CAPÍTULO 4 / TEMA 4

Ángulos

Gracias al estudio de la geometría y la trigonometría, la humanidad evolucionó de tal manera que logró edificar ciudades, construir herramientas y diseñar su vestimenta; y los ángulos son parte de esto. Si observamos a nuestro alrededor todos los objetos tienen algún tipo de ángulo.

¿Qué es un ángulo?

Un ángulo es la porción comprendida entre dos semirrectas con un origen en común llamado vértice.

Tipos de ángulos

La clasificación de los ángulos dependerá por un lado de sus medidas y por el otro de sus posiciones.

Según sus medidas un ángulo puede ser:

  • Convexo: es el que mide menos de 180°.
  • Nulo: es que el que no tiene amplitud, mide 0°.
  • Agudo: es el que mide menos de 90°.
  • Recto: es el que mide 90°.
  • Obtuso: es el que mide más de 90° y menos de 180°.
  • Cóncavo: es el que mide más de 180°.
  • Llano: es el que mide 180°.
  • Completo: es el que mide 360°.

 

¿Sabías qué?
Los ángulos agudos, rectos y obtusos están dentro de la clasificación de ángulos convexos.

Según su posición, dos ángulos pueden ser:

  • Adyacentes: tienen un lado y un vértice en común. La suma de sus ángulos suma 180°.
  • Consecutivos: tienen un lado y un vértice en común.
  • Opuestos por el vértice: tienen en común solamente el vértice.

VER INFOGRAFÍA

¿Sabías qué?
Los egipcios fueron los primeros en establecer la medida de los ángulos en grados, minutos y segundos.

¡Encuentra los ángulos!

Observa la siguiente imagen:

  1. ¿Qué tipos de ángulos encuentras en la casa?
    Solución
    Agudos, rectos y obtusos.
  2. ¿Dónde encontraste los ángulos agudos?
    Solución
    En el triángulo de la chimenea y en la unión de la pared con el techo.
  3. ¿Dónde encontraste los ángulos rectos?
    Solución
    En la puerta, en las ventanas y en la unión del suelo con las paredes.
  4. ¿Dónde encontraste los ángulos obtusos?
    Solución
    En el techo.

La vuelta del Sol

En la Antigüedad, los babilonios hicieron varios estudios sobre los astros porque creían que en ellos estaba escrito el futuro. Tras observar el cielo, consideraban que el Sol tardaba 360 días en volver a estar en la misma posición. Por esto decidieron dividir la circunferencia en 360 partes iguales. Llamamos grado a cada una de las 360 partes iguales en la que dividimos a un ángulo completo.

elementos de los ángulos

Como ya vimos, un ángulo es el espacio que existe entre dos semirrectas que parten desde un mismo punto. Los elementos que componen al ángulo son los siguientes:

  • Lado: es lo que antes llamábamos semirrecta.
  • Vértice: es el punto en el que coinciden las dos semirrectas.
  • Amplitud: es la apertura que hay entre los dos lados. Medimos la amplitud en grados y usamos un transportador para eso.

 

Transportador

El transportador es el instrumento que nos permite medir y construir un ángulo gráficamente. Por lo general son de plástico y poseen una forma circular o semicircular. Para utilizarlo apoyamos el centro del semicírculo en el vértice del ángulo, hacemos coincidir uno de los lados con el 0° y el otro lado del ángulo marcará la abertura en el punto del semicírculo graduado.

Estimación de ángulos

Para conocer la medida exacta de un ángulo se usa el transportador, pero también podemos estimar su valor. Para esto podemos usar como referencia medidas ya conocidas, como el ángulo de 45° y el ángulo de 90°; y así poder saber una medida aproximada del ángulo.

Escuadra y estimación

La escuadra es una herramienta de geometría que podemos utilizar para estimar ángulos, pues posee un ángulo de 90° como se observa en la imagen. El ángulo de 45° se obtiene de dividir a la mitad el ángulo de 90°. En la última escuadra vemos la estimación de un ángulo de 30° y otro de 80°. Para aproximar usamos las referencias de los ángulos conocidos. La abertura del ángulo de 30° es más pequeña que la de 45°, por eso el ángulo es menor. Lo mismo nos pasa con el ángulo de 80°, su apertura es menor que 90°.

Cuando un ángulo es mayor que 90°, uno de los lados del ángulo quedará a la izquierda de la escuadra. Veamos un ejemplo:

Vamos a imaginar que un espejo está enmarcado en esta figura y queremos estimar cuánto mide el ángulo que está señalado en color rojo. La escuadra ya está apoyada en uno de los lados pero el otro lado se inclina a la izquierda de la escuadra. Como ya sabemos que el ángulo de la escuadra mide 90°, entonces el ángulo que debemos estimar es mayor. Por lo tanto, ese ángulo puede medir aproximadamente 120°.

¡Estima medidas!

Estima las medidas de los ángulos marcados:

  1. ¿Cuánto estimas que mide el ángulo del objeto A?
    Solución
    Como la abertura es más pequeña que 45°, pero más grande que 0°, podemos decir que mide aproximadamente 30°.
  2. ¿Cuánto estimas que mide el ángulo objeto B?
    Solución
    Como la abertura es un poco más pequeña que 90°, pero mayor a 45°, podemos decir que mide aproximadamente 60°.
  3. ¿Cuánto estimas que mide el ángulo del objeto C?
    Solución
    Mide 90°.
  4. ¿Cuánto estimas que mide el ángulo del objeto D?
    Solución
    Como la abertura es mayor a los 90°, pero está lejos de llegar a 180°, podemos decir que mide aproximadamente 120°.
  5. ¿Cuánto estimas que mide el ángulo del objeto E?
    Solución
    Como la abertura es un poco más pequeña que 90°, pero mayor a 45°, podemos decir que mide aproximadamente 75°.
RECURSOS PARA DOCENTES

Artículo “Ángulos”

Este recurso le permitirá profundizar la información sobre los ángulos y su clasificación.

VER

 

CAPÍTULO 2 / TEMA 1

ADICIÓN

MUCHAS VECES NECESITAMOS AGRUPAR OBJETOS, POR EJEMPLO, LAS TARJETAS DE UN COMPAÑERO CON LAS NUESTRAS, PERO ¿CÓMO SABER CUÁNTAS HAY AL FINAL? PARA ESTO USAMOS UNA OPERACIÓN LLAMADA ADICIÓN O SUMA QUE CONSISTE EN UNIR CANTIDADES. SEGURO LA USAS DIARIAMENTE. HOY APRENDERÁS CUÁLES SON SUS PROPIEDADES Y CÓMO CALCULARLA.

LA ADICIÓN Y SUS ELEMENTOS

LA ADICIÓN ES UNA OPERACIÓN MATEMÁTICA QUE UNE DOS O MÁS CANTIDADES. EN ESA UNIÓN SE FORMA OTRA CANTIDAD LLAMADA SUMA. SUS ELEMENTO SON LOS SUMANDOS Y LA SUMA TOTAL.

– EJEMPLO:

JOSÉ Y CARLOS COMPRARON PALETAS PARA TODOS SUS AMIGOS. SI JOSÉ COMPRÓ 4 PALETAS Y CARLOS COMPRÓ 5 PALETAS, ¿CUÁNTAS PALETAS COMPRARON EN TOTAL?

ESTE PROBLEMA SE RESUELVE CON UNA SUMA. LOS SUMANDOS SON 4 Y 5 Y LA SUMA TOTAL ES LA UNIÓN DE ESAS DOS CANTIDADES, ES DECIR, 9.

LA SUMA ES UNA DE LAS PRIMERAS OPERACIONES MATEMÁTICAS QUE APRENDEMOS PORQUE ES UNA DE LAS MÁS USADAS EN LA VIDA COTIDIANA. DESDE LA ANTIGÜEDAD SE HAN AGRUPADO NÚMEROS PARA SABER CANTIDADES. INICIAMOS A SUMAR CON LOS DEDOS, PERO CUANDO LAS CIFRAS SON MAYORES TENEMOS QUE USAR LOS SÍMBOLOS DE LOS NÚMEROS Y SUS VALORES EN TABLAS POSICIONALES.

SUMA CON TABLA DE VALORES

ES UNA MANERA SENCILLA DE REPRESENTAR LAS SUMAS. AQUÍ DEBEMOS COLOCAR EN COLUMNAS LAS UNIDADES, LAS DECENAS Y LAS CENTENAS DE CADA NÚMERO.

– EJEMPLO:

¡ES TU TURNO!

REALIZA LAS SIGUIENTES SUMAS:

  • 15 + 14
  • 45 + 2
  • 45 + 51
SOLUCIÓN

 

SUMA CON LLEVADAS

A VECES LA SUMA DE LAS UNIDADES DE LOS SUMANDOS PUEDE SER MAYOR A 10, EN ESE CASO SEGUIMOS ESTOS PASOS:

1. SUMAMOS LAS UNIDADES Y COLOCAMOS EL 1 EN LA COLUMNA DE LAS DECENAS.

2. SUMAMOS LAS DECENAS CON EL 1 QUE SE COLOCÓ ANTES.

 

– EJEMPLOS:

 

TAMBIÉN PUEDE OCURRIR CON LAS CENTENAS. OBSERVA:

 

NUESTRO SISTEMA DE NUMERACIÓN SOLO TIENE DIEZ DÍGITOS: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9. CON ELLOS FORMAMOS TODOS LOS NÚMEROS QUE EXISTEN Y CADA CIFRA TENDRÁ UN VALOR DIFERENTE SEGÚN EL LUGAR QUE OCUPE DENTRO DEL NÚMERO. POR EJEMPLO, EN EL NÚMERO 25, EL 2 VALE 20 Y EL 5 VALE 5, PERO EN EL NÚMERO 52, EL 5 VALE 50 Y EL 2 VALE 2.

PROPIEDADES DE LA ADICIÓN

PROPIEDAD CONMUTATIVA

EN UNA SUMA DE DOS CANTIDADES, SI CAMBIAMOS EL ORDEN DE LOS SUMANDOS EL RESULTADO ES EL MISMO.

PROPIEDAD ASOCIATIVA

EN UNA SUMA DE TRES SUMANDOS, SI CAMBIAMOS LA AGRUPACIÓN DE LOS SUMANDOS EL RESULTADO ES EL MISMO.

ELEMENTO NEUTRO

LA SUMA DE CUALQUIER NÚMERO CON CERO DA COMO RESULTADO SU NÚMERO INICIAL.

DESCOMPOSICIÓN ADITIVA

SE TRATA DE REPRESENTAR UN NÚMERO COMO LA SUMA DE OTROS. EN ESTE CASO CONSIDERAMOS LOS VALORES POSICIONALES. RECUERDA QUE:

  • 1 UNIDAD = 1 UNIDAD
  • 1 DECENA = 10 UNIDADES
  • 1 CENTENA = 100 UNIDADES

– EJEMPLO 1:

EL NÚMERO 156 TIENE:

  • 1 CENTENA = 1 × 100 = 100
  • 5 DECENAS = 5 × 10 = 50
  • 6 UNIDADES = 6 × 1 = 6

DESCOMPOSICIÓN ADITIVA:

156 = 100 + 50 + 6

 

– EJEMPLO 2:

EL NÚMERO 84 TIENE:

  • 8 DECENAS = 8 × 10 = 80
  • 4 UNIDADES = 4 × 1 = 4

DESCOMPOSICIÓN ADITIVA:

84 = 80 + 4

¡ANTES DE LAS CALCULADORAS!

DESDE HACE MILES DE AÑOS EL SER HUMANO HA NECESITADO CONTAR, ¡Y CLARO! SUMAR. AL PRINCIPIO LO HACÍA CON LOS DEDO, CON PALOS O CON PIEDRAS. TAMBIÉN HACÍAN NUDOS EN CUERDAS PARA CONTAR CANTIDADES. PERO UNO DE LOS MÁS IMPORTANTES INVENTOS FUE EL ÁBACO: UN HERRAMIENTA QUE HACE CÁLCULOS MANUALES POR MEDIO DE CONTADORES O ESFERAS QUE REPRESENTAN CANTIDADES.

¡PRACTIQUEMOS LO APRENDIDO!

1. PARA UN TORNEO DE BALONCESTO SE INSCRIBIERON 78 NIÑOS DE PRIMERO GRADO Y 81 NIÑOS DE SEGUNDO GRADO, ¿CUÁNTO NIÑOS SE INSCRIBIERON EN TOTAL?

  • DATOS

NIÑOS DE PRIMERO GRADO: 78

NIÑOS DE SEGUNDO GRADO: 81

  • PREGUNTA

¿CUÁNTOS NIÑOS SE INSCRIBIERON EN TOTAL?

  • ANALIZA

HAY QUE HACER UNA SUMA. PARA ESTO COLOCAMOS LOS SUMANDOS UNO SOBRE Y OTRO. SUMAMOS PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

SE INSCRIBIERON 159 NIÑOS PARA EL TORNEO.


2. EN UN DÍA, UNA LIBRERÍA VENDIÓ 45 LÁPICES AMARILLOS Y 82 LÁPICES ROJOS, ¿CUÁNTOS LÁPICES SE VENDIERON ESE DÍA?

  • DATOS

LÁPICES AMARILLOS VENDIDOS: 45

LÁPICES ROJOS VENDIDOS: 82

  • PREGUNTA

¿CUÁNTOS LÁPICES SE VENDIERON ESE DÍA?

  • ANALIZA

HAY QUE HACER UNA SUMA. PARA ESTO COLOCAMOS LOS SUMANDOS UNO SOBRE Y OTRO. SUMAMOS PRIMERO LAS UNIDADES Y LUEGO LAS DECENAS.

  • CALCULA

  • RESPUESTA

SE VENDIERON 127 LÁPICES ESE DÍA.


3. ANTONIO TIENE 3 PAQUETES CON CARAMELOS. EN EL PRIMERO HAY 29 CARAMELOS, EN EL SEGUNDO HAY 8 Y EN EL TERCERO HAY 2. ¿CUÁNTOS CARAMELOS TIENE ANTONIO?, ¿CUÁL ES LA SOLUCIÓN MÁS FÁCIL PARA ESTE PROBLEMA?

  • DATOS

CANTIDAD DE CARAMELOS EN PAQUETE 1: 29

CANTIDAD DE CARAMELOS EN PAQUETE 2: 8

CANTIDAD DE CARAMELOS EN PAQUETE 3: 2

  • PREGUNTA

¿CUÁNTOS CARAMELOS TIENE ANTONIO?, ¿CUÁL ES LA SOLUCIÓN MÁS FÁCIL PARA ESTE PROBLEMA?

  • ANALIZA

EN ESTE CASO UTILIZAMOS LA PROPIEDAD ASOCIATIVA. AGRUPAMOS LOS PRIMEROS DOS TÉRMINOS Y LUEGO SUMAMOS EL TERCERO. LUEGO AGRUPAMOS EL SEGUNDO Y EL TERCER TÉRMINO Y SUMAMOS EL PRIMERO. AL COMPARAR LAS DOS OPCIONES VEREMOS CUÁL ES LA MÁS FÁCIL.

  • CALCULA

  • RESPUESTA

ANTONIO TIENE 39 CARAMELOS.

ES MÁS FÁCIL SUMAR 8 + 2 = 10 Y LUEGO SUMARLE 29.


4. CAROLINA DEBE PAGAR $ 134 EN EL SUPERMERCADO. SI SOLO TIENE BILLETES DE $ 100, $ 10 Y $ 1, ¿CUÁNTOS BILLETES DE CADA DENOMINACIÓN TIENE QUE USAR PARA PAGAR LA CUENTA?

  • DATOS

PAGO QUE TIENE QUE HACER CAROLINA: $ 134

BILLETES QUE TIENE CAROLINA: $ 100, $ 10 Y $ 1

  • PREGUNTA

¿CUÁNTOS BILLETES DE CADA DENOMINACIÓN TIENE QUE USAR PARA PAGAR LA CUENTA?

  • ANALIZA

HAY DE HACER UNA DESCOMPOSICIÓN ADITIVA DE 134. DE ESTE MODO TENDREMOS UNA SUMA DE VALORES QUE REPRESENTAN LA MISMA CANTIDAD. TENEMOS QUE VER LA CANTIDAD DE UNIDADES (QUE VALEN 1), DECENAS (QUE VALEN 10) Y CENTENAS (QUE VALEN 100) HAY EN LA SUMA.

  • CALCULA

EL NÚMERO 134 TIENE:

  • 1 CENTENA = 1 × 100 = 100
  • 3 DECENAS = 3 × 10 = 30
  • 4 UNIDADES = 4 × 1 = 4

DESCOMPOSICIÓN ADITIVA:

134 = 100 + 30 + 4

COMO YA VIMOS, 100 = 1 VEZ 100, 30 = 3 VECES 10 Y 4 = A VECES 1.

  • RESPUESTA

CAROLINA TIENE QUE USAR 1 BILLETE DE $ 100, 3 BILLETE DE $ 10 Y 4 BILLETES DE $ 1.


¡A PRACTICAR!

1. RESUELVE LAS SUMAS. COMPRUEBA LA PROPIEDAD CONMUTATIVA.

  • 15 + 10 =
SOLUCIÓN

15 + 10 = 25

10 + 15 = 25

  • 60 + 20 =
SOLUCIÓN

60 + 20 = 80

20 + 60 = 80

  • 48 + 2 =
SOLUCIÓN

48 + 2 = 50

2 + 48 = 50

 

2. RESUELVE LAS SUMAS. COMPRUEBA LA PROPIEDAD ASOCIATIVA.

  • 40 + 25 + 10 =
SOLUCIÓN

(40 + 25) + 10 = 65 + 10 = 75

40 + (25 + 10) = 40 + 35 = 75

  • 15 + 60 + 10 =
SOLUCIÓN

(15 + 60) + 10 = 75 + 10 = 85

15 + (60 + 10) = 15 + 70 = 85

  • 40 + 14 + 20 =
SOLUCIÓN

(40 + 14) + 20 = 54 + 20 = 74

40 + (14 + 20) = 40 + 34 = 74

 

3. REALIZA LA DESCOMPOSICIÓN ADITIVA DE LOS SIGUIENTES NÚMEROS.

  • 189
SOLUCIÓN
189 = 100 + 80 + 9
  • 74
SOLUCIÓN
74 = 70 + 4
  • 123
SOLUCIÓN
123 = 100 + 20 + 3
RECURSOS PARA DOCENTES

Artículo “Propiedades de la suma”

Este recurso te permitirá ampliar la información sobre las propiedades de la adición.

VER

Artículo “Cómo enseñar a sumar y a restar”

Con este artículo obtendrás algunas orientaciones y ejemplos prácticos de gran utilidad al momento de enseñar estas operaciones matemáticas.

VER

CAPÍTULO 1 / TEMA 4

NÚMEROS DECIMALES

Los números decimales son todos aquellos que tienen una parte entera y una parte decimal, es decir, una cantidad menor que la unidad y mayor que cero. Estos números los podemos encontrar en todas partes, como en los precios de los productos del supermercado.

CARACTERÍSTICAS DE LOS NÚMEROS DECIMALES

Los números decimales están formados por dos partes separadas con una coma de la siguiente manera:

Los números decimales también son llamados números fraccionarios. Estos se utilizan para realizar mediciones con mayor precisión. Por ejemplo, al medir la estatura de una persona. Si decimos que alguien mide 1 m no sabríamos con exactitud la medida, en cambio, si usamos números decimales podemos decir que una persona mide 1,65 m o 165 cm.

Clasificación de números decimales

Números decimales exactos

Tienen un número limitado de cifras decimales. Por ejemplo:

1,25

Números decimales periódicos

Tienen una o más cifras decimales que se repiten de forma ilimitada o infinita. Podemos distinguir dos tipos de números decimales periódicos:

  • Números decimales periódicos puros: son aquellos números en los cuales la parte decimal periódica comienza inmediatamente después de la coma. La parte que se repite indefinidamente en estos números es señalada con una línea horizontal o arco en la parte superior. Por ejemplo:

0,66666 = 0, \widehat{6}

  • Números decimales periódicos mixtos: son los que están formados por dos partes decimales: una cifra que no se repite que está justo después de la coma, denominada ante-período; y la parte periódica. Por ejemplo:

3,233333 = 3,2\widehat{3}Números decimales no periódicos

No tienen cifras decimales con un patrón repetido indefinidamente. Un ejemplo de estos son los números irracionales, como el número pi.

\pi = 3,14159265...

¡A practicar!

Ya que conoces cómo están formados los números decimales, ¡consíguelos en este cuadro!

Solución

Número de Euler

Existen números decimales famosos y uno de ellos es el número de Euler, también denominado constante de Napier. Este número decimal fue utilizado por John Napier para introducir el concepto de logaritmo. No obstante, Leonhard Euler fue quien utilizó la letra e para representar dicha constante en el año 1727. El número es utilizado en cálculo, álgebra y números complejos.

e = 2,7182818284590452353602874713527 ...

LECTURA DE NÚMEROS DECIMALES

Podemos realizar la lectura de un número decimal de dos formas. Para ello, tomaremos como ejemplo el número 698,754980213, el cual podemos representarlo así de acuerdo a su valor posicional:

  • Primera forma de leer el número:
  1. Lee la parte entera de izquierda a derecha seguida de la palabra “enteros”.
  2. Lee toda la parte decimal como se lee la parte entera.
  3. Menciona la posición en la que se encuentra la última cifra decimal.

Entonces, el número 698,754980213 se lee “seiscientos noventa y ocho enteros setecientos cincuenta y cuatro millones novecientos ochenta mil doscientos trece milmillonésimas“.

  •  Segunda forma de leer el número:
  1. Lee la parte entera de izquierda a derecha seguida de la palabra “coma”.
  2. Lee toda la parte decimal como se lee la parte entera.

De este manera, el número 698,754980213 se lee “seiscientos noventa y ocho coma setecientos cincuenta y cuatro millones novecientos ochenta mil doscientos trece”.

¡Es tu turno!

Utiliza el primer método para leer estos números decimales:

  1. 456,268435 
    Solución
     456,268435 = cuatrocientos cincuenta y seis enteros doscientos sesenta y ocho mil cuatrocientos treinta y cinco millonésimas.
  2. 35.413,9346103 
    Solución
    35.413,9346103 = treinta y cinco mil cuatrocientos trece enteros nueve millones trescientos cuarenta y seis mil ciento tres diezmillonésimas.
  3. 58,79516428
    Solución
    58,79516428 = cincuenta y ocho enteros setenta y nueve millones quinientos dieciséis mil cuatrocientos veintiocho cienmillonésimas.

REDONDEO DE NÚMEROS DECIMALES

Todo número decimal puede ser redondeado. El redondeo se refiere a reducir la cantidad de cifras de un número para tener un valor similar. Las reglas son las siguientes:

  • Redondeo por defecto: si la última cifra del número que deseamos redondear es 1, 2, 3 o 4, la sustituimos por 0, y no variamos la penúltima cifra. Por ejemplo, el número 18,3.

  • Redondeo por exceso: si la última cifra es 5, 6, 7, 8 o 9, también sustituimos por 0, pero en este caso aumentamos la penúltima cifra en 1. Por ejemplo, el número 45,8.

El símbolo (≈) significa aproximado.

Todo número decimal puede ser redondeado. El redondeo se refiere a reducir la cantidad de cifras de un número para tener un valor similar. Saber esta práctica puede ser muy útil en nuestro día a día, pues cuando vamos a pagar una cuenta hacemos un redondeo de la cifra de forma mental para saber con qué billete vamos a pagar.

Redondeo por aproximación

Podemos aproximar los números decimales a la unidad más cercana, es decir, acercarlo a un número de la recta numérica que tenga menos decimales que este por medio de las mismas reglas. También los podemos aproximar a las décimas, centésimas, milésimas, etc., más cercanas. Por ejemplo, observa los siguientes números y redondéalos: 18,82653 y 45,73286.

El primer número lo aproximamos mediante la regla de redondeo por defecto, ya que la última cifra está entre 0 y 4. Aquí la cifra se aproximó a la diezmilésima más cercana.

 

Y para el segundo número seguimos la regla de exceso, ya que la última cifra está entre 5 y 9. Aquí la cifra se aproximó a la a la diezmilésima más cercana.

¡A practicar!

Convierte los siguientes números decimales a enteros por redondeo:

  • 465,568 
    Solución
    466
  • 84,91 
    Solución
    85
  • 14,3 
    Solución
    14
  • 9.214,12 
    Solución
    9.214

Aproxima estos números a las décimas, centésimas o milésimas más cercanas:

  • 326,3462 
    Solución
    326,346
  • 486,945  
    Solución
    486,95
  • 45,87
    Solución
    45,9 
RECURSOS PARA DOCENTES

Artículo “Números decimales”

Este artículo ayuda a complementar la información sobre los números decimales.

VER

Artículo “Operaciones con decimales”

Con este recurso podrá obtener conocimiento sobre las operaciones con los números decimales y profundizar al respecto.

VER

CAPÍTULO 2 / TEMA 1

OPERACIONES CON DECIMALES

En la vida cotidiana muchas cantidades están expresadas con números decimales, tales como los precios de los artículos en un supermercado o la estatura de las personas. Estos números se componen de dos partes: una entera y una decimal o inferior a la unidad. A continuación verás cómo resolver operaciones con decimales. 

Por lo general, los precios de los artículos en los supermercados son expresados con números decimales sin importar la moneda utilizada. También podemos ver números decimales en algunas frecuencias de las emisoras de radio, en la capacidad de algunos envases, y en una de las constantes más famosas de las matemáticas: la constante π (pi).

VER INFOGRAFÍA

OPERACIONES BÁSICAS CON DECIMALES

Suma

Para realizar la adición de números decimales debemos ubicar las cifras una debajo de la otra, de tal manera que las comas queden alineadas en una misma columna. Además, todos los números a sumar deben tener igual cantidad de dígitos en la parte decimal, de lo contrario, agregamos los ceros que sean necesarios para igualar las cifras. Por ejemplo:

– Resuelve esta operación:

7,2139 + 1.042 + 0,065 + 38,50 =

Lo primero que hacemos es ubicar todas las cifras una debajo de la otra y nos aseguramos de que las comas queden alineadas verticalmente. Añadimos ceros a las números que sean necesarios para que todos tengan la misma cantidad de decimales:

Luego sumamos cada dígito de derecha a izquierda. Los números en círculo azul indican el orden en que sumamos las columnas. Observa que la coma está en la misma línea vertical.

Por lo tanto, el resultado es el siguiente:

7,2139 + 1.042 + 0,065 + 38,50 = 1.087,7789

 

Las operaciones con números decimales se realizan de manera muy similar a como trabajamos con los números enteros. La única diferencia es que debemos mantener la coma en la misma línea vertical. Si vamos a sumar decimales, sumamos las columnas de derecha a izquierda con la coma alineada. Con este procedimiento podemos resolver la adición de cualquier cantidad de números.

Resta

El procedimiento para la resta o sustracción de números decimales es similar a la sustracción con números enteros. Recordemos, además, que la regla para la suma algebraica establece que cuando dos números tienen signos iguales se suman y se coloca el mismo signo, mientras que cuando los números tienen signos diferentes se restan y se coloca el signo del número mayor. Por ejemplo:

– Resuelve esta operación:

(+9.821,13) + (−20.130) =

Como observamos, se trata de una suma algebraica de dos números que tienen signos diferentes, por lo tanto, tratamos la operación como una resta y al resultado le colocamos el signo del número mayor.

Primero ubicamos las dos cifras a restar: en la parte superior el número mayor y en la parte inferior el número menor. Verificamos que las comas están alineadas de forma vertical y, de ser necesario, completamos con ceros los decimales de alguna de las cifras hasta que ambas tengan la misma cantidad de dígitos en su parte decimal.

Procedemos a realizar la resta del mismo modo que hacemos con los números enteros, pero agregamos la coma en el lugar que corresponde, es decir, alineada con la columna de las comas.

Finalmente, colocamos el signo que corresponda. En este caso, el valor absoluto de −20.130 es mayor que el valor absoluto de +9.821. Por esta razón, el signo que se mantiene en el resultado es el signo negativo.

(+9.821,13) + (−20.130) = −10.308,87

Valor absoluto

El valor absoluto de un número es igual a la distancia que existe entre ese número y cero.

\left | 15 \right | = 15

\left | -1.259 \right | = 1.259

\left | -20.130 \right |=20.130

La resta también la podemos considerar como una suma algebraica de dos números que tienen signos diferentes. El resultado siempre tendrá el signo del número con mayor valor absoluto. A diferencia de la suma, en la resta conviene que restemos cantidades de dos en dos. Además, debemos ubicar al número mayor en la parte superior y al menor en la parte inferior.

Multiplicación

En el caso del producto entre dos cifras decimales, el procedimiento es el mismo que aplicamos para los números enteros, y al resultado final le agregamos la coma con la cantidad de espacios (de derecha a izquierda) equivalentes al número de cifras decimales totales que haya en los factores. Por ejemplo:

– Resuelve esta operación:

3.807,93 × 186,2 =

Primero multiplicamos el último término del multiplicador (será el pivote) por cada uno de los términos del multiplicando.

Después multiplicamos el siguiente término del multiplicador (será ahora el pivote) por cada uno de los términos del multiplicando. Anotamos los resultados en la segunda línea pero dejamos un espacio debajo del primer dígito.

Repetimos este procedimiento hasta que el primer término del multiplicador haya multiplicado todos los términos del multiplicando. Siempre dejamos un espacio debajo del primer dígito desde la derecha de cada número.

Luego sumamos todos los resultados de las multiplicaciones.

Por último, ubicamos la coma en el resultado. Para esto, contamos de derecha izquierda la cantidad de espacios equivalente al número total de decimales que tienen tanto el multiplicando como el multiplicador; en este caso, hay tres decimales en el resultado, pues el multiplicando 3.807,93 tiene dos decimales: 9 y 3, y el multiplicador 186,2 tiene un decimal: 2.

Entonces:

3.807,93 × 186,2 = 70.903,566

División

Al dividir el numerador por el denominador de una fracción, el resultado puede ser un número decimal, por lo tanto, las fracciones y los números decimales son expresiones equivalentes. Además, la notación empleada para denotar los números decimales puede ser a través de coma o de punto como se observa en la imagen.

La división que involucre números decimales implica a su vez tres posibles casos:

1. El dividendo es un número entero y el divisor es un número decimal.

En este caso, convertimos al divisor en un número entero. Para ello, agregamos al dividendo tantos ceros a la derecha como cantidad de espacios se movió la coma del divisor para convertirlo en entero. De este modo, tendremos una división de números enteros. Por ejemplo, si deseamos dividir 12 ÷ 1,5 seguimos estos pasos:

 

 

Entonces, el resultado de la división es el siguiente:

12 ÷ 1,5 = 8

 

2. El dividendo es un número decimal y el divisor es un número entero.

Aquí el procedimiento es similar a la división entre números enteros, con la única salvedad de que cuando bajamos el dígito del dividendo que se encuentra a la derecha de la coma, agregamos una coma en el cociente. Por ejemplo, la división: 78,6 ÷ 24.

Entonces, el resultado de la división es el siguiente:

78,6 ÷ 24 = 3,275

 

3. El dividendo y el divisor son números decimales.

En este caso, convertimos primero el divisor en un número entero y desplazamos la coma a la derecha tanto en el dividendo como en el divisor hasta que el divisor sea entero. De ser necesario, agregamos en el dividendo ceros a la derecha. Por ejemplo, la división: 93,48 ÷ 51,2.

Entonces, el resultado de la división es el siguiente:

93,48 ÷ 51,2 = 1,82578125

OPERACIONES ENTRE NÚMEROS DECIMALES Y OTROS NÚMEROS

Es posible que en ocasiones necesitemos realizar operaciones combinadas con números decimales y otros números, por ejemplo, con fracciones. En ese caso, podemos transformar los números decimales a fracciones o convertir las fracciones a números decimales si dividimos el numerador por el denominador como veremos en este tema.

Veamos el siguiente ejemplo y determinemos el resultado de:

\frac{3}{4} + 0,9277 \times \frac{7}{4} =

Existen diversas formas de resolver este problema, sin embargo, el orden siempre será el mismo: primero la multiplicación y al final la suma. Los pasos son los siguientes:

1. Resolvemos la multiplicación del número decimal con la fracción 7/4. Para esto debemos multiplicar 0,9277 por 7 y luego dividimos el resultado obtenido por cuatro (4).

  • Multiplicación:

0,9277\times 7 = 6,4939

  • División:

6,4939 \, \div 4 = 1,623475

  • El resultado es el siguiente:

0,9277 \, \times \frac{7}{4} = 1,623475

2. Determinamos la expresión decimal equivalente para 3/4. Para esto hacemos la división: 3 ÷ 4.

3\div 4 = 0,75

3. Calculamos el resultado de la suma de 0,75 + 1,623475:

4. Expresamos el resultado de la siguiente manera:

\frac{3}{4} + 0,9277 \times \frac{7}{4} = \mathbf{2,373475}

¡A practicar!

Te invitamos a resolver los siguientes ejercicios:

a) 9.305,881 + 7,42

Solución
9.313,301

b) 466,42 - 9.138,5

Solución
−8.672,08

c) 84.361,066 \times 52,97

Solución
4.468.605,66602

d) 9.931,588\div 108,3

Solución
91,7044136657

e) 6,2544 \times \frac{17}{8} \times 28,06 - \frac{11}{4}

Solución
370,184236
RECURSOS PARA DOCENTES

Tarjetas educativas “Operaciones matemáticas”

En este enlace encontrarás una serie de tarjetas escolares. Cada una con un resumen relacionado con alguna operación matemática.

VER

Video “Multiplicación de números decimales”

Este enlace contiene un video explicativo relacionado con la multiplicación de números decimales con ejemplos ilustrativos.

VER 

Video “Suma y resta de números decimales”

Este enlace contiene un video explicativo referente a la suma y resta de números decimales a través ejemplos.

VER 

CAPÍTULO 1 / TEMA 8 (REVISIÓN)

SISTEMAS NUMÉRICOS | ¿QUÉ APRENDIMOS?

LECTURA Y CONTEO

NUESTRO SISTEMA DE NUMERACIÓN ES DECIMAL Y POSICIONAL. ES DECIMAL PORQUE ESTÁ FORMADO POR DIEZ CIFRAS Y ES POSICIONAL PORQUE CADA CIFRA TIENE UN VALOR DIFERENTE SEGÚN SU POSICIÓN. ESTOS DOS ASPECTOS DETERMINAN LA LECTURA Y ESCRITURA DE TODOS LOS NÚMEROS. CADA NÚMERO DEL 0 AL 29 SE NOMBRA CON UNA SOLA PALABRA, POR EJEMPLO, ONCE (11) O VEINTICINCO (25). A PARTIR DE 31 SE NOMBRAN CON TRES PALABRAS, COMO CUARENTA Y DOS (42) U OCHENTA Y UNO (81).

PARA LEER Y ESCRIBIR NÚMEROS DEBEMOS TENER EN CUENTA EL VALOR POSICIONAL DE SUS CIFRAS.

VALOR POSICIONAL

EL SISTEMA DE NUMERACIÓN ES POSICIONAL, ESTO QUIERE DECIR QUE, SEGÚN LA POSICIÓN QUE UNA CIFRA TENGA DENTRO DE UN NÚMERO, SU VALOR SERÁ DIFERENTE. LAS POSICIONES DE CADA CIFRA EN UN NÚMERO TIENEN UN NOMBRE. DE DERECHA A IZQUIERDA: LA UNIDAD ES LA PRIMERA CIFRA Y VALOR 1; LA CENTENA ES LA SEGUNDA CIFRA Y VALE 10; LA CENTENA ES LA TERCERA CIFRA Y VALE 100.

EL NÚMERO 324 TIENE 3 CENTENAS, 2 DECENAS Y 4 UNIDADES. NO ES IGUAL AL NÚMERO 423 QUE TIENE 4 CENTENAS, 2 DECENAS Y 3 UNIDADES.

NÚMEROS ORDINALES

LOS NÚMEROS ORDINALES NOS INDICAN EL ORDEN O POSICIÓN DE LOS OBJETOS, LAS PERSONAS O LAS COSAS. ESTOS SON MUY UTILIZADOS EN LA VIDA COTIDIANA Y LOS PODEMOS VER EN MUCHAS SITUACIONES. LA ESCRITURA DE LOS NÚMEROS ORDINALES VA A DEPENDER DEL GÉNERO CON EL QUE ESTÁ RELACIONADO, POR EJEMPLO, MARÍA ES LA PRIMERA DE SU CLASE, Y JOSÉ ES EL SEGUNDO.

EN EL PODIO DE UNA COMPETENCIA, LOS RESULTADOS SE EXPRESAN EN NÚMEROS ORDINALES: PRIMERO, SEGUNDO Y TERCERO.

NÚMEROS ROMANOS

EN LA ANTIGÜEDAD, DIFERENTES CIVILIZACIONES CREABAN SUS PROPIOS SISTEMAS DE NUMERACIÓN. LOS ROMANOS CREARON EL SISTEMA DE NUMERACIÓN ROMANA QUE CUENTA CON SIETE LETRAS DE NUESTRO ALFABETO: I, V, X, L, C, D, M. CADA UNA TIENE UN VALOR QUE NO CAMBIARÁ SIN IMPORTAR EL ORDEN EN QUE SE ESCRIBAN. LAS COMBINACIONES ENTRE ESTAS LETRAS SIGUEN UNAS REGLAS DE SUMA, RESTA Y MULTIPLICACIÓN PARA FORMAR LOS NÚMEROS DEL SISTEMA DECIMAL.

PODEMOS VER NÚMEROS ROMANOS EN RELOJES, NOMBRES DE PAPAS Y LÁPIDAS CONMEMORATIVAS.

SERIES NUMÉRICAS

LAS SERIES NUMÉRICAS NOS AYUDAN A ESTABLECER UN ORDEN Y UNA RELACIÓN ENTRE NÚMEROS. ESTA SUCESIÓN DE NÚMEROS UNO AL LADO DE OTRO TIENEN DISTINTAS CARACTERÍSTICAS QUE LAS RELACIONAN Y PUEDEN SER PROGRESIVAS, CUANDO VAN DE MENOR A MAYOR; O REGRESIVAS, CUANDO VAN DE MAYOR A MENOR. EL PATRÓN, O REGLA EN COMÚN, PUEDE ESTAR DETERMINADO POR UNA SUMA O UNA RESTA.

CONTAR DE UNO EN UNO ES UNA SERIE NUMÉRICA QUE SIGUE UN PATRÓN IGUAL A +1 PORQUE CADA NÚMERO TIENE UNA UNIDAD MÁS QUE EL ANTERIOR.

CONJUNTO

UN CONJUNTO ES UN GRUPO DE OBJETOS QUE ESTÁN AGRUPADOS Y COMPARTEN UNA CARACTERÍSTICA EN COMÚN. LOS OBJETOS QUE ESTÁN DENTRO DE UN CONJUNTO SE LLAMAN ELEMENTOS Y PUEDEN SER DE CUALQUIER TIPO. POR OTRO LADO, ALGUNOS ELEMENTOS DE UN CONJUNTO TAMBIÉN PUEDEN PERTENECER A OTRO CONJUNTO INTERNO POR OTRA CARACTERÍSTICA QUE LO IDENTIFIQUE, A ESTOS SE LOS DENOMINA SUBCONJUNTOS.

LA IMAGEN MUESTRA UN CONJUNTO DE OBJETOS QUE PODEMOS VER EN UN PARQUE. TIENE 5 ELEMENTOS.

RELACIONES

TODOS LOS NÚMEROS QUE USAMOS PARA CONTAR TIENEN UNA RELACIÓN ENTRE SÍ. AL COMPARARLOS PODEMOS USAR SÍMBOLOS DE RELACIÓN: “>” QUE SIGNIFICA QUE UN NÚMERO ES MAYOR QUE OTRO (8 > 2), “=” QUE SIGNIFICA QUE UN NÚMERO ES IGUAL A OTRO (5 = 5); O “<” QUE SIGNIFICA QUE UN NÚMERO ES MENOR QUE OTRO (2 < 8). OTRA MANERA SENCILLA Y MUY ÚTIL DE COMPARAR NÚMEROS ES A TRAVÉS DE UNA RECTA NUMÉRICA.

EL SÍMBOLO DE LA IGUALDAD LO USAMOS PARA DEMOSTRAR QUE UN NÚMERO ES IGUAL A LA SUMA DE OTRO. POR EJEMPLO, 2 = 2, PERO TAMBIÉN 2 = 1 + 1.

CAPÍTULO 5 / TEMA 2

Ángulos

El ángulo es uno de los elementos fundamentales para la geometría porque está presente en las figuras ¡Incluso las paredes de nuestras casas forman ángulos entre ellas! Se puede definir como la porción del plano que se encuentra delimitada por dos semirrectas que comparten el mismo origen. 

Tipos de ángulos

Antes de poder reconocer los diferentes tipos de ángulos es necesario comprender los elementos que los forman.

  • Lado: es cada una de las semirrectas que conforman el ángulo y que tienen un origen en común.
  • Vértice: es el punto común o de origen de los lados.

 

Sistema de medida

El sistema usado para medir ángulos se denomina sistema sexagesimal, su unidad de medida es el grado (°) y resulta de dividir un ángulo llano en 180 partes, cada una de ellas representa un grado. Para medidas más pequeñas se usa el minuto (′) y el segundo (′′). Se denomina sexagesimal porque cada unidad es 60 veces mayor que la siguiente y 60 veces inferior que la anterior. Es por ello que 1° = 60′ y 1′ = 60′′.

De acuerdo a su tamaño los ángulos se clasifican en:

  • Ángulo agudo: es aquel mayor a 0° pero menor a 90°.
  • Ángulo recto: es aquel que mide 90°.
  • Ángulo obtuso: es aquel cuya medida es mayor a 90°pero menor a 180°.
  • Ángulo llano: es aquel cuyo ángulo es igual a 180°.

VER INFOGRAFÍA

Medición de ángulos

Uno de los instrumentos más usados para medir ángulos es el transportador, este presenta una serie de marcas que indican los grados. El más común es el transportador semicircular el cual viene graduado en 180°. Sus partes fundamentales son:

Para medir un ángulo con el transportador debemos seguir los siguientes pasos:

  1. Ubicar el origen del transportador en el vértice del ángulo que se va a medir.
  2. Hacer coincidir uno de los lados del ángulo con la línea horizontal de la base.
  3. Leer el ángulo que corta el segundo lado. Si el ángulo está abierto hacia la izquierda se usa la escala externa, si está abierto hacia la derecha se usa la escala interna (de acuerdo al tipo de instrumento las escalas pueden invertirse).

¿Sabías qué?
El teodolito es un instrumento con mayor precisión que el transportador que permite medir grados, minutos y segundos.

Construcción de ángulos

Una de las formas de construir ángulos es a través de una regla y un transportador. Para ello debemos realizar los siguientes pasos:

1. Trazamos con ayuda de la regla una semirrecta que será más adelante uno de los lados del ángulo.

 

2. Ubicamos el origen del transportador en uno de los extremos de la semirrecta (este también será el origen del ángulo), de manera que el número cero de la escala coincida con el otro extremo.

 

3. Ubicamos en la escala el ángulo que deseamos construir, para este ejemplo queremos construir un ángulo de 40°.

 

4. Hacemos una marca en el punto donde leímos el ángulo deseado.

 

5. Unimos el origen con la lectura marcada, de esta forma construimos un ángulo agudo de 40°.

Además del transportador, otros instrumentos usados para construir ángulos son el compás y la escuadra. Esta última permite construir ángulos rectos. Disciplinas como la arquitectura hacen uso de los ángulos en sus diseños. La exactitud en las mediciones es importante porque de lo contrario muchas de las estructuras podrían sufrir daños y afectar a las personas.

 

Comparación de ángulos

Luego de conocer cómo funciona el sistema sexagesimal en la medición de ángulos, podemos concluir que los ángulos llanos son mayores que los obtusos, que los obtusos son mayores que los rectos y que estos últimos son mayores que los agudos.

De manera que cuando necesitemos comparar ángulos lo primero que debemos hacer es identificar qué tipo de ángulo es. En el caso de conocer los valores de los ángulos, realizamos la comparación de de los números de acuerdo a la cantidad que representan, es decir: un ángulo de 35° es mayor que uno de 20°, pero es menor que uno de 150°.

Los ángulos y el triángulo

Los ángulos son tan importantes que en sí mismos determinan un criterio de clasificación de los triángulos. En este sentido, los triángulos se clasifican en acutángulos, rectángulos y obtusángulos. Los triángulos acutángulos tienen todos sus ángulos internos agudos, los triángulos rectángulos tienen un ángulo recto y los otros dos agudos, los triángulos obtusángulos tienen un ángulo obtuso y los otros dos agudos. En los triángulos se cumple que la suma de sus ángulos internos siempre es igual 180°.

¡A practicar!

1. ¿A qué tipo de ángulo corresponde cada imagen?

a)

Solución
Ángulo recto.
b) 
Solución
Ángulo llano.
c) 
Solución
Ángulo obtuso.
d) 
Solución
Ángulo agudo.

2. ¿Cuál de los siguientes ángulos no es agudo?

a) 95°

b) 30°

c) 3°

d) 84°

Solución
a) 95°. No es agudo porque no es menor a 90°.

3. ¿Cuál de los siguientes ángulos no es obtuso?

a) 125°

b) 95°

c) 160°

d) 180°

Solución
d) 180°. No es obtuso porque es igual a 180°, los ángulos obtusos deben ser mayores a 90° y menores a 180°.

4. ¿Cuál de los siguientes ángulos es agudo?

a) 90°

b) 180°

c) 200°

d) 50°

Solución
d) 50°. Es agudo por ser menor a 90°.

RECURSOS PARA DOCENTES

Artículo “Ángulos”

El presente artículo profundiza más en los diferentes tipos de ángulos que existen según su medida, su posición y sus características.

VER

Video “Propiedades de los ángulos de los polígonos”

En el presente video se muestra de manera animada cómo varían los ángulos externos e internos de los principales polígonos regulares.

VER

Artículo “Ángulo”

Este artículo detalla los elementos y tipos de ángulos, su construcción y el uso del transportador. Al final se proponen una serie de ejercicios relacionados.

VER

 

CAPÍTULO 3 / TEMA 1

longitud

Para determinar longitudes podemos utilizar distintas unidades de medida, la más conocida es el metro. Gracias a esta unidad sabemos qué tan altos somos, qué tan largo es nuestro cabello, o qué tan ancha es una piscina. Como verás a continuación, es posible medir todas las distancias. 

Las unidades de longitud nos permiten saber la distancia que existe entre dos puntos. Para medir esta distancia es necesario tener los instrumentos adecuados; ya conoces algunos como la regla graduada, la escuadra, la cinta métrica y el flexómetro. Con una regla graduada podemos medir distancia cortas y trazar rectas en nuestro cuaderno.

Comparación de longitudes

La longitud permite conocer la distancia que separa dos puntos entre sí, es decir, es la cantidad de espacio que hay entre dos puntos. Por ejemplo, el recorrido que hay desde el colegio hasta nuestra casa tiene una longitud específica, así como la tiene un lápiz, una mesa o un autobús.

Todos los días comparamos la longitud de los objetos y lo hacemos sin instrumentos de medición, por medio de la observación indicamos cuáles son más altos, más largos o más anchos.

Ejemplos:

  • ¿Cuál escalera es más alta?

  • ¿Cuál mesa es más ancha?

  • ¿Cuál crayón es más largo?

¿Cuál será la longitud de un autobús?

Una autobús puede tener hasta 8 metros de longitud, pero esto no podemos saberlo a simple vista. Es necesario que utilicemos instrumentos y unidades de medida.

El metro es la unidad básica y lo empleamos para medir distancias grandes, mientras que el centímetro lo empleamos para medir distancias pequeñas. Así, si queremos medir la altura de una casa, usamos el metro; pero si queremos medir el largo de un lápiz, usamos el centímetro.

 

¡Vamos a practicar!

1. ¿Cuál árbol es el más alto?, ¿con cuál unidad puedes medirlos?

Solución
El árbol A es más alto. Para saber su longitud debemos emplear el metro como unidad de medida.

2. ¿Cuál jirafa es la más alta?, ¿con cuál unidad puedes medirlas?

Solución
La jirafa B es más alta. Para saber su longitud debemos emplear el metro como unidad de medida.

3. ¿Cuál lápiz es más largo?, ¿con cuál unidad puedes medirlos?

Solución
El lápiz es más largo. Para saber su longitud debemos emplear los centímetros como unidad de medida.

El metro y sus SUBMÚLTIPLOS

La unidad principal para medir la longitud es el metro (m), aunque no es la única unidad que existe. Por ejemplo, una guitarra tiene 1 metro de longitud, pero ¿qué hacemos si queremos medir objetos más pequeños?

El metro (m) es la unidad principal de longitud, pero no es la única unidad. Los submúltiplos del metro son empleados para medir objetos pequeños, estos son el decímetro, el centímetro y el milímetro. También están los múltiplos que sirven para medir grandes distancias y grandes objetos, estos son el decámetro, el hectómetro y el kilómetro.

Para medir distancias pequeñas, como el ancho de una hoja de papel, se emplean unidades que son menores al metro, estas se denominan submúltiplos y son: el decímetro, el centímetro y el milímetro.

Submúltiplo Decímetro Centímetro Milímetros
Símbolos dm cm mm
Equivalencia 0,1 m 0,01 m 0,001 m

Para que tengas una idea aproximada de las longitudes que miden los submúltiplos del metro, vamos a ver algunos ejemplos:

Unidades arbitrarias de longitud

Las personas miden los objetos desde hace miles de años, y como antes no existían los instrumentos de medición, utilizaban partes de su cuerpo. Esto se conocía, y aún se conoce, como unidades arbitrarias porque no son exactas, pues cada cuerpo es diferente. Algunas unidades son el pie, la cuarta, la brazada y la pulgada.

¡Haz la prueba!

Intenta medir el largo de tu mesa. Usa “una cuarta” o “palmo” (abertura de la mano desde el dedo pulgar al meñique).

Conversión de metros a sus SUBMÚLTIPLOS

Existen muchos instrumentos para medir longitudes, uno de ellos es la cinta métrica. Con ella se pueden medir metros, decímetros, centímetros e incluso milímetros. Existen distintos tipos y sus longitudes van desde 1,5 metros hasta los 5 metros. Es probable que tengas una en casa, ¡intenta medir objetos con ella!

En lo que se refiere a medidas de longitud, es muy importante tener en cuenta las unidades que empleamos, pues no es lo mismo una longitud expresada en metros que una expresada en milímetros. Por ejemplo, si queremos comparar dos longitudes, la de un lápiz y la de un autobús, y una está en centímetros y la otra en metros, lo primero que debemos hacer es convertir las unidades para que las dos tengan las mismas.

Con este esquema podrás convertir metros a sus submúltiplos y viceversa:

 

Para convertir unidades de longitud existen dos métodos:

  • El primero consiste en mover a la derecha o a la izquierda la coma del número tantos lugares como casillas sean necesarias para llegar a la unidad deseada.
  • El segundo consiste en multiplicar o dividir por diez tantas veces como casillas sean necesarias para llegar a la unidad deseada.

Ejemplo:

– Convierte 2,52 m a cm.

1. Dibuja el cuadro y mueve tantos lugares a la derecha como sean necesarios hasta llegar a la posición de los centímetros.

2. Como nos desplazamos dos lugares a la derecha, movemos la coma dos lugares a la derecha.

Si usamos el segundo método, el procedimiento es este:

Observa que multiplicamos 2,52 por 10 dos veces y 10 x 10 = 100. Por lo tanto, también puedes multiplicar de forma directa: 2,52 x 100 = 252.

 

Otro ejemplo:

– Convierte 456 mm a dm.

Para pasar de milímetros a decímetros seguimos estos pasos:

1. Dibuja el cuadro y mueve tantos lugares a la izquierda como sean necesarios hasta llegar a la posición de los decímetros.

2. Como nos desplazamos dos lugares a la izquierda, movemos la coma dos lugares a la izquierda.

Si usamos el segundo método, entonces debemos dividir entre 10 dos veces, tal como se demuestra a continuación:

¡A practicar!

– Martina tiene 1,20 metros de estatura, ¿cuántos centímetros mide?

Solución

1,20 x 10 x 10 = 120 cm

Martina mide 120 centímetros.

¿Sabías qué?
La unidad de longitud tradicional en China es el li, suele estar precedida por la palabra shi y equivale a 500 metros.

empleo de reglas para medir segmentos

La regla es un instrumento de medición con forma de plancha delgada y rectangular; la escuadra, en cambio, es una plantilla triangular que nos permite medir segmentos y realizar trazados horizontales y verticales. Estos dos instrumentos incluyen una escala graduada dividida en unidades de longitud.

La regla graduada y la escuadra son instrumentos útiles para medir segmentos u objetos. Suelen venir con graduaciones de unidades de medida, como milímetros o centímetros.

La regla tiene espacios iguales con números, cada uno de estos espacios se denomina “centímetro” y el espacio más pequeño sin números se denomina “milímetro”. Por ejemplo, esta regla tiene una longitud de 1 decímetro o 10 centímetros.

Si acercamos objetos pequeños a la escala graduada podemos determinar cuál es su longitud. En el ejemplo vemos que una tira de papel mide 7 centímetros. Observa que la tira se coloca al nivel del cero y luego se anota el número final.

¿Cuánto mide este lápiz? 

Solución

El lápiz mide 5,5 centímetros.

Ejercicios

1. ¿Cuántos centímetros mide el borrador?

Solución
3 centímetros.

2. Realiza las siguientes conversiones de unidades.

  • 5,489 m a cm.
Solución
548,9 cm.
  • 259 cm a m.
Solución
2,59 m.
  • 3,369 m a mm.
Solución
3.369 mm.
  • 11,654 dm a m.
Solución
1,1654 m.

3. Juana la iguana mide 0,55 metros, ¿cuánto mide en centímetros?

Solución
55 centímetros.

4. Felipe tiene un gatito muy travieso al que le gusta trepar a los árboles. El gato subió a la rama de un árbol que está a 2,8 metros del suelo. Si Felipe tiene dos escaleras: una de 19 decímetros y otra de 28 decímetros, ¿cuál escalera debe usar para poder bajar a su gatito?

Solución
Felipe debe usar la escalera que mide 28 decímetros.

5. Juliana es la niña con el cabello más largo en la escuela, tiene una longitud de 4 decímetros, pero fue al salón de belleza y le cortaron 15 centímetros de su extensa melena. ¿Cuántos decímetros cortaron de su cabello? ¿Cuántos decímetros tiene de longitud su cabello ahora?

Solución
Cortaron 1,5 decímetros de su cabello y ahora tiene una longitud de 2,5 decímetros.
RECURSOS PARA DOCENTES

Artículo “Múltiplos y submúltiplos del: metro, gramo y litro”

El siguiente artículo destacado le permitirá trabajar con sus alumnos los diferentes sistemas de medición.

VER 

 

CAPÍTULO 3 / TEMA 5

Problemas con fracciones

La fracciones están presentes en la vida cotidiana. Su utilidad es inmensa y sin ellas muchos cálculos matemáticos serían más complejos. La resolución de operaciones como la suma, la resta, la división y la multiplicación se lleva a cabo de una manera particular cuando involucran fracciones.

Cálculo de fracciones equivalentes

Las fracciones equivalentes son aquellas que representan la misma cantidad pero sus numeradores y denominadores no son iguales. Se pueden calcular por amplificación o por simplificación:

Para encontrar una fracción equivalente por amplificación tenemos que multiplicar el numerador y denominador por un mismo número. En este caso, las fracciones \frac{1}{2} y \frac{2}{4} son equivalentes porque:

Por otro lado, para calcular una fracción equivalente por simplificación, debemos hacer el procedimiento contrario, es decir, dividir el numerador y denominador por un mismo número. En este caso, ambos términos de la fracción deben tener un divisor común, de lo contrario se dice que la fracción es irreducible.

Las fracciones \frac{10}{4} y \frac{5}{2} son fracciones equivalentes porque:

¿Sabías qué?
Las fracciones irreducibles son aquellas cuyo numerador y denominador no tienen un divisor común.

Adición y sustracción de fracciones homogéneas

Sumar o restar fracciones homogéneas es sencillo. Primero se suman o restan los numeradores según indique el signo y el número obtenido será el numerador de la fracción resultante, luego se coloca el mismo denominador. Por ejemplo:

Calcula: \frac{1}{3}+\frac{4}{3}

Suma los dos numeradores, que son 1 y 4, y luego coloca el mismo denominador de las fracciones. La fracción resultante es entonces \frac{5}{3}.

Calcula: \frac{7}{5}-\frac{3}{5}

Resta los numeradores, 7 y 3, y el número obtenido será el numerador de la fracción resultante cuyo denominador será el mismo de las fracciones originales. En este caso, el resultado es \frac{4}{5}.

En la práctica simplificamos fracciones hasta su mínima expresión, es decir, obtenemos fracciones equivalentes que no tengan divisores comunes entre su numerador y su denominador. Hacemos esto porque dichas fracciones simplifican la escritura y los cálculos. Por lo general, para reducir fracciones empleamos los criterios de la divisibilidad.

VER INFOGRAFÍA

Adición y sustracción de fracciones heterogéneas

Las fracciones heterogéneas son aquellas que tienen distinto denominador. Un método para resolver adiciones y sustracciones de este tipo de fracciones es el método en cruz, el cual consiste en calcular fracciones equivalentes con el mismo denominador y luego sumar o restar según indique el signo.

Pasos para resolver sumas y restas de fracciones heterogéneas

  1. Multiplica el numerador de la primera fracción por el denominador de la segunda fracción, luego coloca el signo según indique la operación y seguido de eso multiplica el denominador de la primera fracción por el numerador de la segunda. La suma o resta de esos dos productos será el numerador de la fracción resultante.
  2. Multiplica el denominador de la primera fracción por el denominador de la segunda, el resultado de esa multiplicación será el denominador de la fracción resultante.

Calcula: \frac{4}{3}+\frac{5}{2}

Se aplican los pasos anteriores, es decir: multiplicamos el numerador de la primera fracción (4) por el denominador de la segunda (2), colocamos el signo más (+) y luego multiplicamos el denominador de la primera fracción (3) por el numerador de la segunda fracción (5). Ambos productos forman parte del numerador de la fracción resultante.

Luego multiplicamos los denominadores y el producto formará parte del denominador de la fracción resultante.

Resolvemos los productos.

Finalmente, resolvemos la suma en el denominador y obtenemos el resultado:

 

Calcula: \frac{5}{2}-\frac{1}{4}

El procedimiento es el mismo que el anterior, pero al momento de realizar los productos cruzados colocamos el signo menos (−) y luego restamos. El procedimiento sería el siguiente:

Simplificación

Podemos simplificar la fracción \frac{18}{8} y llevarla a su mínima expresión, para esto solo dividimos el numerador y el denominador por dos (2). Por lo tanto:

\frac{18}{8}=\frac{9}{4}

Multiplicación de fracciones

La multiplicación de fracciones se realiza de forma lineal entre sus elementos, es decir, primero multiplicamos todos los numeradores y el producto será el numerador resultante. Luego multiplicamos todos los denominadores y el producto será el denominador de la fracción resultante.

Calcular: \frac{5}{3}\times \frac{3}{2}.

Simplificación

Podemos simplificar la fracción \frac{15}{6} y llevarla a su mínima expresión, para esto solo dividimos el numerador y el denominador por tres (3). Por lo tanto:

\frac{15}{6}=\frac{5}{2}

La inversa de una fracción es aquella en la que su numerador es igual al denominador y el denominador es igual al numerador de la primera fracción en ambos casos. La inversa de la fracción 3/2 es 2/3 y la inversa de 5/8 es 8/5. Si multiplicamos una fracción por su inversa, el resultado siempre va a ser la unidad. En este sentido 3/2 x 2/3 = 1 y 5/8 x 8/5 = 1.
¡A practicar!

1. Resuelve las siguientes adiciones y sustracciones de fracciones:

a) \frac{7}{9}+\frac{1}{9}

Solución
\frac{8}{9}

b) \frac{3}{5}-\frac{1}{2}

Solución
\frac{1}{10}

c) \frac{9}{7}+\frac{5}{7}

Solución
\frac{14}{7}

La fracción simplificada es \frac{2}{1}=2

d) \frac{13}{20}-\frac{8}{20}

Solución
\frac{5}{20}

La fracción simplificada es \frac{1}{4}

e) \frac{4}{5}+\frac{6}{9}

Solución
\frac{66}{45}

La fracción simplificada es \frac{22}{15}.

2. Resuelve las siguientes multiplicaciones:

a) \frac{3}{5}\times \frac{4}{9}

Solución
\frac{12}{45}

La fracción simplificada es \frac{4}{15}

b) \frac{5}{8}\times \frac{3}{9}

Solución
\frac{15}{72}

La fracción simplificada es \frac{5}{24}.

c) \frac{1}{8}\times \frac{7}{2}

Solución
\frac{7}{16}

d) \frac{3}{8}\times \frac{4}{7}

Solución
\frac{12}{56}

La fracción simplificada es \frac{3}{14}.

e) \frac{9}{4}\times \frac{8}{3}

Solución
\frac{72}{12}

La fracción equivalente es \frac{6}{1}=6

RECURSOS PARA DOCENTES

Artículo “Adición y sustracción de fracciones”

En este artículo destacado se exponen diferentes formas de resolver adiciones y sustracciones de fracciones con igual o diferente denominador.

VER

Artículo “Multiplicación y división de fracciones”

En este artículo se expone cómo resolver problemas de multiplicación de fracciones. También describe como realizar la simplificación de estos números y ayuda a comenzar a trabajar con problemas de división de fracciones.

VER

CAPÍTULO 5 / TEMA 1

Perímetro

El contorno de una figura geométrica se denomina perímetro. De acuerdo al tipo de figura, el contorno puede ser calculado por medio de la suma de sus lados o a través de diferentes fórmulas. Estas operaciones tienen muchas aplicaciones en la vida cotidiana: por ejemplo, sirven para determinar la longitud de la cerca de una casa.

Cálculo de perímetro en figuras planas

El perímetro es la longitud del contorno de una figura. Para calcular el perímetro de una figura, simplemente tenemos que sumar cada uno de sus lados.

Es importante tener presente que existen figuras con lados regulares como el cuadrado, y figuras con lados irregulares como en el caso de un rectángulo. Las figuras regulares son conocidas como polígonos regulares y los más comunes son:

POLÍGONO NÚMERO DE LADOS
Triángulo equilátero 3
Cuadrado 4
Pentágono 5
Hexágono 6
Heptágono 7
Octágono 8
Eneágono 9
Decágono 10

¿Sabías qué?
De acuerdo a sus lados, los triángulos son clasificados en: equiláteros (tres lados iguales), isósceles (dos lados iguales) y escalenos (ningún lado igual).

VER INFOGRAFÍA

La ventaja de los polígonos regulares es que al tener todos sus lados iguales su perímetro es igual a la longitud de uno de sus lados multiplicada por la cantidad de lados que este tiene. La fórmula sería:

 P=n\times L

Donde:
P = perímetro.
n = número de lados de la figura.
L = longitud de un lado de la figura.

Un ejemplo de cálculo de perímetro

– Calcula el perímetro de un cuadrado cuyos lados miden 5 cm:

El cuadrado es un polígono regular de cuatro lados iguales, por lo tanto, calculamos su perímetro de la siguiente forma:

P = 4 × 5 cm

Resolvemos la multiplicación y el resultado obtenido es:

P = 20 cm

Observa que al final añadimos la unidad de longitud inicial, que son centímetros (cm), pero puede ser cualquier otra unidad de medida, los pasos en estos casos siempre son los mismos.

Otro camino

Aunque las fórmulas permiten realizar cálculos más sencillos, el perímetro también puede determinarse a través de la suma de cada uno de los lados. En el caso del ejemplo anterior sabemos que cada lado mide 5 cm, de manera que tenemos que sumar los cuatro lados para obtener el perímetro:

P = 5 cm + 5 cm + 5 cm + 5 cm = 20 cm

Esta forma de calcular el perímetro suele aplicarse a figuras que tienen al menos un lado diferente, pues al no tener sus lados iguales, no es posible aplicar la fórmula de polígonos regulares. Un ejemplo sería:

– Calcula el perímetro del siguiente triángulo:

Al sumar cada uno de sus lados obtenemos que:

P = 6 cm + 7 cm + 5 cm = 18 cm

Este triángulo escaleno tiene un perímetro de 18 cm.

 

El perímetro de un círculo

El perímetro de un círculo se denomina circunferencia, y para calcularlo empleamos un número matemático muy particular: el número pi, llamado así porque se escribe con la letra π del alfabeto griego, que lleva ese mismo nombre. Este número es irracional, por lo tanto es infinito. Se obtiene al dividir la longitud de la circunferencia entre su diámetro. Los primeros 10 números decimales del número pi son 3,1415926535…

La fórmula para determinar el perímetro de un círculo es:

P = π × d

Donde:

π = número pi (en los cálculos generalmente se redondea hasta los dos decimales).

d = la longitud del diámetro de la circunferencia.

Perímetro de figuras compuestas

Primero que todo, es importante saber que una figura compuesta está formada por dos o más figuras geométricas, por lo que tienen un arreglo irregular de lados y ángulos. En el caso de estas figuras, realizamos el cálculo del perímetro de la misma forma que en el ejemplo anterior del triángulo.

Observemos esta figura:

Es una figura compuesta porque está formada por un cuadrado y un triángulo:

Determinamos el perímetro de esta figura al sumar solo los lados exteriores de la figura:

P = 5 cm + 5 cm + 1 cm + 7 cm + 9 cm = 27 cm

El perímetro de la figura es 27 cm.

Las figuras compuestas pueden estar formadas por triángulos, cuadrados, rectángulos, trapecios, círculos, etc. Conocer sus diferentes elementos es importante al momento de resolver problemas de perímetros y de áreas, ya que no se puede aplicar una fórmula en común: es necesario identificar las figuras geométricas que integran la figura compuesta.

Aplicaciones del perímetro

Debido a que el perímetro y el área representan las magnitudes fundamentales al momento de trabajar con figuras geométricas y polígonos, sus usos en la vida cotidiana son frecuentes.

En el caso del perímetro, disciplinas como la arquitectura lo emplean para determinar la frontera de un objeto como en el caso de la cerca de una edificación o la valla de un campo. Sus usos también se extiende al ámbito militar, donde permite delimitar las áreas de interés ofensivo o de defensa.

La geometría

Es una rama de la matemática encargada del estudio de las figuras, sus propiedades y medidas en el plano y en el espacio. Su origen no es reciente, de hecho, antiguas civilizaciones como las del Antiguo Egipto, Sumeria y Babilonia ya la empleaban en mediciones de terrenos y en la construcción de edificaciones. Mucho tiempo después, los antiguos griegos la empezaron a perfeccionar y hoy en día es una disciplina fundamental.

 

¡A practicar!

1. Calcular el perímetro de las siguientes figuras:

a)

Solución
P = 15 cm
b) 
Solución
P = 12 cm
c) 
Solución
P = 48 cm
d) 
Solución
P = 18 cm
e) 
Solución
P = 34 cm

2. ¿Cuál de las siguientes figuras es un polígono regular?

a) 

b) 

c) 

d) 

e) 

Solución
c) Es un polígono regular porque tiene 6 lados iguales y se denomina hexágono.

RECURSOS PARA DOCENTES

Artículo “Áreas y perímetro”

En este cuadro comparativo se muestra una tabla con las fórmulas de área y perímetro para las principales figuras geométricas.

VER

Artículo “Perímetro de polígonos”

En este artículo se explica cómo realizar el cálculo de perímetro en el caso específico de los diferentes tipos de polígonos.

VER

CAPÍTULO 4 / TEMA 3

FIGURAS PLANAS

TODOS LOS OBJETOS QUE NOS RODEAN TIENEN UNA FORMA Y MUCHOS DE ELLOS SON PLANOS, ES DECIR, SOLO TIENEN DOS DIMENSIONES Y NO TIENEN RELIEVE. LAS FIGURAS PLANAS MÁS COMUNES SON EL CÍRCULO, EL TRIÁNGULO EL CUADRADO Y EL RECTÁNGULO. CON ESTE ARTÍCULO APRENDERÁS A DIFERENCIAR ESTAS FIGURAS.

LAS FIGURAS PLANAS ESTÁN DELIMITADAS POR LÍNEAS RECTAS O CURVAS, ASÍ QUE MUCHOS DE LOS INSTRUMENTOS QUE USAMOS EN LA ESCUELA SIRVEN PARA DIBUJARLAS. POR EJEMPLO, CON LAS REGLAS Y ESCUADRAS PODEMOS DISEÑAR CUADRADOS, RECTÁNGULOS Y TRIÁNGULOS; MIENTRAS QUE CON EL COMPÁS PODEMOS HACER CÍRCULOS Y CIRCUNFERENCIAS CON PRECISIÓN. ¡INTÉNTALO!

¿QUÉ ES UNA FIGURA PLANA?

UNA FIGURA PLANA ES AQUELLA QUE ESTÁ DEFINIDA POR LÍNEAS RECTAS O CURVAS. ADEMÁS, SOLO TIENE DOS DIMENSIONES: ALTO Y ANCHO.

¿VES ALGUNA FIGURA?

ESTE DIBUJO ESTÁ ELABORADO SOLO CON FIGURAS PLANAS, ¿PUEDES RECONOCER ALGUNAS?

¿CUÁLES SON LAS FIGURAS PLANAS?

HAY MUCHOS TIPOS DE FIGURAS PLANAS, LAS MÁS COMUNES SON EL CÍRCULO, EL TRIÁNGULO, EL CUADRADO Y EL RECTÁNGULO.

OBSERVA ESTOS GRUPOS DE FIGURAS, ¿EN QUÉ SE PARECEN?

  • LAS FIGURAS DE COLOR ROJO SON CUADRADOS.
  • LAS FIGURAS DE COLOR AZUL SON CÍRCULOS.
  • LAS FIGURAS DE COLOR AMARILLO SON TRIÁNGULOS.
  • LAS FIGURAS DE COLOR VERDE SON RECTÁNGULOS.

¿CUÁLES SON LOS ELEMENTOS DE LAS FIGURAS?

CÍRCULO

UN CÍRCULO ES UNA FIGURA PLANA FORMADA POR UNA CURVA CERRADA Y REDONDA QUE SIEMPRE TIENE LA MISMA DISTANCIA DEL CENTRO.

¿CUÁLES SON SUS ELEMENTOS?

EL CENTRO, LA CIRCUNFERENCIA, EL DIÁMETRO Y EL RADIO.

¿SABÍAS QUÉ?
LA LÍNEA QUE BORDEA AL CÍRCULO SE LLAMA CIRCUNFERENCIA.

TRIÁNGULO

UN TRIÁNGULO ES UNA FIGURA PLANA FORMADA POR TRES LADOS.

¿CUÁLES SON SUS ELEMENTOS?

LOS LADOS Y LOS VÉRTICES.

CLASIFICACIÓN DE LOS TRIÁNGULOS

SEGÚN SUS LADOS LOS TRIÁNGULOS PUEDEN SER EQUILÁTEROS, ISÓSCELES O ESCALENOS.

CUADRADO

UN CUADRADO ES UNA FIGURA PLANA CON CUATRO LADOS IGUALES.

¿CUÁLES SON SUS ELEMENTOS?

LOS LADOS Y LOS VÉRTICES.

RECTÁNGULO

UN RECTÁNGULO ES UNA FIGURA PLANA CON CUATRO RECTAS Y CON LADOS OPUESTOS PARALELOS.

¿CUÁLES SON SUS ELEMENTOS?

EL LARGO, EL ANCHO Y LOS VÉRTICES.

 

¿QUÉ ES EL TANGRAM?

ES UN JUEGO DE ORIGEN CHINO EN EL QUE PODEMOS FORMAR DIVERSAS FIGURAS CON SIETE PIEZAS BÁSICAS LLAMADAS “TANS”:

  • CINCO (5) TRIÁNGULOS.
  • UN (1) CUADRADO.
  • UN (1) PARALELOGRAMO.

ESTAS PIEZAS O “TANS” SE GUARDAN DE TAL MANERA QUE FORMAN UN CUADRADO.

FIGURAS PLANAS EN LOS OBJETOS

OBSERVA ESTOS OBJETOS, ¿A CUÁL FIGURA PLANA SE PARECEN?

RESPONDE:

  • ¿CUÁLES OBJETOS SE PARECEN A UN CÍRCULO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS SE PARECEN A UN RECTÁNGULO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS SE PARECEN A UN CUADRADO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS SE PARECEN A UN TRIÁNGULO?
SOLUCIÓN

¡A PRACTICAR!

1. COLOREA LAS FIGURAS DE LA SIGUIENTE MANERA:

  • CÍRCULOS DE COLOR AZUL.
  • TRIÁNGULOS DE COLOR AMARILLO.
  • RECTÁNGULOS DE COLOR VERDE.
  • CUADRADO DE COLOR ROJO.

SOLUCIÓN

2. COLOREA DE ROJO LAS FIGURAS PLANAS FORMADAS POR TRES LADOS Y TRES VÉRTICES.

SOLUCIÓN

3. RESPONDE LAS PREGUNTAS.

  • ¿CUÁNTOS LADOS TIENE EL CUADRADO?
SOLUCIÓN
EL CUADRADO TIENE CUATRO (4) LADOS IGUALES.
  • ¿CUÁNTOS LADOS TIENE UN TRIÁNGULO?
SOLUCIÓN
EL TRIÁNGULO TIENE TRES LADOS.
  • ¿QUÉ ES UNA CIRCUNFERENCIA?
SOLUCIÓN
ES LA LÍNEA QUE BORDEA AL CÍRCULO.
  • ¿QUÉ ES UN TRIÁNGULO ISÓSCELES?
SOLUCIÓN
ES UNA TRIÁNGULO CON DOS LADOS IGUALES.
  • ¿LOS RECTÁNGULOS TIENEN CUATRO LADOS IGUALES?
SOLUCIÓN
NO. LOS RECTÁNGULOS TIENEN DOS LADOS MÁS LARGOS QUE LOS OTROS DOS.
RECURSOS PARA DOCENTES

Artículo “Clasificación de los triángulos”

Con este recurso podrá profundizar sobre los diversos tipos de triángulos, figura básica de la geometría plana.

VER

Artículo “Círculo”

Un círculo es una región plana encerrada por una circunferencia. Todos sus elementos podrá verlos en este artículo.

VER