CAPÍTULO 5 / TEMA 5

CUADRILÁTEROS

Seguramente habrás notado a tu alrededor múltiples objetos con cuatro lados: una mesa, una caja o un teléfono móvil. Todos ellos tienen forma de cuadriláteros. Este tipo de figura tiene diversas clasificaciones según la longitud de sus lados y amplitud de sus ángulos. Con este artículos podrás diferenciar cada tipo de cuadrilátero y sabrás cómo calcular su perímetro.

¿qué es un cuadrilátero?

El término “cuadrilátero” proviene del latín quattuor que significa “cuatro” y latus que significa “lado”. Así que los cuadriláteros son aquellos polígonos que tienen cuatro lados. Estos lados pueden dibujarse de diversas formas: todos del mismo tamaño, de distintas medidas o con diferentes inclinaciones; pero lo fundamental es que estén unidos de forma tal que constituyan el contorno de una figura.

Todo cuadrilátero se caracteriza por tener cuatro lados. Estas figuras están en gran parte de los objetos que vemos en la cotidianidad: la pantalla que miramos de la computadora o el teléfono, las páginas de los libros, las paredes de la escuela, las hojas de un cuaderno, los anuncios publicitarios o simplemente en las cajas de nuestra casa.

VER INFOGRAFÍA

Elementos de un cuadrilátero

Todos los cuadriláteros tienen:

• 4 lados.
• 4 ángulos interiores.
• 4 ángulos exteriores.
• 4 vértices.
• 2 diagonales.

En la imagen puedes observar:

  • 4 lados: ABBCCD y DA.
  • 4 ángulos interiores: αβγδ.
  • 4 ángulos exteriores: α’β’γ’δ’.
  • 4 vértices: A, B, C y D.
  • 2 diagonales: AC y BD.

Propiedad de los ángulos

  • La suma de los ángulos interiores de un cuadrilátero es 360°.
  • La suma de los ángulos exteriores de un cuadrilátero es igual a 360°.

En el ejemplo anterior:

  • α + β + γ + δ = 360°
  • α’ + β’ + γ’ + δ’ = 360°

Clasificación de los cuadriláteros

Los cuadriláteros se clasifican en paralelogramos, trapecios y trapezoides.

Paralelogramos

Son figuras con lados paralelos dos a dos cuyas diagonales se cortan entre sí en segmentos iguales. Se clasifican en:

Figura Característica
Cuadrado

  • 4 lados iguales.
  • 4 ángulos rectos (90°).

 

Rectángulo

  • Lados iguales dos a dos.
  • 4 ángulos rectos (90°).
Rombo

  • 4 lados iguales.
  • Ángulos iguales dos a dos.
Romboide

  • Lados iguales dos a dos.
  • Ángulos iguales dos a dos.

Eje de simetría de los paralelogramos

Todos los paralelogramos tienen un eje de simetría. El eje de simetría es el segmento que divide a la figura en dos partes iguales. El punto de intersección de las diagonales es el centro de simetría del paralelogramo.

VER INFOGRAFÍA

¿Sabías qué?
Para diferenciar un rombo de un cuadrado invertido debes prestar atención a los ángulos, solo el cuadrado tiene cuatro ángulos rectos.

Trapecio

Son figuras con 2 lados paralelos denominados bases. Se clasifican en:

Figura Característica
Trapecio rectángulo

  • 2 ángulos rectos (90°), uno agudo (menor a 90°) y uno obtuso (mayor a 90°).
  • Un lado es perpendicular a sus bases (paralelas).
Trapecio isósceles

  • Sus lados no paralelos son de igual longitud.
  • 2 ángulos internos agudos (menores a 90°) y 2 ángulos obtusos (mayores a 90°) iguales entre sí.
  • Sus ángulos opuestos son suplementarios.
Trapecio escaleno

  • Todos sus lados y ángulos son diferentes.

Trapezoide

Son figuras sin lados paralelos.

Figura Características
  • Lados opuestos no paralelos.
La clasificación de cuadriláteros es de gran ayuda en la vida de algunos profesionales. Ingenieros, arquitectos y diseñadores habitualmente necesitan estos conocimientos básicos para poder construir, medir o diseñar. Pero no solo ellos acuden a estos conocimientos; quienes trabajan en publicidad también precisan la geometría.

CÁLCULO DEL PERÍMETRO DE PARALELOGRAMOS

El perímetro es la suma de las longitudes de los lados de cualquier figura geométrica, con excepción del círculo; sin embargo, con el fin de agilizar su cálculo puedes aplicar las siguientes fórmulas:

Figura Fórmula de perímetro 
Cuadrado

P = 4 × l
Rectángulo

P = 2 × l + 2 × b
Romboide

P = 2 × l1 + 2 × l2
Rombo

P = 4 × l

 

– Ejemplo:

Calcula el perímetro de este rectángulo:

P = 2 × b + 2 × a

P = 2 × 10 cm + 2 × 6 cm

P = 20 cm + 12 cm

P = 32 cm

El perímetro del rectángulo es de 32 cm.

 

– Otro ejemplo:

Calcula el área de este rombo:

P = 4 × l

P = 4 × 5 cm

P = 20 cm

El perímetro del rombo es de 20 cm.

Figuras geométricas en la publicidad

Las figuras geométricas son entendidas como símbolo de sencillez y perfección. Incluso, cada una de ellas, tiene un significado propio. Esto quiere decir que las figuras transmiten un concepto y las geométricas nos hablan de perfección. Las empresas no eligen al azar su logotipo sino que se dedican a estudiar su público e invierten mucho dinero para su elaboración. Un gran número de compañías optan por figuras geométricas porque está comprobado que tienen impacto seguro, profundo y duradero.

 

 

¡A practicar!

 

1. Clasifica las siguientes figuras como: paralelogramos, trapecio o trapezoide.

Solución

A. Paralelogramo

B. Paralelogramo

C. Trapecio

D. Trapecio

E. Paralelogramo

F. Trapezoide

G. Trapecio

H. Paralelogramo

I. Trapezoide

 

2. Calcula el perímetro de las siguientes figuras:

Solución

P = 2 × 12 cm + 2 × 9 cm

P = 24 cm + 18 cm

P = 42 cm

Solución

P = 4 × 7 cm

P = 28 cm

Solución

P = 2 × 12 cm + 2 × 6 cm

P = 24 cm + 12 cm

P = 36 cm

 

RECURSOS PARA DOCENTES

Enciclopedia “Matemática tomo 6”

En el tomo 6 de la enciclopedia de matemática encontrarás información detallada, ejemplos y ejercicios sobre una diversidad de temas vinculados a la geometría para el nivel primario.

VER

Artículo “Elementos de los cuadriláteros”

En este artículo encontrarás una sistematización de los elementos de los cuadriláteros, sus características y su clasificación.

VER

CAPÍTULO 2 / TEMA 2

SUSTRACCIÓN

La sustracción es una de las cuatro operaciones básicas de las matemáticas que nos permite resolver infinidad de situaciones cotidianas. Cuando decimos “me queda”, “me falta” o “la diferencia” nos referimos a la sustracción. A continuación aprenderás cómo restar número naturales.

La sustracción o resta es una operación aritmética elemental que consiste en quitar una cantidad a otra para averiguar la diferencia entre las dos; se representa con el signo “–” (menos). La resta es la operación opuesta a la suma. Para realizar problemas de este tipo es necesario reconocer el valor posicional de cada cifra que luego va a permitir ordenarlas.

la susTRACCIÓN 

La sustracción es una operación matemática que consiste en quitar o restar una cantidad a otra con el propósito de obtener la diferencia de ambas. Por esta razón, la sustracción es considerada la operación inversa a la adición.

Los términos de la sustracción son: minuendo, sustraendo y resta o diferencia. Observa:

  • El minuendo es la cantidad a la que se le va a restar la cantidad indicada por el sustraendo.
  • El sustraendo es la cantidad que se resta
  • La resta o diferencia es el resultado de la operación.

La sustracción no cumple con la propiedad conmutativa, es decir, el orden de los factores sí afecta el resultado, por lo tanto, para restar dos cantidades, la cantidad mayor, es decir el minuendo debe escribirse siempre en primer lugar.

¿cómo resolver una sustracción?

Si un número tiene más de tres cifras conviene usar el algoritmo de la resta. Esto consiste en ordenar el minuendo y el sustraendo de tal manera que las unidades, las decenas, las centenas y las unidades de mil estén en las mismas columnas. Luego restamos cada posición desde la derecha. Los pasos son los siguientes:

1. Restamos la unidades: 8 − 2 = 6.

2. Restamos las decenas: 7 − 2 = 5

3. Restamos las centenas: 5 − 3 = 2

4. Restamos la unidades de mil: 9 − 5.

¿Sabías qué?
Si le restamos cero (0) al cualquier número, la diferencia será el mismo número. Por eso el cero (0) es el elemento neutro de la sustracción.

 

– Otro ejemplo:

1. Restamos las unidades: 8 − 1 = 7.

2. Restamos las decenas: 7 − 2 = 5

3. Restamos las centenas: 3 − 3 = 0

4. Restamos las unidades de mil: 5 − 4 = 1

Los ejemplos anteriores representan una sustracción “sin canje” ya que cada cifra del minuendo es menor o igual a las cifras del sustraendo, lo que hace que estas cantidades se resten en forma sencilla.

La resta, al igual que el resto de las operaciones básicas de las matemáticas, tienen relación con muchas de las actividades de la vida cotidiana, por ejemplo, administrar dinero, preparar una receta de cocina, calcular la distancia que tenemos que recorrer para llegar a algún lugar, etc. A través de estas podemos resolver problemas y tomar decisiones.

¡Es tu turno!

Resuelve las sustracciones:

  • 8.971 – 3.801
  • 9.999 – 7.554
  • 5.649 – 2.628
Solución

SUSTRACCIÓN CON CANJE

Las sustracciones con y sin canje se resuelven de la misma manera. Solo se diferencian en que, al resolver sustracciones con canje, si en una posición el dígito del minuendo es menor que el del sustraendo, se desagrupa la cifra de la izquierda y se hace el canje. Para restas de números con más tres cifras los pasos son los siguientes:

1. Restamos las unidades: 9 − 6 = 3.

2. Como no le podemos restar 9 a 7, tomamos prestado o canjeamos una centena de la izquierda. Ahora, la decena 7 se transforma en 17 y la centena 3 se convierte en 2. Restamos 17 − 9 = 8.

3. Restamos las centenas: 2 − 2 = 0.

4. Restamos las unidades de mil: 4 − 2 = 2.

¿Sabías qué?
En una sustracción puede haber canje en una o más cifras.

– Otro ejemplo:

1. Restamos las unidades. Como no podemos restarle 9 a 1, prestamos una decena de de la izquierda. Ahora, a 11 le restamos 9 y la decena 3 se convierte en 2. Entonces. 11 − 9 = 2.

2. Restamos las decenas: 2 − 1 = 1.

 

3. Restamos las centenas: 7 − 3 = 4.

 

4. Restamos las unidades de mil: 9 − 6 = 3.

Ten presente que cuando el cero (0) está en el minuendo debes realizar las transformaciones respectivas. El mismo indica ausencia de valores en un orden específico.

¡Es tu turno!

Resuelve las siguientes sustracciones:

  • 4.353 – 1.845
  • 6.957 – 3.529
  • 9.843 – 7.626

Solución

En la sustracción no se cumple la propiedad conmutativa, lo que significa que el cambio del orden de los términos da como resultado diferente cantidad y cambia el signo de la respuesta. Esta operación tampoco cumple con la propiedad asociativa, lo que significa que cuando se restan más de dos números, importa el orden en el que se realiza la resta.

¡COMPRUEBA SUSTRACCIONES!

Cuando resuelvas sustracciones, es muy importante que verifiques su solución, de esta manera evitarás resultados incorrectos.

La sustracción se puede comprobar con su operación matemática inversa: la suma. Para comprobarla basta con sumar la diferencia con el sustraendo, si el resultado es igual al minuendo; entonces la operación está correcta. Ejemplo:

También podemos expresarlo como:

Sustraendo + Diferencia = Minuendo 

¡A practicar!

Resuelve las siguientes restas:

  • 2.652 − 1.398
Solución
2.652 − 1.398 = 1.254
  • 1.563 − 581
Solución
1.563 − 581 = 982
  • 3.862 − 1.475
Solución
3.862 − 1.475 = 2.387
  • 7.539 − 2.864
Solución
7.539 − 2.864 = 4.675
  • 2.841 − 1.563
Solución
2.841 − 1.563 = 1.278
  • 1.349 − 580
Solución
1.349 − 580 = 769

RECURSOS PARA DOCENTES

Artículo “Suma y resta utilizando el algoritmo de descomposición”

El siguiente artículo te permitirá trabajar con sus alumnos las operaciones de adición y sustracción por medio del algoritmo de descomposición.

VER

Artículo “Operaciones Matemáticas”

En este artículo se explican las operaciones básicas o elementales en matemática. También se hace un enfoque en sus diferentes propiedades y sus elementos.

VER

Video “Aprender a restar por descomposición”

Con este material audiovisual podrás explicar con mayor profundidad cómo realizar restas o sustracciones por medio de la descomposición de los números.

VER

CAPÍTULO 6 / TEMA 2

combinaciones

Las combinaciones forman parte de nuestra vida: combinamos el café con la leche en el desayuno, las frutas para una ensalada, o la ropa cuando nos vestimos. En ninguno de estos casos el orden de los elementos importa, por lo que pueden agruparse de distintas maneras, dos de ellas son las tablas de doble entrada y los diagramas de árbol.

¿Qué son las combinaciones?

Las combinaciones son una forma de agrupar elementos de un conjunto sin importar el orden. Por ejemplo, una ensalada es una combinación de verduras como cebolla, lechuga y tomate. No importa el orden en el que coloques las verduras, la ensalada será la misma.

Lo mismo sucede si vamos a una heladería. Si hay vasos y conos; y además, solo tienen tres sabores para escoger: fresa, chocolate y vainilla, podemos hacer varias combinaciones, como un cono con helado de fresa o una vaso con helado de vainilla.

Podemos representar estos arreglos por medio de tablas de doble entrada o diagramas de árbol.

¿Sabías qué?
El cubo de Rubik tiene más de 40 trillones de combinaciones.

Tablas de doble entrada

Las tablas de doble entrada son una forma gráfica de analizar los datos y combinarlos de todas las maneras posibles. Estas tablas ordenan los elementos para poder ilustrar todas las combinaciones.

– Ejemplo:

Esta tabla muestra las posibles combinaciones entre los conos, los vasos y los tres sabores de helados de la heladería.

En total hay 6 posibles combinaciones porque:

2 recipientes × 3 sabores = 6 combinaciones posibles

 

– Otro ejemplo:

Un grupo de niños quieren comprar artículos de playa: cubo, pala y rastrillo; y a estos elementos los venden de tres diferentes colores. Para saber cuántos artículos de colores distintos pueden comprar, deben comparar los artículos y los colores.

Hay 9 combinaciones posibles porque:

3 colores × 3 artículos = 9 combinaciones posibles

El sistema Braille

El sistema Braille les permite a las personas no videntes poder leer artículos, libros y cuentos, entre otros textos. Este sistema está compuesto por la combinación de seis puntos en relieve que permiten obtener 64 combinaciones diferentes, incluida la que no tiene ningún punto en relieve que se utiliza para separar palabras y números.

diagrama de árbol

Los diagramas de árbol son formas gráficas de contar las posibles combinaciones que pueden surgir entre varios elementos. En ellos podemos usar dibujos, letras o palabras.

– Ejemplo:

Este diagrama de árbol muestra las posibles combinaciones entre los conos, los vasos y los tres sabores de helados posibles en la heladería.

           

Hay 6 combinaciones posibles porque:

2 recipientes × 3 sabores = 6 combinaciones posibles

 

 

– Otro ejemplo:

Tomás tiene 2 pantalones, 2 camisas y 2 corbatas para vestirse, ¿cuales son las posibles opciones?

                       

Tomás tiene 8 combinaciones posibles porque:

2 pantalones × 2 camisas × 2 corbatas = 8 combinaciones posibles

 

Cuadro de Punnett

Las combinaciones de genes otorgan a un organismo rasgos particulares. Estas se representan en el cuadro de Punnett, el cual determina todos los posibles arreglos de genes que se pueden producir en el cruce entre dos organismos. Los rasgos distintos que tenemos se deben a la unión entre dos copias de un gen, que provienen de nuestros progenitores.

¡A practicar!

1. En la siguiente tabla se encuentran los útiles que compró María para el comienzo de clases. ¿Cuántas combinaciones de útiles y colores compró?

Solución
Puede armar 12 combinaciones.

2. Todas las mañanas, la mamá de Camila le prepara el desayuno y ella puede elegir algunas opciones: puede combinar una bebida con algo dulce para acompañar. Observa las opciones de Camila y elabora diagramas de árbol para saber cuántas combinaciones tiene para armar su desayuno:

Solución
Camila tiene 9 combinaciones para desayunar.

RECURSOS PARA DOCENTES

Artículo “Formas de agrupar”

Este recurso te permitirá profundizar la información sobre el diagrama de árbol.

VER

Artículo “Combinatoria”

El siguiente recurso complementará la información sobre combinaciones y otros temas relacionados.

VER

CAPÍTULO 2 / TEMA 5 (REVISIÓN)

OPERACIONES │ ¿qué aprendimos?

OPERACIONES CON DECIMALES

Con los números decimales podemos realizar las mismas operaciones aritméticas que con los números enteros. Para la suma y la resta, las cifras deben tener la misma cantidad de decimales y las comas deben estar alineadas en una línea vertical. En la multiplicación, el resultado tendrá el total de decimales que tengan los factores. Existen tres posibles casos para dividir con decimales: decimal entre entero, entero entre decimal y decimal entre decimal.

Los decimales son parte de nuestra vida cotidiana, por ejemplo, los precios de los artículos vienen por lo general expresados en cifras decimales.

OPERACIONES COMBINADAS

Con frecuencia, en matemática debemos realizar cálculos que combinan diferentes operaciones algebraicas, así como varios tipos de números, y en ocasiones se requiere el uso de signos de agrupación que determinan las prioridades de dichas operaciones. Debemos resolver primero las operaciones dentro del paréntesis, luego las del corchete y, por último, las de las llaves. Es importante recordar que las multiplicaciones y las divisiones se resuelven primero que las sumas y las restas.

Los signos de agrupación sirven para expresar el orden de las operaciones. Para aplicar propiedades como la asociativa y la distributiva podemos usar paréntesis.

ECUACIONES

Las ecuaciones son expresiones algebraicas compuestas por miembros separados por una igualdad. Los miembros contienen términos y al menos una variable, también llamada incógnita. Por lo general, para obtener el valor de las incógnitas debemos realizar despejes: proceso que consiste en aplicar en ambos miembros de la ecuación la operación opuesta del término o coeficiente que se desea despejar.

Las ecuaciones son expresiones que deben contener una igualdad y al menos una variable o incógnita.

INECUACIONES

Son expresiones que muestran relaciones de desigualdad por medio de símbolos como <, >, o . Deben contener por lo menos una variable, y la solución la representamos a través de un intervalo de valores que satisfacen la desigualdad. Los despejes en las inecuaciones siguen las mismas reglas que en las ecuaciones pero, además, si se multiplica o divide por un número negativo, debemos cambiar el sentido de la desigualdad.

Las inecuaciones se pueden utilizar para plantear situaciones cuya variable está limitada por algún rango de valores, por ejemplo, la rapidez de un vehículo.

CAPÍTULO 4 / TEMA 4

Figuras tridimensionales

UNA HOJA DE PAPEL O UNA REGLA GRADUADA SON OBJETOS PLANOS QUE SOLO TIENEN DOS DIMENSIONES: ALTO Y ANCHO. PERO TAMBIÉN HAY OBJETOS QUE TIENEN PROFUNDIDAD, COMO UNA CAJA DE ZAPATOS O UN VASO. ESTOS OBJETOS TIENEN UNA FORMA TRIDIMENSIONAL, ES DECIR, TIENEN TRES DIMENSIONES. SON MÁS COMUNES DE LOS QUE CREES Y PUEDES VERLOS EN MUCHOS OBJETOS.

¿QUÉ ES UNA FIGURA TRIDIMENSIONAL?

ES UNA FIGURA QUE TIENE TRES DIMENSIONES: ALTO, ANCHO Y LARGO.

¿SABÍAS QUÉ?
LAS FIGURAS TRIDIMENSIONALES TAMBIÉN SON CONOCIDAS COMO CUERPOS GEOMÉTRICOS.

HAY MUCHAS FIGURAS TRIDIMENSIONALES, LAS MÁS COMUNES SON:

ELEMENTOS DE LAS FIGURAS TRIDIMENSIONALES

LAS FIGURAS TRIDIMENSIONALES TIENEN CARAS, ARISTAS Y VÉRTICES.

  • CARAS: SON LOS LADOS PLANOS O CURVOS.
  • ARISTAS: SON LAS LÍNEAS RECTAS QUE UNEN LAS CARAS.
  • VÉRTICES: SON LOS PUNTOS QUE UNEN DOS O MÁS CARAS.

POR EJEMPLO, ESTE CUBO TIENE 6 CARAS, 12 ARISTAS Y 8 VÉRTICES.

MUCHOS DE NUESTROS JUGUETES TIENEN FORMAS TRIDIMENSIONALES. OBSERVA ESTA IMAGEN. ¿PUEDES IDENTIFICAR ALGUNA DE ESAS FORMAS? ¡CLARO! LOS OBJETOS DE COLOR ROJOS SON CILINDROS, LOS OBJETOS DE COLOR AMARILLOS SON CUBOS Y PRISMAS RECTANGULARES; Y EL OBJETO AZUL UBICADO EN LA PARTE DE ARRIBA ES UNA PIRÁMIDE. TODOS SON CUERPOS GEOMÉTRICOS.

 

EN ESTA TABLA MUESTRA LOS ELEMENTOS DE CADA FIGURA:

FIGURAS TRIDIMENSIONAL ELEMENTOS

CUBO

6 CARAS

8 VÉRTICES

12 ARISTAS

ESFERA

1 CARA

CILINDRO

3 CARAS

2 ARISTAS

CONO

 

2 CARAS

1 ARISTAS

 

PRISMA RECTANGULAR

6 CARAS

8 VÉRTICES

12 ARISTAS

PIRÁMIDE

5 CARAS

5 VÉRTICES

8 ARISTAS

¿CÓMO CONSTRUIR UN PRISMA RECTANGULAR?
CON ESTA PLANTILLA PODRÁS CONSTRUIR UN PRISMA RECTANGULAR. COMO VES, LA FIGURA ESTÁ FORMADA POR 6 CARAS: 4 CARAS CON FORMA DE RECTÁNGULO Y 2 CARAS CON FORMA DE CUADRADO. CON AYUDA DE UN ADULTO, COPIA ESTE PLANTILLA EN UNA CARTULINA, RECÓRTALA, DOBLA LAS LÍNEAS Y LUEGO PÉGALAS. CON ESTOS PASOS TENDRÁS LA FIGURA TRIDIMENSIONAL EN TUS MANOS.

TIPOS DE FIGURAS TRIDIMENSIONALES

LAS FIGURAS TRIDIMENSIONALES PUEDEN SER DE DOS TIPOS: POLIEDROS O CUERPOS REDONDOS.

POLIEDROS CUERPOS REDONDOS
SOLO TIENEN SUPERFICIES PLANAS Y NO PUEDEN RODAR. TIENEN AL MENOS UN SUPERFICIE CURVA Y SÍ PUEDEN RODAR.
EJEMPLO:

EJEMPLO:

VER INFOGRAFÍA

FIGURAS TRIDIMENSIONALES EN LA VIDA COTIDIANA

LA MAYORÍA DE LOS OBJETOS QUE NOS RODEAN TIENE TRES DIMENSIONES. ESTOS SON ALGUNOS EJEMPLOS:

 

¿QUÉ FORMA TIENEN?

OBSERVA LA IMAGEN ANTERIOR Y RESPONDE LAS PREGUNTAS:

  • ¿CUÁLES OBJETOS TIENEN FORMA DE CUBO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS TIENEN FORMA DE ESFERA?
SOLUCIÓN

  • ¿CUÁLES OBJETOS TIENEN FORMA DE PRISMA RECTANGULAR?
SOLUCIÓN

  • ¿CUÁLES OBJETOS TIENEN FORMA DE CILINDRO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS TIENEN FORMA DE CONO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS TIENEN FORMA DE PIRÁMIDE?
SOLUCIÓN

EL CUBO DE RUBIK ES UNA ESPECIE DE ROMPECABEZAS MECÁNICO. CADA CARA DEL CUBO TIENE UN COLOR DIFERENTE: ROJO, AZUL, AMARILLO, VERDE, NARANJA Y BLANCO. EL JUGADOR TRATA DE MEZCLAR TODOS LOS COLORES Y LUEGO HACER QUE CADA CARA VUELVA A TENER TODAS SUS PARTES DEL COLOR ORIGINAL. ¿TÚ TIENES UNO? ¡INTENTA JUGAR!

 

¡A PRACTICAR!

1. COLOREA CON ROJO LOS CUERPOS REDONDOS.

SOLUCIÓN

 

2. RESPONDE LAS PREGUNTAS:

  • ¿CON CUÁL FIGURA HARÍAS UNA PELOTA DE FÚTBOL?

SOLUCIÓN
2. ESFERA.
  • ¿CON CUÁL FIGURA HARÍAS UNA CAJA DE ZAPATOS?

SOLUCIÓN
2. PRISMA RECTANGULAR.
  • ¿CON CUAL FIGURA HARÍAS UN DADO?

SOLUCIÓN
1. CUBO.

CAPÍTULO 2 / TEMA 4

INECUACIÓN

No todas las situaciones que se plantean en matemática tienen una solución puntual o exacta. Existen casos donde la respuesta a un planteamiento viene representada por un intervalo de valores que satisfacen la condición. Esto podemos verlo en las inecuaciones: expresiones matemáticas con un intervalo de números como solución.

la INECUACIÓN y sus elementos

Una inecuación es una expresión matemática que contiene al menos una variable y está caracterizada por incluir símbolos de desigualdad entre los miembros, de manera que su resultado es un conjunto de valores que la variable puede tomar para que se cumpla la desigualdad planteada.

Los elementos de las inecuaciones son los siguientes:

  • Miembros: son las partes de una inecuación que están separadas por el signo de la desigualdad.
  • Términos: son las expresiones literales o numéricas separadas por los signos más (+) o menos (−).
  • Variable: es la letra que representa al conjunto de valores que satisfacen la desigualdad.
  • Símbolo de desigualdad: es el que indica la relación entre los miembros, pueden ser <, >, ≤ o ≥.

Grado de una inecuación

El grado de una inecuación se encuentra indicado por el mayor exponente que tenga la variable. Si el mayor exponente de una inecuación es 3, esta es de tercer grado; si es 2, es de segundo grado; y si no tiene exponente, se entiende que está elevado a la unidad y, por lo tanto, la inecuación es de primer grado.

¿qué son los intervalos?

Los intervalos son los rangos de valores que definen la solución de la inecuación. Estos pueden ser abiertos, cerrados o semiabiertos.

  • Intervalos abiertos: no incluyen los límites del intervalo. Se denotan con paréntesis, por ejemplo (a, b) y en la gráfica se representan con el símbolo ○.
  • Intervalos cerrados: incluyen los límites del intervalo. Se representa con corchetes, por ejemplo [a, b] y en la gráfica se representan con el símbolo ●.
  • Intervalos semiabiertos: incluye uno de los extremos del intervalo. Así que un extremo es abierto y el otro es cerrado, por ejemplo [a, b).

¿Sabías qué?
Los límites de intervalos que incluyen a + o − siempre son abiertos.

– Ejemplo:

Este dibujo muestra todos los números comprendidos entre el 1 y el 7 pero no incluye ni al 1 ni al 7 porque están representados con ○. Cuando los extremos de un intervalo no están incluidos se usan paréntesis y el intervalo se denota como (1,7).

– Otros ejemplos:

  • (−5,1]

  • [1,7]

  • [−5,1)

símbolos de desigualdad

Símbolo Significado Ejemplo Representación en la recta numérica Notación del intervalo
> Mayor que x > 5 (5,+)
< Menor que x < 5 (−,5)
Mayor o igual que x ≥ 5 [5,+)
Menor o igual que x ≤ 5 (−,5]
Las soluciones de las inecuaciones pueden ser intervalos cuyos límites estén completamente definidos y conocidos, por ejemplo, [−2, 19) o bien, por rangos donde alguno o ambos límites incluyen el ∞ (ya sea hacia el valor positivo o negativo). Cuando la solución es (−∞, +∞) en notación de conjunto se dice que pertenece a los reales.

¿CÓMO resolver UNA INECUACIÓN?

El procedimiento es muy similar al que empleamos cuando despejamos ecuaciones. Las reglas son las siguientes:

  1. Todo número que sume en un miembro de la desigualdad, pasa al otro miembro como resta.
  2. Todo número que reste en un miembro de la desigualdad, pasa al otro miembro como suma.
  3. Si en un miembro de la desigualdad hay un número negativo que multiplica a otro, este pasa al otro lado a dividir (con su signo) y el signo de desigualdad se debe invertir.
  4. Si en un miembro de la desigualdad hay un número negativo que divide, pasa al otro lado a multiplicar (con su signo) y el signo de desigualdad se debe invertir.
En la imagen podemos ver cómo se comparan por medio de símbolos de desigualdad dos segmentos de rectas. En este caso, la expresión indica que el segmento que va de A’C tiene una mayor longitud que el segmento AB. No todas las expresiones que contengan desigualdades son inecuaciones, ya que además, se requiere de por lo menos una variable.

– Ejemplo 1:

x-3> 1

Como el número 3 está acompañado del signo negativo, pasa al otro lado del símbolo “mayor que” con el signo positivo.

x> 1+3

Luego resolvemos la suma.

x> 4

La solución de esta inecuación incluye a todos lo números mayores a 4, más no al 4.

Solución: (4,+∞)

En una recta numérica lo representamos así:

Si deseamos comprobar la solución, basta con sustituir la variable con valores mayores a 4. Si satisface la desigualdad, el resultado será correcto.

Recuerda que el intervalo es abierto y por lo tanto no debes tomar en cuenta al número 4. Observa:

x-3> 1

\boldsymbol{4}-3> {\color{Red} \boldsymbol{1> 1}}     No satisface la desigualdad porque 1 = 1.

Si sustituimos por valores mayores a 4, como 5, 6 o 7, la desigualdad sí se cumple. Observa:

\boldsymbol{5}-3> 1\Rightarrow {\color{Blue} \boldsymbol{2> 1}}

\boldsymbol{6}-3> 1\Rightarrow \boldsymbol{{\color{Blue} 3> 1}}

\boldsymbol{7}-3> 1\Rightarrow \boldsymbol{{\color{Blue} 4> 1}}


– Ejemplo 2:

-4x-8\geq -2

Primero unimos los términos semejantes en cada miembro. Los que están como resta pasan al otro lado de la igualdad a sumar.

-4x\geq -2+8

Después resolvemos las operaciones.

-4x\geq 6

Como −4 multiplica a la variable, esta pasa al otro miembro de la inecuación a dividir. Mantenemos el signo negativo e invertimos el signo de la desigualdad.

x\leq -\frac{6}{4}

La solución de esta inecuaçión incluye a todos los números menores o iguales a −6/4.

Solución: (−∞,−6/4]

En la recta numérica lo representamos así:

Comprobamos el resultado con números iguales y menores a −6/4.

-4\left ( \boldsymbol{-\frac{6}{4}} \right )-8\geq -2\Rightarrow 6-8\geq -2\Rightarrow {\color{Blue} \boldsymbol{-2\geq -2}}

-4\left ( \boldsymbol{-\frac{7}{4}} \right )-8\geq -2\Rightarrow 7-8\geq -2\Rightarrow {\color{Blue} \boldsymbol{-1\geq -2}}

-4\left ( \boldsymbol{-\frac{8}{4}} \right )-8\geq -2\Rightarrow 8-8\geq -2\Rightarrow {\color{Blue} \boldsymbol{0\geq -2}}


– Ejemplo 3:

-3x+5> 15+2x

Unimos términos semejantes en cada miembro. Los que están como suma pasan al otro lado de la igualdad a restar.

-3x-2x> 15-5

Resolvemos las operaciones.

-5x> 10

Como −5 multiplica a la variable, este número pasa al otro miembro de la inecuación a dividir. Mantenemos el signo negativo e invertimos el signo de la desigualdad.

x< -\frac{10}{5}

x< -2

La solución incluye a todos los números menores a −2.

Solución: (−∞,−2)

En la recta numérica lo representamos así:

Comprobamos el resultado al sustituir la variable con números menores a −2.

-3(\boldsymbol{-3})+5> 15+2(\boldsymbol{-3})\Rightarrow 9+5> 15-6\Rightarrow {\color{Blue} \boldsymbol{14> 9}}

-3(\boldsymbol{-4})+5> 15+2(\boldsymbol{-4})\Rightarrow 12+5> 15-8\Rightarrow {\color{Blue} \boldsymbol{17>7}}

-3(\boldsymbol{-5})+5> 15+2(\boldsymbol{-5})\Rightarrow 15+5> 15-10\Rightarrow {\color{Blue} \boldsymbol{20>5}}

DIFERENCIA ENTRE ECUACIÓN E INECUACIÓN

Una de las principales diferencias entre las ecuaciones y las inecuaciones se debe a que la primera emplea igualdad entre sus miembros, mientras que la segunda utiliza la desigualdad. Esto quiere decir que la solución de una ecuación representa un valor puntual en la recta real, mientras que en las inecuaciones, las soluciones se expresan mediante intervalos, lo que significa que entre los dos extremos del intervalo hay infinitos números que satisfacen la inecuación.

Las operaciones para despejar las variables en las inecuaciones obedecen las mismas reglas que con las ecuaciones, pero adicionalmente, debemos tener especial atención cuando multiplicamos o dividimos ambos miembros por un número negativo, ya que al hacerlo, debemos cambiar el sentido de la desigualdad.

USOS DE LAS INECUACIONES

Las inecuaciones tienen infinidades de usos, que van desde situaciones cotidianas hasta aplicaciones más avanzadas a nivel universitario como la programación lineal. Casi cualquier situación que implique un valor o intervalo límite dentro de los cuales pueda tomar valor una variable, puede ser formulado a partir de una inecuación. Por ejemplo:

  • Para expresar el tiempo máximo que disponemos para llegar a un lugar.
  • Para representar el saldo disponible en nuestro teléfono celular para realizar llamadas.
  • Para indicar el peso máximo que puede registrar una balanza.
  • Para expresar el límite máximo de velocidad en una autopista.
  • Para expresar costos totales máximos o utilidades mínimas en una empresa.

¡A practicar!

Resuelve las siguientes inecuaciones.

  • 2x-5\leq 5x
Solución

2x-5\leq 5x

2x-5x\leq 5

-3x\leq 5

x\geq -\frac{5}{3}

  • 5x< 3x-5
Solución

5x< 3x-5

5x-3x< -5

2x< -5

x< -\frac{5}{2}

  • 4x+6> 2x-8
Solución

4x+6> 2x-8

4x-2x> -8-6

2x> -14

x> -\frac{14}{2}

x> -7

  • 13x-3x+2-5x\geq -10+2x+6
Solución

13x-3x+2-5x\geq -10+2x+6

13x-3x-5x-2x\geq -10+6-2

3x\geq -6

x\geq -\frac{6}{3}

x\geq -2

  • 5x+6-3x> 34+8x-10
Solución

5x+6-3x> 34+8x-10

5x-3x-8x> 34-10-6

-6x> 18

x< -\frac{18}{6}

x< -3

  • 2\left ( x-3 \right )\leq 4x+2
Solución

2\left ( x-3 \right )\leq 4x+2

2x-6\leq 4x+2

2x-4x\leq 2+6

-2x\leq 8

x\geq -\frac{8}{2}

x\geq -4

RECURSOS PARA DOCENTES

Artículo “Inecuaciones”

En este artículo encontrará información acerca de las inecuaciones, sus elementos y algunos ejemplos.

VER 

Artículo “Inecuaciones con valor absoluto”

Con este recurso podrá ampliar la información sobre las inecuaciones y aplicarla para resolver estos cálculos con valor absoluto.

VER

Artículo “Inecuación de primer grado”

El artículo describe cómo resolver problemas que involucren inecuaciones con variables elevadas a la unidad, es decir, de primer grado.

VER

CAPÍTULO 3 / TEMA 3

LA MASA

¿HAS VISTO LAS ETIQUETAS DE LOS ALIMENTOS QUE TIENES EN CASA? LA MAYORÍA MUESTRA LA CANTIDAD DE PRODUCTO QUE TIENEN LOS EMPAQUES, POR EJEMPLO, 1 KILOGRAMO DE ARROZ O 500 GRAMOS DE AZÚCAR. ESTO SE CONOCE COMO MASA. TODOS LOS OBJETOS QUE ESTÁN A TU ALREDEDOR TIENEN MASA Y PARA MEDIRLA USAMOS LA BALANZA. 

TOMA ALGUNOS JUGUETES CON UNA SOLA MANO. SENTIRÁS MÁS PESO EN ESA MANO PORQUE TIENES MÁS COSAS QUE EN LA OTRA. PODEMOS COMPARAR LA MASA DE DOS OBJETOS DE ESA FORMA: UNO EN CADA MANO. POR EJEMPLO, UN LIBRO PESA MÁS QUE UNA PLUMA. PERO SI QUEREMOS SABER LA MASA EXACTA TENEMOS QUE USAR UNA BALANZA. ESTE PROCESO SE LLAMA “PESAR”.

UNIDAD DE MASA

CUANDO QUEREMOS MEDIR LA MASA DE OBJETOS GRANDES USAMOS EL KILOGRAMO, PERO CUANDO LOS OBJETOS SON PEQUEÑOS USAMOS EL GRAMO. POR EJEMPLO:

  • UN GORILA PUEDE PESAR 160 KILOGRAMOS Y UNA ARAÑA PUEDE PESAR 160 GRAMOS.

 

  • UNA BALLENA PUEDE PESAR 23.000 KILOGRAMOS Y UN LÁPIZ PUEDE PESAR 50 GRAMOS.

 

  • UN COCODRILO PUEDE PESAR 400 KILOGRAMOS Y UNOS GUISANTES PUEDEN PESAR 2 GRAMOS.

LA BALANZA

LA BALANZA ES UN INSTRUMENTO QUE NOS PERMITE MEDIR LA MASA DE DISTINTOS OBJETOS. UNA DE LAS MÁS COMUNES ES LA BALANZA DE DOS PLATILLOS.

PODEMOS VER BALANZAS EN DIVERSOS LUGARES: LOS MÉDICOS SUELEN TENERLAS PARA MEDIR LA MASA DE SUS PACIENTES, ALGUNAS PERSONAS TIENEN UNA EN SU CASA Y EN ALGUNAS COCINAS LAS HAY PARA MEDIR LA MASA DE LOS ALIMENTOS.

TIPOS DE BALANZA

EXISTEN BALANZAS MECÁNICAS Y ELECTRÓNICAS. LAS BALANZAS MECÁNICAS TIENEN PLATILLOS Y ESFERAS O REGLAS CON MARCAS QUE INDICAN CUÁL ES EL PESO DEL OBJETO. POR OTRA PARTE, LAS BALANZAS ELECTRÓNICAS TIENEN PANTALLAS DIGITALES QUE NOS MUESTRAN DIRECTAMENTE EL VALOR DE LA MEDIDA DE LA MASA.

LA BALANZA ANALÓGICA ES UN TIPO DE BALANZA MUY COMÚN. CUANDO SUBIMOS A UNA BALANZA ANALÓGICA, UNA PEQUEÑA AGUJA GIRA EN UN CÍRCULO PARECIDO A UN RELOJ Y SE DETIENE AL LLEGAR AL NÚMERO QUE CORRESPONDE A LA MASA DE NUESTRO CUERPO. EL NÚMERO SEÑALADO INDICA LOS KILOGRAMOS QUE PESAMOS. ES PROBABLE QUE TENGAS UNA EN CASA, ¡INTENTA MEDIR TU MASA!

VER INFOGRAFÍA

¡COMPAREMOS LA MASA DE LOS OBJETOS!

PARA PESAR LOS OBJETOS USAMOS LA BALANZA. LA BALANZA DE PLATILLOS NOS PERMITE COMPARAR MASAS DE MANERA SENCILLA. OBSERVA:

  • LAS DOS ESFERAS AZULES TIENE EL MISMO PESO PORQUE LA BALANZA ESTÁ EN EQUILIBRIO, ES DECIR, ESTÁN AL MISMO NIVEL.

 

  • LA ESFERA ROJA TIENE MAYOR PESO QUE LA ESFERA AZUL PORQUE ESTÁ INCLINADA HACIA ABAJO DE SU LADO.

¡ES TU TURNO!

¿CUÁL CILINDRO PESA MÁS?

SOLUCIÓN
EL CILINDRO VERDE PESA MÁS QUE EL CILINDRO AZUL.

¿SABÍAS QUÉ?
LA BALANZA DE PLATILLOS ES MUY ANTIGUA. LA USABAN LOS EGIPCIOS EN EL AÑO 5000 A. C.

SI LA MASA DE UN OBJETO YA ES CONOCIDO, PODEMOS SABER LA MASA DE OTRO. POR EJEMPLO:

  • LOS BANANOS PESAN 1 KILOGRAMO PORQUE LA BALANZA ESTÁ EN EQUILIBRIO CON LA BARRA DE 1 KILOGRAMO.

 

 

  • LA PATILLA PESA MÁS DE UN 1 KILOGRAMO PORQUE LA BALANZA ESTÁ INCLINADA HACIA ABAJO DEL LADO DE LA PATILLA.

 

 

  • EL LIBRO PESA MENOS DE 1 KILOGRAMO PORQUE LA BALANZA ESTÁ INCLINADA HACIA ABAJO DEL LADO DE LA BARRA DE 1 KILOGRAMO.

 

EL KILOGRAMO EN LA VIDA COTIDIANA

AUNQUE QUIZÁS NO LO HAYAS NOTADO, UTILIZAMOS EL KILOGRAMO CASI A DIARIO EN NUESTRA VIDA. POR EJEMPLO:

  • CUANDO VAMOS A COMPRAR Y PEDIMOS 1 KILOGRAMO DE PAN.
  • CUANDO EL MÉDICO NOS PESA Y DICE QUE HEMOS CRECIDO Y AUMENTAMOS 3 KILOGRAMOS.
  • CUANDO EN EL GIMNASIO ALGUIEN DECIDE USAR PESAS DE 2 KILOGRAMOS PARA FORMAR SUS MÚSCULOS.
EN LOS GIMNASIOS SE UTILIZAN OBJETOS QUE TIENEN PESOS CONOCIDOS PARA HACER EJERCICIOS. ESTOS SE LLAMAN “PESAS”. LAS PESAS SIRVEN PARA MEJORAR EL RENDIMIENTO FÍSICO Y AUMENTAR LA FUERZA. LAS PESAS PUEDEN TENER DIVERSAS MASAS: 1 KILOGRAMO, 5 KILOGRAMOS, 10 KILOGRAMOS, 15 KILOGRAMOS, ETC.

¡A PRACTICAR!

¿CUÁL OBJETO PESA MÁS?

SOLUCIÓN
LA PIÑA PESA MÁS QUE EL LIMÓN.

 

SOLUCIÓN
LA CALABAZA PESA MÁS QUE LA FRESA.

 

SOLUCIÓN
LAS UVAS PESAN MÁS QUE LA HOJA.

 

SOLUCIÓN
EL MATERO PESA MÁS QUE LA BARRA DE 2 KILOGRAMOS.

 

SOLUCIÓN
LA BARRA DE 2 KILOGRAMOS ES MÁS PESADA QUE EL PIMENTÓN.

CAPÍTULO 2 / TEMA 1

ADICIÓN

La adición o suma es una de las operaciones básicas de las matemáticas. La usamos casi todos los días y gracias a ella sabemos cuántos alumnos hay en una escuela, cuántas pelotas hay en la cancha o cuántos libros tenemos. Como verás, sumar números de 4 cifras implica un orden y podemos hacerlo de acuerdo a sus propiedades.

La adición es una operación matemática que nos permite agregar o reunir dos o más cantidades en un mismo número. Los términos de la adición son los sumandos y suma. Las cantidades que se suman son los sumandos y el resultado es la suma. Cuando los números son pequeños podemos hacer sumas con los dedos y escribirlo de forma horizontal.

la adición y sus elementos

La adición es una operación que consiste en añadir una cantidad a otra. Los términos de la adición son los sumandos y  la suma.

¿CÓMO resolver una adición?

Si un número tiene más de tres cifras conviene usar el algoritmo de la suma. Esto consiste en ordenar los sumandos de tal manera que las unidades, las decenas, las centenas y las unidades de mil están en las mismas columnas. Luego sumamos cada posición desde la derecha. Los pasos son los siguientes:

1. Sumamos las unidades: 8 + 1 = 9.

2. Sumamos las decenas: 7 + 2 = 9.

 

3. Sumamos las centenas: 4 + 3 = 7.

 

4. Sumamos las unidades de mil: 3 + 3 = 6.

– Otros ejemplos:

 

¡Es tu turno!

Realiza esta sumas:

  • 8.605 + 1.382
  • 5.074 + 4.523
  • 1.841 + 7.106
Solución

 

Equivalencia de interés

  • 1 unidad de mil = 1.000 unidades
  • 1 centena = 100 unidades
  • 1 decena = 10 unidades
  • 1 unidad = 1 unidad

¿Sabías qué?
La operación opuesta a la adición es la sustracción o resta.
Cuando colocamos los sumandos uno sobre otro y hacemos coincidir las posiciones, empleamos el algoritmo de la suma. En este proceso sumamos primero las unidades, luego las decenas, las centenas y finalmente las unidades de mil. Cuando un resultado es mayor a 9, se coloca la decena en la columna de la izquierda y se reagrupan las cifras.

¿cómo resolver una adición con llevadas?

Las adiciones o sumas con llevadas las podemos resolver de la misma manera que las adiciones anteriores, la única diferencia es que debemos reagrupar las decenas, centenas o unidades de mil cuando una de las sumas de las posiciones sea superior a 9. Para sumas de números de cuatro cifras los pasos son estos:

1. Sumamos las unidades: 2 + 5 = 7.

 

2. Sumamos las decenas: 3 + 6 = 9.

 

3. Sumamos las centenas: 6 + 6 = 12. Como el resultado es mayor a 9 colocamos la unidad (2) en la casilla debajo de la suma de centenas y el 1 lo colocamos en la columna de las unidades de mil.

4. Sumamos las unidades de mil y consideramos el 1 agregado antes: 1 + 2 + 3 = 6.

 

– Otros ejemplos:

 

¿Sabías qué?
En una adición o suma podemos hacer llevadas en una o más cifras.
La adición está presente en muchas situaciones de la vida diaria. Si observas a tu alrededor, hay muchas cosas en las que podemos utilizar esta operación. Uno de los casos más frecuentes es cuando compramos productos en el supermercado. Allí debemos sumar todos los precios de cada artículo para pagar un total. Las máquinas registradoras hacen este cálculo rápidamente.

 

propiedades de la adición

La adición tiene algunas propiedades que la caracterizan. Estas son: la propiedad conmutativa, la propiedad asociativa y el elemento neutro.

Propiedad conmutativa

Al invertir o cambiar de lugar los sumandos el resultado es el mismo, es decir, el orden de los sumandos no altera la suma obtenida.

Propiedad asociativa

Sin importar la agrupación de los términos el resultado será el mismo.

Elemento neutro

La suma de todo número más cero es igual al mismo número, de manera que 0 es el elemento neutro de la suma.

1.568 + 0 = 1.568

 

El ábaco es un instrumento que sirve para efectuar operaciones matemáticas sencillas. Este es un cuadro de madera con barras paralelas por las que corren bolas movibles. El ábaco no solo nos ayuda a sumar y restar con mayor fluidez, sino que además podemos resolver operaciones más complejas como la multiplicación y la división.

 

¡A practicar!

1. Resuelve las siguientes adiciones:

  • 5.328 + 2.419
Solución

  • 3.686 + 5.607
Solución

  • 4.368 + 5.177
Solución

  • 8.645 + 480
Solución

  • 5.502 + 3.199
Solución

  • 6.098 + 2.174
Solución

 

2. Resuelve estas adiciones y aplica la propiedad conmutativa:

  • 560 + 199
Solución

560 + 199 = 759

199 + 560 = 759

  • 1.795 + 528
Solución

1.795 + 528 = 2.323

528 + 1.795 = 2.323

  • 237 + 797
Solución

237 + 797 = 1.034

797 + 237 = 1.034

  • 1.300 + 788
Solución

1.300 + 788 = 2.088

788 + 1.300 = 2.088

 

3. Realiza la siguientes sumas y aplica la propiedad distributiva.

  • 150 + 430 + 670
Solución

(150 + 430) + 670 = 580 + 670 = 1.250

150 + (430 + 670) = 150 + 1.100 = 1.250

  • 720 + 340 + 480
Solución

(720 + 340) + 480 = 1.060 + 480 = 1.540

720 + (340 + 480) = 720 + 820 = 1.540

  • 500 + 200 + 400
Solución

(500 + 200) + 400 = 700 + 400 = 1.100

500 + (200 + 400) = 500 + 600 = 1.100

  • 6.000 + 500 + 1.000
Solución

(6.000 + 500) + 1.000 = 6.500 + 1.000 = 7.500

6.000 + (500 + 1.000) = 6.000 + 1.500 = 7.500

 

RECURSOS PARA DOCENTES

Artículo “Cómo enseñar a sumar y a restar”

El siguiente material le brindará orientaciones generales para enseñar a sus alumnos a sumar y a restar.

VER

Artículo “Propiedades de la suma”

Con este recurso se podrá ampliar la información referida a las propiedades de la adición.

VER

Artículo “Suma con tres sumandos”

Este artículo explica paso a paso cómo realizar cálculos con tres sumandos.

VER

CAPÍTULO 4 / TEMA 5

APLICACIÓN DE LA POTENCIA Y DE LA RADICACIÓN

La potenciación y la radicación son operaciones estrechamente relacionadas. Mientras que la primera es una multiplicación condensada de un número por sí mismo n cantidad de veces, la segunda busca ese número que multiplicado por sí mismo resulte en el radicando. Si bien sus propiedades ya se trataron en temas anteriores, aquí aprenderás otras aplicaciones de estos cálculos.

operaciones que simplifican

Tanto la potenciación como la radicación son operaciones útiles para mostrar números de manera más simple. Por ejemplo, dentro del conjunto de los números reales encontramos otros tipos de números que no son sencillos de representar, como los números irracionales, cuyas expresiones decimales son ilimitadas y no periódicas, por lo que es más fácil mostrarlo como una raíz:

\boldsymbol{\sqrt{2}=1,414213562...}

\boldsymbol{\sqrt{3}=1,732050807...}

\boldsymbol{\sqrt{5}=2,236067977...}

Por su parte, la potencia nos ayuda a expresar números muy grandes o muy pequeños de manera resumida, pues la potencia no es más que una multiplicación abreviada.

La descomposición en factores primos y la notación científica son solo dos de los procesos que pueden verse involucrados con la potenciación y la radicación. Ambas operaciones son empleadas en múltiples cálculos cotidianos y en diversas áreas como la astronomía, la ingeniería o la biología.

Las bacterias son microorganismos que crecen con un ritmo acelerado. Este crecimiento suele expresarse en forma de potencia con exponente positivo y se grafica en forma de línea curva ascendente. Saber que tan rápida puede ser la reproducción de una bacteria puede prevenir focos de infección en un paciente y evitar que este sea una víctima mortal.

descomposición en factores primos

También conocida como descomposición factorial o factorización, consiste en escribir un número como producto de sus números primos. Cada vez que un factor se repita en la descomposición, este se convertirá  en la base de una potencia y la cantidad de veces que se repita será el exponente.

– Ejemplo:

¿Qué es un número primo?

Un número primo es un número natural que tiene dos divisores positivos: al uno y a sí mismo. Esta tabla muestra los primero números primos en color azul.

¿Sabías qué?
Las factorización es un paso indispensable para calcular el mínimo común múltiplo y el máximo común divisor de un número.

Las raíces también se pueden obtener por medio de la descomposición del radicando en sus números primos.

– Ejemplo:

Halla la raíz cuadrada de 625 por descomposición de sus factores primos.

1. Descomponemos al número 625 en sus factores primos.

2. Expresamos la raíz cuadrada con producto de la descomposición.

\boldsymbol{\sqrt{625}=\sqrt{5^{4}}}

3. Aplicamos la propiedad “raíz de un potencia”.

\boldsymbol{\sqrt{5^{4}}=5^{\frac{4}{2}}=5^{2}=25}

4. Escribimos el resultado.

\boldsymbol{\sqrt{625}=25}


– Otro ejemplo:

Halla la raíz cuadrada de 196 por descomposición de sus factores primos.

1. Descomponemos al número 196 en sus factores primos.

2. Expresamos la raíz cuadrada con su radicando igual al producto de su descomposición.

\boldsymbol{\sqrt{196}=\sqrt{2^{2}\times 7^{2}}}

3. Aplicamos la propiedad “raíz de un producto”.

\boldsymbol{\sqrt{2^{2}\times 7^{2}}=\sqrt{2^{2}}\times \sqrt{7^{2}}}

4. Aplicamos la propiedad “raíz de una potencia”.

\boldsymbol{\sqrt{2^{2}}\times \sqrt{7^{2}}=2^{\frac{2}{2}}\times 7^{\frac{2}{2}}=2\times 7=14}

5. Escribimos el resultado.

\boldsymbol{\sqrt{196}=14}


– Otro ejemplo:

Halla la raíz cúbica de 1.728 por descomposición de sus factores primos.

  1. Descomponemos el número 1.728 en sus factores primos.

2. Expresamos la raíz cúbica con su radicando igual al producto de su descomposición.

\boldsymbol{\sqrt[3]{1.728}=\sqrt[3]{2^{6}\times 3^{3}}}

3. Aplicamos la propiedad “raíz de un producto”.

\boldsymbol{\sqrt[3]{2^{6}\times 3^{3}}=\sqrt[3]{2^{6}}\times \sqrt[3]{3^{3}}}

4. Aplicamos la propiedad “raíz de una potencia”.

\boldsymbol{\sqrt[3]{2^{6}}\times \sqrt[3]{3^{3}}=2^{\frac{6}{3}}\times 3^{\frac{3}{3}}=2^{2}\times 3=4\times 3=12}

5. Escribimos el resultado.

\boldsymbol{\sqrt[3]{1.728}=12}

Velocidad de un auto en un accidente

Cuando ocurre una accidente de tránsito, por lo general las llantas de los autos dejan una marca sobre el pavimento al frenar. Esta marca es de gran utilidad para los fiscales de tránsito, pues la raíz cuadrada del producto entre la aceleración y la longitud de la marca de frenado es igual a la velocidad del vehículo al momento del choque.

\boldsymbol{\sqrt{-2ax}}

Donde:

a = aceleración

x = longitud de las marcas de frenado

NOTACIÓN CIENTÍFICA

La notación científica es la expresión de números a partir de potencias de base 10. De forma general se representan así:

a × 10n

Donde:

a: es el número entero o decimal que multiplica a la potencia de base 10. Su módulo debe tener un valor igual o mayor que 1 pero menor que 10.

n: es un número entero distinto de cero que corresponde al exponente de la potencia de base 10. Es conocido también como “orden de magnitud”.

Se escriben de la siguientes manera:

  • 10−5 = 0,00001
  • 10−4 = 0,0001
  • 10−3 = 0,001
  • 10−2 = 0,01
  • 10−1 = 0,1
  • 100 = 1
  • 101 = 10
  • 102 = 100
  • 103 = 1.000
  • 104 = 10.000
  • 105 = 100.000

Signos del exponente

Cuando los números son muy pequeños o menores a 1 el exponente es negativo, mientras que si el número es muy grande o mayores a 1 el exponente es positivo.

  • Los exponentes positivos indican la cantidad de ceros que se encuentran a la derecha del número que multiplica la potencia. Por ejemplo, el número 2.000.000 representado en notación científica es 2 × 106 en donde el exponente 6 indica la cantidad de ceros que están después del dos.
  • Los exponentes negativos indican la cantidad de ceros a la izquierda del número que multiplica la potencia. Por ejemplo, el número 0,00000004 representado en notación científica es 4 × 10−8. En este caso el signo menos indica que hay 8 ceros delante del 4.
Nuestro planeta Tierra se encuentra en la galaxia espiral llamada Vía Láctea, la cual tiene unos 100.000 años luz de diámetro. Los científicos estiman que hay alrededor de 400.000.000.000 estrellas en esta galaxia. Estos número tan grandes podemos expresarlos por medio de notación científica como 1 × 105 años luz de diámetro y 4 × 1011 estrellas.

– Otros ejemplos:

  • 3,2 × 10−3 = 0,0032
  • 4 × 10−4 = 0,0004
  • 1,05 × 106 = 1.050.000
  • 6,78 × 10−1 = 0,678
  • 9,43 × 102 = 943

¿Sabías qué?
En el caso de números muy grandes, lo primero que se debe hacer es mover la coma decimal a un número que esté comprendido entre 1 y 10. El número de espacios recorridos hasta dicho número corresponderá al exponente de la potencia de base 10.
  • 8.956.000.000.000 = 8,956 × 1012
  • 243.000 = 2,43 × 105
  • 90.000 = 9 × 104
  • 0,00000045 = 4,5 × 10−7
  • 0,007 = 7 × 10−3

¡A practicar!

1. Expresa los siguientes números como producto de sus factores primos.

  • 520
Solución
520 = 23 × 5 × 13
  • 156
Solución
156 = 22 × 3 × 13
  • 200
Solución
200 = 23 × 52
  • 86
Solución
86 = 2 × 43
  • 22
Solución
22 = 2 × 11

2. Calcula las siguientes raíces por descomposición de sus factores primos.

  • \sqrt[3]{729}
Solución
\sqrt[3]{729}=9
  • \sqrt[3]{64}
Solución
\sqrt[3]{64}=4
  • \sqrt[3]{343}
Solución
\sqrt[3]{343}=7
  • \sqrt{324}
Solución
\sqrt{324}=18
  • \sqrt{400}
Solución
\sqrt{400}=20

3. Calcula:

  • 6 × 108
Solución
6 × 108 = 600.000.000
  • 3 × 10−5
Solución
3 × 10−5 = 0,00003
  • 1,26 × 10−6 
Solución
1,26 × 10−6 = 0,00000126
  • 1,78 × 105
Solución
1,78 × 105 = 178.000 
  • 2 × 104
Solución
2 × 104 = 20.000

RECURSOS PARA DOCENTES

Video “Notación científica”

Este recurso audiovisual le permitirá poner en práctica lo aprendido sobre la notación científica.

VER

Artículo “Factorización de números”

Este artículo detalla cómo descomponer números en sus factores primos y su relación con el cálculo del mínimo común múltiplo y máximo común divisor.

VER