CAPÍTULO 6 / TEMA 2

Interpretación de datos

La recopilación e interpretación de datos son aspectos claves de toda investigación. La estadística es la ciencia encargada de este proceso: reúne información concerniente a individuos o grupos, organiza dichos datos y los analiza e interpreta. Este análisis permite tomar decisiones y realizar predicciones útiles.

La encuesta

Una encuesta es una técnica que consiste en recopilar datos por medio de un cuestionario, el cual tiene preguntas prediseñadas. La encuesta se emplea al momento de estudiar un fenómeno, pues los datos obtenidos se suelen representar en gráficos o tablas para su interpretación.

Por lo general, la encuesta se aplica a una muestra de la población. Por ejemplo, imagina que quieres realizar una encuesta sobre el programa de televisión más visto en un país. Lo ideal sería que la encuesta fuera respondida por todas las personas de ese país, pero eso resulta casi imposible. Por esta razón, se toma una muestra de esa población que consiste en una porción más pequeña de personas para aplicar la encuesta. Así los datos obtenidos son una aproximación muy cercana a toda la población y su recopilación es mucho más fácil.

– Ejemplo:

La maestra preguntó a sus estudiante si preferían viajar a la playa o a la montaña y estos fueron los resultados que obtuvo:

Nombre Lugar preferido
María Playa
Mónica Playa
Samuel Montaña
Alfredo Playa
Ricardo Montaña
Melina Montaña
Pablo Playa
Rubén Playa
Araceli Playa
Sergio Montaña

De la tabla se observa que 6 estudiantes prefieren ir a la playa y 4 prefieren ir a la montaña. De manera que hay más estudiantes que prefieren la playa.

Importancia de las encuestas

Las encuestas son más usadas de lo que se piensas y las áreas que las aplican no se limitan a la estadística. La medicina, la sociología y la psicología son algunos de los campos en donde se hace uso de encuestas para recopilar información.

Promedio aritmético

Se denomina así porque corresponde al valor promedio de los datos. Es el resultado de sumar todos los datos que tenemos y luego dividirlos entre el número de datos.

– Ejemplo:

La maestra le preguntó a los niños cuántas mascotas tenían en sus casas y obtuvo los siguientes resultados:

Nombre Número de mascotas
María 2
Mónica 2
Samuel 3
Alfredo 1
Ricardo 1
Melina 2
Pablo 1
Rubén 2
Araceli 2
Sergio 4

 

Para calcular el promedio de mascotas que tienen los estudiantes se cumple la siguiente fórmula:

\boldsymbol{Promedio =\frac{Sumatoria \, de \, todos\, los\, datos}{Nro\, de \, datos}}

 

En este caso, si sumamos todos los datos obtenemos lo siguiente:

Sumatoria \, de \, todos\, los\, datos=2+2+3+1+1+2+1+2+2+4=\boldsymbol{\mathbf{}20}

 

El número de datos es igual a 10 (es el número de estudiantes en este caso).

Al sustituir en la fórmula se obtiene:

Promedio =\frac{20}{10} = \mathbf{2}

 

De esta manera, el promedio aritmético es 2, lo que nos indica que la mayoría de los estudiantes tienen como mínimo 2 mascotas.

¿Sabías qué?
En la estadística es más común hablar de media aritmética y no de promedio aritmético.
Uno de los cálculos usados a menudo en las empresas es el promedio. Aunque no siempre indica el valor real, permite por ejemplo, realizar estimaciones de las producciones por día, estimaciones de costos y proyecciones a futuro. Es importante tener presente que existen varios tipos de promedio además del aritmético y se emplean en otras situaciones.

Moda

Corresponde al valor del dato que más se repite. En el caso del ejemplo anterior la moda es 2 porque se repite más veces (5 veces):

Nombre Número de mascotas
María 2
Mónica 2
Samuel 3
Alfredo 1
Ricardo 1
Melina 2
Pablo 1
Rubén 2
Araceli 2
Sergio 4

¿Sabías qué?
La media, la moda y la mediana son denominadas medidas de tendencia central.

Combinaciones

Para realizar combinaciones de datos se suelen emplear tablas de doble entrada, conocidas también como cuadros de doble entrada, que permiten de forma gráfica registrar la información y sacar conclusiones.

Por ejemplo, un equipo de voleibol quiere saber cuál color usar en su logo, uniforme y balón oficial. Para ello la mayoría decidió que los colores deberían ser rojo, naranja o amarillo. Al completar la tabla de doble entrada obtuvieron los siguientes resultados:

El equipo tiene en total 9 posibilidades para elegir porque en la tabla son 3 colores y 3 objetos:

3\times 3=9

Si analizamos la tabla verticalmente observamos que por cada columna está el mismo objeto pero de diferente color. Si analizamos la tabla horizontalmente observamos diferentes objetos pero con el mismo color.

Los datos en una investigación

Antes de lanzar al mercado un nuevo producto o de aprobar una vacuna es necesario obtener datos que permitan interpretar si, por ejemplo, ese producto será comprado en las cantidades deseadas o si esa vacuna será segura para la salud. Por tal motivo, los datos que se recopilan juegan un papel fundamental en toda investigación, sin ellos no sería posible llegar a conclusiones o resultados. Su análisis es crucial en todas las áreas de la ciencia.

¡A practicar!

1. Se hizo una encuesta a unos músicos para saber cuántos instrumentos sabían tocar. Observa la siguiente tabla de resultado y responde las preguntas.

Nombre Número de instrumentos que sabe tocar
Carolina 3
Ezequiel 3
Francisco 5
Sofía 3
Victoria 4
Verónica 6
Diego 7
Luis 3
Tania 2
Andrés 4

a) ¿Cuál es el promedio aritmético?

Solución
4

b) ¿Cuál es la moda?

Solución
3

c) ¿Quién sabe tocar más instrumentos?

Solución
Diego

d) ¿Quién sabe tocar menos instrumentos?

Solución
Tania

 

2. Observa la siguiente tabla de doble entrada. ¿Cuántas combinaciones posibles observas?

Solución
4

 

RECURSOS PARA DOCENTES

Artículo “Instrumentos de medición”

Este artículo explica los principales instrumentos de medición usados en la estadística para recopilar datos como la encuesta y la entrevista.

VER

Artículo “Medidas de tendencia central”

Este artículo explica las medidas de tendencia central como la moda, media aritmética y la mediana, que permiten analizar un conjunto de datos y conocer la manera en la que se encuentra distribuidos.

VER

Artículo “Datos estadísticos”

Este artículo explica de manera concisa qué son los datos estadísticos y los diferentes tipos de muestreos usados con el propósito de obtenerlos.

VER

CAPÍTULO 6 / TEMA 1

Recursos para representar datos

Hay veces en las que los datos por sí solos no nos proporcionan ninguna información, pero al representarlos de manera gráfica podemos comprender mejor lo que significan. Por esta razón, en matemática y en estadística se suelen usar gráficos, diagramas y tablas para mostrar los valores. 

Pictogramas

Son gráficos que emplean dibujos para representar los datos. Estos recursos visuales permiten una rápida comprensión de los datos porque usan símbolos o imágenes.

En matemática se pueden representar en varias formas:

Gráfico de barras con pictogramas

Gráfico de tablas con pictogramas

En ambos ejemplos se representa el número de goles que han hecho Juan, David, Tobías y Mario. Cada imagen de referencia representa los goles de cada uno. De esta forma, Juan metió 5 goles, David 3 goles, Tobías 4 goles y Mario 1 gol.

En este caso es fácil observar que la persona que hizo más goles fue Juan y quien hizo menos fue Mario. No hacen faltan los números ni contar porque los datos se ven fácilmente a través del gráfico.

¿Sabías qué?
A los pictogramas también se los denomina gráficos de imágenes.

VER INFOGRAFÍA

Tablas

Las tablas son otro recurso usado para representar datos. Por lo general, en las tablas se usan datos cualitativos y datos cuantitativos. Los datos cualitativos indican las características de algo, como nombre, tamaño o color. Los datos cuantitativos expresan la cantidad.

En el caso del ejemplo anterior del número de goles, podemos representarlo en formato de tabla de la siguiente manera:

Nombre Número de goles
Juan 5
David 3
Tobías 4
Mario 1

Los datos cualitativos son los nombres y los datos cuantitativos son el número de goles.

Observa que en una tabla los datos se organizan en filas y columnas, las filas son las hileras horizontales y las columnas son las hileras de datos verticales de una tabla.

Por ejemplo, si queremos saber el número de goles que hizo Tobías debemos ubicar su nombre y luego movernos en esa fila hasta la columna de número de goles, de esa manera sabemos que Tobías hizo 4 goles.

La estadística y los gráficos

La estadística es una rama de la matemática que estudia la recolección, análisis e interpretación de datos con el propósito de establecer comparaciones que permitan entender el problema que se estudia. Los gráficos y tablas son tan importantes para la estadística como lo son el plano, la recta y el punto para la geometría.

Gráficos de barra

Son un tipo de diagrama que permite la representación de datos a través de columnas, por eso también se los conocen como gráficos de columnas. La longitud de cada barra o columna es completamente proporcional al valor que representan. Es por ello que se suelen representar con una escala numérica como referencia.

Seguimos con el mismo ejemplo del número de goles, pero esta vez representado en un gráfico de barras:

Observa que los tamaños de las barras son proporcionales a la cantidad que representa. La barra más grande es la del valor más grande y la más chica corresponde al valor más pequeño. Si queremos saber cuál es el valor representado por la gráfica solo tenemos que fijarnos en el tope de la barra y leer el número que indica la escala.

Los gráficos estadísticos además de proporcionar una rápida y fácil comprensión de los datos, también permiten realizar un mejor análisis. Muchas empresas emplean gráficos con el propósito de realizar proyecciones o estimaciones. En los medios de comunicación es frecuente observar gráficos para representar encuestas o resultados electorales.

¿Qué importancia tiene representar los datos gráficamente?

Imagina que se obtienen los datos de todos los vuelos internacionales que se hicieron en un país en los últimos veinte años, en efecto, serían demasiados números para interpretar, y si se quisieran comparar esos datos a simple vista no sería nada sencillo. Es por ello que se emplean gráficos, no solo para facilitar la comprensión sino también para organizar los datos de una manera más clara.

Las computadoras y muchos otros equipos como las calculadoras modernas, permiten realizar gráficos de manera sencilla. Gracias a los gráficos es posible realizar promedios, proyecciones y análisis. Por esto y más, son una herramienta muy útil en la actualidad.

Las economías de los países, el valor de las acciones en la bolsa y el precio del petróleo son algunos parámetros que suelen ser representados en gráficos para una rápida comprensión. Los gráficos son herramientas visuales que permiten organizar los datos de una manera más clara. Es común que el tipo de gráfico dependa del tipo de datos que se deseen representar.

¡A practicar!

1. Observa la siguiente imagen que muestra los trofeos que ganó una escuela y responde las siguientes preguntas.

a) ¿Qué tipo de gráfico es?

Solución
Pictograma.

b) ¿Cuántos trofeos obtuvo la escuela en el año 2020?

Solución
2

c) ¿En qué año la escuela obtuvo el mayor número de trofeos ?

Solución
2019

d) ¿En qué año la escuela obtuvo únicamente un trofeo?

Solución
2018

 

2. El siguiente gráfico muestra los libros prestados en una biblioteca durante una semana. Observa el gráfico y responde las preguntas.

a) ¿Qué tipo de libro se prestó más en esa semana?

Solución
Biología.

b) ¿Cuántas novelas se prestaron?

Solución
2

c) ¿Cuántos libros de arte se prestaron?

Solución
4

d) ¿De qué tipo de libro la biblioteca prestó solo 3 libros?

Solución
Idiomas.

 

3. Observa la siguiente tabla que muestra los animales en una granja y responde las preguntas.

Animales Cantidad en una granja
Vaca 5
Perro 2
Gato 1
Caballo 3
Gallina 10
Oveja 15

a) ¿De cuál animal hay más cantidad en la granja?

Solución
Oveja.

b) ¿Cuántas gallinas hay?

Solución
10

c) ¿Cuántos perros hay?

Solución
2

d) ¿De cuál animal hay menos cantidad en la granja?

Solución
Gato.

 

RECURSOS PARA DOCENTES

Artículo “Gráficos estadísticos”

Este artículo describe los principales gráficos usados en la estadística para representar datos. También explica las principales características de cada uno.

VER

Artículo “Estadística”

Este artículo expone una breve reseña del objeto de estudio de la estadística como rama de la matemática, y de igual forma explica cómo es el proceso de recolección y análisis de datos.

VER

Artículo “Estadística: tabla de valores”

Este artículo explica las características de una tabla de valores y sus aplicaciones en la estadística, y proporciona unos ejemplos para comprender el texto.

VER

CAPÍTULO 4 / TEMA 3

Propiedades de la potencia

Cada vez que necesitamos hacer una multiplicación del mismo número repetidas veces, recurrimos a la potenciación. Esta operación, así como muchas otras, cumple con ciertas propiedades. ¿Cuál es la manera correcta de aplicarlas?, ¿cuáles son los beneficios? A continuación, aprenderás cuáles son y sus aplicaciones prácticas.

La potencia o potenciación es una operación matemática que consiste en multiplicar varias veces un mismo número. Consta de una base, que es el número que se multiplica, y de un exponente, que es el número que señala la cantidad de veces que se multiplica la base por sí misma. Es decir, la potenciación no es más que una multiplicación abreviada.

principales propiedades de la potencia

Las propiedades de potenciación tienen una gran cantidad de aplicaciones, pero también tienen ciertas restricciones y es importante conocerlas para no cometer errores en su resolución. Entonces, siempre que apliquemos las propiedades será a las operaciones de multiplicación y división, nunca será a las operaciones de suma y resta.

En verde están las operaciones a las que aplicaremos las propiedades de potenciación, y en rojo, las operaciones a las que no podremos aplicarlas nunca.

En la siguiente tabla podrás observar las propiedades de la potenciación:

Propiedades de la potenciación
Producto de potencia de igual base a· a= a(m + n)
Cociente de potencia de igual base a/ a= a(m − n)
Potencia de potencia (am)= an · m
Producto de potencias con bases diferentes y exponentes iguales a· bn = (a · b)n
Cociente de potencias con bases diferentes y exponentes iguales a/ b= (a / b)n
Exponente negativo a−n = 1 / an

¿Sabías qué?
Cuando el exponente es negativo, mientras mayor sea su valor más pequeño será el resultado.

Notación científica

La notación científica es una forma de expresar cantidades muy grandes o muy pequeñas que le ha permitido a los científicos simplificar sus cálculos. Es conocida también como notación o patrón exponencial porque emplea potencias de base 10 dentro de su expresión. Las potencias de base 10 son iguales a la unidad seguida de tantos ceros como indique el exponente. Un ejemplo de notación científica lo vemos en las masas de los objetos astronómicos, por ejemplo, la masa de la Luna es de aproximadamente 735 × 1020 kg.

Ejemplos prácticos

Aplicación a la suma y resta

La aplicación de las propiedades corresponde a varias operaciones matemáticas pero no a la suma y la resta. Sin embargo, eso no significa que no pueda aplicarse a ejercicios donde existan muchos términos que se suman o se restan. Cuando esto sucede, se aplican las propiedades solo a los términos por separado.

Producto de una potencia de igual base

Cuando existe una multiplicación entre dos potencias con igual base, el resultado final será la misma base elevada a la suma de los exponente de potencias que se multiplicaron. Por ejemplo:

  • 5· 52 = 5(3 + 2) = 55
  • 4· 40 = 4(2 + 0) = 42
  • 68 · 62 · 63 = 6(8 + 2 + 3) = 613

Cociente de una potencia de igual base

Cuando dividimos dos potencias con igual base el procedimiento es similar al de la multiplicación, con la diferencia de que aquí restamos los exponentes de las potencias. Por ejemplo:

  • 53 / 52 = 5(3 − 2) = 51
  • 42 / 40 = 4(2 − 0) = 42

Potencia de una potencia

Cuando tenemos una base elevada a un exponente n, y esta a su vez está elevada a otro exponente m, el resultado final lo obtenemos al multiplicar ambos exponentes (n · m). Por ejemplo:

  • (42)4 = 42 · 4 = 48
  • (33)3 = 33 · 3 = 39

Producto de potencias con bases diferentes y exponentes iguales

Si multiplicamos dos potencias con igual exponente y bases distintas, el resultado será igual a mantener el exponente y solo multiplicar las bases. Por ejemplo:

  • 53 · 43 = (5 · 4)3
  • 32 · 22 = (3 · 2)2

Cociente de potencias con bases diferentes y exponentes iguales

De igual manera que en el caso anterior, el resultado será el cociente de las bases elevadas al exponente. Por ejemplo:

  • 53 43 = (5/4)3
  • 32 / 22 = (3/2)2

Exponente negativo

Cuando el exponente es negativo, la potencia será igual a la inversa de su base y el mismo exponente con signo positivo. Por ejemplo:

  • (2)2 = (1/2)2 = 1/22 = 1/4
  • (1/2)−1 = 2
Los átomos son las unidades básicas de toda la materia. En conjunto crean las moléculas y son microscópicos. Para poder medir las distancias entre ellos se usa una unidad de longitud llamada angstrom (Å = 1 x 10−10 metros). El exponente igual a −10 nos indica que el valor en metros es equivalente a 0,0000000001 m.

Potencia de decimales y fracciones

Cuando las bases son decimales o fracciones, las propiedades se mantienen sin distinción. Por ejemplo:

  • (0,1)2 = (0,1) · (0,1) = 0,01

Observa que 0,1 = 1 · 10−1 , y aquí se puede aplicar la propiedad de potencia de potencia. 

  • (0,1)2 = (1 · 10(−1))2 = 10(−1) · 2 = 102 = 0,01

De la misma manera, si sabemos que 0,1 = 1/10:

  • (0,1)2 = (1/10)2 = 1/102 = 1/100 = 0,01

Cualquiera sea la expresión que se elija para resolver la operación se debe llegar al mismo resultado.

¡A practicar!

Aplica la propiedad correspondiente en cada caso:

  • 34 · 3· 33

Solución
34 · 31 · 33 = 3(4 + 1 + 3) = 38 = 6.561
  • 62 / 62

Solución
62 / 62 = 6(2 − 2) = 60 = 1
  • (7−1)−3

Solución
(7−1)−3 = 7(−1) · (−3) = 73 = 343
  • 63 · 83

Solución
63 · 83 = (6 · 8)3 = 483 = 110.592
  • (−1/2)−2

Solución
(−1/2)−2 = (−2)2 = (−2) · (−2) = 4 
  • 83 / 43

Solución
83 / 43 = (8/4)3 = 23 = 8
RECURSOS PARA DOCENTES

Artículo “Ejercicios de propiedades de la potencia”

En el artículo podrá reforzar las propiedades de potenciación vistas a partir de ejemplos y ejercicios. También se explica la importancia de la correcta aplicación de las propiedades en cada término al sumar o restar.

VER

CAPÍTULO 4 / TEMA 3

El tiempo

El tiempo es una magnitud física que permite llevar un orden de los sucesos. En otras palabras, gracias al tiempo podemos distinguir lo que pasó la semana pasada, ayer u hoy. En la actualidad, para determinar el tiempo usamos sistemas que dividen los días en 24 horas. Por medio de los relojes podemos conocer en qué hora del día estamos.

Lectura del tiempo

El ser humano siempre ha sentido la necesidad de medir el tiempo, ya sea para la duración de acontecimientos o para establecer separaciones de sucesos. Por eso, a lo largo de la historia han existido una serie de calendarios basados principalmente en ciclos lunares o solares.

Algunos calendarios son más precisos que otros, pero todos buscan una sola cosa: tener noción del tiempo.

VER INFOGRAFÍA

Unidades de tiempo

Las unidades de tiempo más comunes son la hora, el minuto y el segundo, donde se cumple que:

  • 1 hora = 60 minutos
  • 1 minuto = 60 segundos

Sin embargo, existen otras unidades para medir el tiempo:

  • 1 día = 24 horas
  • 1 semana = 7 días
  • 1 año común = 365 días
  • 1 año bisiesto = 366 días
  • 1 lustro = 5 años
  • 1 década = 10 años
  • 1 siglo = 100 años
  • 1 milenio = 1.000 años

Los relojes

Son instrumentos usados para medir el tiempo. A lo largo de la historia han pasado de ser relojes solares y de arena, a relojes cada vez más sofisticados como los relojes inteligentes de hoy en día. Los más usados en la actualidad son los relojes analógicos y los digitales.

¿Cómo leer la hora en relojes analógicos?

Una reloj analógico se caracteriza por tener agujas o manecillas que indican las horas, los minutos y los segundos a través de ciertos marcadores y números. Los elementos de un reloj analógico son los siguientes:

  • Las manecillas: son las agujas que marcan las horas, minutos y segundos. La más chica de ellas indica la hora y se denomina horario; la aguja grande más larga indica los minutos y se denomina minutero; la aguja más fina y que va más rápido indica los segundos y se denomina segundero.
  • Marcadores: son las doce partes en las que está dividida la circunferencia del reloj. Estas partes están rotuladas con los números del 1 al 12 y cada una, a su vez, está dividida en cinco subdivisiones más pequeñas marcadas con segmentos de rectas.

¿Sabías qué?
Existen relojes digitales que imitan a los relojes analógicos por contener agujas en pantallas LCD. Debido a su formato también son considerados relojes analógicos.

El horario tarda 12 horas en dar la vuelta completa, de manera que en un día tiene que realizar dos vueltas completas. El minutero tarda 60 minutos que equivalen a 1 hora en dar la vuelta completa, y el segundero tarda 60 segundos en dar una vuelta completa que equivalen a 1 minuto.

Cuando el minutero se encuentra en el número 12 significa que han transcurrido 0 minutos de la hora que marca el horario, por lo tanto, al leer la hora indicada y agregamos la expresión “en punto“. Por ejemplo:

El reloj muestra las ocho en punto.

El reloj muestra las dos en punto.

Como ya vimos, el reloj está dividido en 12 secciones y cada una de ellas está subdivide en cinco, es decir, el reloj está dividido en 60 partes iguales que equivalen a cada minuto contenido en una hora. Quiere decir que si partimos del número 12 y miramos solamente los segmentos donde aparecen marcados los números, notaremos como los minutos se incrementan de cinco en cinco.

En este sentido, si el minutero se encuentra sobre el número 1, significa que han pasado 5 minutos; si se encuentra en el número 2 indica que pasaron 10 minutos y así sucesivamente hasta el número 12 que indica que no ha pasado ningún minuto aún. Para leer la hora en estos casos, decimos la hora marcada por el horario y luego leemos los minutos.

El reloj muestra las ocho y cinco minutos.

El reloj muestra las diez y veinticinco minutos.

¿Sabías qué?
Cuando el horario se encuentra entre dos números, la hora que indica corresponde al número menor de los dos.

Cuando el minutero está en el número 3, 6 y 9, la hora se suele mencionar de manera particular.

– Cuando el minutero está en el 3 indica que han transcurrido 15 minutos, es decir una cuarta parte de lo que dura una hora. Por eso, después de decir la hora agregamos la expresión “…y cuarto”.

El reloj muestra las once y cuarto.

– Cuando el minutero está en el 6 significa que han pasado 30 minutos, es decir, la mitad de una hora, por eso decimos “…y media”.

El reloj muestra las nueve y media.

– Cuando el minutero está en el 9 han pasado 45 minutos lo significa que falta un cuarto de hora (quince minutos) para la hora siguiente. Por eso decimos “un cuarto para…” y luego la hora próxima.

El reloj muestra un cuarto para las siete.

En algunos países en lugar de decir “un cuarto para” se lee la hora próxima y se agrega la expresión “menos cuarto”. En este sentido, el ejemplo anterior se leería como “las siete menos cuarto”.

Para otros casos, se lee la hora mostrada por el horario y luego los minutos indicados por el minutero.

 

¿Cómo leer la hora en relojes digitales?

En el reloj digital no se observan manecillas sino que expresa la hora y los minutos separados por dos puntos. Las primeras dos cifras corresponden a las horas y las dos cifras que se encuentran a la derecha de los dos puntos indican los minutos.

La lectura es similar a la de los relojes analógicos, la diferencia es que la hora y los minutos se observan de manera más directa. Primero leemos la hora y después los minutos

En los casos a los cuales aplique se agregan las expresiones “…en punto”, “…y cuarto”, “…y media” y “un cuarto para…”.

 Son las ocho en punto.

 Son las ocho y cuarto.

 Son las ocho y media.

 Son un cuarto para las nueve.

 Son las ocho y treinta y cinco minutos.

VER INFOGRAFÍA

Las abreviaturas a. m. y p. m.

Son abreviaturas que suelen aparecer en los relojes digitales. La abreviatura a. m. significa que la hora leída corresponde a antes del mediodía, mientras que p. m. se usa para indicar las horas después del mediodía.

Sistema horario de 24 horas

El sistema usado por los relojes analógicos es de 12 horas. Por lo tanto tiene que completar dos ciclos para cubrir un día. El sistema de 24 horas lleva este nombre porque divide al día en las 24 horas totales que lo conforman. Por eso no necesita de las siglas a. m. y p. m. En este sistema las 00:00 horas o 00:00 h corresponden a las 12 a. m., hora desde la cual se empiezan a contar las horas de manera ascendente. En esta convención de tiempo el día se mide de medianoche a medianoche.

Formato 24 horas Formato 12 horas
00:00 h 12:00 a. m.
01:00 h 01:00 a. m.
02:00 h 02:00 a. m.
03:00 h 03:00 a. m.
04:00 h 04:00 a. m.
05:00 h 05:00 a. m.
06:00 h 06:00 a. m.
07:00 h 07:00 a. m.
08:00 h 08:00 a. m.
09:00 h 09:00 a. m.
10:00 h 10:00 a. m.
11:00 h 11:00 a. m.
12:00 h 12:00 m.
13:00 h 01:00 p. m.
14:00 h 02:00 p. m.
15:00 h 03:00 p. m.
16:00 h 04:00 p. m.
17:00 h 05:00 p. m.
18:00 h 06:00 p. m.
19:00 h 07:00 p. m.
20:00 h 08:00 p. m.
21:00 h 09:00 p. m.
22:00 h 10:00 p. m.
23:00 h 11:00 p. m.
El sistema de 24 horas es usado en diversas áreas, de hecho, en algunos países se ha estandarizado como sistema de notación del tiempo. Es común su empleo en el área militar y en el de la astronomía. También suele usarse en áreas como la medicina para llevar registros de la historia clínica de los pacientes. Otros usos se dan en aeropuertos y otras terminales de transportes.

¡A practicar!

1. ¿Qué hora indican los relojes?

a) 

Solución
Son las once y cinco minutos.

b)

Solución
Son las once y media.

c)

Solución
Son las ocho y cuarto.

c)

Solución
Son las tres y media

2. ¿Qué hora observas en estos relojes?

a)

Solución
Son las tres y veinte minutos.

b)

Solución
Son las diez en punto.

c)

Solución
Son las once y cuarto.

3. ¿A qué hora del sistema de 12 horas corresponde?

a) Las ocho y treinta y cinco minutos.

b) Las treinta y cinco para las diecinueve.

c) Las nueve y media.

d) Las seis y treinta y cinco minutos.

Solución
d) Las seis y treinta y cinco minutos.

RECURSOS PARA DOCENTES

Artículo “Medidas de tiempo”

Este artículo describe las principales unidades de tiempo y propone una serie de operaciones que se pueden realizar con unidades de tiempo.

VER

Artículo “Reloj de arena”

El presente artículo destacado describe a este sencillo pero asombroso invento que utilizaban nuestros antepasados para medir el tiempo.

VER

Artículo “Los calendarios”

Este artículo describe el origen de los calendarios y las característica del calendario gregoriano, uno de los más usados hoy en día. También explica otros tipos de calendarios que han sido utilizados por diversas culturas como la maya y la egipcia.

VER

CAPÍTULO 4 / TEMA 2

Instrumentos de medición

Si hay algo que los seres humanos hemos necesitado desde siempre es tomar mediciones: las personas medimos desde las raciones de comida, hasta los grandes territorios. Los instrumentos de medición permiten conocer las cantidades de diferentes magnitudes como la longitud, el volumen, el tiempo, etc. Las unidades de medida son una referencia y pueden ser convencionales o no.

Características de los principales instrumentos de medición

Un instrumento de medición presenta las siguientes características:

  • Cota inferior: corresponde al valor mínimo de la magnitud que puede medir el instrumento.
  • Cota superior: corresponde al valor máximo que puede medir el instrumento.
  • Sensibilidad: corresponde a la mínima variación de la magnitud que puede detectar el instrumento.
  • Exactitud: corresponde a la capacidad del instrumento de acercarse al valor real de la magnitud leída.
  • Fiabilidad: corresponde a qué tan consistente sea la medición del instrumento, es decir, que el instrumento pueda medir la misma cantidad en las mismas condiciones y en diferentes ocasiones.
El termómetro de mercurio es un instrumento que en la actualidad comienza a estar en desuso en el área de la salud por los riesgos de toxicidad, sin embargo, en el pasado era usado para medir la temperatura corporal. Su cota inferior suele ser de 35 °C y su cota superior suele estar en los 42 °C. Quiere decir que puede medir valores entre esas dos temperaturas.

Calidad de medición

Hay instrumentos con mayor precisión y sensibilidad que otros, por lo tanto presentan mayor exactitud. Por ejemplo, las balanzas se usan para medir la masa de los cuerpos. En un mercado se usan balanzas convencionales con una cota inferior de 1 gramo y en lugares como laboratorios y fábricas pueden usar balanzas tan sensibles que permiten obtener lecturas muy pequeñas como 0,00001 g.

Para que tengas una idea, la masa de un grano de arroz es de 0,03 gramos y las balanzas de un laboratorio pueden medir cantidades 1.000 veces menores que eso, ¡increíble!

VER INFOGRAFÍA

Instrumentos de medición comunes en la escuela

En la escuela solemos usar instrumentos para medir longitudes de las cosas, como la regla o una escuadra. La longitud es una magnitud que permite medir distancias entre dos puntos, con ella podemos medir el tamaño de una recta o el de los lados de una figura geométrica.

Las reglas y escuadras que usamos en la escuela tienen una escala graduada en centímetros y milímetros. Cada centímetro está dividido en milímetros. Pueden estar construidas de materiales como metal, plástico o madera y pueden ser flexibles o rígidas. Las escuadras además de medir longitudes sirven para construir rectas paralelas y perpendiculares.

 

Otro instrumento de medición usado en la escuela es el transportador, que sirve para medir ángulos, presenta su escala en grados y es muy usado en disciplinas como la arquitectura y el dibujo técnico.

¿Sabías qué?
Hay dos tipos de transportador, el circular que se encuentra graduado de 0° a 360° y el semicircular que está graduado de 0° a 180°.

Cuando usamos el reloj, medimos el tiempo que ha transcurrido. Las unidades de tiempo se expresan en segundos minutos y horas. Hay otros instrumentos de medición de tiempo como el cronómetro, por ejemplo, que suele ser usado por los entrenadores para evaluar el desempeño de los deportistas.

Unidades de medidas no convencionales

Todas las unidades de medida son una referencia para medir la cosas. Hay unidades convencionales que se usan en gran parte del mundo, como el metro para medir la longitud o el segundo para medir el tiempo, pero también hay otras que podemos usar para medir de una manera menos convencional y que nos permiten establecer comparaciones, como nuestras manos, dedos o pies.

Podemos usar nuestra mano como unidad de medida para medir la longitud de un cuaderno, simplemente tenemos que ver cuántas veces ese patrón de medida se encuentra en el objeto. Incluso podemos usar otros objetos como un lápiz como referencia de medida. En este caso se habla de unidades no convencionales porque no pertenecen al Sistema Internacional de Unidades.

Por ejemplo:

– El cuaderno mide dos manos y media.
– El lápiz mide seis dedos.

La pulgada y los reyes

A lo largo de la historia se ha usado la pulgada como unidad de longitud. La pulgada era empleada por los monarcas, quienes empleaban la medida desde el nudillo del pulgar hasta el extremo del dedo. Este sistema de medida tuvo muchos inconvenientes porque no todos los reyes tenían el mismo tamaño de falanges, y existían pulgadas de diferentes medidas, lo que generaba confusión.

Por razones como esas, los sistemas de medición se unificaron en sistemas más homogéneos como el Sistema Internacional de Medidas. En la actualidad hay países como Estados Unidos que aún emplean la pulgada como medida de longitud que equivale a 2,54 cm.

¡A practicar!

1. ¿Cómo se denomina al máximo valor que puede medir un instrumento de medición?

a) Cota inferior.

b) Sensibilidad.

c) Cota superior.

d) Confiabilidad.

Solución
c) Cota superior.

2. ¿Cuál es una medida no convencional?

a) El metro.

b) El segundo.

c) El centímetro.

d) El dedo.

Solución
d) El dedo.

3. ¿Qué podemos medir con las unidades de longitud?

a) La distancia entre dos puntos.

b) La capacidad de un recipiente.

c) El tiempo.

d) La temperatura de una persona.

Solución
a) La distancia entre dos puntos.

4. Observa los siguientes instrumentos de medición y determina qué podemos medir con cada uno.

a) 

Solución
La longitud.

b) 

Solución
El tiempo.

c)

Solución
La medida de ángulos.

d) 

Solución
La masa.

RECURSOS PARA DOCENTES

Artículo “Sistema Internacional de unidades”

Este artículo explica qué es el Sistema Internacional de unidades y describe sus principales unidades básicas y derivadas, así como su importancia en la actualidad.

VER

Tarjetas educativas “Instrumentos de laboratorio”

Este micrositio muestra los principales instrumentos de laboratorio, dentro de los cuales se encuentran varios instrumentos de medición.

VER

Infografía “Balanza”

Esta infografía muestra uno de los instrumentos de medición más usados: la balanza. También describe sus tipos y sus características principales.

VER

CAPÍTULO 5 / TEMA 7

La circunferencia

Una de las curvas más estudiadas en la geometría es, sin duda, la circunferencia. Tiene características únicas y ha sido pieza fundamental en invenciones humanas como la rueda. Para trazar esta figura usamos el compás, y su longitud está determinada por un número muy particular: el número pi.

¿Qué es una circunferencia?

Es la curva plana y cerrada cuyos puntos equidistan del centro; es decir, están a la misma distancia del centro de la circunferencia.

Los griegos y la circunferencia

Sin lugar a duda, los antiguos griegos tuvieron una gran influencia en el perfeccionamiento de la geometría. Para ellos, la línea recta y la circunferencia eran muy importantes en sus construcciones matemáticas, lo que permitió que realizaran increíbles descubrimientos para su época. Por ejemplo, Eratóstene de Cirene, que vivió entre 276 y 194 a. C., fue la primera persona en calcular la circunferencia de la Tierra.

Elementos de la circunferencia

En la circunferencia se pueden observar los siguientes elementos:

Centro: es el punto en torno al cual equidistan todos los puntos de la curva.

Radio: es un segmento de recta que une el centro de la circunferencia con cualquiera de sus puntos.

Diámetro: es un segmento de recta que une a dos puntos de la circunferencia y pasa por el centro de la misma. Su longitud es igual al doble del radio.

Cuerda: es un segmento de recta que une a dos puntos de la circunferencia sin pasar por el centro.

Arco: es una porción de la circunferencia que se encuentra limitada por una cuerda.

Semicircunferencia: es la porción de circunferencia limitada por el diámetro. Equivale a la mitad de la circunferencia.

Posiciones de una recta en relación a la circunferencia

Recta tangente: es la recta que comparte un mismo y único punto con la circunferencia.

Recta secante: es la recta que comparte dos puntos con la circunferencia.

Recta exterior: es la recta que no comparte ningún punto con la circunferencia.

¿Sabías qué?
La circunferencia de la tierra mide cerca de 40.000 km de longitud.

Diferencia entre círculo y circunferencia

Es posible que confundamos los conceptos de círculo y circunferencia porque están muy relacionados entre sí, pero se trata de dos términos diferentes. El círculo es una figura plana que corresponde al área contenida dentro de una circunferencia. La circunferencia, por su parte, representa el perímetro del círculo, es decir, es la línea que forma el contorno de la figura.

VER INFOGRAFÍA

El círculo es una figura que presenta diferentes elementos, como el semicírculo, los sectores circulares y los segmentos circulares. El primero es el área comprendida entre el diámetro y una semicircunferencia; el segundo consiste en las regiones comprendidas entre dos radios y el arco que estos forman; y el tercero se trata de los segmentos que se forman entre una cuerda y su arco.

Trazado de circunferencias

El compás es el instrumento por excelencia para trazar circunferencias y su origen es muy antiguo. Un compás consta de los siguientes elementos principales:

  1. Un mango.
  2. Una punta metálica.
  3. Una punta trazadora.
  4. Dos brazos regulables.

El uso de esta herramienta es relativamente sencillo. Para trazar una circunferencia con un compás lo primero que debemos hacer es conocer el radio de la circunferencia y trazarlo con la ayuda de una regla. Luego posicionamos la punta metálica en uno de los extremos del segmento y luego abrimos los brazos hasta que la punta trazadora esté ubicada en el otro extremo del segmento. Finalmente, con ayuda del mango, trazamos la circunferencia.

Circunferencias a nuestro alrededor

Un anillo o un aro son ejemplos de circunferencias, pero hay muchos más. Al ser una circunferencia el contorno de un círculo, la observamos en los bordes de las ruedas de los autos, en un molde para hacer una torta o un pastel y hasta incluso en juguetes como los platos voladores.

Las circunferencias han sido elementos fundamentales en el desarrollo de la geometría y con ello también han permitido a los seres humanos realizar grandes invenciones como la rueda.

La circunferencia es el contorno de una de las figuras más comunes: el círculo. Es frecuente observarlas en platos, ruedas, pasteles, diseños y pinturas. Han permitido realizar cálculos y aproximaciones, como el descubrimiento del número pi que relaciona la longitud de la circunferencia con su radio y que ha tenido numerosas aplicaciones prácticas.

 

¡A practicar!

  1. Además del centro, ¿qué elementos de la circunferencia observas?

a) 

Solución
Diámetro.

b)

Solución
Arco.

c)

Solución
Cuerda.

d)

Solución
Radio.

2. ¿Cuál de las siguientes rectas es una tangente?

a) 

b) 

c) 

d) 

Solución
c)  Es tangente porque solo comparte un punto en común con la circunferencia.

 

RECURSOS PARA DOCENTES

Artículo “Circunferencia”

El siguiente artículo explica de forma resumida qué es una circunferencia y los diferentes elementos que la integran como el radio, la cuerda, el diámetro, etc.

VER

Artículo “Ángulos en la circunferencia”

Este artículo relaciona los conceptos de ángulo y circunferencia, así como también explica sus características.

VER

CAPÍTULO 5 / TEMA 6

Volumen y capacidad

El volumen y la capacidad son dos conceptos que empleamos a diario. A veces necesitamos medir la cantidad de agua para una receta y otras veces necesitamos saber cuánto puede contener un molde para tortas. En el primer caso hablamos de volumen y en el segundo de capacidad. A pesar de estar relacionados, cada magnitud emplea distintas unidades de medida para los cálculos.

Cálculo de volumen de cubos

Así como en área empleamos cuadrados como referencia para medir una superficie, en la medición del volumen empleamos cubos como referencia.

El volumen es el espacio ocupado por un objeto. Por ejemplo, si una caja tiene un volumen de 200 cm3 (centímetros cúbicos) quiere decir que está formado por 200 cubos que miden 1 cm en cada lado, cada uno.

Para comprender mejor el concepto de volumen, debemos aprender cómo calcularlo en cubos. La fórmula es la siguiente:

V=a\times a\times a

Donde:

V = volumen.

a = longitud de los lados del cubo.

La fórmula de volumen también puede expresarse como V=a^{3}

– Ejemplo:

Calcula el volumen del siguiente cubo:

Como es un cubo, cada lado mide 3 cm y hay que aplicar la fórmula de volumen, es decir, multiplicar la longitud de un lado tres veces:

V = 3\, cm\times 3\, cm\times3\, cm = \mathbf{27\, cm^{3}}

Observa que la unidad centímetro se multiplicó tres veces, por lo tanto, al final se expresa en cm3.

VER INFOGRAFÍA

¿Sabías qué?
Un cubo tiene tres dimensiones: alto, ancho y profundidad.
Cuando medimos, relacionamos una cantidad con una unidad de medida base, en otras palabras, medir es un proceso de comparación. El volumen es una característica muy importante de los cuerpos porque permite saber cuánto ocupa el mismo en el espacio. Los científicos suelen medir volúmenes de muestras en sus diferentes estudios y ensayos a través de equipos especializados.

Comparación de volúmenes

Todos los objetos ocupan un lugar en el espacio, por lo tanto tienen volumen. Ese espacio ocupado depende de las características del material, por eso, para realizar comparaciones entre objetos usamos medidas de volumen.

Cuanto mayor sea el lugar que ocupe un cuerpo en el espacio, mayor será su volumen. Por ejemplo, el volumen que ocupa un grano de arroz no es igual al volumen que ocupa un edificio.

Observa las siguientes figuras:

Imaginemos que cada cubo equivale a 1 cm3, ¿cuántos cubos de 1 cm3 tiene la figura 1?, ¿y la figura 2?, ¿cuál figura tiene mayor volumen?

  • La figura 1 tiene 5 cubos de 1 cm3, así que su volumen es de 5 cm3.
  • La figura 2 tiene 15 cubos de 1 cm3, así que su volumen es de 15 cm3.

La figura 2 tiene mayor volumen que la figura 1 y, por lo tanto, ocupa mayor espacio.

Otras unidades de volumen

La unidad empleada por el Sistema Internacional de Unidades es el metro cúbico (m3), sin embargo, esta unidad tiene múltiplos y submúltiplos que en situaciones cotidianas suelen emplearse, por ejemplo, el milímetro cúbico (mm3), el decímetro cúbico (dm3), el centímetro cúbico (cm3), etc.

También existen otras unidades de volumen como pulgada cúbica (pulg3) y pie cúbico (pie3).

El litro y las unidades de capacidad

La capacidad es la propiedad que tienen los objeto de contener a otras sustancias dentro de él. Por ejemplo, es común ver en el supermercado diferentes productos con envases en los que hay cierto volumen en su interior, ya sea de gaseosas, aceites o detergentes. El litro (L) es la medida de capacidad que vemos en las etiquetas de estos artículos.

Al ocupar un lugar en el espacio, todos los objetos tienen volumen pero no todos tienen capacidad. Por ejemplo, un objeto sólido como una barra de metal, tiene volumen pero no tiene capacidad.

Relación entre capacidad y volumen

La capacidad que tiene un recipiente es equivalente al volumen del objeto. De este modo, si construimos un cubo de 10 cm en cada lado y lo llenamos con agua en su interior, notaremos que la capacidad de ese cubo es igual a 1 litro ya que su volumen es igual a 1.000 cm3.

Recordemos que:

V=10 \, cm\times 10 \, cm\times 10 \, cm = 1.000\,\, cm^{3}

1\: L = 1.000\: cm^{3}

Algunas equivalencias útiles

  • 1 litro es igual a 2 medios litros.

1\: L = \left ( \frac{1}{2}+\frac{1}{2} \right )\: L

 

  • 1 litro es igual a 4 cuartos de litro.

1\: L = \left ( \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4} \right )\: L

 

  • Medio litro es igual a 2 cuartos de litro.

\frac{1}{2}\: L = \left ( \frac{1}{4}+\frac{1}{4} \right )\: L

 

¡A practicar!

  1. Calcula el volumen de los siguientes cubos.

a)

Solución
V = 2 x 2 x 2 = 8 cm3.

b)

Solución
V = 1 x 1 x 1 = 1 cm3.

c)

Solución
V = 4 x 4 x 4 = 64 cm3.

d)

Solución
V = 5 x 5 x 5 =125 cm3.

2. ¿Cuál de los siguientes cubos tiene un volumen igual a 343 cm3?

a) 

b) 

c) 

d) 

Solución
b) Porque V = 7\, cm\times 7\, cm\times7\, cm = \mathbf{343\, cm^{3}}.

 

RECURSOS PARA DOCENTES

Video “Volumen de los cuerpos sólidos”

Este video muestra cómo se forman los cuerpos geométricos y explica las diferentes fórmulas de volumen en cada caso.

VER

Artículo “Volumen y capacidad: aplicaciones”

Este artículo explica las diferentes unidades de medición de volumen, al igual que las diferentes situaciones en las que puedes aplicarlo.

VER

Artículo “Sistemas de medición”

En este artículo destacado se explica qué es un sistema de medición, sus aplicaciones y los diferentes tipos de instrumentos para medir algunas unidades.

VER

CAPÍTULO 5 / TEMA 5

Cuadriláteros

Vemos cuadriláteros en todas partes: desde la cara de un dado hasta una hoja de papel. Estas figuras geométricas son polígonos de cuatro lados con múltiples aplicaciones en la geometría. Se caracterizan por su diversidad y de acuerdo a ciertos criterios se pueden clasificar como paralelogramos, trapecios y trapezoides.

Características de los cuadriláteros

La palabra “cuadrilátero” proviene del latín y quiere decir “que tiene cuatro lados”. Entonces, los cuadriláteros son polígonos con cuatro lados que forman entre sí cuatro ángulos. Estas características permiten clasificarlos en varios tipos.

Curiosidades de los cuadriláteros

1. Presentan cuatro lados, cuatro vértices y cuatro ángulos.

2. Todo cuadrilátero tiene dos diagonales.

3. Las dos diagonales del cuadrilátero dividen al mismo en cuatro triángulos.

4. También se denominan cuadrángulo y tetrágono (ambas hacen mención a sus cuatro ángulos y lados).

¿Sabías qué?
La suma de los ángulos interiores de cualquier cuadrilátero siempre es igual a 360°.

VER INFOGRAFÍA

Ángulos

Un ángulo es la porción de plano comprendida entre dos semirrectas que tienen un origen común. Existen muchos tipos, algunos son:

  • Ángulo agudo: que tiene una amplitud menor a 90° pero mayor a 0°.
  • Ángulo recto: que tiene una amplitud igual a 90°.
  • Ángulo obtuso: que tiene una amplitud mayor a 90° pero menor a 180°.
  • Ángulo oblicuo: que no es recto. Los ángulos agudos y obtusos son ejemplo de ángulos oblicuos.

Clasificación de los cuadriláteros

La forma de un campo de fútbol no es igual a la forma de un campo de béisbol, pero en ambos casos hablamos de cuadriláteros. Este tipo de figuras se clasifica en tres grandes grupos: paralelogramos, trapecios y trapezoides.

Paralelogramos

Son cuadriláteros que presentan dos pares de lados paralelos. Los lados opuestos de todo cuadrilátero tienen la misma longitud. Se clasifican en:

Cuadrilátero Nombre Características
Cuadrado – Todos sus lados son iguales.

– Sus ángulos internos son iguales y miden 90° (ángulo recto).

Rectángulo

– Sus lados contiguos (lados que están juntos) no son iguales, pero sus lados opuestos sí lo son.

– Sus ángulos interiores son iguales y miden 90° (ángulo recto).

Rombo

– Todos sus lados son iguales.

– Sus ángulos interiores son agudos (menores a 90°).

 

Romboide

– Sus lados contiguos son desiguales.

– Sus ángulos opuestos son iguales.

– De sus cuatro ángulos interiores siempre hay un par de ángulos mayor que el otro.

¿Sabías qué?
Los ángulos opuestos de un paralelogramo son congruentes, es decir, tienen la misma medida.

Trapecios

Son cuadriláteros en los que solo dos de sus lados son paralelos, estos lados son llamados bases y siempre hay una de mayor longitud, denominada base mayor; y otra de menor longitud, denominada base menor. Se clasifican en:

Cuadrilátero Nombre Características
Trapecio rectángulo

– Dos de sus ángulos interiores son iguales a 90°, es decir, son rectos.

 

Trapecio isósceles

– Sus lados no paralelos tienen la misma medida.

– Presentan dos ángulos agudos del mismo valor en una de las bases y dos ángulos obtusos del mismo valor sobre la otra base.

 

Trapecio escaleno – Ninguno de sus lados tiene la misma longitud.

– Ninguno de sus ángulos es recto.

Trapezoides

Son cuadriláteros que no poseen ninguno de sus lados paralelos.

Cuadrilátero Nombre Características
Trapezoide – Ninguno de sus lados consecutivos es igual.

 

Diagonales de los cuadriláteros

Las diagonales son los segmentos de rectas que unen el vértice de un ángulo con el vértice del ángulo opuesto no consecutivo. Todos los cuadriláteros tienen dos diagonales, pero sus características varían de acuerdo al tipo.

Paralelogramos

Las diagonales se cortan en el punto medio de ambas.

De acuerdo al tipo de paralelogramo las diagonales presentan estas características:

  • Cuadrado: sus diagonales son iguales y se cortan en ángulo recto.
  • Rombo: sus diagonales no son iguales pero se cortan en ángulo recto.
  • Rectángulo: sus diagonales tienen la misma longitud pero se cortan en un ángulo oblicuo.
  • Romboide: sus diagonales no son iguales y se cortan en un ángulo oblicuo.

 

Trapecios

Solo en los trapecios isósceles las diagonales son iguales, en los demás casos ambas diagonales son diferentes. En este tipo de figuras las diagonales siempre se cortan en un ángulo oblicuo.

Trapezoide

Los trapezoides presentan diagonales diferentes y oblicuas.

Disciplinas como la arquitectura, la ingeniería y las artes emplean las formas geométricas dentro de sus actividades. Conocer la geometría de las cosas permite tener una mejor visión de nuestro entorno y realizar comparaciones de manera más sencilla. De igual forma, muchas veces la geometría permite resolver problemas matemáticos de forma más simple.

¿Dónde podemos observar cuadriláteros?

Si prestamos atención a nuestro entorno seguramente vamos a ver más cuadriláteros de los que imaginábamos: las baldosas del piso, el techo de la casa, las puertas y ventanas… Incontables objetos tienen forma de cuadriláteros.

Conocer los cuadriláteros tiene muchas aplicaciones. Por ejemplo, si deseamos encontrar el punto medio de un objeto cuadrado como un cartón, basta con trazar dos diagonales y ubicar su punto de intersección.

El baloncesto es un deporte muy popular que emplea un tablero en forma de cuadrilátero, específicamente un rectángulo que mide por lo general 1,80 m de ancho y 1,05 m de alto. En su parte interna se encuentra otro rectángulo que permite calcular el tiro y de esta forma lograr que la pelota caiga sobre la canasta que se encuentra en su parte inferior.

¡A practicar!

  1. Responde las siguientes preguntas.

a) ¿Cuántas diagonales tienen los cuadriláteros?

Solución
Dos diagonales.

b) ¿Qué tipo de trapecio tiene dos ángulos rectos?

Solución
Trapecio rectángulo.

c) ¿Qué tipo de paralelogramo tiene las dos diagonales diferentes pero se cortan en ángulo recto?

Solución
El rombo.

d) ¿Qué cuadrilátero no presenta ningún lado paralelo?

Solución
El trapezoide.

2. Identifica si las siguientes figuras corresponden a un paralelogramo, trapecio o trapezoide.

a)

Solución
Trapezoide.

b) 

Solución
Paralelogramo.

c) 

Solución
Paralelogramo.

d)

Solución
Trapecio.

e) 

Solución
Paralelogramo.

f) 

Solución
Trapecio.

g) 

Solución
Paralelogramo.

h) 

Solución
Trapecio.

 

RECURSOS PARA DOCENTES

Artículo “Cuadriláteros”

Este artículo destacado describe los tipos de cuadriláteros y sus diferentes tipos y subtipos. También explica la importancia de reconocerlos y sus aplicaciones en la geometría y la publicidad.

VER

Infografía “Polígonos rectángulos”

Esta infografía permite comprender de manera ilustrada qué son los rectángulos y sus propiedades. También se enfoca en cómo construir este tipo de figura geométrica.

VER

Enciclopedia “Matemática en primaria”

En este tomo se explican las características de elementos básicos de la geometría, como las rectas y los ángulos.

VER

CAPÍTULO 5 / TEMA 4

Sistemas de referencia

Son convencionalismos adoptados por el ser humano para medir la posición y otras magnitudes físicas. Se usan para hallar cuerpos celestes en el espacio y son la base para determinar nuestra ubicación en el planeta. También permiten establecer comparaciones y transformaciones entre las figuras representadas.

Ejes de coordenadas

El sistema de coordenadas cartesianas es uno de los sistemas de referencias usados para ubicar puntos en el espacio. En este caso específicamente se explicarán estas coordenadas orientadas al plano, es decir, en dos dimensiones.

El plano donde ubicamos los puntos se denomina plano cartesiano y está formado por los siguientes elementos:

  • Eje X: es también denominado eje de las abscisas, y se encuentra ubicado dentro del plano en forma horizontal.
  • Eje Y: es conocido también como eje de las ordenadas y está ubicado en sentido vertical dentro del plano.
  • Origen: es el punto de intersección entre los ejes de coordenadas X e Y.

 

Los ejes de coordenadas permiten ubicar puntos, gráficos o figuras dentro del plano cartesiano. Al tratarse de dos ejes: el de las abscisas o eje X y el de las ordenadas o eje Y, se requieren de dos coordenadas para ubicar un punto, es decir, un punto está definido dentro del plano si, y solo si, se conocen sus coordenadas en el eje X y en el eje Y.

 

¿Sabías qué?
El nombre de las coordenadas cartesianas proviene de la persona que las empleó por primera vez: René Descartes.

VER INFOGRAFÍA

¿Cómo graficar un punto en el plano cartesiano?

Un punto está definido por un par de números que hacen referencia a su posición respecto al eje X y al eje Y. Estos puntos son denominados coordenadas cartesianas y permiten graficarlo.

Para hacerlo, dividimos los ejes en segmentos con la misma longitud y a cada uno le asignamos el valor de un número entero. A la derecha del origen, escribimos los números de menor a mayor, esos serán los valores del eje X. Arriba del origen escribimos los números que le siguen al cero de menor a mayor, esos serán los valores del eje Y:

¿Sabías qué?
Los números negativos se representan a la izquierda del origen (eje X) y debajo del origen (eje Y).

Para ubicar un punto en el plano necesitamos las coordenadas de cada eje, que de ahora en adelante llamaremos coordenada en X y coordenada en Y para hacer mención a cuál eje se refieren. La coordenada X determina cuán a la derecha del origen está ubicado el punto; mientras que la coordenada Y, cuán arriba del origen está el punto.

La manera más frecuente de representar un punto es a través de paréntesis, y dentro indicamos la coordenada X y la coordenada Y, separadas por una coma:

\left ( Coordenada \, X,\, Coordenada\, Y \right )

El punto desde dónde se empieza a contar es en el origen porque se encuentra en la coordenada (0,0) lo que quiere decir que está a 0 posiciones de la derecha y a 0 posiciones hacia arriba.

Por ejemplo:

El punto A (3,2) se encuentra a tres posiciones a la derecha y a dos posiciones hacia arriba. Si lo queremos graficar, cada coordenada debe estar representada en el respectivo eje y el punto de intersección de ambas sería el punto A:

Cuando algunas de las coordenadas del punto sea igual a cero, significa que el punto se encuentra sobre el eje al cual corresponde la coordenada diferente de cero. Por ejemplo, el punto B (0,3) indica que se movió cero posiciones a la derecha y tres posiciones hacia arriba, por lo tanto se ubica sobre el eje Y que es el que tiene la coordenada diferente de cero:

Ejes de simetrías

La simetría es una relación proporcionada entre las partes que componen un todo. Así, por ejemplo, decimos que una imagen es simétrica cuando su forma no cambia si es girada o volteada. Para que exista simetría entre dos objetos, ambos deben ser del mismo tamaño y de la misma forma y uno debe estar en una orientación diferente a la del primero.

La forma de una mariposa es un ejemplo de simetría: si trazamos una línea imaginaria de forma vertical en el centro de la mariposa (eje de simetría), obtendríamos dos imágenes iguales pero con diferente orientación. Nuestros cuerpos también son simétricos: esto se debe a que contamos con la misma cantidad de miembros a cada lado.

El eje de simetría es una línea imaginaria que divide al dibujo en dos partes idénticas pero con diferente orientación. Los ejes de simetría pueden ser horizontales, verticales o inclinados.

 

De acuerdo a la figura geométrica, algunas pueden presentar uno o más ejes de simetría. Otras, en cambio, no presentan ninguno. Cuando una figura no es simétrica se denomina asimétrica.

Por ejemplo, no todos los triángulos tienen ejes de simetría, todo depende de su tipo. Si son equiláteros tienen tres ejes de simetría; si son isósceles tienen dos ejes de simetría, y si son escalenos no tienen ningún eje de simetría.

Transformaciones isométricas

Las transformaciones isométricas son los cambios de posición u orientación que experimenta una figura sin alterar su forma.

Traslación

Es un tipo de transformación isométrica donde se mueven todos los puntos de una figura en una misma dirección, sentido y longitud.

Rotación

También es conocida como giro. Es una transformación isométrica en la que la figura se mueve alrededor de un punto sin alterar su forma. El movimiento es determinado por un ángulo de rotación y puede ser en sentido de las agujas del reloj o en sentido contrario.

La simetría como transformación isométrica

La simetría entre dos objetos es un tipo de transformación isométrica porque a cada punto del objeto o figura se lo asocia a otro conocido como imagen. Cada punto está a una misma distancia del otro respecto al eje de simetría. Este tipo de transformación también se conoce como reflexión.

 

¡A practicar!

1. ¿Cuál es la posición de estos números?

a)

Solución
C (4,3)

b) 

Solución
D (1,2)

c) 

Solución
E (5,0)

d) 

Solución
F (4,5)

e) 

Solución
G (3,3)

2. ¿A cuál de los siguientes puntos corresponde la coordenada (6,3)?

Solución

Corresponde al punto K (6,3).

3. ¿Cuál de estas figuras no es simétrica?

a) 

b)

c)

d)

Solución
d) No es simétrica porque no tiene ningún eje de simetría.

4. ¿A qué tipo de transformación isométrica corresponde la gráfica?

Solución
Traslación.

RECURSOS PARA DOCENTES

Artículo “Simetrías”

Este artículo explica qué es una simetría, sus tipos y su relación con los ejes. También incluye algunos ejemplos de simetría.

VER

Artículo “Plano cartesiano”

Este artículo explica qué es el plano cartesiano, sus características y divisiones por cuadrante. También incluye ejemplos sobre como ubicar puntos en este sistema.

VER

 

CAPÍTULO 5 / TEMA 2

Ángulos

El ángulo es uno de los elementos fundamentales para la geometría porque está presente en las figuras ¡Incluso las paredes de nuestras casas forman ángulos entre ellas! Se puede definir como la porción del plano que se encuentra delimitada por dos semirrectas que comparten el mismo origen. 

Tipos de ángulos

Antes de poder reconocer los diferentes tipos de ángulos es necesario comprender los elementos que los forman.

  • Lado: es cada una de las semirrectas que conforman el ángulo y que tienen un origen en común.
  • Vértice: es el punto común o de origen de los lados.

 

Sistema de medida

El sistema usado para medir ángulos se denomina sistema sexagesimal, su unidad de medida es el grado (°) y resulta de dividir un ángulo llano en 180 partes, cada una de ellas representa un grado. Para medidas más pequeñas se usa el minuto (′) y el segundo (′′). Se denomina sexagesimal porque cada unidad es 60 veces mayor que la siguiente y 60 veces inferior que la anterior. Es por ello que 1° = 60′ y 1′ = 60′′.

De acuerdo a su tamaño los ángulos se clasifican en:

  • Ángulo agudo: es aquel mayor a 0° pero menor a 90°.
  • Ángulo recto: es aquel que mide 90°.
  • Ángulo obtuso: es aquel cuya medida es mayor a 90°pero menor a 180°.
  • Ángulo llano: es aquel cuyo ángulo es igual a 180°.

VER INFOGRAFÍA

Medición de ángulos

Uno de los instrumentos más usados para medir ángulos es el transportador, este presenta una serie de marcas que indican los grados. El más común es el transportador semicircular el cual viene graduado en 180°. Sus partes fundamentales son:

Para medir un ángulo con el transportador debemos seguir los siguientes pasos:

  1. Ubicar el origen del transportador en el vértice del ángulo que se va a medir.
  2. Hacer coincidir uno de los lados del ángulo con la línea horizontal de la base.
  3. Leer el ángulo que corta el segundo lado. Si el ángulo está abierto hacia la izquierda se usa la escala externa, si está abierto hacia la derecha se usa la escala interna (de acuerdo al tipo de instrumento las escalas pueden invertirse).

¿Sabías qué?
El teodolito es un instrumento con mayor precisión que el transportador que permite medir grados, minutos y segundos.

Construcción de ángulos

Una de las formas de construir ángulos es a través de una regla y un transportador. Para ello debemos realizar los siguientes pasos:

1. Trazamos con ayuda de la regla una semirrecta que será más adelante uno de los lados del ángulo.

 

2. Ubicamos el origen del transportador en uno de los extremos de la semirrecta (este también será el origen del ángulo), de manera que el número cero de la escala coincida con el otro extremo.

 

3. Ubicamos en la escala el ángulo que deseamos construir, para este ejemplo queremos construir un ángulo de 40°.

 

4. Hacemos una marca en el punto donde leímos el ángulo deseado.

 

5. Unimos el origen con la lectura marcada, de esta forma construimos un ángulo agudo de 40°.

Además del transportador, otros instrumentos usados para construir ángulos son el compás y la escuadra. Esta última permite construir ángulos rectos. Disciplinas como la arquitectura hacen uso de los ángulos en sus diseños. La exactitud en las mediciones es importante porque de lo contrario muchas de las estructuras podrían sufrir daños y afectar a las personas.

 

Comparación de ángulos

Luego de conocer cómo funciona el sistema sexagesimal en la medición de ángulos, podemos concluir que los ángulos llanos son mayores que los obtusos, que los obtusos son mayores que los rectos y que estos últimos son mayores que los agudos.

De manera que cuando necesitemos comparar ángulos lo primero que debemos hacer es identificar qué tipo de ángulo es. En el caso de conocer los valores de los ángulos, realizamos la comparación de de los números de acuerdo a la cantidad que representan, es decir: un ángulo de 35° es mayor que uno de 20°, pero es menor que uno de 150°.

Los ángulos y el triángulo

Los ángulos son tan importantes que en sí mismos determinan un criterio de clasificación de los triángulos. En este sentido, los triángulos se clasifican en acutángulos, rectángulos y obtusángulos. Los triángulos acutángulos tienen todos sus ángulos internos agudos, los triángulos rectángulos tienen un ángulo recto y los otros dos agudos, los triángulos obtusángulos tienen un ángulo obtuso y los otros dos agudos. En los triángulos se cumple que la suma de sus ángulos internos siempre es igual 180°.

¡A practicar!

1. ¿A qué tipo de ángulo corresponde cada imagen?

a)

Solución
Ángulo recto.
b) 
Solución
Ángulo llano.
c) 
Solución
Ángulo obtuso.
d) 
Solución
Ángulo agudo.

2. ¿Cuál de los siguientes ángulos no es agudo?

a) 95°

b) 30°

c) 3°

d) 84°

Solución
a) 95°. No es agudo porque no es menor a 90°.

3. ¿Cuál de los siguientes ángulos no es obtuso?

a) 125°

b) 95°

c) 160°

d) 180°

Solución
d) 180°. No es obtuso porque es igual a 180°, los ángulos obtusos deben ser mayores a 90° y menores a 180°.

4. ¿Cuál de los siguientes ángulos es agudo?

a) 90°

b) 180°

c) 200°

d) 50°

Solución
d) 50°. Es agudo por ser menor a 90°.

RECURSOS PARA DOCENTES

Artículo “Ángulos”

El presente artículo profundiza más en los diferentes tipos de ángulos que existen según su medida, su posición y sus características.

VER

Video “Propiedades de los ángulos de los polígonos”

En el presente video se muestra de manera animada cómo varían los ángulos externos e internos de los principales polígonos regulares.

VER

Artículo “Ángulo”

Este artículo detalla los elementos y tipos de ángulos, su construcción y el uso del transportador. Al final se proponen una serie de ejercicios relacionados.

VER