CAPÍTULO 3 / TEMA 5

PORCENTAJES

Los porcentajes son expresiones matemáticas que sirven para relacionar dos cantidades. Se emplean en diferentes situaciones como, por ejemplo, los descuentos. Están estrechamente relacionados con los números fraccionales, porque se emplean para representar una fracciones de denominador igual a 100. 

¿qUÉ ES UN PORCENTAJE?

Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Los porcentajes se utilizan a diario, por ejemplo, en los siguientes casos:

  • El 30 % de los vuelos proviene de Europa.
  • El 40 % de las personas en la fiesta eran hombres y el 60 % eran mujeres.
  • El 60 % de la población mundial tiene acceso a Internet.

Esto quiere decir que:

  • De cada 100 vuelos, 30 proviene de Europa.
  • De cada 100 personas que había en la fiesta, 40 eran hombres y 60 eran mujeres.
  • De cada 100 personas, 60 tienen acceso a Internet.

Como vemos, el número 100 está presente en todos los casos como referencia. Esto sucede porque el porcentaje representa a una fracción decimal cuyo denominador es 100. Entonces, el número que utilizamos para indicar el porcentaje corresponde al numerador, y el denominador es siempre 100:

  • 20 % = 20/100
  • 60 % = 60/100
  • 33 % = 33/100
Un porcentaje, al igual que una fracción, es una forma de indicar una parte de un todo. Los porcentajes representan una fracción decimal cuyo denominador es 100. Se utiliza frecuentemente en la estadística para distinguir a ciertas porciones del total con respecto a otras. Por ejemplo, en esta imagen vemos un gráfico que divide al total en cuatro partes,  la porción más grande representa el 45 %, mientras que las otras representan el 20 %, el 10 % y el 25 % del total.

Símbolo de porcentaje

El símbolo que utilizamos para indicar un porcentaje es “%” y se lee “por ciento“. Podemos observar algunos ejemplos a continuación:

  • 100 % = “cien por ciento”.
  • 80 % = “ochenta por ciento”.
  • 44 % = “cuarenta y cuatro por ciento”.
  • 30 % = “treinta por ciento”.
El símbolo que utilizamos para indicar un porcentaje es %. Cuando un número está acompañado de dicho símbolo se trata de una expresión de este tipo. Por ejemplo, 100 % se lee “cien por ciento”. Los porcentajes también se utilizan en la economía para indicar los aumentos de precios, el crecimiento de las acciones de una empresa y la inflación de un país.

¿Sabías qué?
El agua constituye el 98 % de un melón, el 80 % de un pez y el 70 % de un ser humano.

Cálculo de porcentaje

Para calcular el porcentaje de una cantidad dada se deben seguir los siguientes pasos:

  1. Multiplicar el porcentaje por la cantidad conocida.
  2. Dividir el resultado obtenido entre cien.
  3. Escribir el resultado final.

Por ejemplo:

1. Calcular el 30 % de  60.

Para calcula cuánto es el 30 % de 60 se deben multiplicar ambos números y luego dividir el resultado entre cien de la siguiente forma:

\frac{30\times 60}{100}=\frac{1.800}{100}=18

En este caso el 30 % de 60 es 18.

2. ¿Cuánto es el 20 % de $ 150?

\frac{20\times 150}{100}=\frac{3.000}{100}=30

El 20 % de $ 150 son $ 30.

¿Cómo determinar qué porcentaje se aplicó?

Hay ocasiones en las que necesitamos calcular cuál es el porcentaje aplicado. Esto es muy útil cuando se va a realizar una compra. Por ejemplo, si un pantalón tiene un precio de $ 120 y el descuento es de $ 12, ¿Cuál es el porcentaje de descuento que se le aplicó?

En este caso se debe multiplicar el descuento por 100 y luego dividir el resultado entre el precio del pantalón que es $ 120:

\frac{12\times 100}{120}=\frac{1.200}{120} = 10\, %

El porcentaje de descuento en este caso fue del 10 %, es decir,  $ 12 representa el 10 % de $ 120.

Relación de porcentaje y fracción

Tanto los porcentajes como las fracciones son formas de representar una parte de un todo. Entonces, podemos convertir un porcentaje en una fracción y viceversa.

Convertir fracción a porcentaje

Para convertir cualquier fracción a porcentaje, debemos dividir el numerador con el denominador, y luego multiplicar dicho resultado por cien. Al número obtenido le agregamos siempre el símbolo de porcentaje (%) para indicar que nos referimos a un porcentaje. Por ejemplo, si convertimos 3/5 en porcentaje tenemos que:

Convertir porcentaje a fracción

En este caso, debemos colocar el porcentaje en el numerador de la fracción y agregar 100 como denominador. Luego, simplificamos hasta obtener una fracción irreducible. Por ejemplo, para convertir 20 % a fracción:

La fracción 20/100 se puede simplificar a 1/5 al dividir tanto al numerador como al denominador entre 5.

Los porcentajes y las fracciones son formas de representar una parte de un total. Entonces, podemos convertir tanto los porcentaje a fracciones como las fracciones a porcentajes. Los porcentajes son muy utilizados en las ofertas, para indicar el descuento sobre el total. Mientras mayor sea el porcentaje, mayor será el descuento.

¡A practicar!

1. ¿Cuánto es el 15 % de 300?

a) 150
b) 45
c) 100
d) 30

SOLUCIÓN
b) \frac{15\times 300}{100}=\frac{4.500}{100}=45

2. Convierte los siguientes porcentajes en fracciones.

a) 25 %
b) 35 %
c) 40 %
d) 90 %

SOLUCIÓN

a) \frac{1}{4}

b) \frac{7}{20}

c) \frac{2}{5}

d) \frac{9}{10}

3. Convierte las siguientes fracciones a porcentaje.

a) \frac{4}{5}

b) \frac{1}{2}

c) \frac{7}{50}

d) \frac{1}{4}

RESPUESTAS

a) 80 %
b) 50 %
c) 14 %
d) 25 %

RECURSOS PARA DOCENTES

Artículo “Porcentajes”

En este artículo se explican las características de los porcentajes y los diferentes métodos para calcularlos, como la regla de tres simple.

VER

Artículo “Porcentaje y proporcionalidad. Descuentos y recargos”

En este artículo se explican algunas aplicaciones de los porcentajes, como los descuentos y las recargas.

VER

 

CAPÍTULO 3 / TEMA 3

OPERACIONES CON FRACCIONES

Las fracciones son números y, como tales, su pueden sumar, restar, dividir y multiplicar. Muchas situaciones en la vida cotidiana se resuelven mediante la suma o resta de fracciones, como por ejemplo, calcular las porciones de torta que quedan luego de repartir una parte.

ADICIÓN Y SUSTRACCIÓN DE FRACCIONES

El procedimiento para sumar o restar fracciones es distinto entre fracciones homogéneas y heterogéneas. Por ello es muy importante saber reconocerlas.

Fracciones homogéneas

Las fracciones homogéneas son las que tienen el mismo denominador. En este caso, la operación de suma o resta consiste simplemente en sumar o restar los numeradores y conservar el mismo denominador.

-En el caso de la suma se cumple que:

\frac{a}{{\color{Red} b}}+\frac{c}{{\color{Red} b}}=\frac{a+c}{{\color{Red} b}}

Por ejemplo:

a) \frac{1}{5}+\frac{2}{5}

En este caso se trata de una suma de dos fracciones homogéneas porque tienen igual denominador, que es 5. Para resolver la suma se coloca el mismo denominador y se suman los numeradores.

\frac{1}{5}+\frac{2}{5}=\frac{1+2}{5}=\frac{3}{5}

El denominador en ambos casos es 5. Entonces sumamos los numeradores (1 + 2 = 3) y conservamos el denominador 5.

-En el caso de la resta se cumple que:

\frac{a}{{\color{Red} b}}-\frac{c}{{\color{Red} b}}=\frac{a-c}{{\color{Red} b}}

Por ejemplo:

b) \frac{7}{3}-\frac{2}{3}

En este caso se trata de una sustracción o resta de dos fracciones homogéneas con denominar igual a 3. Para resolver el problema se coloca el mismo denominador y se restan los exponentes.

\frac{7}{3}-\frac{2}{3}=\frac{7-2}{3}=\frac{5}{3}

Fracciones heterogéneas

Las fracciones heterogéneas son las que entre sí tienen distinto denominador. Para el caso de la suma de fracciones heterogéneas se aplica la siguiente fórmula.

La expresión anterior lo que quiere decir es que para sumar dos fracciones heterogéneas, el numerador de la fracción resultante es igual a la suma del producto del numerador de la primera fracción por el denominador de la segunda y el producto del denominador de la primera fracción por el numerador de la segunda. El denominador de la fracción resultante es igual al producto de los denominadores de las fracciones originales.

En el caso de la resta de las fracciones se aplica casi la misma fórmula pero al momento de calcular el numerador resultante se deben restar los productos del numerador de la primera fracción por el denominador de la segunda y el producto del denominador de la primera fracción por el numerador de la segunda.

Veamos algunos ejemplos con números:

Otro método

El método explicado anteriormente es el más utilizado, aunque también se pueden sumar y restar fracciones heterogéneas a través de fracciones equivalentes. Para ello, se calcula el mínimo común múltiplo entre los dos denominadores, y se amplifican ambas fracciones de manera de que ambas tengan como denominador al mínimo común múltiplo. Una vez que tienen el mismo denominador, sumamos o restamos los numeradores y conservamos el denominador.

En procedimiento para sumar o a restar fracciones varía, y depende de si se trata de fracciones homogéneas o heterogéneas. En el caso de las fracciones homogéneas el procedimiento es más sencillo porque se mantiene el mismo denominador y se suman o restan los numeradores según la operación. En las operaciones heterogéneas el procedimiento es más largo.

MULTIPLICACIÓN Y DIVISIÓN DE FRACCIONES

Otras operaciones que se pueden realizar con fracciones son la multiplicación y la división. Ambas llevan procedimientos diferentes.

Multiplicación

La multiplicación de fracciones es una de las operaciones más sencillas. Para resolverla solamente se debe multiplicar de forma lineal. Es decir, numerador por numerador y denominador por denominador. De la siguiente forma:

\frac{a}{b}\times \frac{c}{d} = \frac{a\times c}{b\times d}

Observa el siguiente ejemplo:

 \frac{3}{5}\times \frac{2}{7}

Para resolver esta multiplicación primero tenemos que multiplicar el numerador de la primera fracción por el numerador de la segunda: el resultado será el numerador de la fracción resultante. Luego multiplicamos el denominador de la primera fracción por el denominador de la segunda fracción y el número que se obtiene será el denominador de la fracción resultante.

\frac{3}{5}\times \frac{2}{7} =\frac{3\times 2}{5\times 7}=\frac{6}{35}

División

Para dividir fracciones, el método que más se utiliza es multiplicar en forma de cruz. Es decir, primero se multiplica el numerador de la primera fracción por el denominador de la segunda y el producto de estos números sera el denominador de la fracción resultante. Luego se multiplica el numerador de la segunda fracción por el denominador de la primera y el producto de estos números será igual al denominador de la fracción resultante.

\frac{{\color{Blue} a}}{{\color{Red} b}}:\frac{{\color{Red} c}}{{\color{Blue} d}}=\frac{{\color{Blue} a\times d}}{{\color{Red} b\times c}}

Observa el siguiente ejemplo:

a) \frac{7}{4}:\frac{3}{5}

En este caso procedemos a realizar la multiplicación en cruz del primer numerador, que es 7, por el denominador de la segunda fracción, que es 5:

\frac{7}{4}:\frac{3}{5}=\frac{7\times 5}{}

Luego multiplicamos el numerador de la segunda fracción por el denominador de la primera fracción:

\frac{7}{4}:\frac{3}{5}=\frac{7\times 5}{3\times 4}

Finalmente, se resuelven los productos:

\frac{7}{4}:\frac{3}{5}=\frac{7\times 5}{3\times 4}=\frac{35}{12}

Algunas fracciones se pueden simplificar, es decir, pueden expresarse en fracciones equivalentes más sencillas (que representan la misma cantidad). La simplificación es un proceso usado comúnmente en los cálculos porque permite manejar expresiones más sencillas. Las fracciones que no se pueden simplificar se denominan fracciones irreducibles.

PROBLEMAS DE APLICACIÓN

Existen problemas cotidianos que pueden resolverse a través de operaciones con fracciones. Los siguientes ejemplos indican cómo usar las fracciones en estos casos.

1. Juan comió 3/8 de pizza y Luis comió 4/8 de la misma pizza. ¿Cuánto comieron los dos en total?

Análisis: Debemos sumar ambas fracciones. Como los denominadores son los mismos, son fracciones homogéneas. Entonces, sumamos los numeradores y conservamos el denominador.

Cálculos: \frac{3}{8}+\frac{4}{8}= \frac{3+4}{8}= \frac{7}{8}

Respuesta: Entre Juan y Luis comieron 7/8 de la pizza.

2. Un científico tiene 6/5 partes de una sustancia, si pierde 2/3 de esa sustancia, ¿cuánta sustancia le queda?

Análisis: Para saber cuánta sustancia le queda al científico hay que restar ambas fracciones. Como los denominadores son diferentes, son fracciones heterogéneas. Entonces, seguimos el procedimiento explicado anteriormente:

Cálculos: \frac{6}{5}-\frac{2}{3}= \frac{(6\times 3)-(5\times 2)}{5\times 3}= \frac{18-10}{15}=\frac{8}{15}

Respuesta: Al científico le quedan 8/15 de sustancia.

3. Una modista tiene una tela que mide 5/7 de metro, si la dividió en trozos de 1/8 de metros, ¿cuántos trozos obtuvo?

Análisis: Para saber el número de trozos que obtuvo la modista se deben dividir ambas fracciones.

Cálculos: \frac{5}{7}:\frac{1}{8}=\frac{5\times 8}{1\times 7}=\frac{40}{7}

Respuesta: El número de trozos que obtuvo la modista fue de 40/7.

Muchas situaciones de la vida cotidiana implican la utilización de fracciones. Los casos en que dividimos una torta, una pizza o un terreno, entre otros, son algunas de las situaciones más comunes donde podemos utilizar estos números. Al partir una torta en porciones, cada porción representa una cantidad del total. En esta imagen falta 1/4 de la torta y quedan 3/4 de la misma.

¡A practicar!

  1. Realiza los siguientes cálculos.

a)  \frac{5}{3}+\frac{13}{3}

b) \frac{8}{5}-\frac{2}{5}

c) \frac{8}{5}+\frac{2}{4}

d) \frac{7}{3}\times \frac{9}{5}

e) \frac{5}{2}:\frac{10}{3}

RESPUESTAS

a)  \frac{5}{3}+\frac{13}{3}=\frac{5+13}{3}=\frac{18}{3}

b) \frac{8}{5}-\frac{2}{5}=\frac{8-2}{5}=\frac{6}{5}

c) \frac{8}{5}+\frac{2}{4}=\frac{(8\times 4)+(2\times5)}{5\times4}=\frac{32+10}{20}=\frac{42}{20}

d) \frac{7}{3}\times \frac{9}{5}=\frac{7\times9}{3\times5}=\frac{63}{15}

e) \frac{5}{2}:\frac{10}{3}=\frac{5\times 3}{2\times 10}=\frac{15}{20}

RECURSOS PARA DOCENTES

Artículo “Adición y sustracción de fracciones”

Este artículo profundiza la información sobre el proceso de resolución de sumas y restas de fracciones a través de fracciones equivalentes.

VER

Artículo “Multiplicación y división de fracciones”

Este artículo, además de mostrar cómo resolver multiplicaciones y divisiones con fracciones, muestra cuáles son los criterios de divisibilidad usados para simplificarlas.

VER

Micrositio “Operaciones matemáticas”

El siguiente micrositio ofrece una serie de tarjetas educativas que muestran un resumen de las formulas generales para la sustracción, la adición, la multiplicación y la división de fracciones.

VER

CAPÍTULO 1 / TEMA 7 (REVISIÓN)

SENTIDO NUMÉRICO | REVISIÓN

UNIVERSO DE LOS NÚMEROS

Los números desde su invención han servido para contar cosas y por eso existen diferentes sistemas y tipos de números que permiten un mejor conocimiento de las cantidades. Para comprender el sentido numérico, dentro del universo de los números se utilizan diversas clasificaciones. Un tipo de números son los ordinales que sirven para establecer un orden. Por otro lado, existen los cardinales que indican cantidades numéricas de elementos que pertenecen a un grupo o conjunto. Actualmente, el sistema más usado es el sistema numérico decimal pero no es el único que existe. Otras culturas crearon sistemas de numeración distintos al decimal, como por ejemplo, los mayas y los romanos.

El sistema de numeración binario se utiliza principalmente en la informática. Está conformado solo por dos cifras: el 0 y el 1.

NÚMEROS PRIMOS Y COMPUESTOS

De acuerdo a la cantidad de divisores que poseen los número, los podemos clasificar en primos y compuestos. Los números primos son aquellos que solo son divisibles por el número uno y por sí mismos. En cambio, los números compuestos son aquellos que además de ser divisibles por el uno y por sí mismos, también son divisibles por otro u otros números, es decir, tienen más de dos divisores. Todos los números compuestos pueden expresarse como un producto de factores primos.

Para determinar los factores primos de un número compuesto se emplean los criterios de divisibilidad.

VALOR POSICIONAL

Una de las principales características de nuestro sistema de numeración decimal es que el valor de los dígitos varía de acuerdo a su ubicación dentro del número. Esta característica se denomina valor posicional y aplica tanto en los números enteros como en los fraccionarios. Una herramienta que nos permite observar directamente el valor de cada dígito de acuerdo al lugar que ocupa es la tabla posicional.

Según la posición de cada dígito, los números pueden descomponerse en forma de suma (descomposición aditiva) o de multiplicación (descomposición multiplicativa).

NÚMEROS DECIMALES

Hay números que se ubican entre dos números enteros consecutivos, estos números se denominan números decimales y se caracterizan porque presentan una parte entera y una decimal, que se encuentran separadas por una coma o punto de acuerdo a la convención del país. Los números decimales se clasifican en racionales y en irracionales. Los racionales se pueden representar en forma de fracción, y los irracionales son números infinitos cuya parte decimal no sigue ningún patrón, como sucede en el caso del número pi.

A menudo se pueden aplicar redondeos en las cifras decimales de un número para simplificar los cálculos.

POTENCIAS

La potenciación es una operación compuesta de tres partes fundamentales: el exponente, la base y la potencia. El exponente indica cuántas veces se debe multiplicar la base por si misma. La base es el número que se multiplica por sí mismo las veces que indique el exponente. La potencia es el resultado de la operación de potenciación. Como toda operación matemática, las potencias cumplen con algunas propiedades. Por ejemplo, todo número elevado a 0 es igual a 1. Para resolver potencias se aplican sus propiedades y se realizan multiplicaciones sucesivas de la base.

Cuando el exponente es 1, la potencia es siempre igual a la base.

RAÍZ DE UN NÚMERO

La radicación es la operación inversa a la potenciación y por ello se encuentran estrechamente relacionadas. Esta operación emplea el símbolo (√) denominado radical. Sus elementos principales son el radicando, el índice y la raíz. El radicando es el número al cual se le va a calcular la raíz y se encuentra en la parte inferior del radical. El índice es el número que índica la cantidad de veces en las que debe multiplicarse un número por sí mismo para que el resultado sea igual al radicando, y se ubica en la parte izquierda del radical. La raíz es el resultado de la operación. Para calcular una raíz se debe buscar un número que multiplicado por sí mismo las veces que indique el índice dé como resultado el mismo valor del radicando.

En las raíces cuadradas, el índice 2 no se coloca en el radical: simplemente se denotan como (√).

 

CAPÍTULO 1 / TEMA 6

RAÍZ DE UN NÚMERO

Estrechamente relacionada con la potenciación, existe otra operación matemática denominada “radicación”. Ambas operaciones matemáticas son inversas. La raíz cuadrada y la raíz cúbica son unas de las formas de radicación más conocidas. Este tipo de operaciones se emplea en varios ámbitos, especialmente en la geometría y en otras ciencias.

¿Qué es una raíz?

La raíz es el número que se obtiene como resultado de la operación matemática denominada “radicación”. La potenciación calcula el número o potencia que resulta de multiplicar la base por si misma las veces que indica el exponente. La radicación por su parte, calcula la base a partir del exponente y de la potencia. Por eso se dice que son operaciones inversas.

Elementos de las raíces

Para saber cómo encontrar la raíz de un número, primero debemos conocer todos los elementos de la radicación:

Radical: es el símbolo que se emplea en la radicación y se denota como (√).

Radicando: es el número al que se le va a hallar la raíz. Se ubica en la parte inferior del radical, por lo cual es denominado también cantidad subradical.

Índice: es el número que indica las veces que hay que multiplicar un número por sí mismo para obtener el radicando. Se ubica en la abertura izquierda del radical.

Raíz: es el número que al multiplicarse por si mismo las veces que indica el índice es igual al radicando.

¿Sabías qué?
Cuando el índice de una raíz es 2, se denomina raíz cuadrada. En este caso basta con escribir el símbolo de radical sin el índice.

Lectura de raíces

Para leer expresiones de este tipo se debe tener en cuenta que todo depende del número índice de la raíz.

Cuando el número índice es mayor a tres, se  utilizan números ordinales para leer el valor de la raíz seguido del radicando. Por ejemplo:

\sqrt[6]{64} = raíz sexta de sesenta y cuatro.

\sqrt[4]{625} = raíz cuarta de seiscientos veintiocho.

Si el índice es 2 se lee “raíz cuadrada” y luego se menciona el número del radicando:

\sqrt[]{5} = raíz cuadrada de cinco.

Cuando el índice es 3 se lee “raíz cúbica” y luego se menciona el número del radicando:

\sqrt[3]{27} = raíz cúbica de veintisiete.

¿Cómo se encuentra la raíz?

La raíz de un número se debe calcular al buscar un número que multiplicado por sí mismo la cantidad de veces que exprese el índice dé como resultado el radicando.

Por ejemplo: si el índice es 3 y el radicando es 8, se debe buscar un número que multiplicado 3 veces por si mismo dé como resultado 8. En este caso, sería 2 porque 2 × 2 × 2 = 8. Por lo tanto, la raíz cúbica de 8 es igual a 2.

\sqrt[3]{8}= 2

En el siguiente ejemplo, la raíz cúbica de 64, se obtuvo al buscar un número que multiplicado tres veces por sí mismo dé como resultado 64. En este caso, el resultado es 4 porque 4 × 4 × 4 = 64.

\sqrt[3]{64}= 4

Relación entre potenciación y radicación

Existe una estrecha relación entre la potenciación y la radicación, esto se debe a que ambas operaciones son inversas entre sí.

Si consideramos el ejemplo anterior se podría afirmar que como cuatro elevado al cubo es igual a sesenta y cuatro, a su vez, la raíz cúbica de sesenta y cuatro es cuatro. En el siguiente diagrama podemos observar de forma más clara a esta relación:

Al utilizar la relación que existen entre la potenciación y la radicación podemos definir a esta última como la búsqueda de la base de una potencia cuyo exponente es el índice de la raíz; o, en otras palabras, la búsqueda de un número que elevado al índice dé como resultado el radicando. Esto se aplica de forma habitual en cálculos y fórmulas avanzadas.

 

¿Sabías qué?
No todos los números tienen una raíz exacta. Por ejemplo, \sqrt{2}=1,41421356... 

Cálculo de raíces

Como vimos anteriormente, para encontrar una raíz debemos hacer multiplicaciones de un número por sí mismo según indique el índice. Sin embargo, en la radicación podemos encontrar uno o más cálculos dentro del radicando. Cuando esto sucede, debemos seguir los siguientes pasos.

  1. Resolver las operaciones que están dentro del radicando.
  2. Resolver la raíz

En los siguientes ejemplos veremos el cálculo cuando dentro del radicando existen sumas y restas:

  1. \sqrt{100 + 44}   →  \sqrt{144} = 12
  2. \sqrt{250 - 25}   → \sqrt{225}= 15

Cuando se encuentren otras operaciones además de la suma o resta, se resuelven aquellas primero y luego se resuelven las sumas y restas:

  1. \sqrt[3]{50\times 6 + 43 }  →  \sqrt[3]{300 + 43}  →  \sqrt[3]{343}= 7
  2. \sqrt{270 : 3 + 10}  →  \sqrt{90 + 10}  → \sqrt{100}= 10
Los elementos de la radicación son: el índice, el radicando y la raíz. Esta última se obtiene al buscar un número que multiplicado por sí mismo la cantidad de veces que exprese el índice dé como resultado el radicando. En la radicación podemos encontrar uno o más cálculos dentro del símbolo radical. Cuando esto sucede primero se realizan las operaciones y luego se busca la raíz.

¡A practicar!

1. ¿Cómo se leen las siguientes raíces?

a) \sqrt[3]{1.000} 

b) \sqrt{49}

c) \sqrt[3]{125}

d) \sqrt{144}

e) \sqrt[4]{256}

f) \sqrt[3]{343}

g) \sqrt{121}

RESPUESTAS

a) \sqrt[3]{1.000} = raíz cúbica de mil.

b) \sqrt{49} = raíz cuadrada de cuarenta y nueve.

c) \sqrt[3]{125} = raíz cúbica de ciento veinticinco.

d) \sqrt{144} = raíz cuadrada de ciento cuarenta y cuatro.

e) \sqrt[4]{256} = raíz cuarta de doscientos cincuenta y seis.

f) \sqrt[3]{343} = raíz cúbica de trescientos cuarenta y tres.

g) \sqrt{121} = raíz cuadrada de ciento veintiuno.

 

2. Calcula las siguientes raíces.

a) \sqrt[3]{27}

b) \sqrt{36}

c) \sqrt{16}

RESPUESTAS

a) \sqrt[3]{27}  = 3 → porque 3 x 3 x 3 (o 33) es 27.

b) \sqrt{36} = 6 → porque 6 x 6  (o 62) es 36.

c) \sqrt{16} = 4 → porque 4 x 4 (o 42) es 16.

d) \sqrt{81} = 9 → porque 9 x 9 (o 92) es 81.

e) \sqrt[3]{8} = 2 porque 2 x 2 x 2 (o 23) es 8.

f) \sqrt[3]{64} = 4 → porque 4 x 4 x 4 (o 43) es 64.

g) \sqrt{9} = 3 → porque 3 x 3 (o 32) es 9.

  • Resuelve los cálculos y luego encuentra las raíces:

a) \sqrt{9 - 7 + 2}

b) \sqrt{32\times 2}

c) \sqrt{100 : 5 + 5}

RESPUESTAS

a) \sqrt{9 - 7 + 2}= \sqrt{2 + 2}=\sqrt{4}=2

b) \sqrt{32 \times 2} = \sqrt{64} = 8

c) \sqrt{100 : 5 + 5}= \sqrt{20 + 5}=\sqrt{25}=5

RECURSOS PARA DOCENTES

Artículo destacado “La radicación”

El siguiente artículo explica qué es la radicación, cuáles son sus principales elementos y cómo resolver problemas de este tipo.

VER

Artículo destacado “Propiedades de raíces”

El siguiente artículo te ayudará a conocer en mayor profundidad cuáles son las propiedades de la radicación. Además, contiene algunos ejemplos en donde son aplicadas.

VER

CAPÍTULO 1 / TEMA 5

Potencias

La potencia es una expresión matemática en la que un número denominado base está elevado a un exponente, el cual indica las veces que la base debe multiplicarse por si misma. Este tipo de operación tiene múltiples aplicaciones en los cálculos combinados y en una forma especial de escribir números: la notación científica.

¿Qué es una potencia?

La potenciación es una operación matemática compuesta por dos partes principales: la base y el exponente.

Como podemos observar, el exponente se escribe en la parte superior derecha de la base y su tamaño es mucho menor.

El exponente de una potencia indica cuántas veces se debe multiplicar a la base por si misma. La potencia es el producto de esa multiplicación.

Por ejemplo:

Una potencia es una multiplicación sucesiva de la base por si misma. Por ejemplo si el exponente fuera 6 y la base 5, esta última se repetiría exactamente 6 veces dentro de la multiplicación, es decir:

 56 = × × × × × 5.

Resolver potencias

Al calcular una potencia debemos saber que el número correspondiente a la base se va a repetir sin alterarse en todas las multiplicaciones según indique el exponente. Por lo tanto, cuando el número del exponente sea grande, se deben resolver las multiplicaciones de forma separada. Esto quiere decir que se comienza a resolver el primer producto y luego el resultado se multiplica nuevamente por la base y así sucesivamente hasta obtener el resultado. Por ejemplo:

En este caso la base de esta potencia es 5 y se multiplica por si misma las veces que indica el exponente. Como el exponente es 3, se debe multiplicar el 5 tres veces por si mismo. Se recomienda resolver el primer producto 5 × 5 y luego volver a multiplicar por 5 al resultado.

Algunas propiedades de la potencia

Existen algunos casos en las potencias que cumplen con ciertas propiedades. Algunas de ellas son:

Exponente cero

Cuando el exponente es 0 (cero), la potencia siempre va a ser igual a 1 (uno). Esto sucede con cualquier número como base diferente de cero. Por ejemplo: 70 = 1.

Exponente igual a uno

Cuando el exponente es 1 (uno), la potencia siempre va a ser igual al número perteneciente a la base. Por ejemplo: 81 = 8.

Base igual a 10

Cuando la base de una potencia es 10 (diez), la potencia va a ser igual a la unidad  seguida de tantos ceros como indique el exponente. Por ejemplo: 10= 1.000.000. 

¿Sabías qué?
Cuando el exponente de una potencia es igual a uno, a menudo se escribe solo el valor de la base y se omite al exponente.

Elementos de la potencia

Los elementos de la potencia son los siguientes:

Base: es el número que se multiplica por si mismo las veces que indique el exponente.
Exponente: es el número que indica las veces en las se tiene que multiplicar la base por si misma. También se lo denomina índice.
Potencia: es el resultado.

¿Cómo leer una potencia?

La manera correcta es leer primero el número de la base, luego se dice la expresión “elevado a la” y por último se lee el valor del exponente en números ordinales (cuarta, quinta, sexta, etc.). De manera resumida se debe seguir la siguiente estructura:

Base + “elevado a la” + exponente

La expresión 34 se lee como “tres elevado a la cuarta“.

Otros ejemplos:

85 = ocho elevado a la quinta.

4= cuatro elevado a la novena.

17 = uno elevado a la séptima.

Exponentes particulares

Existen dos exponentes que particularmente se leen de forma distinta al restos. Estos son el dos y el tres.

  • Cuando el exponente es 2, se dice que el número de la base está elevado al cuadrado. Por ejemplo: 42 se lee “cuatro elevado al cuadrado”.
  • Cuando el exponente es 3, se dice que el número de la base está elevado al cubo. Por ejemplo: 33 se lee “tres elevado al cubo”.

¿Sabías qué?
Si la base es 1, sin importar el exponente,  la potencia siempre va a ser igual a 1.

Cálculo de potencias

Como vimos anteriormente, el cálculo de una potencia se realiza al multiplicar la base según indique el exponente. Sin embargo, hay ejercicios que contienen otras operaciones además de la potencia.

Suma o resta de un número y una potencia

En estos casos se resuelve primero la potencia y luego se resuelve la suma o resta.

Observemos el siguiente caso:

84

Lo primero que debemos resolver es la potencia; es decir, resolver  82:

82 = 8 × 8 = 64

Luego se sustituye el valor de la potencia en la expresión inicial y se resuelve:

64 4 = 60

De esta forma se obtiene que:

84 = 60

 

Paréntesis con suma o resta

Cuando la base de una potencia se encuentra entre paréntesis, lo primero que debemos resolver es la operación que se encuentra dentro del paréntesis, posteriormente se resuelve la potencia del resultado obtenido.

Observemos el siguiente caso:

(6 + 2)3 

Lo primero es resolver la operación dentro del paréntesis:

6 + 2 = 8

Luego se reemplaza el resultado obtenido en la operación ubicada dentro del paréntesis:

(8)3 

Al resolver dicha potencia obtenemos el resultado del problema:

(8)3 = 8 × 8 × 8 = 512

De esta forma tenemos que:

(6 + 2)3  512

Conocer las propiedades de las potencias permite resolver problemas de este tipo de forma rápida. Por ejemplo, si tenemos (100 + 93)0 podemos responder rápidamente que el resultado es 1 sin realizar ningún cálculo. Esto se debe a que una de las propiedades indica que la potencia de todo número diferente de cero que tenga exponente cero va a ser igual a uno.

¡A practicar!

1. Resuelve las siguientes potencias.

a. 5^{3}

b. 7^{4}

c. 2^{6}

d. 4^{5}

e. 5^{0}

f. 9^{2}

g. 2^{1}

RESPUESTAS

a. 5^{3}= 125

b. 7^{4}= 2.401

c. 2^{6} = 64

d. 4^{5}= 1.024

e. 5^{0}= 1

f. 9^{2}= 81

g.2^{1} = 2

2. Escribe cómo deberían leerse las siguientes potencias.

a. 8^{7}

b. 3^{4}

c. 4^{3}

d. 9^{5}

e. 6^{6}

f. 1^{2}

RESPUESTAS

a. 8^{7} = ocho elevado a la séptima.

b. 3^{4} = tres elevado a la cuarta.

c. 4^{3} = cuatro elevado al cubo.

d. 9^{5} = nueve elevado a la quinta.

e. 6^{6} = seis elevado a la sexta.

f. 1^{2} = uno elevado al cuadrado.

3. Resuelve los siguientes cálculos.

a. 5^{2}+9

b.\left ( 15-3 \right )^{1} 

c. \left ( 2\times 5 \right )^{3}

RESPUESTAS

a. 5^{2}+9= 25 + 9 = 34

b. \left ( 15-3 \right )^{1}= (12)^{1} = 12

c. \left ( 2\times 5 \right )^{3}= (10)^{3} = 1.000

RECURSOS PARA DOCENTES

Artículo destacado “Potenciación: operaciones de exponentes”

El siguiente artículo ayuda a conocer cómo leer y resolver las operaciones básicas de las potencias. De igual forma, explica sus propiedades.

VER

Artículo destacado “Ejercicios de potenciación”

Este artículo está enfocado en la forma de resolver problemas relacionados con las potencias a través del empleo de sus propiedades.

VER

CAPÍTULO 4 / TEMA 3

ORDEN DE FRACCIONES

Si tienes que elegir entre 1/2 de pizza o 3/4 de pizza, ¿cuál elegirías? Para responder esta pregunta es importante que sepas comparar distintos tipos de fracciones. Estas expresiones matemáticas constan de un numerador y un denominador, y según la relación entre ellos pueden ser mayores o menores que otras. ¡Aprende cómo ordenar fracciones!

Una fracción es una división entre dos números: un numerador y un denominador. El denominador indica en cuantas partes se divide la unidad y el numerador señala cuántas de esas partes se han de tomar. Si el numerador es menor que el denominador, la fracción es propia; pero si es mayor al denominador, la fracción es impropia.

Ubicación de fracciones en la recta numérica

Fracciones propias

Las fracciones propias son aquellas que tienen el numerador menor al denominador, por lo que siempre son menores a 1. Para ubicar estas fracciones en la recta numérica dividimos a la unidad en tantos segmentos como indique el denominador de la fracción que queremos representar. Luego, contamos tantos espacios como indique el numerador a partir del cero.

– Ejemplo:

La fracción \frac{4}{5} es propia porque su numerador es menor al denominador (4 < 5).

Para representarla en la recta dividimos el segmento entre el 0 y el 1 en 5 espacios (denominador). Después contamos 4 espacios (numerador) y ubicamos la fracción.

Fracciones impropias

Las fracciones impropias son aquellas cuyo numerador es mayor al denominador, por lo que siempre son mayores a 1. Para representar este tipo de fracciones en la recta numérica tenemos que transformarlas a números mixtos.

¿Qué es un número mixto?

Es aquel que tiene una parte entera y una parte fraccionaria. Por ejemplo:

\boldsymbol{2\frac{1}{2}=} 

Este número mixto se lee “dos enteros y un medio”.

¿Cómo transformar una fracción impropia a un número mixto?

Realiza la división entre el numerador y el denominador. Al terminar con la cuenta, el cociente de la división indica el entero del número mixto; el resto junto al divisor van a conformar la parte fraccionaria: el resto será el numerador y el divisor será el denominador.

– Ejemplo:

¿Cuál es el número mixto equivalente a la fracción \frac{5}{2}?

Por lo tanto:

\boldsymbol{\frac{5}{2}=2\frac{1}{2}}

 

De este modo, para poder representar el número mixto 2\frac{1}{2} en la recta numérica consideramos el número entero, en este caso el 2, y a partir de este seguimos los mismos pasos que en las fracciones propias: dividimos el segmento entre el 2 y el 3 en 2 segmentos iguales (denominador), después contamos un espacio (numerador) y ubicamos la fracción.

VER INFOGRAFÍA

¡Es tu turno!

Representa las siguientes fracciones en una recta numérica.

  • \frac{7}{5}
Solución

Como la fracción es impropia, la transformamos a número mixto.

\boldsymbol{\frac{7}{5}=1\frac{2}{5}}

  • \frac{1}{5}
Solución

  • \frac{8}{10}
Solución

  • \frac{9}{6}
Solución

Como la fracción es impropia, la transformamos a número mixto.

\boldsymbol{\frac{9}{6}=1\frac{3}{6}}

 

Las fracciones representan una parte del todo. No solo son importantes en el ámbito escolar, sino que son muy utilizadas en la vida diaria. Usamos fracciones cada vez que partimos un pastel, cuando pedimos media docena de empanadas o cuando cortamos la mitad de un pan. También vemos fracciones en las etiquetas de los productos, por ejemplo, 1/2 litro de jugo.

comparación de fracciones

Cuando comparamos fracciones, determinamos cuál es mayor o menor que otra. Para esto, debemos tomar en cuenta sus elementos y ver si los denominadores son iguales o si sus numeradores son iguales.

Comparar fracciones con igual denominador

Entre dos fracciones con igual denominador será mayor la fracción que tenga mayor numerador.

– Ejemplo:

\boldsymbol{\frac{8}{3}>\frac{6}{3}}

Observa que los denominadores son iguales (3 = 3) pero los numeradores no; y como 8 > 6, la fracción 8/6 es mayor que 6/3.

Comparar fracciones con igual numerador

Entre dos fracciones con igual numerador será mayor la fracción que tenga menor denominador.

– Ejemplo:

\boldsymbol{\frac{12}{5}<\frac{12}{4}}

Observa que los numeradores son iguales (12 = 12) pero los denominadores no; y como 5 > 4, la fracción 12/4 es mayor que 12/5.

Fracciones con distintos numeradores y denominadores

Cuando las dos fracciones tienen numeradores y denominadores diferentes, buscamos homogeneizar, es decir, encontrar fracciones equivalentes con igual denominador.

¿Cómo homogeneizar dos fracciones?

Para encontrar las fracciones equivalentes con igual denominador de unas fracciones seguimos estos pasos:

  1. Determinamos el mínimo común múltiplo de los denominadores. Ese será el denominador de las fracciones equivalentes.
  2. Encontramos el número por el que hay que multiplicar el numerador y el denominador de las fracciones.

– Ejemplo:

Homogeneiza las fracciones \boldsymbol{\frac{2}{3}} y \boldsymbol{\frac{3}{4}}. Luego compara.

1. Calculamos el m. c. m. de los denominadores 3 y 4.

2. Encontramos el número por el que hay que multiplicar el numerador y el denominador de las fracciones.

Como 3 × 4 = 12, entonces también multiplicamos el numerador por 4.

\frac{2}{3}=\frac{2\times 4}{12}=\boldsymbol{ \frac{8}{12}}

Como 4 × 3 = 12, entonces también multiplicamos el numerador por 3.

\frac{3}{4}=\frac{3\times 3}{12}=\boldsymbol{\frac{9}{12}}

 

Ahora es más sencillo comparar las fracciones, pues tenemos fracciones homogéneas por lo que seguimos los pasos anteriores: entre dos fracciones con igual denominador será mayor la fracción que tenga mayor numerador. Así que:

\boldsymbol{\frac{9}{12}>\frac{8}{12}} Como \frac{9}{8} es la fracción equivalente de \frac{3}{4}; y \frac{8}{12} es la fracción equivalente de \frac{2}{3}, podemos decir que:

\boldsymbol{\frac{3}{4}>\frac{2}{3}}

 

¿Sabías qué?
En el año 1800 a. C. el pueblo babilonio introdujo las fracciones.

Comparación de números mixtos

Entre dos números mixtos, será mayor aquel que tenga mayor parte entera. Por ejemplo:

\boldsymbol{2\frac{3}{4}<3\frac{5}{3}}

Pero si las partes enteras son iguales, comparamos la parte fraccionaria por medio de cualquier de los métodos aplicados anteriormente. Por ejemplo:

\boldsymbol{1\frac{4}{6}>1\frac{1}{6}}

Las dos partes entera son iguales (1 = 1), pero las partes fraccionarias no. Como ves, ambas son fracciones homogéneas porque los denominadores son iguales (6 = 6), así que comparamos los numeradores, y como 4 > 1, el número mixto 1\frac{4}{6} es mayor que 1\frac{1}{6}.

Un uso muy popular de las fracciones es cuando damos la hora. Por ejemplo, cuando decimos que son “las dos y media”, hacemos referencia a un número mixto en la que la parte entera es 2, y la parte fraccionaria es 1/2. También ocurre cuando decimos que “son las cinco y cuarto”, allí la parte entera es 5 y la parte fraccionaria es 1/4.

 

¡A practicar!

1. Representa las siguientes fracciones en la recta numérica.

  • \frac{4}{9}
Solución

  • \frac{9}{5}
Solución

\frac{9}{5}=1\frac{4}{5}

  • \frac{2}{10}
Solución

  • 6\frac{3}{5}
Solución

 

2. Compara los siguientes números mixtos.

  • 4\frac{1}{6} y 2\frac{1}{2}
Solución
4\frac{1}{6}>2\frac{1}{2}
  • 1\frac{7}{8} y 2\frac{2}{6}
Solución
1\frac{7}{8}<2\frac{2}{6}
  • 1\frac{1}{3} y 1\frac{2}{6}
Solución
1\frac{1}{3}=1\frac{2}{6} porque \frac{1}{3}=\frac{2}{6}
  • 1\frac{5}{6} y 1\frac{1}{2}
Solución
1\frac{5}{6}>1\frac{1}{2}
RECURSOS PARA DOCENTES

Artículo “Partes y porciones”

En este artículo podrás ampliar la información sobre la comparación de fracciones por medio del método del común denominador (sin utilizar recta numérica).

VER

Enciclopedia “Enciclopedia de Matemáticas Primaria”

Con el Tomo 2 de esta enciclopedia podrás profundizar en el concepto de fracciones y su clasificación, así como en la comparación de fracciones y números mixtos.

VER

Artículo “Clasificación de fracciones”

En este artículo podrás encontrar más información sobre la clasificación de fracciones.

VER

CAPÍTULO 1 / TEMA 4

Números decimales

Dentro del universo de los números nos encontramos con un tipo muy especial: el de los decimales. Estos números sirven para representar cantidades menores a la unidad. Sus aplicaciones son muchas y son muy importantes, sobre todo en el ámbito de las mediciones porque permiten establecer valores más exactos.

Características de los números decimales

Los números decimales son los que se encuentran entre dos números enteros. Por ejemplo, entre el 1 y el 2 se ubican: 1,1; 1,2; 1,3…

Este tipo de números no llega a conformar un nuevo entero, por lo tanto su composición es de dos partes: la entera y la decimal. Para dividir ambas partes del número se utiliza la coma.

En algunos países se emplea el punto en vez de la coma para separar a los números decimales de los enteros.

Distintos tipos de decimales

Los números decimales se dividen en racionales e irracionales. Los irracionales son números en los que sus cifras decimales son infinitas y no siguen un patrón. Un ejemplo de estos números es el número pi (π). Los racionales, por su parte, pueden ser expresados en forma de fracción y se dividen en exactos, periódicos puros y periódicos mixtos.

  • Los números decimales exactos son los que tienen un final, es decir; que la parte decimal del número no es infinita. Por ejemplo: 24,657.
  • Los números decimales periódicos tienen una parte decimal que contiene una o más cifras que se repiten infinitamente, a esta parte decimal se conoce como período. Cuando dicho período está compuesto por una cifra que se repite infinitamente se lo denomina periódico puro. Por ejemplo: 6,8888… Por otro lado, cuando la parte decimal está compuesta por un número que no se repite y otro que sí se repite se lo denomina periódico mixto. Por ejemplo: 4,287878787…

VER INFOGRAFÍA

¿Cómo escribir un número periódico?

Para escribir un número decimal periódico (sea puro o mixto), se debe escribir un arco encima de la parte periódica del número para indicar que se repite infinitamente.

– Por ejemplo:

Decimal puro: 5,222...=\boldsymbol{5,\widehat{2}}

Decimal mixto: 8,1646464...=\boldsymbol{8,1\widehat{64}}

¿Sabías qué?
Hay infinitos números decimales entre dos números enteros.

Lectura de números decimales

Para poder leer números decimales debemos tener presente la clasificación de cada cifra según su valor posicional; es decir, tenemos que recordar que las cifras decimales de los números decimales, de izquierda a derecha después de la coma, se denominan: décima, centésima y milésima. Estos serían valores posicionales de la parte decimal del número.

A la hora de leerlo podemos expresar la parte entera seguida de la preposición “con” y luego la parte decimal. Para esta última se lee el número que se forma con las cifras decimales y se asigna el valor posicional de la última cifra decimal. Por ejemplo, para leer el número 6,718 debemos hacerlo de la siguiente manera:

6,718 → “Seis con setecientas dieciocho milésimas”.

Otra manera posible es: leer la parte entera seguida de la palabra “coma” y luego el número que conforma la parte decimal, sin expresar el valor de la posición. Por ejemplo:

6,718 → “Seis coma setecientos dieciocho”.

Cero a la izquierda de la coma

Cuando un decimal tiene un cero a la izquierda de la coma quiere decir que es menor a la unidad y se suele leer solo la parte decimal de acuerdo a su última cifra. Por ejemplo:

0,45 → “Cuarenta y cinco centésimas”.

Otra forma es decir la palabra “cero” seguida de la palabra “coma” y luego el número que conforma la parte decimal, sin expresar el valor de la posición.

0,45 → “Cero coma cuarenta y cinco”.

Para tener en cuenta

Los ceros que están en la última cifra de la parte decimal del número pueden o no leerse.

5,20 = 5,2

Esto se debe a que veinte centésimas es equivalente (es decir que vale lo mismo) a dos décimas, ya que veinte centésimas son veinte partes de cien (20/100) y dos décimas son dos partes de diez (2/10).

Por lo tanto, el número del ejemplo puede leerse de estas dos maneras:

5,20 → “Cinco con veinte centésimas”.

5,2 → “Cinco con dos décimas”.

Redondeo de decimales

En primer lugar, debemos saber que el término “redondear” aplicado a los números decimales quiere decir: aproximar un número a otro (menor o mayor) que tenga menos cifras decimales para lograr reducir la cantidad y poder determinar de forma más fácil la ubicación del número.

– Por ejemplo:

  • 5,649 se puede redondear a 5,65.
  • 8,78 se puede redondear a 8,8.
  • 15,86 se puede redondear a 15,9.
  • 42,39 se puede redondear a 42,4.

Reglas para el redondeo de decimales

  • Cuando la última cifra decimal es 0, 1, 2, 3 o 4: el número se debe redondear hacia abajo (uno menor). Por lo tanto, se quita la última cifra del número. Por ejemplo: 7,6281 se puede redondear a 7,628.
  • Cuando la última cifra decimal es 5, 6, 7, 8 o 9: el número se debe redondear hacia arriba (uno mayor). Por lo tanto, se le quita la última cifra al número y se aumenta +1 la penúltima. Por ejemplo: 4,58 se puede redondear a 4,6.

¡A practicar!

1. Escribe en letras como se leerían los siguientes números.

  • 64,15
  • 21,4
  • 9,285
  • 7,406

Solución
  • 64,15 → sesenta y cuatro con quince centésimas. / sesenta y cuatro coma quince.
  • 21,4 → veintiuno con cuatro décimas. / veintiuno coma cuatro.
  • 9,285 → nueve con doscientos ochenta y cinco milésimas. / nueve coma doscientos ochenta y cinco.
  • 7,406 → siete con cuatrocientas seis milésimas. / siete coma cuatrocientos seis.

 

2. Ubica la coma donde corresponda.

  • Ocho con trescientas once milésimas  8311

Solución
8,311
  • Cincuenta y cuatro centésimas → 054
Solución
,054
  • Veintisiete con setenta y siete centésimas → 2777
Solución
27,77

 

3. Escribe en letras los números decimales.

a. 15,02

b. 6,616

c. 71,25

d. 822,3

Solución

a. 15,02 → “quince con dos centésimas.”

b. 6,616 → “seis con seiscientas dieciséis milésimas.”

c. 71,25 → “setenta y uno con veinticinco centésimas.”

d. 822,3 → “ochocientos veintidós con tres décimas.”

 

4. Lee y escribe los números que correspondan.

a. Veintiuno con cinco décimas.

b. Doce con cuarenta y cinco centésimas.

c. Ciento veinte con trescientos veinte milésimas.

d. Setenta y cinco centésimas.

Solución

a. 21,5

b. 12,45

c. 120,320

d. 0,75

RECURSOS PARA DOCENTES

Artículo destacado “Números decimales”

El siguiente artículo te permitirá conocer más acerca de los números decimales:

VER

Video “Aproximación de decimales”

El video se enfoca en cómo calcular aproximaciones de números decimales a través de varios ejercicios que facilitan su comprensión.

VER

CAPÍTULO 2 / TEMA 3

DIVISIÓN

La división es la operación inversa a la multiplicación. Mientras que en la multiplicación buscamos unir cantidades en grupos iguales, en la división buscamos separarlas en grupos iguales. Las divisiones pueden ser de dos tipos: exactas o inexactas. Hoy aprenderás las reglas necesarias para poder resolverlas.

la división y sus elementos

La división es una operación matemática que consiste en repartir una cantidad en partes iguales. Sus elementos son los siguientes:

  • Dividendo: es el número que se va dividir o repartir.
  • Divisor: es el número por el que se divide.
  • Cociente: es el resultado de la división.
  • Resto: es lo que sobra del dividiendo. No se puede dividir debido a que es un número más pequeño que el divisor.
Todo número tiene sus múltiplos, de la misma manera, también tiene sus divisores. Estos son números que lo dividen de forma exacta, es decir, los divisores de un número son los que dividen a este y el resultado de esa división es un número exacto. En forma general, dado un número b, si la división a/b es exacta, donde el resto c es cero, entonces se dice que b es divisor de a.

división exacta

La división exacta es aquella cuyo resto es igual a 0.

– Por ejemplo:

Carlos tiene 20 manzanas y las desea repartir entre 5 personas: Marta, Carla, Lucía, Pedro y Francisco. ¿Cuántas manzanas le corresponden a cada uno?

Como la división es la operación inversa a la multiplicación, podemos preguntarnos ¿qué número multiplicado por 5 da como producto el número 20?

5 × ? = 20

5 × 4 = 20

El factor desconocido será igual al cociente exacto de la división. En este caso es 4, porque ya sabemos que 5 × 4 = 20. Por lo tanto, toda división será exacta cuando el dividendo sea igual al producto entre el divisor y el cociente:

dividendo = divisor × cociente

Podemos comprobar esta relación  si realizamos la división:

Por lo tanto, Carlos puede repartir exactamente las 20 manzanas entre 5 personas si a cada una le da 4 manzanas.

división inexacta

La división inexacta es aquella cuyo resto es diferente de 0.

– Por ejemplo:

La maestra quiere repartir 23 lápices entre 4 niños: Lucas, Juan, Carlos y Luis. ¿Cuántos lápices le corresponden a cada uno?

A diferencia de las divisiones exactas, en las inexactas no hay números naturales que multiplicados por el divisor nos den por resultado el dividendo. Pues, 4 × 5 = 20, y su producto es menor al dividendo (23); en cambio, 4 × 6 = 24, y su producto es mayor al dividendo (23). Entonces, consideramos la opción más cercana e inferior al dividendo, es decir, 5; y lo que falte para llegar al dividendo será el resto.

dividendo = divisor × cociente + resto

Comprobamos la relación al realizar la división:

Por lo tanto, la maestra puede dar 5 lápices a cada niño y le sobrarán 3 lápices.

¿Sabías qué?
El signo de división también se puede representar con dos puntos (:). De esta forma, “36 : 9” se lee “36 entre 9”.

¿cómo resolver una división?

1. Observa las dos primeras cifras del dividendo. Si son mayores que el divisor, comienza por ellas.

2. Busca un número que multiplicado por 12 sea igual a 43 o cercano e inferior a él. En este caso: 12 × 3 = 36. Este producto lo restamos a la primeras dos cifras del dividendo: 43 − 36 = 7.

3. Baja la siguiente cifra del dividendo.

4. Repite el proceso anterior. Busca un número que multiplicado por 12 resulte 72 o se acerque a 72. En este caso: 12 × 6 = 72. Luego restamos este producto al 72 obtenido de la resta.

Esta división es exacta porque el resto es igual a cero (0) y podemos comprobarla si al multiplicar el cociente (36) por el divisor (12) el resultado es igual al dividendo (432): 12 × 36 = 432.

Entonces, 432 ÷ 12 = 36 porque 12 × 36 = 432.

 

– Otro ejemplo:

1. Observa las dos primeras cifras del dividendo, como son menores que el divisor (47 < 64), toma hasta la tercera para iniciar la división.

2. Busca un número que multiplicado por 64 sea igual o cercano a 476.

Como el resto es menor que divisor (28 < 64), queda así. Podemos comprobar esta división si multiplicamos el cociente (7) por el divisor (64) y le sumamos el resto (28). Si el resultado es igual al dividendo, la división está correcta.

64 × 7 + 28 = 476

Entonces, 476 ÷ 64 = 7 y resto = 28.

Fracciones: una división sin resolver

Las divisiones sin resolver se conocen como fracciones. Las fraccione representan una parte de un todo y se caracterizan por tener un numerador y un denominador separados por una raya fraccionaria. El denominador es un número que indica en cuantas partes se divide la unidad, y el numerador es el número que señala cuántas de esas partes se han de tomar.

división entre 10, 100 y 1.000

Las divisiones por la unidad seguida de cero son muy sencillas, solo debes desplazar una coma a la izquierda tantos lugares como ceros acompañen a la unidad. De faltar lugares, añadimos ceros.

– Ejemplo:

  • 1.789 ÷ 10 = 178,9 → Movemos una coma un lugar a la izquierda.
  • 1.789 ÷ 100 = 17,89 → Movemos una coma dos lugares a la izquierda.
  • 1.789 ÷ 1.000 = 1,789 → Movemos una coma tres lugares a la izquierda.

– Otros ejemplos:

275 489 70 6 1.652 3.698
÷ 10 27,5 48,9 7 0,6 165,3 369,8
÷ 100 2,75 4,89 0,7 0,06 16,52 36,98
÷ 1.000 0,275 0,489 0,07 0,006 1,652 3,698

 

Los grados centígrados que miden la temperatura son un ejemplo de división entre 10. Si tienes 1 grado y lo divides entre 10 el cálculo es 1 ÷ 10 = 0,1. Los termómetros muestran las mediciones por medio de sumas sucesivas de 0,1 grados. Por ejemplo 36,6; 36,7; 36,8; y así sucesivamente.

 

¡A practicar!

1. Resuelve la siguientes divisiones.

  • 27 ÷ 3 
    Solución
    27 ÷ 3 = 9
  • 100 ÷ 9 
    Solución
    100 ÷ 9 = 11 y resto = 1
  • 1.934 ÷ 23 
    Solución
    1.934 ÷ 23 = 84 y resto = 2
  • 2.487 ÷ 16
    Solución
    2.487 ÷16 = 155 y resto = 7
  • 3.432 ÷ 52
    Solución
    3.432 ÷ 52 = 66
  • 61.712 ÷ 76
    Solución
    61.712 ÷ 76 = 812

 

2. Resuleve la siguientes divisiones por la unidad seguida de cero.

  • 254 ÷ 10 
    Solución
    254 ÷ 10 = 25,4
  • 27 ÷ 10 
    Solución
    27 ÷ 10 = 2,7
  • 2 ÷ 10 
    Solución
    2 ÷ 10 = 0,2
  • 333 ÷ 100 
    Solución
    333 ÷ 100 = 3,33
  • 25 ÷ 1.000 
    Solución
    25 ÷ 1.000 = 0,025
  • 999 ÷ 1.000 = 
    Solución
    999 ÷ 1.000 = 0,999
  • 8.000 ÷ 1.000 = 
    Solución
    8.000 ÷ 1.000 = 8
RECURSOS PARA DOCENTES

Artículo “Propiedades de la división”

Con este artículo podrás estudiar las propiedades adicionales de la división y realizar ejercicios complementarios.

VER

CAPÍTULO 6 / TEMA 4 (REVISIÓN)

ESTADÍSTICA Y PROBABILIDAD | ¿qué aprendimos?

REPRESENTACIÓN DE DATOS

Podemos representar datos en gráficos y tablas. Los gráfico de barras se utilizan para representar información numérica en un sistema de ejes coordenados: en el eje horizontal ubicamos las categorías y en el eje vertical los datos numéricos. Otro tipo de gráfico es el lineal, el cual sirve para comparar datos, representar la frecuencia de ciertas variables y mostrar la evolución o cambios que le ocurren a un fenómeno. También están los gráficos circulares que representan variables cualitativas por medio de porcentajes y porciones. Por otro lado están los pictogramas que se construyen igual que el diagrama de barras pero se sustituyen los rectángulos por dibujos.

Múltiples gráficos estadísticos muestran el crecimiento de la población mundial gracias a los avances en la ciencia, la higiene y la medicina.

cOMBINACIONES

Las combinaciones son una forma de agrupar elementos de un conjunto sin importar el orden. Por ejemplo, cada vez que nos vestimos hacemos combinaciones de camisas, pantalones y zapatos. Las tablas de doble entrada permiten analizar los datos y combinarlos de todas las maneras posibles. Para resolver algunos problemas combinatorios también es posible utilizar los diagramas de árbol que permiten visualizar todas las formas posibles de combinar todos los elementos.

El cubo de Rubik posee millones de combinaciones posibles.

probabilidad

La probabilidad sirve para predecir de la mejor manera si un suceso puede ocurrir o no. A los fenómenos predecibles se los llama determinísticos; a los que no se pueden predecir, se los denomina aleatorios. Algunos fenómenos aleatorios pueden ser mas probables que otros, y esta probabilidad puede ser calculada matemáticamente. Por otra parte, si deseamos saber el valor característico de un conjunto, podemos calcular su media aritmética o promedio, que se obtiene al sumar los elementos de una muestra y dividir el resultado por el total de elementos.

El juego de ruleta posee 38 números para jugar: la probabilidad que salga el número al que se jugó es de 1/38.

CAPÍTULO 6 / TEMA 3

pROBABILIDAD

Al lanzar una moneda al aire, ¿sabemos si saldrá cara o sello? Es seguro que la moneda caerá de un lado o del otro, pero no sabemos con exactitud cuál de esas dos opciones tendrá lugar. Por eso recurrimos a la probabilidad, la cual sirve para predecir de la mejor manera si un evento es posible o no.

fENÓMENOS aleatorios y deterministas

La probabilidad surgió de la necesidad de medir o determinar cuantitativamente la certeza o duda de que un fenómeno ocurra o no. A los fenómenos predecibles se los llama determinísticos; en cambio, a los fenómenos que están relacionados con el azar se los llama aleatorios.

Fenómenos aleatorios

Son los que suceden al azar y no es posible predecir su resultado. Ejemplos:

  • Al lanzar una moneda al aire se desconoce si al caer la cara superior será sello o cara.
  • Al lanzar un dado no es posible saber cuál de todas las caras quedará en la parte superior.

Fenómenos determinísticos

Son los que suceden con seguridad; es decir, son los fenómenos que al repetirse en las mismas condiciones producen los mismos resultados. Ejemplos:

  • Al arrojar un dado, el color que se observe en la cara superior siempre será el mismo.
  • La hora de apertura de un banco es siempre la misma.

Los juegos de azar y sus probabilidades

Los juegos de azar son eventos aleatorios de los cuales no se conocen sus resultados. Pierre Fermat y Blaise Pascal estudiaron estos juegos para darles una explicación matemática. Estudiaron lo que pasaba al realizar una misma acción al azar, como lanzar una moneda al aire, y observaron los resultados. Así apareció la teoría de la probabilidad, que trata de prever cuál será el resultado de un fenómeno determinado.

FENÓMENOS ALEATORIOS

Entre los fenómenos aleatorios hay suceso que son más o menos probables. Por ejemplo:

Marta hace girar esta ruleta y no sabe qué color saldrá cuando pare.

 

  • Como hay más zonas verdes que amarillas, es más probable que salga el color verde que el color amarillo.
  • Como hay menos zonas moradas que rojas, es menos probable que salga el color morado que el color rojo.
  • Como hay igual cantidad de zonas verdes y moradas, es igual de probable que salgan ambos colores.
  • El color rojo es el más probable que salga porque hay más zonas con ese color en toda la ruleta.
  • El color amarillo es el menos probable que salga porque hay menos zonas con ese color en toda la ruleta.

 

– Otro ejemplo:

José debe sacar una bola de esta caja con los ojos cerrados.

 

  • Como hay más bolas azules que verdes, sacar una bola azul es más probable que sacar una bola verde.
  • Como hay menos bolas amarillas que azules, sacar una bola amarilla es menos probable que sacar una bola azul.
  • Como hay la misma cantidad de bolas rojas y amarillas, sacar una bola roja es igual de probable que sacar una bola amarilla.

 

pROBABILIDAD DE OCURRENCIA DE UN FENÓMENO

Podemos determinar la probabilidad de ocurrencia de un acontecimiento si dividimos el número de casos favorables entre el número de casos igualmente posibles.

\boldsymbol{probabilidad = \frac{casos\: \: favorables}{casos \: \: posibles}}

– Ejemplo:

Observa esta ruleta.

 

Tiene 10 zonas con diferentes colores:

 

  • 5 son rojas.
  • 2 son amarillas.
  • 2 son verdes.
  • 1 es morada.

 

 

Cada color tiene una probabilidad distinta de salir tras hacer girar la ruleta:

La probabilidad de que salga una el color rojo es: \boldsymbol{\frac{5}{10}}

La probabilidad de que salga el color amarillo es: \boldsymbol{\frac{2}{10}}

La probabilidad de que salga el color verde es: \boldsymbol{\frac{2}{10}}

La probabilidad de que salga el color morado es: \boldsymbol{\frac{1}{10}}

 

El color con mayor probabilidad de salir es el rojo porque \boldsymbol{\frac{5}{10}} > \boldsymbol{\frac{2}{10}} > \boldsymbol{\frac{1}{10}}

¿Sabías qué?
La probabilidad de que caiga un rayo encima de una persona es de 1 entre 3 millones.

¡Es tu turno!

  • ¿Cuál es la probabilidad de que al lanzar un dado salga un número mayor a 4?
Solución

Posibles resultados: 1, 2, 3, 4, 5 y 6 → Hay 6.

Resultados mayores a 4: 5 y 6 → Hay 2.

La probabilidad de que salga un número mayor a 4 es \boldsymbol{\frac{2}{6}}.

  • ¿Cuál es la probabilidad de que al lanzar un dado salga un número par?
Solución

Posibles resultados: 1, 2, 3, 4, 5 y 6 → Hay 6.

Resultados pares: 2, 4 y 6 → Hay 3.

La probabilidad de que salga un número par es \boldsymbol{\frac{3}{6}}.

La paradoja del cumpleaños

Esta paradoja hace la siguiente pregunta: ¿cuántas personas se necesitan como mínimo para que sea más probable que al menos 2 de ellas cumplan años el mismo día? A pesar de lo que nos indica la intuición, si mantenemos el supuesto de que los años tienen 365 días, la paradoja establece que hacen falta 23 personas para que haya una probabilidad del 50 % de que al menos 2 de ellas cumplan años el mismo día. Y resulta que si en una fiesta hay más de 57 invitados, la probabilidad de que dos personas cumplan años el mismo día es del 99 % .

media o promedio

El la media aritméticapromedio se calcula al sumar todos los datos de un conjunto para luego dividirlo entre el número total de datos. Este resultado sirve como referencia, pues se considera el valor característico de un conjunto.

– Ejemplo:

En el equipo de fútbol del colegio, las estaturas (en centímetros) de 11 jugadores son las siguientes: 150, 160, 155, 153, 156, 158, 160, 157, 162, 165 y 154. ¿Cuál es la altura promedio de lo jugadores?

La media o promedio será igual a la suma de todas las estaturas divididas entre la cantidad de jugadores.

\boldsymbol{\overline{x}= \frac{164+160+165+163+156+161+160+161+162+165+165}{11}}

\boldsymbol{\overline{x}=\frac{1.782}{11}}

\boldsymbol{\overline{x}=162}

 

Los jugadores de fútbol tienen una estatura promedio de 162 centímetros.

 

– Otro ejemplo:

José registró las temperaturas máximas durante una semana en su ciudad. Los resultados fueron estos:

Lunes Martes Miércoles Jueves Viernes Sábado Domingo
21 °C 24 °C 21 °C 18 °C 18 °C 21 °C 24 °C

¿Cuál es la temperatura promedio?

\boldsymbol{\overline{x}=\frac{21+24+21+18+18+21+24}{7}}

\boldsymbol{\overline{x}= \frac{147}{7}}

\boldsymbol{\overline{x}=21}

 

La temperatura promedio registrada fue de 21 °C.

¡A practicar!

1. Clasifica los resultados de los siguientes eventos como determinísticos o aleatorios.

a) Sacar al azar una moneda de un monedero.

Solución
Aleatorio.

b) Introducir una bolsa de té a una taza con agua hirviendo.

Solución
Determinístico.

c) Elegir un número de lotería.

Solución
Aleatorio.

d) Lanzar un dado a un tablero de juego.

Solución
Aleatorio.

 

2. Observa la ruleta.

a) Completa con “más probable”, “menos probable” o “igual de probable”.

  • Es ____ que salga la letra A que la letra C.

Solución
Es más probable que salga la letra A que la letra C.
  • Es ____ que salga la letra I que la letra A.

Solución
Es menos probable que salga la letra I que la letra A.
  • Es ____ que salga la letra U que la letra C.

Solución
Es igual de probable que salga la letra U que la letra C.
  • Es ____ que salga la letra O que la letra J.

Solución
Es más probable que salga la letra O que la letra J.
  • Es ____ que salga la letra F que la letra A.

Solución
Es menos probable que salga la letra F que la letra A.
  • Es ____ que salga la letra J que la letra F.

Solución
Es igual de probable que salga la letra J que la letra F.

 

b) Responde.

  • ¿Es probable que salga una letra?
Solución
Sí.
  • ¿Es probable que salga un número?
Solución
No.
  • ¿Cuál es la probabilidad de que salga la letra A?
Solución
\boldsymbol{\frac{3}{10}}
  • ¿Cuál es la probabilidad de que salga la letra U?
Solución
\boldsymbol{\frac{1}{10}}
  • ¿Cuál es la probabilidad de que salga la letra C?
Solución
\boldsymbol{\frac{1}{10}}
  • ¿Cuál es la probabilidad de que salga la letra O?
Solución
\boldsymbol{\frac{2}{10}}
  • ¿Cuál es la probabilidad de que salga la letra F?
Solución
\boldsymbol{\frac{1}{10}}
  • ¿Cuál es la probabilidad de que salga la letra I?
Solución
\boldsymbol{\frac{1}{10}}
  • ¿Cuál es la probabilidad de que salga la letra J?
Solución
\boldsymbol{\frac{1}{10}}

 

3. Los pesos en kilogramos de 15 amigos son: 32, 30, 27, 32, 27, 30, 27, 26, 25, 22, 25, 32, 29, 25 y 31. ¿Cuál es el peso medio de estos amigos?

Solución

\boldsymbol{\overline{x}=\frac{32+ 30+ 27+ 32+ 27+ 30+ 27+ 26+ 25+ 22+ 25+ 32+ 29+ 25+31}{15}}

\boldsymbol{\overline{x}=\frac{420}{15}}

\boldsymbol{\overline{x}=28}

El peso medio de los amigos es 28 kilogramos.

RECURSOS PARA DOCENTES

Artículo “Probabilidad”

Este recurso te permitirá complementar la información sobre probabilidad, fenómenos determinísticos y aleatorios y tipos de sucesos, entre otros temas.

VER