × 5 cm

Resolvemos la multiplicación y el resultado obtenido es:

P = 20 cm

Observa que al final añadimos la unidad de longitud inicial, que son centímetros (cm), pero puede ser cualquier otra unidad de medida, los pasos en estos casos siempre son los mismos.

Otro camino

Aunque las fórmulas permiten realizar cálculos más sencillos, el perímetro también puede determinarse a través de la suma de cada uno de los lados. En el caso del ejemplo anterior sabemos que cada lado mide 5 cm, de manera que tenemos que sumar los cuatro lados para obtener el perímetro:

P = 5 cm + 5 cm + 5 cm + 5 cm = 20 cm

Esta forma de calcular el perímetro suele aplicarse a figuras que tienen al menos un lado diferente, pues al no tener sus lados iguales, no es posible aplicar la fórmula de polígonos regulares. Un ejemplo sería:

– Calcula el perímetro del siguiente triángulo:

Al sumar cada uno de sus lados obtenemos que:

P = 6 cm + 7 cm + 5 cm = 18 cm

Este triángulo escaleno tiene un perímetro de 18 cm.

 

El perímetro de un círculo

El perímetro de un círculo se denomina circunferencia, y para calcularlo empleamos un número matemático muy particular: el número pi, llamado así porque se escribe con la letra π del alfabeto griego, que lleva ese mismo nombre. Este número es irracional, por lo tanto es infinito. Se obtiene al dividir la longitud de la circunferencia entre su diámetro. Los primeros 10 números decimales del número pi son 3,1415926535…

La fórmula para determinar el perímetro de un círculo es:

P = π × d

Donde:

π = número pi (en los cálculos generalmente se redondea hasta los dos decimales).

d = la longitud del diámetro de la circunferencia.

Perímetro de figuras compuestas

Primero que todo, es importante saber que una figura compuesta está formada por dos o más figuras geométricas, por lo que tienen un arreglo irregular de lados y ángulos. En el caso de estas figuras, realizamos el cálculo del perímetro de la misma forma que en el ejemplo anterior del triángulo.

Observemos esta figura:

Es una figura compuesta porque está formada por un cuadrado y un triángulo:

Determinamos el perímetro de esta figura al sumar solo los lados exteriores de la figura:

P = 5 cm + 5 cm + 1 cm + 7 cm + 9 cm = 27 cm

El perímetro de la figura es 27 cm.

Las figuras compuestas pueden estar formadas por triángulos, cuadrados, rectángulos, trapecios, círculos, etc. Conocer sus diferentes elementos es importante al momento de resolver problemas de perímetros y de áreas, ya que no se puede aplicar una fórmula en común: es necesario identificar las figuras geométricas que integran la figura compuesta.

Aplicaciones del perímetro

Debido a que el perímetro y el área representan las magnitudes fundamentales al momento de trabajar con figuras geométricas y polígonos, sus usos en la vida cotidiana son frecuentes.

En el caso del perímetro, disciplinas como la arquitectura lo emplean para determinar la frontera de un objeto como en el caso de la cerca de una edificación o la valla de un campo. Sus usos también se extiende al ámbito militar, donde permite delimitar las áreas de interés ofensivo o de defensa.

La geometría

Es una rama de la matemática encargada del estudio de las figuras, sus propiedades y medidas en el plano y en el espacio. Su origen no es reciente, de hecho, antiguas civilizaciones como las del Antiguo Egipto, Sumeria y Babilonia ya la empleaban en mediciones de terrenos y en la construcción de edificaciones. Mucho tiempo después, los antiguos griegos la empezaron a perfeccionar y hoy en día es una disciplina fundamental.

 

¡A practicar!

1. Calcular el perímetro de las siguientes figuras:

a)

Solución
P = 15 cm
b) 
Solución
P = 12 cm
c) 
Solución
P = 48 cm
d) 
Solución
P = 18 cm
e) 
Solución
P = 34 cm

2. ¿Cuál de las siguientes figuras es un polígono regular?

a) 

b) 

c) 

d) 

e) 

Solución
c) Es un polígono regular porque tiene 6 lados iguales y se denomina hexágono.

RECURSOS PARA DOCENTES

Artículo “Áreas y perímetro”

En este cuadro comparativo se muestra una tabla con las fórmulas de área y perímetro para las principales figuras geométricas.

VER

Artículo “Perímetro de polígonos”

En este artículo se explica cómo realizar el cálculo de perímetro en el caso específico de los diferentes tipos de polígonos.

VER

CAPÍTULO 5 / TEMA 3

Área

El área mide la extensión de una superficie, por eso permite saber información importante de las cosas, como el tamaño de un país o la cantidad de baldosas que se necesitan en el piso de una casa. De acuerdo al tipo de figura, el área puede calcularse a través de fórmulas o mediante la descomposición de las figuras en otras más sencillas.

Cálculo de áreas en figuras planas

El área es la superficie o extensión comprendida en una figura. En el caso de las figuras planas, para calcular su área es necesario reconocer cada figura, porque su cálculo es diferente en cada caso.

Triángulos

En los triángulos se cumple que su área es igual a la base por la altura y el resultado se divide entre dos:

A=\frac{b\times h}{2}

– Calcula el área del siguiente triángulo:

A=\frac{3 \, cm \times 4\, cm}{2} = \frac{12 \, cm^{2}}{2}=\mathbf{6\, cm^{2}}

Es importante tener en cuenta que al multiplicar dos unidades de longitud (en este caso centímetros) escribimos el producto al cuadrado; es decir, colocamos el exponente “2” arriba de la unidad de medida, por eso se escribe cm2, y se lee “centímetros cuadrados”.

El área y las unidades al cuadrado

En el Sistema Internacional de Unidades el área siempre se expresa en unidades de longitud elevadas al cuadrado, esto se debe a que el área es la medida de una superficie. Un área de 15 cm2 quiere decir que esa superficie está cubierta por 15 cuadrados que miden 1 cm en cada uno de sus lados. Otras unidades de área comunes son: mm2 (milímetros cuadrados), m2 (metro cuadrado) y km2 (kilómetro cuadrado).

VER INFOGRAFÍA

Cuadrados

El área de un cuadrado es igual a la multiplicación de dos de sus lados. Como los lados de un cuadrado son todos iguales, la fórmula también se puede expresar como la medida de un lado al cuadrado.

A = l\times l =l^{2}

– Calcula el área del siguiente cuadrado

A= 3\, m\times 3\,m = \mathbf{9\, m^{2}}

Es un cuadrado de nueve metros cuadrados de área.

Rectángulos y romboides

El área de los rectángulos y romboides es igual al producto de su base por su altura.

A=b\times h

 

 

– Calcula el área del siguiente rectángulo:

A=10\, mm\times 5\, mm =\mathbf{50\, mm^{2}}

Rombos

El área de un rombo es igual al producto de su diagonal mayor (D) y su diagonal menor (d) dividido entre 2.

A=\frac{D\times d}{2}

– Calcula el área del siguiente rombo:

A = \frac{9\, cm\times 5\, cm}{2}=\frac{45\, cm^{2}}{2}=\mathbf{22,5\, cm^{2}}

El área del rombo es de 22,5 centímetros cuadrados.

Trapecios

En el caso de los trapecios el área es igual a la suma de su base mayor y su base menor, el resultado se divide entre 2 y luego se multiplica por la altura.

A = \frac{B+ b}{2}\times h

– Calcula el área del siguiente trapecio:

\small A= \frac{9\, mm+ 15\, mm}{2}\times 4\, mm=\frac{24\, mm}{2}\times 4\, mm=12\, mm\times 4\, mm = \mathbf{48\, mm^{2}}

El trapecio tiene un área de 48 milímetros cuadrados.

Polígonos regulares

Los polígonos regulares son figuras geométricas donde todos sus lados miden lo mismo. En todos los polígonos regulares se cumple que:

A= \frac{N\times L\times ap}{2}

Donde:

N = número de lados del polígono regular.

L = longitud de uno de los lados.

ap = longitud de la apotema.

¿Sabías qué?
La apotema es la menor distancia que existe entre el centro de un polígono y cualquiera de sus lados.

– Calcula el área del siguiente polígono regular:

A=\frac{6\times 4\, cm\times 3,4\, cm}{2}=\frac{24\, cm\times 3,4\, cm}{2}= \frac{81,6\, cm^{2}}{2}=\mathbf{40,8\, \mathbf{cm^{2}}}

Observa que en este caso como el polígono regular tiene seis lados (hexágono) se coloca el número 6. El área de este hexágono es de 40,8 centímetros cuadrados.

¿Cómo calcular el área de un círculo?

Para determinar el área de un círculo se debe multiplicar el número pi (que aunque es un número infinito se redondea a 3,14) por el radio de la circunferencia elevado al cuadrado, es decir;  \bg_white A = \pi \times r^{2}. El área para un círculo con un radio igual a 2 cm, por ejemplo; se calcularía como A = 3,14\times (2\, cm)^{2}=3,14\times4\, cm^{2} =\mathbf{12,56\, cm^{2}}.

 

Cálculo de áreas en figuras compuestas

Las figuras compuestas se llaman así porque están formadas por dos o más figuras geométricas. Para calcular el área en estas figuras debemos “separar” las figuras geométricas presentes y calcular por separado el área de cada una. El área total de la figura compuesta será igual a la sumatoria de las áreas de las figuras geométricas que la conformen.

– Calcula el área de la siguiente figura compuesta:

Lo primero para resolver es identificar las figuras geométricas presentes, en este caso es un triángulo (figura 1) y un rectángulo (figura 2).

Calculamos las áreas de las figuras por separado.

– Área del triángulo:

La altura es un dato del problema y es 2 cm, la base del triángulo tiene la misma longitud que la base mayor del rectángulo, por lo tanto tiene el mismo valor que es 5 cm. Calculamos el área según la fórmula de área para el triángulo:

A_{1} = \frac{b\times h}{2}=\frac{5\, cm\times 2\, cm}{2}=\frac{10\, cm^{2}}{2} = \mathbf{5\, cm^{2}}

– Área del rectángulo:

Calculamos con la fórmula de área para rectángulos.

A_{2} = b\times h=5\, cm\times 4\, cm = \mathbf{20\, }\mathbf{cm^{2}}

 

El área total es igual a la sumatoria de las áreas de las figuras geométricas calculadas:

A = A_{1}+A_{2}= 5\, cm^{2}+20\, cm^{2} =\mathbf{25\, cm^{2}}

Quiere decir que el área de la figura compuesta es de 25 centímetros cuadrados.

¿Por qué es útil conocer el área?

Conocer la superficie del área tiene múltiples usos desde los cotidianos hasta lo científico. Por ejemplo, gracias al área podemos saber cuánta tela necesita un vestido, o cuántas baldosas son necesarias en la construcción de un piso. También se usa para realizar comparaciones, por ejemplo, con el área podemos comparar países de acuerdo a su tamaño. O, también, podemos estimar la superficie de un planeta de acuerdo a su forma.

Además, el área es un parámetro usado en otras fórmulas más avanzadas como los cálculos de presiones. Por otra parte, las diferentes medidas permiten cuantificar desde áreas de tamaños microscópicos hasta áreas del tamaño de una estrella.

Aunque el Sistema Internacional de Unidades es el más extendido en el mundo, no todos los países emplean el metro cuadrado y sus múltiplos o submúltiplos para hablar de área. Hay países, como Estados Unidos, que emplea la yarda cuadrada (equivalente a 0,863 metros cuadrados), otras unidades usadas son la pulgada cuadrada, el pie cuadrado, la hectárea y el acre.
¡A practicar!

1. Calcular el área de las siguientes figuras:

a)

Solución
A = 6 cm2
b) 
Solución
A = 20 m2
c) 
Solución
A = 18 cm2
d) 
Solución
A = 61,5 mm2
e) 
Solución
A = 79 cm2

2. ¿A cuál de estas figuras corresponde la fórmula de área A = b\times h?

a) 

b) 

c) 

d) 

e) 

Solución
d) Es un romboide.

RECURSOS PARA DOCENTES

Video “Resolución del área”

En este video se explica cómo resolver cálculos de áreas en figuras compuestas y se muestran dos de las fórmulas de área más usadas.

VER

Artículo “Perímetro y área”

Este artículo explica ejercicios de perímetro y áreas. Toma como referencia diferentes unidades de medida y conversiones.

VER

Artículo “Cuerpos redondos. Áreas y volúmenes”

En el presente artículo se explica como realizar cálculos de área en cuerpos redondos, sí como las características de este tipo de figuras.

VER

 

CAPÍTULO 3 / TEMA 1

¿Qué son las fracciones?

Las fracciones, a diferencia de los números enteros, permiten expresar proporciones de algo. Son útiles en la vida cotidiana y se usan con más frecuencia de lo que piensas. Frases como “un cuarto de kilo” o “un tercio de taza” son algunos ejemplos. En matemática son tan relevantes que forman su propio conjunto de números: los racionales. 

Partes de una fracción

Una fracción resulta de dividir un número entero en partes iguales. En matemática es representada por dos números enteros ,denominados términos, que están separados por una línea horizontal, denominada raya de división o raya fraccionaria.

Los números que componen a una fracción se denominan numerador y denominador. El primero está ubicado en la parte superior de la raya de división y el segundo está en la parte inferior de esta. El numerador indica el número de partes que se han tomado de un entero, mientras que el denominador representa el número de partes en que se ha dividido el entero.

 

Podemos expresar las fracciones con una línea divisoria horizontal o diagonal. En este sentido, a la fracción \frac{1}{2} también la podríamos expresar como 1/2.

Para entender el significado de la fracción anterior imaginemos que una pizza representa el “todo”, es decir, sería el entero que queremos dividir, el denominador de una fracción representa el número de partes que se ha dividido el entero, lo que nos permite concluir que la pizza se ha dividido en dos parte. Por otro lado, el numerador representa el número de partes que se ha tomado, en este ejemplo es 1, lo que quiere decir que 1/2 de pizza sería una de las dos porciones de la pizza.

La expresión 1/2 de pizza sería lo mismo que dividir la pizza en dos partes iguales y tomar una de esas partes. En la cocina se emplean fracciones para hablar de unidades de medición como tazas de ingrediente, por ejemplo: 1/2 de taza de harina, 1/3 de taza de agua, etc. Recuerda que el denominador indica cuántas veces se ha dividido algo en partes iguales (una taza, un litro, una naranja…).
¿Sabías qué?
El denominador de una fracción nunca es igual a cero (0).

VER INFOGRAFÍA

Lectura de fracciones

Como ya sabemos, el denominador indica en cuántas partes se dividió un número entero. Cada una de esas partes recibe un nombre, por ejemplo, si dividimos en dos son medios, si dividimos en tres son tercios, si dividimos en cuatro son cuartos y así hasta el número once, a partir de ese número añadimos el sufijo –avos al número: onceavos, doceavos, treceavos y así sucesivamente.

Esta tabla muestra el nombre de cada una de las partes en las que se puede dividir un entero hasta el cien:

Partes que se divide del entero Nombre
2 Medios
3 Tercios
4 Cuartos
5 Quintos
6 Sextos
7 Séptimos
8 Octavos
9 Novenos
10 Décimos
11 Onceavos
12 Doceavos
13 Treceavos
14 Catorceavos
15 Quinceavos
16 Dieciseisavos
17 Diecisieteavos
18 Dieciochoavos
19 Diecinueveavos
20 Veinteavos
30 Treintavos
40 Cuarentavos
50 Cincuentavos
60 Sesentavos
70 Setentavos
80 Ochentavos
90 Noventavos
100 Centavo

Para leer una fracción primero indicamos el número del numerador y luego las partes en las que está dividido el entero de acuerdo a la tabla anterior. Por ejemplo, \frac{}{}\frac{1}{2} se lee como “un medio”. Observemos otros ejemplos:

a) \frac{2}{3} se lee “dos tercios”.

b) \frac{6}{8} se lee “seis octavos”.

c) \frac{15}{30} se lee “quince treintavos”.

d) \frac{12}{23} se lee “doce veintitresavos”.

e) \frac{32}{40} se lee “treinta y dos cuarentavos”.

f) \frac{97}{100} se lee “noventa y siete centavos”.

¿Sabías qué?
Los centavos también son llamados céntimos.

Origen muy antiguo

Las antiguas civilizaciones como la babilónica, la egipcia y la griega usaban las fracciones en sus cálculos. Cada una tenía una manera particular de expresarlas y no fue sino hasta el siglo XIII cuando el matemático italiano Leonardo Fibonacci difundió el uso de la línea horizontal, símbolo que se emplea en la actualidad para separar el numerador y denominador en una fracción.

Relación de las fracciones y la división

Las fracciones representan porciones de un todo, es por ello que de alguna manera están estrechamente relacionadas con la división. De hecho, toda fracción es una división sin resolver, es decir; \frac{a}{b} es equivalente a a\div b. Por lo tanto, \frac{1}{2} es igual a 1\div 2.

En algunas ocasiones podemos expresar operaciones en forma de fracción, pero también podemos hacerlo como división y resolver la misma.

¿Sabías qué?
Existen fracciones que están formadas por una parte entera y una fraccionaria, a ellas se las conoce como fracciones mixtas.

Aplicación en la vida cotidiana de las fracciones

El ser humano siempre ha tenido la necesidad de contar, medir y repartir; razón por la que inventó los números. Las fracciones no están lejos de esta realidad y son usadas para entender porciones de cosas.

Están presentes en recetas de cocinas, en mediciones de telas y de volúmenes de productos (como en las gaseosas de medio litro o 1/2 L). Hay autos donde los indicadores del nivel de gasolina son expresados en fracciones para saber si el tanque está lleno, tiene la mitad o un cuarto de su capacidada.

Incluso, están presentes en algunas monedas como el dólar, donde existe una denominación llamada “centavo de dólar”, es decir, si el valor de un dólar lo pudiéramos dividir en 100 partes iguales, una de esas partes sería el centavo.

En resumen, las fracciones permiten expresar cantidades cotidianas de manera más sencilla.

Además de sus múltiples aplicaciones en los cálculos matemáticos, las fracciones se emplean en situaciones cotidianas de la vida como lo son las mediciones. También se usan en gráficos que permiten comprender datos de manera más simple. Muchos países del mundo las emplean en sus monedas y ciertos dispositivos usan escalas expresadas en fracciones.
¡A practicar!

1. ¿Cómo se leen las siguientes fracciones?

a) \frac{5}{3}

Solución
Cinco tercios.

b) \frac{1}{100}

Solución
Un centavo.

c) \frac{23}{40}

Solución
Veintitrés cuarentavos.

d) \frac{3}{2}

Solución
Tres medios.

e) \frac{2}{5}

Solución
Dos quintos.

f) \frac{12}{11}

Solución
Doce onceavos.

g) \frac{7}{10}

Solución
Siete décimos.

h) \frac{11}{6}

Solución
Once sextos.

i) \frac{13}{4}

Solución
Trece cuartos.

j) \frac{58}{7}

Solución
Cincuenta y ocho séptimos.

2. ¿Cómo se escriben en número estas fracciones?

a) Nueve décimos.

Solución
\frac{9}{10}

b) Catorce novenos.

Solución
\frac{14}{9}

c) Setenta y tres centavos.

Solución
\frac{73}{100}

d) Ochenta y ocho novenos.

Solución
\frac{88}{9}

RECURSOS PARA DOCENTES

Video “Fracciones decimales”

Este video ayuda a entender la relación entre las fracciones y los números decimales así como la manera en transformar una fracción en decimal.

VER

Artículo “La clasificación de los números”

El presente artículo permite indagar más sobre los diferentes tipos de números y sus características principales.

VER

Enciclopedia “Matemáticas Primaria”

En el presente tomo de la Enciclopedia Matemáticas Primaria tendrás acceso a información más detallada sobre las fracciones, así como la posibilidad de obtener diferentes recursos educativos sobre este tema.

VER

CAPÍTULO 2 / TEMA 1

Adición y sustracción

En matemática existen cuatro operaciones básicas: adición, sustracción, multiplicación y división. De las dos primeras se desprenden las otras, lo que quiere decir que aprender a sumar y a restar es fundamental para resolver la mayoría de los ejercicios matemáticos y para realizar cuentas cotidianas como, por ejemplo, en compras del supermercado.

Elementos de la adición

La adición es una de las operaciones básicas de la aritmética que permite combinar dos o más números para obtener un total. Esta operación se representa con el símbolo “+” y es aplicada en los diferentes tipos de números: naturales, enteros, racionales, reales y complejos.

Una adición presenta dos partes básicas: los sumandos y la suma. Los sumandos son todos los números que se van a sumar y la suma se refiere al resultado.

La adición anterior tiene dos sumandos: 352 y 431, y el resultado o suma es 783. Es importante tener presente que en estos casos la palabra “suma” se emplea para hablar de la operación de adición y también para referirse al resultado.

¿Sabías qué?
La aritmética es una rama de la matemática que estudia los números y las operaciones elementales que se realizan con ellos.

Propiedades de la adición

La suma de números enteros cumple tres propiedades básicas:

Propiedad conmutativa

Sin importar cómo se ordenen los sumandos de una suma, el resultado siempre será el mismo. Por ejemplo:

Por lo tanto:

15 + 3 = 18

3 + 15 = 18

Propiedad asociativa

No importa como se agrupen los elementos de una suma, el resultado siempre será el mismo. Por ejemplo:

En el problema: 8 + 2 + 6, se pueden sumar primero el 8 y 2 para luego sumar el 6, o se pueden sumar el 2 y el 6 y después sumar el 8. Entonces:

8 + 2 = 10, 10 + 6 = 16

2 + 6 = 8; 8 + 8 = 16

Propiedad del elemento neutro

El cero es el único número que no altera el resultado en una suma, es decir, la suma de cualquier número con el cero es igual al mismo número:

5 + 0 = 5
45 + 0 = 45
219 + 0 = 219

Conocer las propiedades de la suma permite realizar cálculos de manera más rápida. Por ejemplo, si necesitamos sumar 6 + 85, es más fácil agregar mentalmente 6 a 85 que 85 a 6. También se usa la propiedad asociativa en la suma de números con diferentes cifras, estos se pueden ordenar de mayor a menor y luego realizar una suma por reagrupación más sencilla.

VER INFOGRAFÍA

Adición por reagrupación

Es un método en el que se agrupan las unidades, decenas, centenas, etc., de un número. Para resolver problemas de este tipo se suman primero las unidades, luego las decenas, después las centenas y así sucesivamente.

Pasos para resolver adiciones por reagrupación

  1. Colocar los sumandos uno debajo del otro de manera que los valores posicionales iguales estén ubicados en una misma columna: unidades con unidades, decenas con decenas, centenas con centenas…
  2. Sumar cada columna por separado a partir de las unidades. El resultado de la suma de cada columna se escribe en la parte inferior de esta.
  3. En caso de obtener un número de dos cifras al momento de sumar una columna, se anotará el número de la unidad de dicho número y la decena se sumará a la columna siguiente.

Con estos ejemplos podrás ver mejor cómo resolver una suma por reagrupación:

– Sumar 242 + 351

Lo primero es colocar los números uno debajo del otro según sus mismos valores posicionales.

Luego suma la columna de las unidades y anota el resultado debajo de dicha columna.

Repite el procedimiento anterior en las demás columnas de derecha a izquierda hasta completarlas todas. En este caso el resultado es: 242 + 351 = 593.

– Sumar 198 + 23

Ordena los números de la siguiente manera:

Cuando sumas la columna de las unidades tienes que 8 + 3 = 11, entonces solo debes colocar el 1 de la unidad y el 1 de la decena lo sumas en la siguiente columna. Anota el número en la parte superior de la columna para no olvidar sumarlo al final.

Suma la segunda columna. Allí tienes que 9 + 2 = 11, pero hay que sumarle 1 de la columna anterior, entonces el resultado de la segunda columna es 12. Anota el 2 de la unidad y el 1 de la decena lo sumas a la siguiente columna.

En la tercera columna solamente está el número 1, así que el 1 de la columna anterior se suma a este. Anota el resultado.

El resultado de la suma anterior es: 198 + 23 = 221. En caso de sumar la última columna y obtener un número de dos cifras, este se anotará exactamente igual en el resultado.

Elementos de la sustracción

La sustracción es otra operación básica de la aritmética que consiste en quitar una cantidad a otra, por eso se considera como la operación opuesta a la suma. Se representa con el símbolo “−”.

Este tipo de operación cuenta con un minuendo, número al cual se le quita cierta cantidad; un sustraendo, número que resta al minuendo; y la diferencia, resultado de la operación.

¿Sabías qué?
La diferencia de una resta es la cantidad que falta para que ambos números sean iguales.

Propiedades de la sustracción

La sustracción cumple con dos propiedades básicas:

Elemento neutro

El resultado de cualquier número y cero da como resultado el mismo número. Por ejemplo:

3 − 0 = 3

157 − 0 = 157

Elemento simétrico

El resultado de restar un número con su opuesto (número del mismo valor con signo opuesto) da como resultado el número cero.

5 − 5 = 0

74 − 74 = 0

¿Sabías qué?
En la sustracción no existen ni la propiedad conmutativa ni la asociativa.

Sustracción por reagrupación

Este tipo de problemas se realizan mediante la agrupación de los números uno debajo del otro de forma tal que valores posicionales entre las cifras de los números que se restan sean los mismos. Para las restas con naturales, el número mayor debe estar ubicado en la parte de arriba (minuendo) y el número menor debajo (sustraendo).

¿Sabías qué?
La resta por reagrupacion también es conocida como resta con llevada y sirve para restar una cifra mayor a una menor.
Pasos para resolver restas por reagrupación

  1. Colocar el minuendo y el sustraendo uno debajo del otro de manera que los valores posicionales iguales estén ubicados en la misma columna. El número mayor siempre debe estar ubicado en la parte de arriba.
  2. Comenzar a restar desde la columna de las unidades, de derecha a izquierda.
  3. Si en una columna se tiene que la cifra de arriba es menor que la de abajo, esta cifra toma prestado un valor posicional a la columna del minuendo de la izquierda.
  4. En caso de que la cifra del minuendo le haya “prestado” un valor posicional a la cifra de al lado, esta se reduce en una unidad y se debe considerar el nuevo valor de la cifra al momento de restar en su columna.

Con estos ejemplos podrás apreciar mejor cómo resolver una resta por reagrupación:

– Restar 425 − 263

Lo primero es colocar los números uno debajo del otro con sus valores posicionales iguales, todos ubicados en la misma columna.

Luego resta las cifras en la columna de las unidades.

Repite la resta en la columna de las decenas, pero como en este caso el 2 es menor que el 6, el 4 presta una centena al 2. De este modo, 4 centenas y 2 decenas, se convierten en 3 centenas y 12 decenas. Ahora sí es posible restar 12 menos 6 en la columna de las decenas.

 

Resta las cifras en la columna de las centenas. Como el 4 le prestó 1 al 2, entonces quedó en 3 centenas que al restarse con el 2 el resultado de la columna es 1.

Ejercicios

1. Resuelve las siguientes sumas:

a) 452 + 395 =

Solución
847
b) 256 + 122 =
Solución
378
c) 603 + 113 =
Solución
716
d) 126 + 460 =
Solución
586
e) 1.830 + 2.178 =
Solución
4.008

2. Resuelve las siguientes restas:

a) 853 − 741 =

Solución
112
b) 544 − 35 =
Solución
509
c) 1.789 − 1.354 =
Solución
435
d) 957 − 362 =
Solución
595
e) 4.780 − 3541 =
Solución
1.239
RECURSOS PARA DOCENTES

Artículo “Operaciones básicas de los números naturales y sus propiedades”

El presente artículo permite profundizar el tema de las operaciones básicas y de sus diferentes propiedades.

VER

Enciclopedia “Nana y Enriqueta en el país de las matemáticas”

Es una enciclopedia diseñada para explicar de manera didáctica los conceptos matemáticos básicos desde la realidad de los niños.

VER

Video “Suma y resta de números decimales”

En este video se muestra como realizar sumas en el conjunto de los números decimales.

VER

CAPÍTULO 1 / TEMA 3

Un vistazo a los números decimales

Hay ocasiones en las que los números enteros no son útiles para expresar ciertas magnitudes; los números decimales, en cambio, permiten indicar una cantidad ubicada entre dos enteros y por este motivo son usados a diario en diversas situaciones, como por ejemplo en los precios de los productos y la lectura de la temperatura del cuerpo.

¿Qué son los números decimales?

Son números formados por una parte entera y otra parte menor que la unidad. Los números decimales generalmente se representan con una coma (,) para indicar la separación entre la parte entera que puede ser igual a cero y la parte menor a la unidad.

Los decimales de un número pueden ser finitos infinitos.

Por ejemplo:

– El número 3,15 es un decimal con un número finito de decimales.

– El número pi es un número con infinitos decimales: 3,1415926535… Al observar sus decimales se puede apreciar que no son periódicos, por lo tanto no siguen un patrón de repetición, a este tipo de números se lo conoce como número irracional.

VER INFOGRAFÍA

¿Sabías qué?
Los puntos suspensivos (…) son usados para indicar que los decimales de un número son infinitos.

Elementos de un decimal

Como ya sabemos, los números decimales están formados por una parte entera y otra menor a la unidad (conocida también como parte decimal), la parte entera se ubica a la izquierda y la parte decimal a la derecha de la coma.

La parte entera puede ser igual a cero, como por ejemplo 0,5, que es la mitad del número 1.

La parte decimal es conocida también como parte fraccionaria, y siempre representa cantidades menores a la unidad.

Los números decimales pueden ser finitos si su parte fraccionaria es finita; o infinitos si su parte fraccionaria es infinita. Los decimales infinitos, a su vez, se clasifican en periódicos y no periódicos. Los periódicos presentan un patrón infinito en sus decimales, como el número 1,333… y los no periódicos no siguen ningún patrón, como en el caso del número pi.

Lectura de decimales

Antes de aprender a leer números decimales es importante conocer los conceptos de décima, centésima y milésima.

  • Décima: es el resultado de dividir la unidad en diez partes iguales. En la tabla de valor posicional se muestra con la letra d minúscula.
  • Centésima: es el resultado de dividir la unidad en cien partes iguales. En la tabla de valor posicional se muestra con la letra c minúscula. La centésima es menor que la décima.
  • Milésima: es el resultado de dividir la unidad en mil partes iguales. En la tabla de valor posicional se muestra con la letra m minúscula. La milésima es menor que la centésima.

La tabla de valor posicional para un número decimal es:

Para leer un número decimal debes seguir estos pasos:

  1. Lee su parte entera de la misma forma como se hace en la lectura de números enteros en el siguiente orden: centena de mil, decena de mil, unidad de mil, centena, decena, unidad.
  2. Agrega la palabra “unidades” o “enteros”.
  3. Coloca una coma.
  4. Lee la parte decimal de la misma manera en la que se leen los enteros y al final nombra el orden decimal que ocupa la última cifra (décimas, centésimas o milésimas).

Por ejemplo, 535,42 se lee: “quinientas treinta y cinco unidades, cuarenta y dos centésimas“.

En el ejemplo anterior, el 2 corresponde a la última cifra y ocupa el orden de las centésimas por eso se agrega dicho orden al final del número.

Si el decimal tiene una parte entera igual a cero solo se nombra la parte decimal de acuerdo al orden de la última cifra. Por ejemplo, 0,579 se lee: “quinientas setenta y nueve milésimas“.

¿Sabías qué?
Cuando un número decimal termina en cero este número puede omitirse sin alterar su valor. Así, 1,50 es igual a 1,5.

Utilidad de los decimales

Gracias a que permiten expresar números menores a la unidad, uno de sus principales usos son en las mediciones, desde la lectura de la temperatura hasta la determinación del tamaño de una bacteria, por ejemplo. Por esta razón, los decimales son indispensables en los cálculos empleados en disciplinas como la arquitectura, la medicina, la ingeniería y muchas otras más.

Para comparar dos números decimales lo primero que se debe hacer es comparar sus partes enteras, la que sea mayor corresponderá al número decimal mayor, por ejemplo: 21,5 es mayor que 9,785 porque 21 es mayor a 9. Cuando dos números decimales tienen igual parte entera se comparan sus partes decimales, por ejemplo: 7,58 es mayor a 7,49 porque 58 es mayor a 49.

¿Se usa punto o coma?

La respuesta es simple: ¡cualquiera de las dos! La diferencia en usar una u otra radica en el lugar en donde te encuentres. La coma y el punto son usados como separadores de los números decimales y ambos son válidos. En gran parte de Europa y América del Sur se emplea la coma, pero algunos países como Estados Unidos, Canadá, México y Reino Unido emplean el punto.

Sumas y restas de decimales

Las sumas y restas de números decimales se hacen del mismo modo que con los números enteros. En estos casos se deben colocar los números que se vayan a sumar o restar uno debajo del otro, de manera tal que las cifras del mismo orden se encuentren en la misma columna, es decir, las centenas con las centenas, las decenas con las decenas, las unidades con las unidades, las décimas con las décimas y así sucesivamente. De igual forma, las comas deben estar ubicadas en la misma columna.

Observa la manera correcta de sumar los números 124,32 + 267,11:

Luego, la suma se realiza como una suma normal sin considerar la coma, al final, la coma en el resultado estará ubicada en la columna correspondiente.

Si las cifras que se suman no tiene la misma cantidad de decimales, se completa con cero la cifra de menor número de decimales. Por ejemplo, 74,874 +41,41 se calcula de la siguiente manera:

En el caso de una resta se cumplen los mismos pasos para restar enteros y las cifras se ubican una debajo de la otra de acuerdo a su valor posicional. Si es necesario se agregan ceros en la parte decimal de forma tal que los números tengan la misma cantidad de decimales.

Por ejemplo, al realizar la resta de 945,5 − 307,182 el procedimiento sería:

Cuando se resuelvan ejercicios con números decimales que tengan la parte entera igual a cero, la suma o resta puede realizarse sin ningún tipo de inconveniente, pero con la previsión de que todas sus cifras estén correctamente ordenadas. Un error común es ubicar las comas de los números en columnas distintas con lo cual el resultado será incorrecto.

 

¡A practicar!

  1. ¿Cómo se leen los siguientes números decimales?
    a) 457,5
    Solución
    Cuatrocientas cincuenta y siete unidades, 5 décimas.
    b) 8,742
    Solución
    Ocho unidades, setecientas cuarenta y dos milésimas.
    c) 0,92
    Solución
    Noventa y dos centésimas.
    d) 100,102
    Solución
    Cien unidades, ciento dos milésimas.
  2. Calcula el resultado de las siguientes sumas:
    a) 178,45 + 278,73
    Solución
    457,18
    b) 14,2 + 29,178
    Solución
    43,378
    c) 402,745 + 61,45
    Solución
    464,195
    d) 652,314 + 174,074
    Solución
    826,388
  3. Calcula el resultado de las siguientes restas:
    a) 279,3 − 142,1
    Solución
    137,2
    b) 542,22 − 419,1
    Solución
    123,12
    c) 547,943 − 390,451
    Solución
    157,492
    d) 482,1 − 125,748
    Solución
    356,352
RECURSOS PARA DOCENTES

Artículo “Números decimales”

El siguiente artículo profundiza la información sobre los números decimales y explica su relación con las fracciones.

VER

Video “Suma y resta de números decimales”

El video muestra ejemplos de sumas y restas de números decimales, así como los elementos a tener en cuenta durante la realización de este tipo de ejercicios.

VER

Tarjetas educativas “Operaciones matemáticas”

Las siguientes tarjetas sirven para mostrar de una manera más didácticas las operaciones matemáticas básicas.

VER

CAPÍTULO 1 / TEMA 2

Números primos y compuestos

Los números naturales son usados comúnmente para contar y se clasifican según sus divisores. Aquellos que solo pueden dividirse de forma exacta entre ellos mismos y entre el 1, es decir, tienen solo dos divisores, se denominan números primos; mientras que los que tienen más de dos divisores se denominan números compuestos.

Divisores de un número

Antes de abordar el tema de los números primos y números compuestos, es indispensable comprender el concepto de divisor. Este es un número natural que al dividir a otro natural da como resultado una división con cociente entero y resto igual a cero.

¿Sabías qué?
El divisor de un número siempre lo divide en partes exactas, por eso el resto siempre es igual a cero.

En este sentido, si deseas saber si un número es o no divisor de otro, debes realizar una división entre el número en cuestión y el posible divisor. Si el resultado es un cociente entero (no decimal) y si el resto es igual a cero (división exacta) entonces decimos que efectivamente es divisor de dicho número.

Por ejemplo:

– Para determinar si el número 2 es divisor del número 6:

Lo primero es dividir 6 entre 2.

En este caso, el número 2 es divisor del número 6 porque el cociente de la división es un número entero (no es decimal) y la división es exacta con el resto igual a cero.

Otro ejemplo:

– Para determinar si el número 3 es divisor del número 14:

 

 

 

Aunque la división es exacta, el número 4 no es divisor del número 14, porque el cociente de la división es un número decimal, en este caso se dice que el número 14 no es divisible entre 4.

Criterios de divisibilidad

Son simples reglas que permiten determinar de manera rápida si un número es divisor o no de otro sin necesidad de realizar la división. Algunos de estos criterios son:

– Un número es divisible entre 2 si es un número par o termina en 0.
Por ejemplo: 20, 54, 12, 1.050, 76 y 80.

– Un número es divisible entre 5 si termina en 5 o en 0.
Por ejemplo: 15, 225, 3.110 y 400.

– Un número es divisible entre 10 si termina en 0.
Por ejemplo: 10, 500, 3.410 y 780.

¡A practicar!

  1. ¿Cuáles de los siguientes números es divisor del número 12?
    a) 5
    b) 2
    c)10
    RESPUESTAS
    2
  2. ¿Cuáles de los siguientes números es divisor del número 25?
    a) 3
    b) 7
    c) 5
    RESPUESTAS
    5
  3. ¿Cuáles de los siguientes números es divisor del número 200?
    a) 10
    b) 3
    c) 6
    RESPUESTAS
    10
  4. ¿Cuáles de los siguientes números es divisor del número 16?
    a) 5
    b) 4
    c) 9
    RESPUESTAS
    4

Números primos

Son números que poseen únicamente dos divisores: ellos mismos y el 1.

Por ejemplo, el número 2 es un número primo porque solamente es divisible entre 2 y entre 1.

 

VER INFOGRAFÍA

¿Sabías qué?
El número uno es divisor de todos los números enteros pero solo es divisible por sí mismo.

Números compuestos

Los números compuestos son números divisibles por ellos mismos, por el uno (1) y por otros números, es decir, tienen más de dos divisores y son más frecuentes que los números primos.

Por ejemplo, el número 24 es un número compuesto, ya que es divisible entre 1, 2, 3, 4, 6, 8, 12 y 24. En total tiene 8 números divisores.

Números especiales

Los números 1 y 0 son números muy particulares. En el caso del 1, su único divisor es él mismo y en el caso del número 0, aunque puede ser dividido entre infinitos números, no puede dividirse entre sí mismo porque la división entre cero no esta determinada. Por estas razones, los números 1 y 0 no se consideran números primos ni compuestos.

Tabla de los números primos y compuestos

Existe un simple procedimiento que permite determinar con facilidad los conjuntos de números primos y compuestos; se conoce como Criba de Eratóstenes y aunque su nombre parezca complicado, su procedimiento no lo es.

1. Lo primero que hay que hacer es realizar una tabla con los números del 1 al 100 y se deberán tachar los números que no son primos. El primer número que se tacha es el 1 al no ser considerado número primo.
2. Luego, el siguiente número es el 2, al ser un número primo no se tacha pero a partir de él se empieza a contar de dos en dos al mismo tiempo que se tachan los números que resulten de dicho conteo.

3. Luego del 2, el siguiente número que no se ha tachado es el 3, a partir de él se empieza a contar de 3 en 3 y se tachan los números al mismo tiempo.

4. El siguiente número sin tachar es el 5, se deja sin tachar y se empieza a contar de 5 en 5 mientras se tachan los números.

5. El siguiente número sin marcar el el 7, se mantiene en la tabla sin tachar y se empieza a contar de 7 en 7 mientras se tachan los números.

Los números que no fueron tachados corresponden a números primos, y los números tachados son los compuestos, es una manera gráfica de identificar estos tipos de números del 1 al 100.

La Criba de Eratóstenes es una herramienta muy práctica para tener una visión general de los números primos y compuestos, sin embargo; en la vida cotidiana no es necesario ni aconsejable memorizarlos para resolver los ejercicios, por el contrario; al entender los elementos de cada número se podrá determinar con mayor rapidez si es primo o no.

 

¡A practicar!

1. ¿Qué número tiene infinitos divisores?

RESPUESTAS
El número cero.

2. ¿Cómo se llaman los números que solo tienen dos divisores?

RESPUESTAS
Números primos.

3. ¿Qué números no son considerados ni primos ni compuestos?

RESPUESTAS
El cero y el uno.

4. Un número es divisible entre dos si es par o termina en __________.

RESPUESTAS
cero

5. ¿Cuáles de estos números no es primo?
a) 7
b) 19
c) 25
d) 2

RESPUESTAS
25

6. El número 32 es un número _________.

a) impar
b) primo
c) compuesto

RESPUESTAS
compuesto

7. Clasifica cada uno de los siguientes números como “primo” o “compuesto”:

a) 21
b) 59
c) 18
d) 13

RESPUESTAS
a) Compuesto.
b) Primo.
c) Compuesto.
d) Primo.
RECURSOS PARA DOCENTES

Artículo “Números primos y compuestos”

En el siguiente artículo se desarrolla el tema de números primos y compuestos. Además se explica qué son los coprimos, y se señalan algunos números especiales.

VER

Artículo “Criterios de divisibilidad”

Este recurso ayuda a conocer los criterios de divisibilidad, ampliados para más números de los que se mencionaron en este artículo.

VER