CAPÍTULO 1 / TEMA 5 (REVISIÓN)

números | ¿qué aprendimos?

Lectura y representación de números

Cada número está formado por diferentes cifras y cada una de estas cifras tiene un valor según la posición que ocupan dentro del número. Por ejemplo, el 300 se lee “trescientos” porque el 3 se ubica en el lugar de las centenas, pero el 30 se lee “treinta” porque el 3 está en el lugar de las decenas. Además de los números naturales que usamos para contar, también existen otros que representan orden, como los ordinales; y otros que podemos ver en relojes antiguos, como los números romanos.

Con los diez dígitos de nuestro sistema de numeración podemos crear cualquier número.

Valor posicional

El valor posicional es el valor que tiene una cifra dentro de un número, por ejemplo, el número 555, a pesar de tener tres cifras iguales, cada una tiene un valor distinto: 500, 50 y 5. Estos valores los podemos representar en una tabla posicional en la que están los órdenes (unidades, decenas, centenas) y las clases (miles, millones, etc.). Por otro lado, la descomposición aditiva nos ayuda a expresar un número como la suma de sus valores posicionales.

El ábaco es un instrumento que sirve para realizar diferentes operaciones matemáticas. Una esfera de color puede representar una unidad, una decena o una centena.

Recta numérica

La recta numérica, como su nombre lo indica, es una recta que contiene infinitos números. Para graficarla basta con hacer una línea recta, dibujar flechas a los lados, ubicar el cero (0) y hacer separaciones de igual distancia en las que colocaremos los puntos que simbolizan los números. Es importante recordar que cada número tiene un orden y pueden ser mayores o menores que otros. Para esto usamos símbolos de relación como mayor que (>), menor que (<) o igual a (=).

Con una regla graduada o escuadra podemos dibujar una recta numérica. Este instrumento nos ayudará no solo con el trazo de la línea recta, sino también con las separaciones entre punto y punto.

series

Las series numéricas son conjuntos de números organizados bajo una misma regla o patrón, pueden ser ascendentes y descendentes. Una serie es ascendente cuando los números están ordenados de menor a mayor y el patrón es una suma sucesiva; mientras que una serie numérica descendente es aquella en la que los números están ordenados de mayor a menor y el patrón es una resta sucesiva. A estos patrones los podemos identificar si restamos dos números contiguos de la serie. También vemos patrones en las tablas de 100 números.

Contar es una de las primeras tareas que aprendemos a hacer. Gracias al conteo con nuestros dedos podemos realizar operaciones básicas como la suma y resta de números pequeños.

CAPÍTULO 1 / TEMA 4

SERIES

Contamos desde hace miles de años y lo hacemos por diferentes razones, por ejemplo, para saber cuántos juguetes tenemos, cuánto tiempo falta para una película o cuántos deberes nos faltan por hacer. Las series numéricas son una forma de conteo y están creadas por varios números ordenados que siguen un patrón. Sin duda alguna, el conteo está presente en nuestro día a día.

conteo

Contar significa enumerar distintos elementos de manera ordenada y en orden creciente o decreciente.

El uso de los números y aprender a contar ha sido algo tan importante como lo fue aprender a cazar en la Antigüedad. Desde pequeños aprendemos cuáles son los números y cómo ordenarlos, lo que nos permite saber la cantidad de objetos que tenemos a nuestro alrededor. Para contar más rápido solemos contar de tanto en tanto, por ejemplo, de 2 en 2; de 5 en 5, etc.

– Ejemplo:

  • Cuando contamos las estrellas, contamos de manera creciente, es decir, de menor a mayor:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, … 

  • Cuando contamos los segundos que faltan para que sea año nuevo, contamos de manera decreciente, es decir, de mayor a menor:

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.

 

También podemos contar de 3 en 3, de 4 en 4, de 5 en 5, etc.

  • Cuando contamos de 3 en 3 solo sumamos 3 a un número, luego volvemos a sumar 3 al siguiente, y así sucesivamente. Por ejemplo:

En cada recuadro hay 3 mariposas, entonces hay 3 grupos de 3 mariposas. Otra forma de verlo es que hay un recuadro dentro de otro y la cantidad total de mariposas la podemos contar así: 3, 6 y 9 mariposas. El conteo va de 3 en 3.

¿Sabías qué?
Los diez dígitos de nuestro sistema de numeración decimal fueron inventados en la India.

series numéricas y sus tipos

Las series numéricas son un conjunto de números ordenados que siguen un patrón o regla determinada. Pueden ser ascendentes y descendentes.

Series ascendentes

Son las que se forman por sumas sucesivas y que van de menor a mayor. Por ejemplo, si al número 1 le sumamos 1 obtenemos 2 (1 + 1 = 2), luego a ese resultado le sumamos 1 y resulta en 3 (2 + 1 = 3). Seguimos el mismo proceso en cada resultado.

Series descendentes

Son las que se forman por restas sucesivas y van de mayor a menor. Por ejemplo, en esta serie cada número es tres unidades menor que el siguiente.

 

Miles de años de conteo

Desde hace miles de años los humanos contamos números. Las culturas primitivas utilizaban el conteo para registrar el número de personas en una comunidad o grupo; para contar animales o presas cazadas; para saber la cantidad de propiedades que poseían o las deudas contraídas. Con el paso del tiempo se desarrollaron sistemas numéricos de escritura y el uso de símbolos matemáticos.

¿cómo identificar el patrón numérico?

El patrón numérico es la regla que sigue toda la serie. En la siguiente serie el patrón es “sumar 5”, por que cada número es 5 unidades mayor al siguiente.

5, 10, 15, 20, 25, 30

Para identificar el patrón numérico de una serie restamos cada par de números consecutivos, si cada operación da como resultado el mismo número el patrón será la suma o resta de ese número. Por lo tanto:

  • Si la serie es ascendente, el patrón es sumar el resultado obtenido.
  • Si la serie es descendente, el patrón es restar el resultado obtenido.

A modo de ejemplo observemos la siguiente serie:

3,  7,  11,  15,  ___,  23

Restamos los primeros pares consecutivo:

7 − 3 = 4

11 − 7 = 4

Como los resultados son iguales y la serie es ascendente el patrón es “sumar 4”. Ahora podemos completar la serie. Como 15 + 4 = 19, colocamos el 19 en el espacio en blanco:

3,  7,  11,  15,  19,  23

¡Es tu turno!

Identifica el patrón de estas series.

  • 8, 14, 20, 26, 32, 38, 44
Solución
Patrón: + 6
  • 22, 20, 18, 16, 14, 12, 10
Solución
Patrón: − 2
  • 39, 30, 21, 12, 3
Solución
Patrón: − 9

patrones numéricos en tablas de 100

Podemos ver patrones numéricos en las tablas que van del 1 al 100. Observa esta tabla:

Puedes ver en la tabla que los números marcados en azul van de 9 en 9. Si comienzas en el 9 la serie tiene una patrón + 9, pero si comienzas en el 81, la serie tiene una patrón − 9.

¡A practicar!

1. Observa la imagen y luego responde:

  • ¿Cuántos grupos de caracoles hay? 
    Solución
    Hay 5 grupos de caracoles.
  • ¿Cuántos caracoles hay en total? 
    Solución
    Hay 20 caracoles en total.
  • ¿De cuánto en cuánto se agruparon los caracoles? 
    Solución
    Los caracoles se agruparon de 4 en 4.

 

2. Escribe de cuánto en cuánto van las siguientes series:

  • 586, 686, 786, 886, 986
    Solución
    La serie va de 100 en 100.
  • 3.443, 3.453, 3.463, 3.473, 3.483
    Solución
    La serie va de 10 en 10.
  • 675, 680, 685, 690, 695
    Solución
    La serie va de 5 en 5.
  • 7.702, 7.722, 7.742, 7.762, 7.782
    Solución
    La serie va de 20 en 20.

 

3. Completa la siguiente serie y escribe el patrón numérico:

  • 101, 104, 107, 110, ___, ___, ___, ___.
Solución

101, 104, 107, 110, 113, 116, 119, 122.

Patrón: + 3

  • 1.500, 2.500, 3.500, ___, ___, ___.
Solución

1.500, 2.500, 3.500, 4.500, 5.500, 6.500.

Patrón: + 1.000

  • 3.650, 3.640, 3.630, ___, ___, ___, ___.
Solución

3.650, 3.640, 3.630, 3.620, 3.610, 3.600, 3.590.

Patrón: − 10

 

4. Observa la tabla del 1 al 100 y luego resuelve los siguientes puntos:

  • Colorea en rojo una fila, columna o diagonal en la que los números vayan de 1 en 1.
  • Colorea en morado una fila, columna o diagonal en la que los números vayan de 11 en 11.
  • Colorea en verde una fila, columna o diagonal en la que los números vayan de 10 en 10.

Solución
Hay otras posibilidades, ¡descúbrelas!
RECURSOS PARA DOCENTES

Artículo “Sucesiones y series”

Con este artículo podrás complementar la información relacionada a las series y las sucesiones.

VER

CAPÍTULO 1 / TEMA 3

RECTA NUMÉRICA

Todos los números se pueden representar en una recta numérica. Esta nos permite comparar números y saber si uno es mayor o menor que otro; como también redondear las decenas o centenas más cercana. Es probable que la hayas visto en las reglas de tu escuela, hoy sabrás cómo graficarlas y usarlas.

La regla graduada es un instrumento que usamos para medir distancias y para trazar líneas rectas. Es graduada porque tiene marcas que simbolizan la distancia entre un punto y otro. Estas marcas hacen que la regla sea lo más parecido a una recta numérica.

¿qUÉ ES LA RECTA NUMÉRICA?

Es una línea recta que tiene una sola dimensión y está compuesta por una sucesión de puntos que se prolongan en una misma dirección hasta el infinito, es decir, que no tiene fin. Si empezamos a contar los números de uno en uno, no terminaríamos nunca porque los números son infinitos.

¿Sabías qué?
El símbolo del infinito es ∞. 

¿Cómo graficar una recta numérica?

En un recta numérica podemos graficar los números como puntos que están separados por una misma distancia unos de otros. Los pasos son los siguientes:

1. Dibuja una línea recta con flechas en ambos extremos. Las flechas se colocan para representar que hay números sin fin tanto a la derecha como a la izquierda.

2. Ubica el cero. Ese será el inicio de la recta numérica.

3. Divide la recta en segmentos de la misma distancia y agrega los números.

4. Si deseas representar números grandes, también puedes hacerlo en la recta numérica. Por ejemplo:

De 10 en 10:

De 100 en 100:

De 1.000 en 1.000:

 

Recuerda que entre número y número hay divisiones más pequeñas que representan las cantidad intermedias. Por ejemplo, entre 1.000 y 2.000 podemos dibujar la recta así:

Aunque originalmente solo se colocaban los números naturales sobre la recta numérica, es decir, los números que usamos para contar: 1, 2, 3, 4, 5, … Hoy en día podemos representar cualquier tipo de número en ella. Así, podemos encontrar números decimales, como 6,5; números fraccionarios, como 1/2; o números negativos como −9.

representación de números en la recta numérica

En una recta numérica podemos ubicar cualquier número. Por ejemplo, si queremos representar el 7.500 tenemos que pensar que se encuentra entre el 7.000 y el 8.000, justo en el medio de ambos. Veamos cómo queda:

– Otro ejemplo:

 

También podemos representar los valores entre decenas de números grandes. Por ejemplo, para ubicar el número 2.130 tenemos que pensar que está entre el 2.100 y el 2.200. La recta quedaría así:

– Otro ejemplo:

Creación de la recta numérica

La recta numérica es un gráfico unidimensional de una línea recta, fue creada por John Wallis, un matemático Inglés que alrededor de 1670 la empleó para mostrar de modo gráfico los números naturales. A medida que nos movemos hacia la derecha sobre la recta vamos a encontrar números más grandes.

redondeo

Redondear un número significa llevarlo al número natural más cercano terminado en cero, es decir, consiste en encontrar la decena o centena más cercana al número. Por ejemplo, el redondeo del número 2.320 a la centena más cercana es 2.300, porque 2.320 está más cerca de 2.300 que de 2.400.

– Otro ejemplo:

El punto color rojo está ubicado en 4.870, entre el 4.800 y el 4.900, pero ¿a qué centena más cercana está? Como ves, en la recta, el punto rojo está más cerca de 4.900, por lo tanto, el redondeo a la centena de 4.870 es 4.900.

orden numérico

Hay números naturales mayores o menores que otros, a esta relación la llamamos orden. Para representar que un número es mayor, menor o igual a otro usamos los siguientes símbolos:

Símbolo Significado
> Mayor que
< Menor que
= Igual a

En una recta numérica, los números mayores están más a la derecha y los menores están más a la izquierda.

– Ejemplo:

  • 9.000 es mayor que 1.000 porque está más a la derecha en la recta numérica. Lo representamos así:

9.000 > 1.000

 

  • 4.840 es menor que 4.890 está más a la izquierda en la recta numérica. Lo representamos así:

4.840 < 4.890

– Otros ejemplos:

2.551 > 2.550

7.013 < 7.020

1.500 > 1.000

¿Sabías qué?
La boca más ancha de los símbolos < y > siempre mira al número más grande; y la parte más fina al número más pequeño.

¡A practicar!

  1. Representa en la recta numérica los siguientes números:
  1. 2.160
    Solución
  2. 9.540 
    Solución
  3. 5.365
    Solución
  4. 7.615 
    Solución

2. Observa la recta numérica y luego responde las preguntas:

  1. ¿Qué número está representado en el punto de color azul? 
    Solución
    3.300
  2. ¿Qué número está representado en el punto de color rosa? 
    Solución
    4.100
  3. ¿Qué número está representado en el punto de color lila? 
    Solución
    6.400
  4. ¿Qué número está representado en el punto de color negro? 
    Solución
    3.600
  5. ¿Qué número está representado en el punto de color verde? 
    Solución
    5.500
  6. ¿Qué número está representado en el punto de color naranja? 
    Solución
    6.900
  7. ¿Qué número está representado en el punto de color rojo? 
    Solución
    4.100
  8. ¿Qué número está representado en el punto de color celeste? 
    Solución
    5.800

3. Redondea las siguientes cantidades a la centena más cercana por medio de la recta numérica.

a. 2.530

Solución

El redondeo a la centena más cercana es 2.500.

b. 5.590

Solución

El redondeo a la centena más cercana es 5.600.

c. 9.970

Solución

El redondeo a la centena más cercana es 10.000.

4. Completa con >, < o = según corresponda.

  1. 3.550 ­­­_____ 3.549 
    Solución
    3.550 ­­­> 3.549
  2. 6.701 ­­­­_____ 6.711 
    Solución
    6.701 ­­­­< 6.711
  3. 1.566 _____ 1.566 
    Solución
    1.566 = 1.566
  4. 8.987 _____ 8.985 
    Solución
    8.987 > 8.985
  5. 9.620 _____ 9.625 
    Solución
    9.620 < 9.625
  6. 4.213 _____ 4.213 
    Solución
    4.213 = 4.213
RECURSOS PARA DOCENTES

Artículo “Recta numérica”

Este recurso te permitirá complementar la información sobre la representación en la recta numérica.

VER

Artículo “Redondeo de números naturales”

El siguiente recurso te permitirá enriquecer el redondeo de números en la recta numérica.

VER

CAPÍTULO 2 / TEMA 3

ECUACIÓN

Cuando vemos operaciones matemáticas con valores desconocidos es muy probable que estemos frente a ecuaciones. Estas son relaciones equivalentes con dos miembros separados por un símbolo de igualdad. Para saber cuánto valen estos términos desconocidos debemos despejar, es decir, dejar “sola” a la incógnita, lo que se hace por medio de diversos pasos mostrados a continuación.

La ecuación y sus elementos

Una ecuación es una igualdad que posee uno o más términos desconocidos llamados incógnitas. El valor numérico de dichas incógnitas es el único que cumple la igualdad.

Los elementos de toda ecuación son los siguientes:

  • Primer miembro: es el conjunto de términos que se encuentra del lado izquierdo de la igualdad.
  • Segundo miembro: es el conjunto de términos que se encuentra del lado derecho de la igualdad.
  • Términos: son todos los números y letras que conforman la ecuación.
  • Incógnita: es el valor desconocido en la igualdad. En una ecuación puede haber más de una incógnita.

¿Sabías qué?
Si una incógnita aparece sola se sobreentiende que el coeficiente es 1, es decir, que está multiplicada por 1.
Una ecuación es una igualdad establecida que permite determinar alguno de sus elementos respecto a los valores de los demás. Pueden ser literales o numéricas. Son literales cuando por lo menos un elemento conocido está representado por una letra; y son numéricas cuando sus elementos conocidos son números.

Ecuaciones según el grado

El grado de una ecuación es la mayor potencia a la que está elevada la incógnita. Según el grado las ecuaciones pueden ser:

Ecuaciones de primer grado

Son aquellas ecuaciones donde la incógnita está elevada a la primera potencia. También se las conoce como ecuaciones lineales. Por ejemplo:

\boldsymbol{2x+5=3x-1}

Ecuaciones de segundo grado

Son las igualdades cuya incógnita está elevada a la segunda potencia, es decir, al cuadrado. Por ejemplo:

\boldsymbol{2x^{{\color{Red} 2}}+3x=-5x}

Ecuaciones de tercer grado

Son aquellas que contienen la incógnita elevada al cubo en al menos uno de sus términos. Por ejemplo:

\boldsymbol{4x^{{\color{Red} 3}}+3x=5-x^{2}}

¡Es tu turno!

Observa esta ecuación y responde:

\boldsymbol{x^{3}-7x^{2}+4x+12=0}

  • ¿Cuántos términos tiene en el primer miembro?
Solución
Tiene 4 términos.
  • ¿De qué grado es la ecuación?
Solución
La ecuación es de tercer grado.
  • ¿Cuántas incógnitas tiene?
Solución
Tiene una sola incógnita: x.

¿Sabías qué?
Las incógnitas aparecen en las ecuaciones con una letra, generalmente es la x, pero puede ser cualquiera.
Las ecuaciones pueden estar conformadas por una o más incógnitas y su solución no siempre es un número. De hecho, hay ecuaciones que tienen varias soluciones o incluso, hay otras que no tienen solución. En todos los casos, es imprescindible dominar los procedimientos de despejes para poder analizarlas.

REGLAS DE DESPEJE DE ECUACIONES

Para hallar la solución de una ecuación de primer grado debemos despejar la incógnita, esto significa que es necesario dejar a la incógnita “sola” en un miembro de la igualdad. Para esto seguimos las siguientes reglas:

Regla de la suma

Consiste en sumar la misma expresión algebraica en ambos lados de la igualdad, de este modo obtenemos una ecuación equivalente y por ende el mismo resultado. Por ejemplo:

x-8=24

Si sumamos 8 en ambos miembros de la ecuación tenemos:

x-8+\boldsymbol{8}=24+\boldsymbol{8}

Al resolverlo:

x=\boldsymbol{32}

A partir de ese principio, la regla de la suma también se denomina regla de transposición de términos debido a que, para cambiar un término a otro miembro, se tiene que cambiar su signo. Por lo tanto, todo número que se encuentre en forma de suma en un miembro de la igualdad pasa al otro miembro en forma de resta y viceversa.

Entonces, para despejar la incógnita lo único que debemos hacer es pasar el −8 como +8 al segundo miembro de la ecuación.

x-8=24

x=24+8

x=\boldsymbol{32}

Regla del producto

Establece que al multiplicar o dividir por un mismo número en ambos miembros de la ecuación el resultado es una ecuación equivalente de la primera. Por ejemplo:

5x=20

Si dividimos entre 5 ambos miembros de la ecuación tenemos:

\frac{5x}{\boldsymbol{5}}=\frac{20}{\boldsymbol{5}}

Al resolverlo:

x=\boldsymbol{4}

Por medio de esta regla se deduce que los elementos que multiplican pasan al otro lado a dividir y los elementos que dividen pasan al otro lado a multiplicar. En el ejemplo anterior basta con pasar el 5 que multiplica a la incógnita a dividir el segundo miembro de la ecuación.

5x=20

x=\frac{20}{5}

x=\boldsymbol{4}

¿cómo solucionar una ecuación de primer grado?

Las ecuaciones de primer grado o lineales se caracterizan por tener su incógnita elevada a la primera potencia. Los pasos para solucionar este tipo de ecuación son:

  1. Quita los paréntesis en caso de que existieran (a través de la propiedad distributiva u otras operaciones).
  2. Quita los denominadores en caso de que existieran.
  3. Ubica los términos que tienen incógnitas en un miembro y los que no tienen incógnita en otro.
  4. Suma los términos semejantes.
  5. Despeja la incógnita a través de la regla del producto.
  6. Simplifica el resultado obtenido en caso de que sea una fracción.
El valor o los valores de la incógnita de una ecuación que hacen que la igualdad de la misma sea cierta, se denominan solución de la ecuación o raíces de la ecuación. Cuando una ecuación tiene solución, se denomina compatible, en caso contrario, se denomina incompatible. Las ecuaciones que presentan la misma solución son llamadas ecuaciones equivalentes.

– Ejemplo:

5(2x+3)-4x=-3+3(x-4)

Primero eliminamos los paréntesis. Para eso, aplicamos la propiedad distributiva. En el primer caso, multiplicamos 5 por cada término dentro de los paréntesis (2x + 3), en el segundo caso, multiplicamos 3 por cada término dentro de los paréntesis (x − 4).

10x+15-4x=-3+3x-12

Después ubicamos los términos que tienen incógnitas en un mismo miembro y los que no tienen incógnitas en otro. Para lograrlo aplicamos la regla de la suma o de transposición.

10x-4x-3x=-3-12-15

Luego sumamos o restamos los términos semejantes.

3x=-30

Despejamos la incógnita. Para lograrlo, aplicamos la regla del producto por medio de la cual el 3 que multiplica pasa a dividir al otro miembro de la ecuación.

x=\frac{-30}{3}=\boldsymbol{-10}

Observa que simplificamos el resultado al resolver la fracción.

– Otro ejemplo:

5(x+2)=1+\frac{x}{2}

Eliminamos los paréntesis por medio de la propiedad distributiva.

5x+10=1+\frac{x}{2}

Quitamos el denominador al multiplicar todos los términos de la ecuación por ese denominador, en este caso es 2.

2 (5x+10)=2(1+\frac{x}{2})\: \: \Rightarrow \: \: 10x+20=2+\frac{2x}{2}

Luego efectuamos las divisiones correspondientes.

10x+20=2+x

Ubicamos los términos que tienen incógnitas en un mismo miembro y los que no tienen incógnitas en otro. Para lograrlo, aplicamos la regla de la suma o de transposición.

10x-x=2-20

Sumamos o restamos los términos semejantes.

9x=-18

Despejamos la incógnita. Para lograrlo, aplicamos la regla del producto por medio de la cual el 9 que multiplica pasa a dividir al otro miembro de la ecuación.

x=-\frac{18}{9}=\boldsymbol{-2}

¿Cómo comprobar una ecuación?

¡Muy sencillo! Solo tienes que sustituir en la ecuación el valor de la incógnita y resolver. Si la igualdad se cumple, el ejercicio está resuelto correctamente. En caso contrario, debes revisar dónde estuvo el error.

Despejemos esta ecuación:

2x+6=10\: \: \Rightarrow \: \: 2x=10-6\: \: \Rightarrow \: \: 2x=4\: \: \Rightarrow \: \: x=\frac{4}{2}\: \: \Rightarrow \: \: \boldsymbol{x=2}

Como x = 2, sustituimos y comprobamos.

2(2)+6=10\: \: \Rightarrow \: \: 4+6=10\: \: \Rightarrow \: \: \boldsymbol{10=10}

Por lo tanto, como las igualdades se cumplen, la ecuación está despejada correctamente.

APLICACIÓN DE LAS ECUACIONES

Las ecuaciones son aplicables en mucho ámbitos de la vida, por ejemplo, para planificar nuestro dinero o para determinar cantidades por medio de igualdades. En otras áreas del saber, como la física, la química o la economía, las ecuaciones son de gran utilidad, pues sirven para expresar fórmulas y leyes que describen muchos fenómenos.

En general, algunas aplicaciones de las ecuaciones pueden ser:

  • Calcular longitudes, áreas, volúmenes y otras dimensiones de objetos.
  • Expresar cantidades físicas como densidad, peso específico o concentraciones de sustancias.
  • Formular algebraicamente un planteamiento teórico
  • Expresar leyes como la ley de gravitación universal en física o la ley para gases ideales en química.
  • Calcular ganancias y utilidades en el área de finanzas, entre otras aplicaciones.

¡A practicar!

Despeja la incógnita.

  • 2(1+2x)=10
Solución

2(1+2x)=10

2+4x=10

4x=10-2

4x=8

x=\frac{8}{4}

x=\boldsymbol{2}

  • 1-\frac{x}{3}=\frac{5x}{3}
Solución

1-\frac{x}{3}=\frac{5x}{3}

3\left ( 1-\frac{x}{3} \right )=3\left ( \frac{5x}{3} \right )

3-\frac{3x}{3}=\frac{15x}{3}

3-x=5x

5x+x=3

6x=3

x=\frac{3}{6}=\boldsymbol{\frac{1}{2}}

  • 15-6\left ( 2x-4 \right )=8+2\left ( 5x-1 \right )
Solución

15-6\left ( 2x-4 \right )=8+2\left ( 5x-1 \right )

15-12x+24=8+10x-2

15+24-12x=8-2+10x

39-12x=6+10x

12x-10x=6-39

-22x=-33

x=\frac{-33}{-22}=\boldsymbol{\frac{3}{2}}

  • x+\frac{x}{5}=18
Solución

x+\frac{x}{5}=18

5\left ( x+\frac{x}{5} \right )=5\left ( 18 \right )

5x+\frac{5x}{5}=90

5x+x=90

6x=90

x=\frac{90}{6}=\boldsymbol{15}

  • x+\frac{1}{3}=\frac{x}{3}
Solución

x+\frac{1}{3}=\frac{x}{3}

3\left ( x+\frac{1}{3} \right )=3\left ( \frac{x}{3} \right )

3x+\frac{3}{3}=\frac{3x}{3}

3x+1=x

3x-x=-1

2x=-1

x=\boldsymbol{-\frac{1}{2}}

  • x+7=12x-3-8x+1
Solución
x+7=12x-3-8x+1x+7=12x-3+8x+1

x-12x+8x=-3+1-7

-3x=-9

x=\frac{-9}{-3}=\boldsymbol{3}

RECURSOS PARA DOCENTES

Artículo “Ecuaciones y despejes”

Este artículo contiene información complementaria referente al manejo de las ecuaciones y los despejes. También presenta una serie de ejercicios resueltos y propuestos de ecuaciones lineales.

VER

Artículo “Ecuaciones”

Con este recurso podrá complementar la información y los ejemplos sobre ecuaciones de primer grado con una incógnita.

VER

 

CAPÍTULO 3 / TEMA 2

adición y sustracción de fracciones

Las fracciones son divisiones no resueltas que representan las partes de un todo. Pertenecen a los números racionales y, como cualquier otro tipo de número, pueden ser sumadas o restadas. Las características de cada fracción hacen que las operaciones tengan reglas distintas. A continuación, aprenderás los métodos posibles para realizar estos cálculos.

Una fracción simboliza una división entre un número y otro, y a su vez indica las partes tomadas de un todo. Una fracción tiene dos partes: un numerador y un denominador separados por una línea horizontal. El denominador señala en cuántas partes se divide la unidad, y el numerador señala cuántas de esas partes se han tomado.

VER INFOGRAFÍA

adición y sustracción de fracciones homogéneas

Cuando dos fracciones tienen el mismo denominador se las llama homogéneas. Para sumar y restar este tipo de fracciones solo se suman o restan lo numeradores y se mantiene el mismo denominador.

Adición

\frac{{\color{Red} 12}}{{\color{Blue} 7}}+\frac{{\color{Red} 4}}{{\color{Blue} 7}} = \frac{{\color{Red} 12+4}}{{\color{Blue} 7}}=\boldsymbol{\frac{16}{7}}

– Otros ejemplos:

\frac{{\color{Red} 31}}{{\color{Blue} 17}}+\frac{{\color{Red} 41}}{{\color{Blue} 17}}=\frac{{\color{Red} 31+41}}{{\color{Blue} 17}}=\boldsymbol{\frac{72}{17}}

\frac{{\color{Red} 15}}{{\color{Blue} 11}}+\frac{{\color{Red} 10}}{{\color{Blue} 11}}+\frac{{\color{Red} 21}}{{\color{Blue} 11}}= \frac{{\color{Red} 15+10+21}}{{\color{Blue} 11}}=\boldsymbol{\frac{46}{11}}

Sustracción

\frac{{\color{Red} 23}}{{\color{Blue} 7}}-\frac{{\color{Red} 14}}{{\color{Blue} 7}}=\frac{{\color{Red} 23-14}}{{\color{Blue} 7}}=\boldsymbol{\frac{9}{7}}

– Otros ejemplos:

\frac{{\color{Red} 3}}{{\color{Blue} 5}}-\frac{{\color{Red} 1}}{{\color{Blue} 5}}=\frac{{\color{Red} 3-1}}{{\color{Blue} 5}}=\boldsymbol{\frac{2}{5}}

\frac{{\color{Red} 24}}{{\color{Blue} 13}}-\frac{{\color{Red} 8}}{{\color{Blue} 13}}-\frac{{\color{Red} 10}}{{\color{Blue} 13}}=\frac{{\color{Red} 24-8-10}}{{\color{Blue} 13}}=\boldsymbol{\frac{6}{13}}

fracciones equivalentes

Las fracciones equivalentes son aquellas que, a pesar de tener distintos numeradores y denominadores, representan la misma cantidad. Dos fracciones son equivalentes si al multiplicar sus términos en forma de cruz el resultado es el mismo.

– Ejemplo:

\frac{3}{6} y \frac{6}{12} son fracciones equivalentes porque:

        3\times 12=\boldsymbol{36}

        6\times 6=\boldsymbol{36}

Podemos escribir las fracciones equivalentes de la siguiente manera:

\frac{3}{6}=\frac{6}{12} porque 3\times 12 = 6\times 6

– Otro ejemplo:

\frac{8}{3} y \frac{2}{4} no son fracciones equivalentes porque:

         8\times 4=\boldsymbol{32}

         3\times 2=\boldsymbol{6}

Podemos escribir las fracciones no equivalentes de la siguiente manera:

\frac{8}{3}\neq \frac{2}{4} porque 8\times 4\neq 3\times 2

¡Practiquemos! 

Laura, Tomás y Daniela tienen cada uno un chocolate. Laura comió 1/2, Tomás comió 3/6 y Daniela comió 6/12. ¿Quién comió más chocolate?

Si representamos en gráficos cada fracción tenemos que:

\boldsymbol{\frac{1}{2}=}  

\boldsymbol{\frac{3}{6}=}  

\boldsymbol{\frac{6}{12}=}

Laura partió el chocolate en 2 pedazos y comió uno de esos; Tomás lo cortó en 6 pedazos y comió 3; y Daniela lo cortó en 12 pedazos y comió 6.

Sin importar la cantidad de trozos en las que se dividió el chocolate, cada uno comió lo mismo: la mitad.

Además de comprobarlo con los gráficos y por el método cruzado, podemos corroborar que una fracción es equivalente a otra si resolvemos la división. De este modo, tenemos que:

\frac{1}{2}=\boldsymbol{0,5}

\frac{3}{6}=\boldsymbol{0,5}

\frac{6}{12}=\boldsymbol{0,5}

Como todas las fracciones representan la misma cantidad, se pueden escribir de la siguiente forma:

\frac{1}{2}=\frac{3}{6}=\frac{6}{12}

¿Cómo podemos obtener fracciones equivalentes?

Por medio de dos métodos: amplificación y simplificación.

Amplificación

Consiste en multiplicar el numerador y el denominador por un mismo número distinto de cero.

– Ejemplo:

Ambas fracciones, 2/5 y 6/15 son equivalentes. Observa que tanto el numerador como el denominador se multiplicaron por 3.

– Otro ejemplo:

Simplificación

Consiste en dividir al numerador y al denominador por un mismo número distinto de cero. Este número debe ser un divisor común entre el numerador y el denominador.

– Ejemplo:

Como el número 2 es un divisor común entre el numerador y denominador, podemos hacer una simplificación de la fracción.

– Otro ejemplos:

¿Sabías qué?
Cuando una fracción no puede simplificarse más se la llama fracción irreducible.
Juan y Carlos compraron una pizza cada uno. Si Juan comió 2/3 de pizza y Carlos 3/4 de pizza, ¿quién comió más? Hallar la fracción equivalente con igual denominador de estas fracciones puede ayudarnos a comparar las cantidades y responder la pregunta. 2/3 = 8/12 y 3/4 = 9/12, entonces comparamos los numeradores y, como 9 > 8, decimos que Carlos comió más que Juan.

adición y sustracción de fracciones heterogéneas

Las fracciones heterogéneas son las que tienen distinto denominador. Para sumar o restar fracciones heterogéneas podemos emplear tres métodos distintos.

Método 1: con fracciones equivalentes

En este método hallamos la fracción equivalente de las fracciones para que todas tengan el mismo denominador, es decir, para que sean homogéneas. Luego las sumamos como se explicó al inicio: sumamos los numeradores y mantenemos el mismo denominador.

– Ejemplo:

\frac{1}{2}+\frac{3}{4}

1. Hallamos la fracción equivalente a 1/2 con denominador igual a 4.

Ya sabemos que el producto cruzado de los términos debe ser el mismo. Así que multiplicamos el primer numerador por el segundo denominador, el cual necesitamos que sea 4.

\frac{{\color{Red} 1}}{2}=\frac{a}{{\color{Red} 4}}\; \; \; \; \;\; \; 1\times 4=\boldsymbol{4}

Luego planteamos la segunda multiplicación como una ecuación. Esta corresponde a la del primer denominador con el primer numerador.

\frac{1}{{\color{Blue} 2}}=\frac{{\color{Blue} a}}{4}\; \; \; \; \;\; \; 2\times a=\boldsymbol{4}

Despejamos la incógnita a y obtenemos el numerador de la fracción equivalente.

2\times a=4\: \Rightarrow a=4\div 2=\boldsymbol{2}

Por lo tanto,

\frac{1}{2}=\frac{\boldsymbol{2}}{4}

2. Reescribimos la suma con la nueva fracción equivalente. En lugar de la fracción 1/2 escribimos su fracción equivalente 2/4.

\frac{2}{4}+\frac{3}{4}

3. Resolvemos la suma de fracciones homogéneas.

\frac{2}{4}+\frac{3}{4}=\frac{2+3}{4}=\boldsymbol{\frac{5}{4}}

El procedimiento es igual con la sustracción, solo cambiamos el signo más (+) por el signo menos (−).

Método 2: con mínimo común múltiplo

Consiste en hallar el mínimo común múltiplo de los denominadores de las fracciones, el cual será el nuevo denominador. El cociente entre este valor y los denominadores se multiplica con los numeradores.

– Ejemplo:

\frac{1}{2}+\frac{3}{4}

1. Calculamos el mínimo común múltiplo de los denominadores. Ese será el denominador de la fracción resultante.

mcm (2, 4) = 2 × 2 = 4

2. Dividimos al mcm con el denominador de la primera fracción (4 ÷ 2 = 2) y multiplicamos ese resultado por su numerador.

\frac{1}{2}+\frac{3}{4} = \frac{{\color{Red} 2} \times 1\:}{4}+

3. Realizamos el mismo procedimiento con la segunda fracción. Esta vez dividimos el mcm entre el segundo denominador (4 ÷ 4 = 1) y multiplicamos ese resultado por el segundo numerador. Sumamos este resultado con el obtenido anteriormente.

\frac{1}{2}+\frac{3}{4} = \frac{{\color{Red} 2}\times 1}{4}+\frac{{\color{Blue} 1}\times 3}{4}

4. Resolvemos las operaciones y obtenemos el resultado final.

\frac{1}{2}+\frac{3}{4} = \frac{{\color{Red} 2}\times 1}{4}+\frac{{\color{Blue} 1}\times 3}{4}=\frac{2+3}{4}=\boldsymbol{\frac{5}{4}}

El procedimiento es igual con la sustracción, solo cambiamos el signo más (+) por el signo menos (−).

Método 3: con productos cruzados

En este método multiplicamos de manera cruzada los numeradores y denominadores de las fracciones. Sumamos los resultados y los colocamos en el numerador resultante. El denominador de la fracción final será igual al producto de la multiplicación de los denominadores.

– Ejemplo:

\frac{1}{2}+\frac{3}{4}

1. Multiplicamos el primer numerador por el segundo denominador.

\frac{{\color{Red} 1}}{2}+\frac{3}{{\color{Red} 4}}=\frac{{\color{Red} 1\times 4}}{}

2. Multiplicamos el primer denominador por el segundo numerador. Sumamos esta operación con la primera.

\frac{{\color{Red} 1}}{{\color{Blue} 2}}+\frac{{\color{Blue} 3}}{{\color{Red} 4}}=\frac{{\color{Red} 1\times 4}+{\color{Blue} 2\times 3}}{}

3. Multiplicamos los denominadores. El resultado lo colocamos en el lugar del denominador.

\frac{{\color{Red} 1}}{{\color{Blue} 2}}+\frac{{\color{Blue} 3}}{{\color{Red} 4}}=\frac{{\color{Red} 1\times 4}+{\color{Blue} 2\times 3}}{{\color{Blue} 2}\times {\color{Red} 4}}

4. Resolvemos las operaciones y obtenemos el resultado final.

\frac{1}{2}+\frac{3}{4}=\frac{1\times 4+2\times 3}{2\times 4}=\frac{4+6}{8}=\frac{10}{8}=\boldsymbol{\frac{5}{4}}

Observa que al resolver las operaciones el resultado es 10/8, pero esta fracción se puede simplificar al dividir ambos términos entre 2, el cual es un divisor común.

El procedimiento es igual con la sustracción, solo cambiamos el signo más (+) por el signo menos (−).

Las fracciones heterogéneas son las que tienen distinto denominador. Para sumar o restar este tipo de fracciones podemos emplear tres métodos diferentes: por medio de fracciones equivalentes, mínimo común múltiplo o productos cruzados. Sin importar el método que escojas el resultado será el mismo.

¡A practicar!

1. ¿Cuáles de las siguientes fracciones son equivalentes a \frac{2}{5}?

\frac{6}{15}\ ,\ \frac{6}{9}\ ,\ \frac{10}{25}\ ,\ \frac{14}{30}\ ,\ \frac{8}{20}

Solución

\frac{6}{15}\ ,\ \frac{10}{25}\ ,\ \frac{8}{20}

2. ¿Cuáles de las siguientes fracciones son equivalentes a \frac{25}{40}?

\frac{50}{80}\ ,\ \frac{5}{8}\ ,\ \frac{75}{110}\ ,\ \frac{75}{120}\ ,\ \frac{5}{4}

Solución

\frac{50}{80}\ , \frac{5}{8}\ , \frac{75}{120}

3. ¿Cuál es la fracción equivalente? Coloca el numerador que falta.

  • \frac{1}{2}=\frac{?}{8}

Solución

\frac{1}{2}=\frac{{\color{Red} 4}}{8}

  • \frac{3}{5}=\frac{?}{25}

Solución

\frac{3}{5}=\frac{{\color{Red} 15}}{25}

  • \frac{4}{5}=\frac{?}{12}

Solución

No es posible conseguir una fracción equivalente de denominador 12 porque el 12 no es múltiplo del 5.

  • \frac{2}{7}=\frac{?}{21}

Solución

\frac{2}{7}=\frac{{\color{Red} 6}}{21}

4. Realizar los siguientes cálculos con fracciones:

  • \dfrac{1}{5}+\dfrac{3}{10}-\dfrac{1}{2}+\dfrac{2}{5}=
Solución

\dfrac{1}{5}+\dfrac{3}{10}-\dfrac{1}{2}+\dfrac{2}{5}=\boldsymbol{\frac{2}{5}}

  • \frac{4}{5}+\frac{1}{3}+\frac{1}{2}=
Solución

\frac{4}{5}+\frac{1}{3}+\frac{1}{2}=\boldsymbol{\frac{49}{30}}

  • \frac{3}{10}-\frac{1}{12}=
Solución

\frac{3}{10}-\frac{1}{12}=\boldsymbol{\frac{13}{60}}

  • \frac{1}{2}+\frac{1}{3}-\left ( \frac{1}{4}+\frac{1}{5} \right )=
Solución

\frac{1}{2}+\frac{1}{3}-\left ( \frac{1}{4}+\frac{1}{5} \right )=\boldsymbol{\frac{23}{60}}

RECURSOS PARA DOCENTES

Artículo “Adición y sustracción de fracciones”

Puedes realizar la adición o la sustracción de fracciones por medio de varios métodos. Este recurso le permitirá ampliar información sobre estos.

VER

Artículo “Fracciones equivalentes”

Con este artículo podrá profundizar sobre las fracciones y cómo obtenerlas por amplificación y simplificación.

VER

CAPÍTULO 5 / TEMA 3

Polígonos

Podemos observar polígonos en múltiples objetos de nuestro alrededor. Estos son muy diversos y los hay con lados y ángulos iguales o desiguales entre sí. Son elementos fundamentales de la geometría y su conocimiento es esencial en diversos campos del conocimiento, como la ingeniería o la arquitectura.

¿Qué es un polígono?

En geometría, un polígono es una figura geométrica plana delimitada por un número finito de segmentos rectos.

¿Sabías qué?
La palabra “polígono” proviene del griego antiguo que quiere decir “muchos ángulos”.

Los polígonos presentan los siguientes elementos:

  • Lados: son los segmentos rectos que conforman al polígono.
  • Vértices: son los puntos en común entre dos lados consecutivos.
  • Diagonales: son los segmentos que unen a dos lados no consecutivos de un polígono.
  • Ángulos interiores: están formados por dos lados consecutivos en el interior del polígono.
  • Ángulos exteriores: están formados en el exterior del polígono entre un lado y la prolongación de otro lado consecutivo.

Polígonos regulares y sus tipos

Un polígono regular tiene lados con la misma longitud. Se caracterizan también porque sus ángulos internos y externos también son iguales. Otra característica es que poseen la misma cantidad de ejes de simetrías que de lados. Las diagonales en este tipo de polígonos tienen la misma longitud y siempre son interiores.

Polígono Número de lados Número de diagonales Medida de cada ángulo interno Medida de cada ángulo externo
Triángulo equilátero 3 0 60° 120°
Cuadrado 4 2 90° 90°
Pentágono 5 5 108° 72°
Hexágono 6 9 120° 60°
Heptágono 7 14 128,57° 51,43°
Octágono 8 20 135° 45°
Eneágono 9 27 140° 40°
Decágono 10 35 144° 36°
Endecágono 11 44 147,27° 32,73°
Dodecágono 12 54 150° 30°

VER INFOGRAFÍA

El círculo y los polígonos

Todo polígono regular puede estar circunscrito en una circunferencia, lo que quiere decir que cada uno de sus vértices corresponde a un punto de la circunferencia. Mientras más lados tenga el polígono, más se va a aproximar a la forma de la circunferencia. Por esta razón, se asocia a la circunferencia (de forma informal) a un polígono de infinitos lados.

Área de polígonos regulares

Para medir el área de los polígonos es necesario conocer las definiciones de perímetro y apotema.

  • Perímetro: es la suma de los lados que forman una figura geométrica. En el caso de los polígonos regulares, se calcula al multiplicar el número de lados por la longitud de uno de sus lados.

P= n\times L

Donde:

P: perímetro
n: número de lados del polígono regular.
L: longitud de uno de los lados del polígono.

  • Apotema: es la distancia perpendicular desde el centro de un polígono hasta uno de sus lados.

El área de un polígono regular se define como el producto de su perímetro por la apotema (a) dividido entre dos.

A = \frac{P\times a}{2}

Donde:

A: área

P: perímetro

a: apotema

 

– Ejemplo:

Calcular el área de un pentágono cuyos lados miden 6 cm y su apotema es de 4,13 cm.

Lo que debemos hacer es calcular primero el perímetro para luego sustituir en la fórmula junto con la apotema para calcular el área.

P= n\times L
P= 5\times 6\, cm
P= 30\, cm

El perímetro del apotema es 30 cm, al sustituir en la fórmula de área nos queda:

A = \frac{30\, cm\times 4,13\,cm }{2}

A = \frac{123,9\,cm^{2} }{2}

A = \mathbf{61,95\, cm^{2}}

El área del pentágono es de 61,95 cm2.

¿Sabías qué?
El Departamento de Defensa de los Estados Unidos es un edificio en forma de Pentágono que mide 140.000 metros cuadrados aproximadamente.
Debido a sus características geométricas, todo polígono regular puede estar inscrito o circunscrito a una circunferencia. Un polígono inscrito tiene todos sus vértices contenidos en la circunferencia. Por otro lado, un polígono circunscrito posee todos sus lados tangentes a la circunferencia. En ambos casos, el centro del polígono coincide con el centro de la circunferencia.

Polígonos irregulares y sus tipos

En los polígonos irregulares se pueden cumplir algunas de estas condiciones:

– Tener sus lados con igual longitud pero sus ángulos internos diferentes.
– Tener sus ángulos de igual medida pero sus lados con diferente longitud.
– Tener sus lados con diferente longitud y sus ángulos internos con diferente medida.

Ejemplos de polígonos irregulares

  • Rombo

El rombo tiene los cuatro lados con igual longitud pero sus cuatro ángulos internos son diferentes: solo los ángulos opuestos de este polígono son iguales. Por eso se trata de un polígono irregular.

  • Rectángulo (no cuadrado)

Es un cuadrilátero con sus cuatro ángulos iguales (90°), pero sus lados tienen diferente longitud entre sí. Solo los lados paralelos comparten la misma longitud.

  • Triángulo (no equilátero)

Todo triángulo con un ángulo interior diferente de 60 grados es un polígono irregular.

Triángulos regulares e irregulares

Según sus lados, los triángulos se clasifican en equiláteros, isósceles y escalenos. Los equiláteros son los únicos triángulos que cumplen con las características de un polígono regular. Los triángulos escalenos son aquellos en los que las longitudes de sus lados y la medida de sus ángulos internos son diferentes, por lo tanto no son polígonos regulares. Por otra parte, los triángulos isósceles al contar solo con dos lados y dos ángulos iguales tampoco son considerados como polígonos regulares.

Perímetro de polígonos

Calculamos el perímetro de los polígonos regulares a través de la fórmula planteada anteriormente:

P= n\times L

En cambio, en los polígonos irregulares, cuyos lados generalmente son diferentes, esta ecuación no siempre aplica. Para lo cual debemos sumar de forma separada las longitudes de cada uno de los lados.

P= L_{1}+L_{2}+L_{3}+...+L_{n}

Por ejemplo, para calcular el perímetro del siguiente triángulo isósceles simplemente sumamos cada una de las longitudes de sus lados.

P= 60\,\, cm+60\,\, cm+40\,\, cm

P= \mathbf{160\,\, cm}

El perímetro de este triángulo irregular es de 160 cm.

 

¡A practicar!

1. Determina el perímetro y el área de los siguientes polígonos regulares según los datos mostrados.

a) Un eneágono regular cuyos lados miden 7 cm y su apotema 9,62 cm.

Solución
P = 63 cm
A = 303,03 cm2

b) Un pentágono regular cuyos lados miden 6 cm y su apotema 4,13 cm.

Solución
P = 30 cm
A = 61,95 cm2

c) Un heptágono regular cuyos lados miden 8 cm y su apotema 8,31.

Solución
P = 56 cm
A = 232,68 cm2

d) Un triángulo regular (equilátero) cuyos lados miden 5 cm y su apotema 1,44 cm.

Solución
P= 15 cm
A = 10,8 cm2

e) Un decágono regular cuyos lados miden 3 cm y su apotema 4,62 cm.

Solución
P= 30 cm
A = 69,3 cm2

f) Un dodecágono regular cuyos lados miden 4 cm y su apotema 7,46 cm.

Solución
P= 48 cm
A = 179,04 cm2

g) Un hexágono regular cuyos lados miden 7 cm y su apotema 6,06 cm.

Solución
P= 42 cm
A = 127,26 cm2

h) Un octágono regular cuyos lados miden 2 cm y su apotema 2,41 cm.

Solución
P= 16 cm
A = 19,28 cm2

i) Un endecágono regular cuyos lados miden 3 cm y su apotema 5,11 cm.

Solución
P= 33 cm
A = 84,315 cm2

j) Un cuadrado cuyos lados miden 4 cm y su apotema 2 cm.

Solución
P= 16 cm
A = 16 cm2

 

2. ¿A qué polígono con una apotema de 4,33 cm le corresponde un área de 64,95 cm2.

a) Un decágono de 2 cm de lado.
b) Un hexágono de 5 cm de lado.
c) Un pentágono de 7 cm de lado.
d) Un octágono de 4 cm de lado.

Solución
b) Un hexágono de 5 cm de lado.

 

3. ¿Qué polígono irregular tiene sus lados de igual longitud pero sus ángulos internos son diferentes?

a) Círculo
b) Cuadrado
c) Rectángulo
d) Rombo

Solución
d) Rombo

RECURSOS PARA DOCENTES

Artículo “Perímetro de los polígonos”

Este artículo define qué es un polígono, cuáles son sus clasificaciones y cómo se calcula su el perímetro. También plantea una serie de ejercicios para resolver.

VER

Artículo “Cuadriláteros”

Este recurso explica los diferentes tipos de cuadriláteros que existen y sus características principales.

VER

Micrositio “Tarjetas Educativas – Geometría y medidas”

En este micrositio se puede encontrar una serie de tarjetas interactivas que resumen los elementos principales de la geometría, como los polígonos y sus principales características.

VER

CAPÍTULO 5 / TEMA 3

LOS ÁNGULOS Y SUS TIPOS

Es posible que identifiques diversas figuras geométricas al observar el mundo que te rodea y los objetos presentes en él. La mayoría de estas figuras están compuestas por semirrectas unidas por un punto en común, es decir, un vértice. Esa porción del plano delimitada por dos semirrectas que nacen de un mismo punto se conoce como ángulo y según su medida puede ser de distintos tipos.

¿qué es un ángulo?

Es una porción del plano delimitada por dos semirrectas, las cuales también son llamadas lados. Ambos lados coinciden en un punto de origen o vértice. La abertura de un lado con respecto al otro es la que denominamos ángulo.

 

VER INFOGRAFÍA 

¿Cómo nombrar ángulos?

  • Con una letra griega, por ejemplo α y se lee “ángulo alpha”. En esta imagen vemos un ángulo α = 52,13°.

  • Con los puntos correspondientes a las semirrectas que lo constituyen y al vértice. Estos puntos se nombran mediante letras, por ejemplo, en la imagen vemos el ángulo AOB.

 

CLASIFICACIÓN DE LOS ÁNGULOS

Los ángulos se clasificar según tres criterios diferentes: su medida, su posición y la suma de sus medidas con otros ángulos.

¿Sabías qué?
Los ángulos se miden en grados (°).

Ángulos según su medida

  • Ángulo completo: tiene una amplitud de 360°, significa que es un giro completo.
  • Ángulo nulo: tiene una amplitud de 0°.
  • Ángulo llano: tiene una amplitud de 180°, podrás verlo representado como una línea recta.
  • Ángulo cóncavo: tiene una amplitud mayor que 180° pero menor que 360°.
  • Ángulo convexo: tiene una amplitud menor que 180°.

Dentro de los ángulos convexos encontramos otras clasificaciones:

  • Ángulos rectos: miden 90°.
  • Ángulos obtusos: miden más de 90°.
  • Ángulos agudos: miden menos de 90°.

 

Ángulos según su posición

Según su posición los ángulos pueden ser:

  • Adyacentes: son aquellos que tienen el vértice y un lado en común. Al sumar las amplitudes de cada uno de ellos el resultado será 180°.
  • Consecutivos: son aquellos que comparten tanto el vértice como uno de sus lados.
  • Opuestos por el vértice: son aquellos que solo tienen el vértice en común.

Ángulos según la suma de su medida con otros ángulos

Los ángulos también pueden clasificarse según el resultado obtenido al sumar la medida de la amplitud de un ángulo con la de otro ángulo, así sabrás que:

  • Un ángulo es suplementario con otro si la suma de sus amplitudes da como resultado un ángulo de 180°.
  • Un ángulo es complementario con otro si la suma de sus amplitudes da como resultado un ángulo de 90°.

MEDICIÓN DE ÁNGULOS

Por lo general, la medición de los ángulos se realiza por medio de un transportador.

¿Qué es un transportador?

Es un instrumento geométrico que puede tener una forma circular o semicircular y se utiliza para medir gráficamente un ángulo así como para construirlo. Cuenta con graduaciones o marcas iguales que sirven de escala para identificar la medida del ángulo. Los transportadores circulares están divididos en 360 partes iguales, mientras que los semicirculares están divididos en 180 partes iguales. Cada una de estas partes representa un grado (1°) .

Para medir un ángulo con transportador seguimos estos pasos:

1. Identificamos el vértice, es decir, el punto del que nacen las semirrectas y hacemos que coincida con el centro del transportador.

2. Verificamos que el cero (0) en el transportador esté justo sobre uno de los lados del ángulo.

3. Observamos el valor que marca el otro lado que pasa por la escala graduada. En este caso, la medida del ángulo â = 165°.

¿Sabías qué?
Los transportadores tienen escalas graduadas dobles: una va en sentido de las manecillas del reloj y las otra en sentido contrario. Siempre debes recordar comenzar a medir a partir del cero. 

LOS ÁNGULOS EN LAS FIGURAS GEOMÉTRICAS

Las figuras geométricas planas poseen ángulos interiores, ubicados dentro de la figuras; y ángulos exteriores, ubicados entre un lado de la figura y el otro lado siguiente.

VER INFOGRAFÍA 

Ángulos interiores de los triángulos

Los ángulos interiores de los triángulos siempre suman 180°. Según sus ángulos los triángulos pueden ser:

Nombre Figura Características
Triángulo rectángulo Tiene un ángulo recto (90°).
Triángulo acutángulo Tiene todos sus ángulos agudos (menores a 90°).
Triángulo obtusángulo Tiene un ángulo obtuso (mayores a 90° pero menores a 180°).

 

Ángulos interiores de los cuadriláteros

En el caso de los cuadriláteros, la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Su clasificación es la siguiente:

Nombre Figura Característica
Cuadrado Tiene cuatro ángulos rectos (90°).
Rectángulo Tiene cuatro ángulos rectos (90°).
Rombo Tiene ángulos opuestos iguales.
Romboide Tiene ángulos opuestos iguales.
Trapecio rectángulo Tiene dos ángulos rectos (90°).
Trapecio isósceles Los dos ángulos de la base menor son iguales. Los dos ángulos de la base mayor son iguales.
Trapecio escaleno Todos sus ángulos son diferentes.

¿Sabías qué?
La palabra “geometría” viene de geo que significa “Tierra”, y de metría que significa “medir”.

Ángulos internos de polígonos regulares

Los polígonos regulares son aquellos que tienen todos sus ángulos internos iguales. Para calcular su valor se emplea la ecuación (n − 2) × 180°/n donde n es el número de lados que tiene el polígono. Por ejemplo, para un hexágono se sustituye la n por el número 6 que corresponde al número de sus lados y obtenemos que (6 − 2) × 180°/6 = 120°, lo que quiere decir que cada uno de los ángulos internos de un hexágono mide 120°.

¡A practicar!

1. Observa los ángulos entre estas rectas. Completa la tabla con los ángulos solicitados.

Tipo de ángulo Nombre del ángulo
Recto  Ángulo α
Agudo
Obtuso
Complementario
Suplementario
Adyacente
Solución
Tipo de ángulo Nombre del ángulo
Recto Ángulo α
Agudo Ángulo β
Obtuso Ángulo GOC
Complementario Ángulos BOE y EOC
Suplementario Ángulos EOG y GOF
Adyacente Ángulos AOC y COB

2. Calcula los ángulos complementarios y suplementarios para los siguientes ángulos:

  • β = 50°
Solución

Ángulo complementario = 40° porque 50° + 40° = 90°.

Ángulo suplementario = 130° porque 50° + 130° = 180°.

  • γ = 15°
Solución

Ángulo complementario = 75° porque 15° + 75° = 90°.

Ángulo suplementario = 165° porque 15° + 165° = 180°.

  • δ = 75°
Solución

Ángulo complementario = 15° porque 75° + 15 = 90°.

Ángulo suplementario = 105° porque 75° + 105° = 180°.

 

RECURSOS PARA DOCENTES

Artículo “Ángulos”

En el siguiente artículo encontrarás información sistematizada sobre las diferentes clasificaciones de los ángulos.

VER

Enciclopedia “Matemática Tomo I”.

En esta enciclopedia podrás encontrar las explicaciones necesarias para comprender la clasificación de los ángulos y su medición.

VER 

CAPÍTULO 5 / TEMA 2

Ángulos

Los ángulos están presentes en la mayoría de las figuras geométricas y en nuestra vida cotidiana. Se los considera indispensables para realizar cálculos trigonométricos y estudios en balística, arquitectura e ingeniería. De acuerdo a su amplitud, los ángulos se clasifican en varios tipos.

El ángulo y sus elementos principales

Un ángulo es una región del plano comprendida por dos semirrectas que tienen un origen en común. Los elementos de un ángulos son los siguientes:

  • Vértice: es el punto en común de las dos semirrectas.
  • Lados: son las dos semirrectas que conforman al ángulo.
  • Amplitud: es la medida de abertura de los lados de un ángulo. Esta medida usualmente se lee en grados sexagesimales.

¿Sabías qué?
Los ángulos suelen nombrarse con letras del alfabeto griego.

El sistema sexagesimal

Se usa principalmente para medir el tiempo y los ángulos. En este último caso, las unidades que emplea son grados, minutos y segundos. Al dividir un ángulo llano en 180 partes iguales, una de esas partes equivale a un grado (°). Si se divide un grado en sesenta partes iguales, una de esas partes equivale a un minuto (′). Y si el minuto se divide en 60 partes iguales, una de esas partes corresponde a un segundo (″). En resumen:

1° = 60′
1′ = 60″

Observa que este sistema emplea como base el número 60 y de ahí viene el origen de su nombre. El instrumento usado para su medición es el transportador.

VER INFOGRAFÍA

Clasificación de los ángulos

Los ángulos pueden clasificarse en:

  • Ángulo nulo: cuando mide 0°.
  • Ángulo agudo: cuando es mayor que 0° pero menor que 90°.
  • Ángulo recto: cuando mide exactamente 90°.
  • Ángulo obtuso: cuando es mayor de 90° pero menor que 180°.
  • Ángulo llano: cuando mide exactamente 180°.
  • Ángulo completo: cuando mide 360°.

Ángulos complementarios

Dos ángulos son complementarios si al ser sumados el resultado es igual a 90°. Al saber el valor de uno de los ángulos puedes calcular el valor del otro al restar 90° al ángulo conocido.

– Ejemplo:

Se tienen los ángulos complementarios α y β. El valor de β es de 35°. Calcula el valor de α.


Simplemente debes resolver la resta:

\boldsymbol{\alpha =90^{\circ}-\beta}

\boldsymbol{\alpha =90^{\circ}-35^{\circ}}

\boldsymbol{\alpha =55^{\circ}}

Por lo tanto el valor de α es 55°.

Ángulos suplementarios

Dos ángulos son suplementarios si al ser sumados el resultado es igual a 180°. Al igual que en el caso anterior puedes determinar el valor de un ángulo de este tipo si conoces el valor de otro y lo restas a 180°.

– Ejemplo:

Se tienen los ángulos suplementarios θ y δ. El valor de θ es de 160°. Calcular el valor de δ.

Resuelve la resta:

\boldsymbol{\delta =180^{\circ}-\theta}

\boldsymbol{\delta =180^{\circ}-160^{\circ}}

\boldsymbol{\delta =20^{\circ}}

El valor de δ es 2.

Medida de un ángulo

La medición de los ángulos se realiza a menudo a través de un transportador, el cual puede ser de dos tipos: circular o semicircular. El circular mide los 360° de la circunferencia y el semicircular mide los 180°. Ambos transportadores cuentan con una marca en el centro que se debe colocar en el vértice del ángulo a medir. El 0° de la escala debe coincidir con uno de los lados del ángulo y la lectura del ángulo sería la que indica el otro lado en la escala.

Los transportadores suelen presentar dos numeraciones que van en diferentes sentidos según se lea el ángulo: en sentido horario (en el sentido de las manecillas del reloj) o en sentido antihorario.

Existe el convencionalismo de que los ángulos que se miden en sentido horario se consideran positivos mientras que los que se leen en sentido antihorario se consideran negativos. En el ámbito matemático, el enfoque se orienta más a la abertura de los ángulos. Otro dato importante es que aunque los transportadores son útiles, existen otros instrumentos más precisos como el goniómetro.

Los ángulos en las figuras planas

Las figuras planas poseen ángulos interiores y ángulos exteriores. Los ángulos interiores, como su nombre lo indica, se ubican en el interior de la figura, mientras que los exteriores se ubican entre un lado de la figura y el otro lado siguiente. Por ejemplo:

Cálculo de ángulos internos en triángulos

Los ángulos interiores de los triángulos siempre suman 180°. De manera que si conoces la medida de dos de sus ángulos internos puedes calcular la medida del tercero. Lo único que debes hacer es restar los valores de los ángulos conocidos a 180°. Por ejemplo:

– Calcula el valor del ángulo θ.

Como ya sabes, la sumas de los ángulos internos de un triángulo es igual a 180°, entonces, si restas los valores de los ángulos conocidos a 180° obtendrás el valor de Θ:

\boldsymbol{\theta = 180^{\circ}-\alpha -\beta}
\boldsymbol{\theta = 180^{\circ}-65^{\circ} -67^{\circ}}
\boldsymbol{\theta = 48^{\circ}}

El valor del ángulo θ es 48°.

¿Sabías qué?
La suma de los ángulos externos de un triángulo es igual a 360°.

Cálculo de ángulos internos en cuadriláteros

En el caso de los cuadriláteros se cumple que la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Por ejemplo, en el caso del cuadrado y del rectángulo sus cuatro ángulos internos son iguales y miden 90°. En el caso del rombo y del romboide sus ángulos opuestos son iguales. Si el trapecio es rectángulo posee dos ángulos consecutivos que miden 90°. Si es isósceles tiene los ángulos adyacentes a la base mayor con la misma medida y si el trapecio es escaleno ninguno de sus ángulos mide lo mismo.

Los trapezoides son otro tipo de cuadrilátero con el valor de cada uno de sus ángulos internos diferentes. En resumen:

Figuras Características
El cuadrado y el rectángulo tienen ángulos internos iguales y miden 90°.
El rombo tiene todos sus ángulos iguales (pero son agudos, es decir, menores a 90°).

El romboide presenta cada par de ángulos opuestos con la misma medida.

El trapecio rectángulo tiene dos ángulos rectos (miden 90° cada uno).

 

El trapecio isósceles presenta los ángulos adyacentes a la base mayor con la misma medida.

 

El trapecio escaleno presenta todos sus ángulos con diferente medida.

El trapezoide no posee ningún ángulo con la misma medida.

Para calcular ángulos en un cuadrilátero simplemente tenemos que restar los ángulos conocidos a 360°.

– Ejemplo:

Calcula el valor del ángulo ε de la siguiente figura.

\boldsymbol{\varepsilon =360^{\circ}-\delta -\theta -\rho}

\boldsymbol{\varepsilon =360^{\circ}-88^{\circ} -77^{\circ} -80^{\circ}}

\boldsymbol{\varepsilon =115^{\circ}}

El valor del ángulo ε es 115°.

En los polígonos regulares los ángulos internos miden igual. Para calcular su valor se emplea la ecuación (n − 2) × 180°/n donde n es el número de lados que presenta el polígono. Por ejemplo, para un pentágono se sustituye la n por el número 5 que corresponde al número de sus lados y se obtiene que (5 − 2) × 180°/5 = 108°, lo que quiere decir que cada uno de los ángulos internos de un pentágono mide 108°.

¡A practicar!

1. ¿Qué tipo de ángulo observas?

a)

Solución
Ángulo obtuso.

b)

Solución
Ángulo llano.

c)

Solución
Ángulo recto.

d)

Solución
Ángulo agudo.

2. Calcula el valor del ángulo γ.


Solución
γ = 55°

3. Calcula el valor del ángulo θ.


Solución
θ = 70°

4. Calcula el valor del ángulo φ.

Solución
φ = 58°

5. Calcula el valor del ángulo β.

Solución
β = 105°

RECURSOS PARA DOCENTES

Artículo “Ángulos en triángulos. Resolución mediante ecuaciones”

El artículo explica los diferentes tipos de ángulos y cómo determinarlos a través de ecuaciones. También muestra una serie de ejemplos y ejercicios relacionados al tema.

VER

Artículo “Ángulos”

Este artículo plantea de forma resumida lo relacionado con los ángulos, como la manera de nombrarlos, su clasificación y el uso del transportador.

VER

Video “Tipo de triángulos según sus ángulos”

En el video se muestra la manera de clasificar los triángulos a partir de los ángulos y muestra ejemplos gráficos de cada uno de ellos.

VER

CAPÍTULO 5 / TEMA 1

Elementos geométricos

El punto, la recta y el plano representan los cimientos de la geometría. Seguramente, muchos otros conceptos no podrían ser definidos sin ellos y por tal motivo son tan importantes. Cada uno está relacionado: infinitos puntos forman una recta, infinitos puntos y rectas forman un plano e infinitos puntos, rectas y planos forman el espacio.

El punto

El punto es el objeto más pequeño del espacio, por tanto no tiene longitud, área o volumen. Es adimensional, lo que quiere decir que no tiene dimensiones.

Una de las funciones del punto es describir la posición en un sistema de coordenadas como el cartesiano.

¿Sabías qué?
Los puntos se nombran con letras mayúsculas del abecedario, por ejemplo: A, B, C, D, etc.

Entes fundamentales de la geometría

Se denominan así a los entes que por sí solos no tienen definición y se comprenden a partir de las características de elementos similares. La mayoría de las personas tiene noción de lo que cada uno representa. Los entes fundamentales en la geometría son el punto, la recta y el plano.

La recta y sus tipos

Una recta es un tipo de línea que se extiende en una misma dirección y está formada por infinitos puntos. Por esta razón, la recta tiene longitud pero no anchura. En geometría, las rectas se suelen denominar con letras minúsculas.

De acuerdo a su posición en el plano, las rectas pueden ser paralelas, perpendiculares y secantes.

¿Sabías qué?
Entre dos puntos, solamente existe una recta que los une.

Rectas paralelas

Son rectas que no tienen ningún punto en común, es decir, nunca se interceptan. Para la construcción de este tipo de rectas se emplean la regla, la escuadra y el compás. En el siguiente ejemplo la recta a es paralela a la recta b.

Un ejemplo de rectas paralelas son los lados opuestos de un cuadrilátero como el cuadrado.

VER INFOGRAFÍA

Rectas secantes

Son aquellas que se interceptan en un punto en común y forman cuatro ángulos internos. Las rectas c y d son secantes.

Un ejemplo de rectas secantes son dos calles que se interceptan en un punto en común.

Rectas perpendiculares

Son aquellas rectas secantes que al cortarse forman cuatro ángulos iguales, específicamente rectos (de 90°). Estas rectas dividen al plano en cuatro regiones. Las rectas e y f son perpendiculares entre sí.

Un ejemplo de rectas perpendiculares son los ejes del plano cartesiano.

La recta es un tipo de línea pero no es la única, existen líneas curvas, quebradas y mixtas. Además de su empleo en la geometría, los diferentes tipos de líneas son recursos usados por artistas plásticos y diseñadores gráficos en sus trabajos para proporcionar expresividad gráfica, dinamismo y movimiento. También son útiles para crear planos y texturas.

Otros conceptos relacionados

Semirrecta

Todo punto que pertenece a una línea recta la divide en dos partes denominadas semirrectas. Las semirrectas también son llamadas rayos y contienen infinitos puntos como la recta. La diferencia es que una recta no tiene origen y una semirrecta sí lo tiene.

Segmento

Corresponde a la parte de una recta que se encuentra delimitada entre dos de sus puntos, cada uno de ellos es denominado extremo. Los segmentos se escriben a través de la escritura sin espacio de sus extremos y con una raya horizontal en la parte superior. En el siguiente ejemplo, la figura corresponde al segmento \overline{PQ}.

El plano

Es un ente ideal que posee dos dimensiones (bidimensional). Se suele representar con letras del alfabeto griego. En geometría, un plano queda definido cuando se cumplen algunas de las siguientes condiciones:

  • Tres puntos no alineados.
  • Dos rectas que son paralelas.
  • Dos rectas secantes.

Un plano contiene infinitas rectas y puntos. En el siguiente ejemplo se puede observar un ejemplo de plano.

Otro ejemplo de plano sería la parte superior de una mesa.

Con el propósito de facilitar su gráfica y simplificar su visualización, los planos suelen representarse como una figura delimitada con bordes irregulares. Sin embargo, un plano contiene infinitos puntos, por lo tanto, al igual que sucede con la recta, sería imposible representarlo completamente, así que se muestra una pequeña porción de su superficie.

El plano cartesiano

Es un sistema de coordenadas desarrollado por el célebre matemático René Descartes en el siglo XVII. Permite asignar ubicación a cualquier punto del plano. Este sistema cuenta con dos ejes numerados que permiten localizar las coordenadas de los puntos. Un eje vertical denominado eje Y o de las ordenadas muestra las coordenadas en Y de un punto, y un eje horizontal denominado eje X o de las abscisas indica las coordenada en X de un punto.

¡A practicar!

1. Observa la siguiente imagen y responde qué tipo de rectas son las indicadas.

a) Las rectas e y h.

Solución
Secantes.

b) Las rectas d y g.

Solución
Secantes perpendiculares.

c) Las rectas e y f.

Solución
Paralelas.

d) Las rectas h y f.

Solución
Secantes.

2. De acuerdo al contenido explicado responde las siguientes preguntas.

a) ¿Cuántos puntos no alineados definen a un plano?

Solución
3

b) ¿Qué diferencia tiene una recta de una semirrecta?

Solución
La semirrecta tiene un origen y la recta no.

c) ¿De qué medida son los ángulos formados por dos rectas perpendiculares?

Solución
90°

d) ¿En cuántos puntos se intersectan dos rectas paralelas?

Solución
En ningún punto.

e) ¿Cuáles entes fundamentales de la geometría suelen nombrarse con letras del alfabeto griego?

Solución
Los planos.

f) ¿Cómo se denominan a los puntos que forman un segmento?

Solución
Extremos.

g) ¿Qué tipo de ente fundamental de la geometría tiene longitud pero no anchura?

Solución
La recta.

h) ¿Qué tipo de ente fundamental de la geometría no tiene dimensiones?

Solución
El punto.

i) ¿Con qué otro nombre se denominan las semirrectas?

Solución
Rayos.

j) ¿Quién inventó el sistema cartesiano?

Solución
René Descartes.

RECURSOS PARA DOCENTES

Artículo “Determinación de rectas y puntos notables de los triángulos”

El artículo explica cuáles son las rectas y puntos notables que presentan los triángulos y qué características geométricas poseen.

VER

Micrositio “Tarjetas educativas – Geometría y medidas”

En este micrositio podrá encontrar una variedad de tarjetas que resumen los elementos principales de la geometría como el punto, la recta y las principales figuras geométricas.

VER

Artículo “Las rectas en el plano”

El artículo explica la clasificación de las rectas según su posición en el plano y muestra cómo graficar cada una de ellas mediante el uso de regla, escuadra y compás.

VER