CAPÍTULO 5 / TEMA 2

Ángulos

Los ángulos están presentes en la mayoría de las figuras geométricas y en nuestra vida cotidiana. Se los considera indispensables para realizar cálculos trigonométricos y estudios en balística, arquitectura e ingeniería. De acuerdo a su amplitud, los ángulos se clasifican en varios tipos.

El ángulo y sus elementos principales

Un ángulo es una región del plano comprendida por dos semirrectas que tienen un origen en común. Los elementos de un ángulos son los siguientes:

  • Vértice: es el punto en común de las dos semirrectas.
  • Lados: son las dos semirrectas que conforman al ángulo.
  • Amplitud: es la medida de abertura de los lados de un ángulo. Esta medida usualmente se lee en grados sexagesimales.

¿Sabías qué?
Los ángulos suelen nombrarse con letras del alfabeto griego.

El sistema sexagesimal

Se usa principalmente para medir el tiempo y los ángulos. En este último caso, las unidades que emplea son grados, minutos y segundos. Al dividir un ángulo llano en 180 partes iguales, una de esas partes equivale a un grado (°). Si se divide un grado en sesenta partes iguales, una de esas partes equivale a un minuto (′). Y si el minuto se divide en 60 partes iguales, una de esas partes corresponde a un segundo (″). En resumen:

1° = 60′
1′ = 60″

Observa que este sistema emplea como base el número 60 y de ahí viene el origen de su nombre. El instrumento usado para su medición es el transportador.

VER INFOGRAFÍA

Clasificación de los ángulos

Los ángulos pueden clasificarse en:

  • Ángulo nulo: cuando mide 0°.
  • Ángulo agudo: cuando es mayor que 0° pero menor que 90°.
  • Ángulo recto: cuando mide exactamente 90°.
  • Ángulo obtuso: cuando es mayor de 90° pero menor que 180°.
  • Ángulo llano: cuando mide exactamente 180°.
  • Ángulo completo: cuando mide 360°.

Ángulos complementarios

Dos ángulos son complementarios si al ser sumados el resultado es igual a 90°. Al saber el valor de uno de los ángulos puedes calcular el valor del otro al restar 90° al ángulo conocido.

– Ejemplo:

Se tienen los ángulos complementarios α y β. El valor de β es de 35°. Calcula el valor de α.


Simplemente debes resolver la resta:

\boldsymbol{\alpha =90^{\circ}-\beta}

\boldsymbol{\alpha =90^{\circ}-35^{\circ}}

\boldsymbol{\alpha =55^{\circ}}

Por lo tanto el valor de α es 55°.

Ángulos suplementarios

Dos ángulos son suplementarios si al ser sumados el resultado es igual a 180°. Al igual que en el caso anterior puedes determinar el valor de un ángulo de este tipo si conoces el valor de otro y lo restas a 180°.

– Ejemplo:

Se tienen los ángulos suplementarios θ y δ. El valor de θ es de 160°. Calcular el valor de δ.

Resuelve la resta:

\boldsymbol{\delta =180^{\circ}-\theta}

\boldsymbol{\delta =180^{\circ}-160^{\circ}}

\boldsymbol{\delta =20^{\circ}}

El valor de δ es 2.

Medida de un ángulo

La medición de los ángulos se realiza a menudo a través de un transportador, el cual puede ser de dos tipos: circular o semicircular. El circular mide los 360° de la circunferencia y el semicircular mide los 180°. Ambos transportadores cuentan con una marca en el centro que se debe colocar en el vértice del ángulo a medir. El 0° de la escala debe coincidir con uno de los lados del ángulo y la lectura del ángulo sería la que indica el otro lado en la escala.

Los transportadores suelen presentar dos numeraciones que van en diferentes sentidos según se lea el ángulo: en sentido horario (en el sentido de las manecillas del reloj) o en sentido antihorario.

Existe el convencionalismo de que los ángulos que se miden en sentido horario se consideran positivos mientras que los que se leen en sentido antihorario se consideran negativos. En el ámbito matemático, el enfoque se orienta más a la abertura de los ángulos. Otro dato importante es que aunque los transportadores son útiles, existen otros instrumentos más precisos como el goniómetro.

Los ángulos en las figuras planas

Las figuras planas poseen ángulos interiores y ángulos exteriores. Los ángulos interiores, como su nombre lo indica, se ubican en el interior de la figura, mientras que los exteriores se ubican entre un lado de la figura y el otro lado siguiente. Por ejemplo:

Cálculo de ángulos internos en triángulos

Los ángulos interiores de los triángulos siempre suman 180°. De manera que si conoces la medida de dos de sus ángulos internos puedes calcular la medida del tercero. Lo único que debes hacer es restar los valores de los ángulos conocidos a 180°. Por ejemplo:

– Calcula el valor del ángulo θ.

Como ya sabes, la sumas de los ángulos internos de un triángulo es igual a 180°, entonces, si restas los valores de los ángulos conocidos a 180° obtendrás el valor de Θ:

\boldsymbol{\theta = 180^{\circ}-\alpha -\beta}
\boldsymbol{\theta = 180^{\circ}-65^{\circ} -67^{\circ}}
\boldsymbol{\theta = 48^{\circ}}

El valor del ángulo θ es 48°.

¿Sabías qué?
La suma de los ángulos externos de un triángulo es igual a 360°.

Cálculo de ángulos internos en cuadriláteros

En el caso de los cuadriláteros se cumple que la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Por ejemplo, en el caso del cuadrado y del rectángulo sus cuatro ángulos internos son iguales y miden 90°. En el caso del rombo y del romboide sus ángulos opuestos son iguales. Si el trapecio es rectángulo posee dos ángulos consecutivos que miden 90°. Si es isósceles tiene los ángulos adyacentes a la base mayor con la misma medida y si el trapecio es escaleno ninguno de sus ángulos mide lo mismo.

Los trapezoides son otro tipo de cuadrilátero con el valor de cada uno de sus ángulos internos diferentes. En resumen:

Figuras Características
El cuadrado y el rectángulo tienen ángulos internos iguales y miden 90°.
El rombo tiene todos sus ángulos iguales (pero son agudos, es decir, menores a 90°).

El romboide presenta cada par de ángulos opuestos con la misma medida.

El trapecio rectángulo tiene dos ángulos rectos (miden 90° cada uno).

 

El trapecio isósceles presenta los ángulos adyacentes a la base mayor con la misma medida.

 

El trapecio escaleno presenta todos sus ángulos con diferente medida.

El trapezoide no posee ningún ángulo con la misma medida.

Para calcular ángulos en un cuadrilátero simplemente tenemos que restar los ángulos conocidos a 360°.

– Ejemplo:

Calcula el valor del ángulo ε de la siguiente figura.

\boldsymbol{\varepsilon =360^{\circ}-\delta -\theta -\rho}

\boldsymbol{\varepsilon =360^{\circ}-88^{\circ} -77^{\circ} -80^{\circ}}

\boldsymbol{\varepsilon =115^{\circ}}

El valor del ángulo ε es 115°.

En los polígonos regulares los ángulos internos miden igual. Para calcular su valor se emplea la ecuación (n − 2) × 180°/n donde n es el número de lados que presenta el polígono. Por ejemplo, para un pentágono se sustituye la n por el número 5 que corresponde al número de sus lados y se obtiene que (5 − 2) × 180°/5 = 108°, lo que quiere decir que cada uno de los ángulos internos de un pentágono mide 108°.

¡A practicar!

1. ¿Qué tipo de ángulo observas?

a)

Solución
Ángulo obtuso.

b)

Solución
Ángulo llano.

c)

Solución
Ángulo recto.

d)

Solución
Ángulo agudo.

2. Calcula el valor del ángulo γ.


Solución
γ = 55°

3. Calcula el valor del ángulo θ.


Solución
θ = 70°

4. Calcula el valor del ángulo φ.

Solución
φ = 58°

5. Calcula el valor del ángulo β.

Solución
β = 105°

RECURSOS PARA DOCENTES

Artículo “Ángulos en triángulos. Resolución mediante ecuaciones”

El artículo explica los diferentes tipos de ángulos y cómo determinarlos a través de ecuaciones. También muestra una serie de ejemplos y ejercicios relacionados al tema.

VER

Artículo “Ángulos”

Este artículo plantea de forma resumida lo relacionado con los ángulos, como la manera de nombrarlos, su clasificación y el uso del transportador.

VER

Video “Tipo de triángulos según sus ángulos”

En el video se muestra la manera de clasificar los triángulos a partir de los ángulos y muestra ejemplos gráficos de cada uno de ellos.

VER

CAPÍTULO 5 / TEMA 1

Elementos geométricos

El punto, la recta y el plano representan los cimientos de la geometría. Seguramente, muchos otros conceptos no podrían ser definidos sin ellos y por tal motivo son tan importantes. Cada uno está relacionado: infinitos puntos forman una recta, infinitos puntos y rectas forman un plano e infinitos puntos, rectas y planos forman el espacio.

El punto

El punto es el objeto más pequeño del espacio, por tanto no tiene longitud, área o volumen. Es adimensional, lo que quiere decir que no tiene dimensiones.

Una de las funciones del punto es describir la posición en un sistema de coordenadas como el cartesiano.

¿Sabías qué?
Los puntos se nombran con letras mayúsculas del abecedario, por ejemplo: A, B, C, D, etc.

Entes fundamentales de la geometría

Se denominan así a los entes que por sí solos no tienen definición y se comprenden a partir de las características de elementos similares. La mayoría de las personas tiene noción de lo que cada uno representa. Los entes fundamentales en la geometría son el punto, la recta y el plano.

La recta y sus tipos

Una recta es un tipo de línea que se extiende en una misma dirección y está formada por infinitos puntos. Por esta razón, la recta tiene longitud pero no anchura. En geometría, las rectas se suelen denominar con letras minúsculas.

De acuerdo a su posición en el plano, las rectas pueden ser paralelas, perpendiculares y secantes.

¿Sabías qué?
Entre dos puntos, solamente existe una recta que los une.

Rectas paralelas

Son rectas que no tienen ningún punto en común, es decir, nunca se interceptan. Para la construcción de este tipo de rectas se emplean la regla, la escuadra y el compás. En el siguiente ejemplo la recta a es paralela a la recta b.

Un ejemplo de rectas paralelas son los lados opuestos de un cuadrilátero como el cuadrado.

VER INFOGRAFÍA

Rectas secantes

Son aquellas que se interceptan en un punto en común y forman cuatro ángulos internos. Las rectas c y d son secantes.

Un ejemplo de rectas secantes son dos calles que se interceptan en un punto en común.

Rectas perpendiculares

Son aquellas rectas secantes que al cortarse forman cuatro ángulos iguales, específicamente rectos (de 90°). Estas rectas dividen al plano en cuatro regiones. Las rectas e y f son perpendiculares entre sí.

Un ejemplo de rectas perpendiculares son los ejes del plano cartesiano.

La recta es un tipo de línea pero no es la única, existen líneas curvas, quebradas y mixtas. Además de su empleo en la geometría, los diferentes tipos de líneas son recursos usados por artistas plásticos y diseñadores gráficos en sus trabajos para proporcionar expresividad gráfica, dinamismo y movimiento. También son útiles para crear planos y texturas.

Otros conceptos relacionados

Semirrecta

Todo punto que pertenece a una línea recta la divide en dos partes denominadas semirrectas. Las semirrectas también son llamadas rayos y contienen infinitos puntos como la recta. La diferencia es que una recta no tiene origen y una semirrecta sí lo tiene.

Segmento

Corresponde a la parte de una recta que se encuentra delimitada entre dos de sus puntos, cada uno de ellos es denominado extremo. Los segmentos se escriben a través de la escritura sin espacio de sus extremos y con una raya horizontal en la parte superior. En el siguiente ejemplo, la figura corresponde al segmento \overline{PQ}.

El plano

Es un ente ideal que posee dos dimensiones (bidimensional). Se suele representar con letras del alfabeto griego. En geometría, un plano queda definido cuando se cumplen algunas de las siguientes condiciones:

  • Tres puntos no alineados.
  • Dos rectas que son paralelas.
  • Dos rectas secantes.

Un plano contiene infinitas rectas y puntos. En el siguiente ejemplo se puede observar un ejemplo de plano.

Otro ejemplo de plano sería la parte superior de una mesa.

Con el propósito de facilitar su gráfica y simplificar su visualización, los planos suelen representarse como una figura delimitada con bordes irregulares. Sin embargo, un plano contiene infinitos puntos, por lo tanto, al igual que sucede con la recta, sería imposible representarlo completamente, así que se muestra una pequeña porción de su superficie.

El plano cartesiano

Es un sistema de coordenadas desarrollado por el célebre matemático René Descartes en el siglo XVII. Permite asignar ubicación a cualquier punto del plano. Este sistema cuenta con dos ejes numerados que permiten localizar las coordenadas de los puntos. Un eje vertical denominado eje Y o de las ordenadas muestra las coordenadas en Y de un punto, y un eje horizontal denominado eje X o de las abscisas indica las coordenada en X de un punto.

¡A practicar!

1. Observa la siguiente imagen y responde qué tipo de rectas son las indicadas.

a) Las rectas e y h.

Solución
Secantes.

b) Las rectas d y g.

Solución
Secantes perpendiculares.

c) Las rectas e y f.

Solución
Paralelas.

d) Las rectas h y f.

Solución
Secantes.

2. De acuerdo al contenido explicado responde las siguientes preguntas.

a) ¿Cuántos puntos no alineados definen a un plano?

Solución
3

b) ¿Qué diferencia tiene una recta de una semirrecta?

Solución
La semirrecta tiene un origen y la recta no.

c) ¿De qué medida son los ángulos formados por dos rectas perpendiculares?

Solución
90°

d) ¿En cuántos puntos se intersectan dos rectas paralelas?

Solución
En ningún punto.

e) ¿Cuáles entes fundamentales de la geometría suelen nombrarse con letras del alfabeto griego?

Solución
Los planos.

f) ¿Cómo se denominan a los puntos que forman un segmento?

Solución
Extremos.

g) ¿Qué tipo de ente fundamental de la geometría tiene longitud pero no anchura?

Solución
La recta.

h) ¿Qué tipo de ente fundamental de la geometría no tiene dimensiones?

Solución
El punto.

i) ¿Con qué otro nombre se denominan las semirrectas?

Solución
Rayos.

j) ¿Quién inventó el sistema cartesiano?

Solución
René Descartes.

RECURSOS PARA DOCENTES

Artículo “Determinación de rectas y puntos notables de los triángulos”

El artículo explica cuáles son las rectas y puntos notables que presentan los triángulos y qué características geométricas poseen.

VER

Micrositio “Tarjetas educativas – Geometría y medidas”

En este micrositio podrá encontrar una variedad de tarjetas que resumen los elementos principales de la geometría como el punto, la recta y las principales figuras geométricas.

VER

Artículo “Las rectas en el plano”

El artículo explica la clasificación de las rectas según su posición en el plano y muestra cómo graficar cada una de ellas mediante el uso de regla, escuadra y compás.

VER

CAPÍTULO 5 / TEMA 4

OPERACIONES CON FRACCIONES homogéneas

Si la mamá de Carla compró 1/2 kg de naranjas y su papá compró 3/2 kg de naranjas, ¿cuántos kg de naranja hay en total? Esta situación la podemos encontrar a diario en nuestra vida. Para resolverla tenemos que involucrar operaciones básicas como la suma o la resta a números fraccionarios. Las características de cada fracción nos indicarán qué pasos tenemos que seguir.

Cada vez que dividimos un todo en varias partes iguales usamos fracciones. Todas las fracciones son divisiones sin resolver que tienen un numerador y un denominador, ambos separados por una raya fraccionaria. Las usamos cuando repartimos comida, seguimos instrucciones de recetas o pedimos una parte o porción de algo.

VER INFOGRAFÍA

suma de fracciones homogéneas

Recordemos que dos o más fracciones son homogéneas cuando comparten el mismo denominador. Sumar este tipo de fracciones es muy fácil. Primero sumamos los numeradores, el número resultante será el numerador de la fracción y mantenemos el mismo denominador. Veamos un ejemplo:

\boldsymbol{\frac{{\color{Blue} 1}}{{\color{Red} 5}}+\frac{{\color{Blue} 6}}{{\color{Red} 5}}=\frac{{\color{Blue} 1+6}}{{\color{Red} 5}}=\frac{7}{5}}

 

– Otros ejemplos:

\boldsymbol{\frac{{\color{Blue} 1}}{{\color{Red} 2}}+\frac{{\color{Blue} 3}}{{\color{Red} 2}}=\frac{{\color{Blue} 1+3}}{{\color{Red} 2}}=\frac{4}{2}=2}

 

\boldsymbol{\frac{{\color{Blue} 12}}{{\color{Red} 8}}+\frac{{\color{Blue} 4}}{{\color{Red} 8}}=\frac{{\color{Blue} 12+8}}{{\color{Red} 8}}=\frac{20}{8}}

sustracción de fracciones homogéneas

Del mismo modo que se resuelve la suma de fracciones homogéneas, en la sustracción primero restamos los numeradores y conservamos el mismo denominador. Por ejemplo:

\boldsymbol{\frac{{\color{Blue} 6}}{{\color{Red} 7}}-\frac{{\color{Blue} 3}}{{\color{Red} 7}}=\frac{{\color{Blue} 6-3}}{{\color{Red} 7}}=\frac{3}{7}}

– Otros ejemplos:

\boldsymbol{\frac{{\color{Blue} 8}}{{\color{Red} 5}}-\frac{{\color{Blue} 4}}{{\color{Red} 5}}=\frac{{\color{Blue} 8-4}}{{\color{Red} 5}}=\frac{4}{5}}

 

\boldsymbol{\frac{{\color{Blue} 10}}{{\color{Red} 3}}-\frac{{\color{Blue} 8}}{{\color{Red} 3}}=\frac{{\color{Blue} 10-8}}{{\color{Red} 3}}=\frac{2}{3}}

fracciones equivalentes

Las fracciones equivalentes son fracciones que tienen distinto numerador y denominador pero representan una misma cantidad. Hay dos métodos para calcular fracciones equivalentes: por amplificación y por simplificación.

  • Por el método de amplificación multiplicamos el numerador y el denominador por un mismo número.

Por ejemplo, \frac{1}{3} es la fracción equivalente a \frac{3}{9}, porque tanto el numerador como el denominador fueron multiplicados por 3.

 

  • Por el método de simplificación dividimos el numerador y el denominador por un mismo número.

Por ejemplo, la fracción \frac{22}{10} es equivalente a \frac{11}{5} porque tanto el numerador como el denominador fueron divididos por 2.

 

Se puede simplificar una fracción hasta obtener su mínima expresión, es decir, hasta conseguir la fracción irreducible. Se la llama irreducible porque el numerador y el denominador no comparten los mismos divisores. Obtener esta expresión hace que se simplifiquen los cálculos y la escritura de fracciones.

¿Cómo sabemos si dos fracciones son equivalentes?

El cálculo que permite determinar si dos fracciones son iguales es el método de multiplicar cruzado los numeradores y denominadores de ambas fracciones.

Para saber si \frac{2}{5} y \frac{4}{10} son fracciones equivalentes debes seguir estos pasos:

1. Multiplica el numerador de la primera fracción por el denominador de la segunda.

2. Multiplica el numerador de la segunda fracción por el denominador de la primera.

3. Compara los dos resultados. Sin los dos son iguales significa que las dos fracciones son equivalentes.

\boldsymbol{\frac{2}{5}=\frac{4}{10}}

orden de fracciones

Todos los números tienen un orden y las fracciones no son la excepción. Para establecer ese orden podemos comparar sus elementos y determinar si son mayores, menores o iguales unas con otras. Los símbolos que se usan para compararlas son:

Símbolo Significado
> Mayor que
< Menor que

Cuando las fracciones tienen igual denominador y se quiere saber si una es mayor que la otra solo tenemos que comparar sus numeradores. Una fracción es mayor que otra si tiene el numerador más grande. Por ejemplo:

\boldsymbol{\frac{7}{6}>\frac{5}{6}} porque 7 es mayor que 5.

Para determinar si una fracción es menor que otra y sus denominadores son iguales, solo comparamos los numeradores. Veamos un ejemplo:

\boldsymbol{\frac{8}{9}<\frac{13}{9}} porque 8 es menor que 13.

problemas

Día a día nos cruzamos con problemas que involucran fracciones y son las diferentes operaciones básicas las que nos permiten resolverlos. Algunas veces nos toca comparar fracciones para saber, por ejemplo, quién comió más chocolate; otras veces cuántas partes de jugo se tomó y cuántas quedan.

Pasos a seguir para resolver problemas con fracciones

Los siguientes pasos también servirán para resolver problemas con números naturales.

  1. Lee atentamente el problema.
  2. Identifica y anota los datos del problema.
  3. Piensa qué pide el problema, ¿qué pregunta hace?
  4. Establece qué operaciones permiten resolver el problema.
  5. Haz los cálculos.
  6. Relee la pregunta del problema para luego contestarla.

1. Carla y María se repartieron una barra de chocolate en 6 partes iguales, Carla comió \frac{3}{6} y María \frac{2}{6}. ¿Quién comió más chocolate?

  • Datos

Cantidad de chocolate que comió Carla: \frac{3}{6}

Cantidad de chocolate que comió María: \frac{2}{6}

  • Pregunta

¿Quién comió más chocolate?

  • Piensa

Para saber quién comió más hay que comparar las dos fracciones. Como son homogéneas solo no fijamos en los numeradores.

  • Calcula

\boldsymbol{\frac{3}{6}>\frac{2}{6}} porque 3 es mayor que 2.

  • Respuesta

Carla comió más chocolate que María.


2. Pedro tenía en la heladera \frac{3}{4} de litro de jugo de naranja. Si tomó \frac{1}{4} de litro, ¿cuánto jugo le quedó?

  • Datos

Litros de jugo naranja en la heladera: \frac{3}{4}

Litros de jugo que tomó Pedro: \frac{1}{4}

  • Pregunta

¿Cuánto jugo le quedó?

  • Piensa

Hay que restar la cantidad de jugo que tomó Pedro a la cantidad de jugo que había en la heladera.

  • Calcula

\frac{3}{4}-\frac{1}{4}=\frac{3-1}{4}=\boldsymbol{\frac{2}{4}}

  • Respuesta

A Pedro le quedaron \frac{2}{4} de litro de jugo de naranja.


3. Si Pedro prepara \frac{5}{4} de litro de jugo y los une con \frac{2}{4} de litro de jugo que le quedaron, ¿cuánto jugo tiene ahora?

  • Datos

Litros de jugo que preparó Pedro: \frac{5}{4}

Litro de jugo que ya tiene Pedro: \frac{2}{4}

  • Pregunta

¿Cuánto jugo tiene ahora?

  • Piensa

Para saber la cantidad total de jugo hay que sumar las dos cantidades.

  • Calcula

\frac{5}{4}+\frac{2}{4}=\frac{5+2}{4}=\boldsymbol{\frac{7}{4}}

  • Respuesta

Pedro tiene ahora \frac{7}{4} de litro de jugo de naranja.

¡A practicar!

1. Resuelve las siguientes operaciones.

  • \frac{7}{8}-\frac{2}{8}=
Solución

\frac{7}{8}-\frac{2}{8}=\frac{7-2}{8}=\boldsymbol{\frac{5}{8}}

  • \frac{4}{3}+\frac{6}{3}=
Solución

\frac{4}{3}+\frac{6}{3}=\frac{4+6}{3}=\boldsymbol{\frac{10}{3}}

  • \frac{16}{5}-\frac{4}{5}=
Solución

\frac{16}{5}-\frac{4}{5}=\frac{16-4}{5}=\boldsymbol{\frac{12}{5}}

  • \frac{9}{7}+\frac{3}{7}=
Solución

\frac{9}{7}+\frac{3}{7}=\frac{9+3}{7}=\boldsymbol{\frac{12}{7}}

 

2. Ordenar de mayor a menor las siguientes fracciones.

\frac{4}{5},\: \: \: \frac{2}{5},\: \: \: \frac{1}{5},\: \: \: \frac{6}{5},\: \: \: \frac{3}{5}

Solución

\frac{6}{5}>\frac{4}{5}>\frac{3}{5}>\frac{2}{5}>\frac{1}{5}

3. Ordenar de menor a mayor las siguientes fracciones.

\frac{7}{7},\: \: \: \frac{3}{7},\: \: \: \frac{5}{7},\: \: \: \frac{2}{7},\: \: \: \frac{9}{7}

Solución

\frac{2}{7}<\frac{3}{7}<\frac{5}{7}<\frac{7}{7}<\frac{9}{7}

 

4. Determina si las siguientes fracciones son equivalentes.

  • \frac{3}{5} y \frac{9}{15}
Solución
Son fracciones equivalentes porque 3 × 15 = 45 y 9 × 5 = 45.

  • \frac{2}{9} y \frac{10}{42}
Solución
No son fracciones equivalentes porque 2 × 42 = 84 y 10 × 9 = 90.

  • \frac{6}{18} y \frac{3}{9}
Solución
Son fracciones equivalentes porque 6 × 9 = 54 y 18 × 3 = 54.

 

5. Marianela se va de vacaciones con su familia. En la primera hora de viaje recorrieron \frac{3}{8} del trayecto y en la segunda hora, \frac{2}{8} del trayecto. ¿Cuánto del trayecto ya recorrieron?

Solución
Recorrieron \frac{5}{8} del trayecto.

 

6. Marcos tiene \frac{9}{12} de una tarta y le regala a su vecino \frac{3}{12}, ¿cuánto le queda de la tarta?

Solución
Le queda \frac{6}{12} de tarta.
RECURSOS PARA DOCENTES

Artículo “Adición y sustracción de fracciones”

Este recurso permitirá profundizar en el tema de la suma y resta de fracciones.

VER

Artículo “Fracciones decimales y equivalentes”

Este recurso permitirá complementar la información sobre fracciones equivalentes mediante múltiples ejemplos.

VER

Artículo “Partes y porciones”

El siguiente artículo profundiza temas tales como fracciones equivalentes, orden de las fracciones y otros.

VER

CAPÍTULO 6 / TEMA 2

Interpretación de datos

La recopilación e interpretación de datos son aspectos claves de toda investigación. La estadística es la ciencia encargada de este proceso: reúne información concerniente a individuos o grupos, organiza dichos datos y los analiza e interpreta. Este análisis permite tomar decisiones y realizar predicciones útiles.

La encuesta

Una encuesta es una técnica que consiste en recopilar datos por medio de un cuestionario, el cual tiene preguntas prediseñadas. La encuesta se emplea al momento de estudiar un fenómeno, pues los datos obtenidos se suelen representar en gráficos o tablas para su interpretación.

Por lo general, la encuesta se aplica a una muestra de la población. Por ejemplo, imagina que quieres realizar una encuesta sobre el programa de televisión más visto en un país. Lo ideal sería que la encuesta fuera respondida por todas las personas de ese país, pero eso resulta casi imposible. Por esta razón, se toma una muestra de esa población que consiste en una porción más pequeña de personas para aplicar la encuesta. Así los datos obtenidos son una aproximación muy cercana a toda la población y su recopilación es mucho más fácil.

– Ejemplo:

La maestra preguntó a sus estudiante si preferían viajar a la playa o a la montaña y estos fueron los resultados que obtuvo:

Nombre Lugar preferido
María Playa
Mónica Playa
Samuel Montaña
Alfredo Playa
Ricardo Montaña
Melina Montaña
Pablo Playa
Rubén Playa
Araceli Playa
Sergio Montaña

De la tabla se observa que 6 estudiantes prefieren ir a la playa y 4 prefieren ir a la montaña. De manera que hay más estudiantes que prefieren la playa.

Importancia de las encuestas

Las encuestas son más usadas de lo que se piensas y las áreas que las aplican no se limitan a la estadística. La medicina, la sociología y la psicología son algunos de los campos en donde se hace uso de encuestas para recopilar información.

Promedio aritmético

Se denomina así porque corresponde al valor promedio de los datos. Es el resultado de sumar todos los datos que tenemos y luego dividirlos entre el número de datos.

– Ejemplo:

La maestra le preguntó a los niños cuántas mascotas tenían en sus casas y obtuvo los siguientes resultados:

Nombre Número de mascotas
María 2
Mónica 2
Samuel 3
Alfredo 1
Ricardo 1
Melina 2
Pablo 1
Rubén 2
Araceli 2
Sergio 4

 

Para calcular el promedio de mascotas que tienen los estudiantes se cumple la siguiente fórmula:

\boldsymbol{Promedio =\frac{Sumatoria \, de \, todos\, los\, datos}{Nro\, de \, datos}}

 

En este caso, si sumamos todos los datos obtenemos lo siguiente:

Sumatoria \, de \, todos\, los\, datos=2+2+3+1+1+2+1+2+2+4=\boldsymbol{\mathbf{}20}

 

El número de datos es igual a 10 (es el número de estudiantes en este caso).

Al sustituir en la fórmula se obtiene:

Promedio =\frac{20}{10} = \mathbf{2}

 

De esta manera, el promedio aritmético es 2, lo que nos indica que la mayoría de los estudiantes tienen como mínimo 2 mascotas.

¿Sabías qué?
En la estadística es más común hablar de media aritmética y no de promedio aritmético.
Uno de los cálculos usados a menudo en las empresas es el promedio. Aunque no siempre indica el valor real, permite por ejemplo, realizar estimaciones de las producciones por día, estimaciones de costos y proyecciones a futuro. Es importante tener presente que existen varios tipos de promedio además del aritmético y se emplean en otras situaciones.

Moda

Corresponde al valor del dato que más se repite. En el caso del ejemplo anterior la moda es 2 porque se repite más veces (5 veces):

Nombre Número de mascotas
María 2
Mónica 2
Samuel 3
Alfredo 1
Ricardo 1
Melina 2
Pablo 1
Rubén 2
Araceli 2
Sergio 4

¿Sabías qué?
La media, la moda y la mediana son denominadas medidas de tendencia central.

Combinaciones

Para realizar combinaciones de datos se suelen emplear tablas de doble entrada, conocidas también como cuadros de doble entrada, que permiten de forma gráfica registrar la información y sacar conclusiones.

Por ejemplo, un equipo de voleibol quiere saber cuál color usar en su logo, uniforme y balón oficial. Para ello la mayoría decidió que los colores deberían ser rojo, naranja o amarillo. Al completar la tabla de doble entrada obtuvieron los siguientes resultados:

El equipo tiene en total 9 posibilidades para elegir porque en la tabla son 3 colores y 3 objetos:

3\times 3=9

Si analizamos la tabla verticalmente observamos que por cada columna está el mismo objeto pero de diferente color. Si analizamos la tabla horizontalmente observamos diferentes objetos pero con el mismo color.

Los datos en una investigación

Antes de lanzar al mercado un nuevo producto o de aprobar una vacuna es necesario obtener datos que permitan interpretar si, por ejemplo, ese producto será comprado en las cantidades deseadas o si esa vacuna será segura para la salud. Por tal motivo, los datos que se recopilan juegan un papel fundamental en toda investigación, sin ellos no sería posible llegar a conclusiones o resultados. Su análisis es crucial en todas las áreas de la ciencia.

¡A practicar!

1. Se hizo una encuesta a unos músicos para saber cuántos instrumentos sabían tocar. Observa la siguiente tabla de resultado y responde las preguntas.

Nombre Número de instrumentos que sabe tocar
Carolina 3
Ezequiel 3
Francisco 5
Sofía 3
Victoria 4
Verónica 6
Diego 7
Luis 3
Tania 2
Andrés 4

a) ¿Cuál es el promedio aritmético?

Solución
4

b) ¿Cuál es la moda?

Solución
3

c) ¿Quién sabe tocar más instrumentos?

Solución
Diego

d) ¿Quién sabe tocar menos instrumentos?

Solución
Tania

 

2. Observa la siguiente tabla de doble entrada. ¿Cuántas combinaciones posibles observas?

Solución
4

 

RECURSOS PARA DOCENTES

Artículo “Instrumentos de medición”

Este artículo explica los principales instrumentos de medición usados en la estadística para recopilar datos como la encuesta y la entrevista.

VER

Artículo “Medidas de tendencia central”

Este artículo explica las medidas de tendencia central como la moda, media aritmética y la mediana, que permiten analizar un conjunto de datos y conocer la manera en la que se encuentra distribuidos.

VER

Artículo “Datos estadísticos”

Este artículo explica de manera concisa qué son los datos estadísticos y los diferentes tipos de muestreos usados con el propósito de obtenerlos.

VER

CAPÍTULO 6 / TEMA 1

Recursos para representar datos

Hay veces en las que los datos por sí solos no nos proporcionan ninguna información, pero al representarlos de manera gráfica podemos comprender mejor lo que significan. Por esta razón, en matemática y en estadística se suelen usar gráficos, diagramas y tablas para mostrar los valores. 

Pictogramas

Son gráficos que emplean dibujos para representar los datos. Estos recursos visuales permiten una rápida comprensión de los datos porque usan símbolos o imágenes.

En matemática se pueden representar en varias formas:

Gráfico de barras con pictogramas

Gráfico de tablas con pictogramas

En ambos ejemplos se representa el número de goles que han hecho Juan, David, Tobías y Mario. Cada imagen de referencia representa los goles de cada uno. De esta forma, Juan metió 5 goles, David 3 goles, Tobías 4 goles y Mario 1 gol.

En este caso es fácil observar que la persona que hizo más goles fue Juan y quien hizo menos fue Mario. No hacen faltan los números ni contar porque los datos se ven fácilmente a través del gráfico.

¿Sabías qué?
A los pictogramas también se los denomina gráficos de imágenes.

VER INFOGRAFÍA

Tablas

Las tablas son otro recurso usado para representar datos. Por lo general, en las tablas se usan datos cualitativos y datos cuantitativos. Los datos cualitativos indican las características de algo, como nombre, tamaño o color. Los datos cuantitativos expresan la cantidad.

En el caso del ejemplo anterior del número de goles, podemos representarlo en formato de tabla de la siguiente manera:

Nombre Número de goles
Juan 5
David 3
Tobías 4
Mario 1

Los datos cualitativos son los nombres y los datos cuantitativos son el número de goles.

Observa que en una tabla los datos se organizan en filas y columnas, las filas son las hileras horizontales y las columnas son las hileras de datos verticales de una tabla.

Por ejemplo, si queremos saber el número de goles que hizo Tobías debemos ubicar su nombre y luego movernos en esa fila hasta la columna de número de goles, de esa manera sabemos que Tobías hizo 4 goles.

La estadística y los gráficos

La estadística es una rama de la matemática que estudia la recolección, análisis e interpretación de datos con el propósito de establecer comparaciones que permitan entender el problema que se estudia. Los gráficos y tablas son tan importantes para la estadística como lo son el plano, la recta y el punto para la geometría.

Gráficos de barra

Son un tipo de diagrama que permite la representación de datos a través de columnas, por eso también se los conocen como gráficos de columnas. La longitud de cada barra o columna es completamente proporcional al valor que representan. Es por ello que se suelen representar con una escala numérica como referencia.

Seguimos con el mismo ejemplo del número de goles, pero esta vez representado en un gráfico de barras:

Observa que los tamaños de las barras son proporcionales a la cantidad que representa. La barra más grande es la del valor más grande y la más chica corresponde al valor más pequeño. Si queremos saber cuál es el valor representado por la gráfica solo tenemos que fijarnos en el tope de la barra y leer el número que indica la escala.

Los gráficos estadísticos además de proporcionar una rápida y fácil comprensión de los datos, también permiten realizar un mejor análisis. Muchas empresas emplean gráficos con el propósito de realizar proyecciones o estimaciones. En los medios de comunicación es frecuente observar gráficos para representar encuestas o resultados electorales.

¿Qué importancia tiene representar los datos gráficamente?

Imagina que se obtienen los datos de todos los vuelos internacionales que se hicieron en un país en los últimos veinte años, en efecto, serían demasiados números para interpretar, y si se quisieran comparar esos datos a simple vista no sería nada sencillo. Es por ello que se emplean gráficos, no solo para facilitar la comprensión sino también para organizar los datos de una manera más clara.

Las computadoras y muchos otros equipos como las calculadoras modernas, permiten realizar gráficos de manera sencilla. Gracias a los gráficos es posible realizar promedios, proyecciones y análisis. Por esto y más, son una herramienta muy útil en la actualidad.

Las economías de los países, el valor de las acciones en la bolsa y el precio del petróleo son algunos parámetros que suelen ser representados en gráficos para una rápida comprensión. Los gráficos son herramientas visuales que permiten organizar los datos de una manera más clara. Es común que el tipo de gráfico dependa del tipo de datos que se deseen representar.

¡A practicar!

1. Observa la siguiente imagen que muestra los trofeos que ganó una escuela y responde las siguientes preguntas.

a) ¿Qué tipo de gráfico es?

Solución
Pictograma.

b) ¿Cuántos trofeos obtuvo la escuela en el año 2020?

Solución
2

c) ¿En qué año la escuela obtuvo el mayor número de trofeos ?

Solución
2019

d) ¿En qué año la escuela obtuvo únicamente un trofeo?

Solución
2018

 

2. El siguiente gráfico muestra los libros prestados en una biblioteca durante una semana. Observa el gráfico y responde las preguntas.

a) ¿Qué tipo de libro se prestó más en esa semana?

Solución
Biología.

b) ¿Cuántas novelas se prestaron?

Solución
2

c) ¿Cuántos libros de arte se prestaron?

Solución
4

d) ¿De qué tipo de libro la biblioteca prestó solo 3 libros?

Solución
Idiomas.

 

3. Observa la siguiente tabla que muestra los animales en una granja y responde las preguntas.

Animales Cantidad en una granja
Vaca 5
Perro 2
Gato 1
Caballo 3
Gallina 10
Oveja 15

a) ¿De cuál animal hay más cantidad en la granja?

Solución
Oveja.

b) ¿Cuántas gallinas hay?

Solución
10

c) ¿Cuántos perros hay?

Solución
2

d) ¿De cuál animal hay menos cantidad en la granja?

Solución
Gato.

 

RECURSOS PARA DOCENTES

Artículo “Gráficos estadísticos”

Este artículo describe los principales gráficos usados en la estadística para representar datos. También explica las principales características de cada uno.

VER

Artículo “Estadística”

Este artículo expone una breve reseña del objeto de estudio de la estadística como rama de la matemática, y de igual forma explica cómo es el proceso de recolección y análisis de datos.

VER

Artículo “Estadística: tabla de valores”

Este artículo explica las características de una tabla de valores y sus aplicaciones en la estadística, y proporciona unos ejemplos para comprender el texto.

VER

CAPÍTULO 4 / TEMA 3

El tiempo

El tiempo es una magnitud física que permite llevar un orden de los sucesos. En otras palabras, gracias al tiempo podemos distinguir lo que pasó la semana pasada, ayer u hoy. En la actualidad, para determinar el tiempo usamos sistemas que dividen los días en 24 horas. Por medio de los relojes podemos conocer en qué hora del día estamos.

Lectura del tiempo

El ser humano siempre ha sentido la necesidad de medir el tiempo, ya sea para la duración de acontecimientos o para establecer separaciones de sucesos. Por eso, a lo largo de la historia han existido una serie de calendarios basados principalmente en ciclos lunares o solares.

Algunos calendarios son más precisos que otros, pero todos buscan una sola cosa: tener noción del tiempo.

VER INFOGRAFÍA

Unidades de tiempo

Las unidades de tiempo más comunes son la hora, el minuto y el segundo, donde se cumple que:

  • 1 hora = 60 minutos
  • 1 minuto = 60 segundos

Sin embargo, existen otras unidades para medir el tiempo:

  • 1 día = 24 horas
  • 1 semana = 7 días
  • 1 año común = 365 días
  • 1 año bisiesto = 366 días
  • 1 lustro = 5 años
  • 1 década = 10 años
  • 1 siglo = 100 años
  • 1 milenio = 1.000 años

Los relojes

Son instrumentos usados para medir el tiempo. A lo largo de la historia han pasado de ser relojes solares y de arena, a relojes cada vez más sofisticados como los relojes inteligentes de hoy en día. Los más usados en la actualidad son los relojes analógicos y los digitales.

¿Cómo leer la hora en relojes analógicos?

Una reloj analógico se caracteriza por tener agujas o manecillas que indican las horas, los minutos y los segundos a través de ciertos marcadores y números. Los elementos de un reloj analógico son los siguientes:

  • Las manecillas: son las agujas que marcan las horas, minutos y segundos. La más chica de ellas indica la hora y se denomina horario; la aguja grande más larga indica los minutos y se denomina minutero; la aguja más fina y que va más rápido indica los segundos y se denomina segundero.
  • Marcadores: son las doce partes en las que está dividida la circunferencia del reloj. Estas partes están rotuladas con los números del 1 al 12 y cada una, a su vez, está dividida en cinco subdivisiones más pequeñas marcadas con segmentos de rectas.

¿Sabías qué?
Existen relojes digitales que imitan a los relojes analógicos por contener agujas en pantallas LCD. Debido a su formato también son considerados relojes analógicos.

El horario tarda 12 horas en dar la vuelta completa, de manera que en un día tiene que realizar dos vueltas completas. El minutero tarda 60 minutos que equivalen a 1 hora en dar la vuelta completa, y el segundero tarda 60 segundos en dar una vuelta completa que equivalen a 1 minuto.

Cuando el minutero se encuentra en el número 12 significa que han transcurrido 0 minutos de la hora que marca el horario, por lo tanto, al leer la hora indicada y agregamos la expresión “en punto“. Por ejemplo:

El reloj muestra las ocho en punto.

El reloj muestra las dos en punto.

Como ya vimos, el reloj está dividido en 12 secciones y cada una de ellas está subdivide en cinco, es decir, el reloj está dividido en 60 partes iguales que equivalen a cada minuto contenido en una hora. Quiere decir que si partimos del número 12 y miramos solamente los segmentos donde aparecen marcados los números, notaremos como los minutos se incrementan de cinco en cinco.

En este sentido, si el minutero se encuentra sobre el número 1, significa que han pasado 5 minutos; si se encuentra en el número 2 indica que pasaron 10 minutos y así sucesivamente hasta el número 12 que indica que no ha pasado ningún minuto aún. Para leer la hora en estos casos, decimos la hora marcada por el horario y luego leemos los minutos.

El reloj muestra las ocho y cinco minutos.

El reloj muestra las diez y veinticinco minutos.

¿Sabías qué?
Cuando el horario se encuentra entre dos números, la hora que indica corresponde al número menor de los dos.

Cuando el minutero está en el número 3, 6 y 9, la hora se suele mencionar de manera particular.

– Cuando el minutero está en el 3 indica que han transcurrido 15 minutos, es decir una cuarta parte de lo que dura una hora. Por eso, después de decir la hora agregamos la expresión “…y cuarto”.

El reloj muestra las once y cuarto.

– Cuando el minutero está en el 6 significa que han pasado 30 minutos, es decir, la mitad de una hora, por eso decimos “…y media”.

El reloj muestra las nueve y media.

– Cuando el minutero está en el 9 han pasado 45 minutos lo significa que falta un cuarto de hora (quince minutos) para la hora siguiente. Por eso decimos “un cuarto para…” y luego la hora próxima.

El reloj muestra un cuarto para las siete.

En algunos países en lugar de decir “un cuarto para” se lee la hora próxima y se agrega la expresión “menos cuarto”. En este sentido, el ejemplo anterior se leería como “las siete menos cuarto”.

Para otros casos, se lee la hora mostrada por el horario y luego los minutos indicados por el minutero.

 

¿Cómo leer la hora en relojes digitales?

En el reloj digital no se observan manecillas sino que expresa la hora y los minutos separados por dos puntos. Las primeras dos cifras corresponden a las horas y las dos cifras que se encuentran a la derecha de los dos puntos indican los minutos.

La lectura es similar a la de los relojes analógicos, la diferencia es que la hora y los minutos se observan de manera más directa. Primero leemos la hora y después los minutos

En los casos a los cuales aplique se agregan las expresiones “…en punto”, “…y cuarto”, “…y media” y “un cuarto para…”.

 Son las ocho en punto.

 Son las ocho y cuarto.

 Son las ocho y media.

 Son un cuarto para las nueve.

 Son las ocho y treinta y cinco minutos.

VER INFOGRAFÍA

Las abreviaturas a. m. y p. m.

Son abreviaturas que suelen aparecer en los relojes digitales. La abreviatura a. m. significa que la hora leída corresponde a antes del mediodía, mientras que p. m. se usa para indicar las horas después del mediodía.

Sistema horario de 24 horas

El sistema usado por los relojes analógicos es de 12 horas. Por lo tanto tiene que completar dos ciclos para cubrir un día. El sistema de 24 horas lleva este nombre porque divide al día en las 24 horas totales que lo conforman. Por eso no necesita de las siglas a. m. y p. m. En este sistema las 00:00 horas o 00:00 h corresponden a las 12 a. m., hora desde la cual se empiezan a contar las horas de manera ascendente. En esta convención de tiempo el día se mide de medianoche a medianoche.

Formato 24 horas Formato 12 horas
00:00 h 12:00 a. m.
01:00 h 01:00 a. m.
02:00 h 02:00 a. m.
03:00 h 03:00 a. m.
04:00 h 04:00 a. m.
05:00 h 05:00 a. m.
06:00 h 06:00 a. m.
07:00 h 07:00 a. m.
08:00 h 08:00 a. m.
09:00 h 09:00 a. m.
10:00 h 10:00 a. m.
11:00 h 11:00 a. m.
12:00 h 12:00 m.
13:00 h 01:00 p. m.
14:00 h 02:00 p. m.
15:00 h 03:00 p. m.
16:00 h 04:00 p. m.
17:00 h 05:00 p. m.
18:00 h 06:00 p. m.
19:00 h 07:00 p. m.
20:00 h 08:00 p. m.
21:00 h 09:00 p. m.
22:00 h 10:00 p. m.
23:00 h 11:00 p. m.
El sistema de 24 horas es usado en diversas áreas, de hecho, en algunos países se ha estandarizado como sistema de notación del tiempo. Es común su empleo en el área militar y en el de la astronomía. También suele usarse en áreas como la medicina para llevar registros de la historia clínica de los pacientes. Otros usos se dan en aeropuertos y otras terminales de transportes.

¡A practicar!

1. ¿Qué hora indican los relojes?

a) 

Solución
Son las once y cinco minutos.

b)

Solución
Son las once y media.

c)

Solución
Son las ocho y cuarto.

c)

Solución
Son las tres y media

2. ¿Qué hora observas en estos relojes?

a)

Solución
Son las tres y veinte minutos.

b)

Solución
Son las diez en punto.

c)

Solución
Son las once y cuarto.

3. ¿A qué hora del sistema de 12 horas corresponde?

a) Las ocho y treinta y cinco minutos.

b) Las treinta y cinco para las diecinueve.

c) Las nueve y media.

d) Las seis y treinta y cinco minutos.

Solución
d) Las seis y treinta y cinco minutos.

RECURSOS PARA DOCENTES

Artículo “Medidas de tiempo”

Este artículo describe las principales unidades de tiempo y propone una serie de operaciones que se pueden realizar con unidades de tiempo.

VER

Artículo “Reloj de arena”

El presente artículo destacado describe a este sencillo pero asombroso invento que utilizaban nuestros antepasados para medir el tiempo.

VER

Artículo “Los calendarios”

Este artículo describe el origen de los calendarios y las característica del calendario gregoriano, uno de los más usados hoy en día. También explica otros tipos de calendarios que han sido utilizados por diversas culturas como la maya y la egipcia.

VER

CAPÍTULO 4 / TEMA 2

Instrumentos de medición

Si hay algo que los seres humanos hemos necesitado desde siempre es tomar mediciones: las personas medimos desde las raciones de comida, hasta los grandes territorios. Los instrumentos de medición permiten conocer las cantidades de diferentes magnitudes como la longitud, el volumen, el tiempo, etc. Las unidades de medida son una referencia y pueden ser convencionales o no.

Características de los principales instrumentos de medición

Un instrumento de medición presenta las siguientes características:

  • Cota inferior: corresponde al valor mínimo de la magnitud que puede medir el instrumento.
  • Cota superior: corresponde al valor máximo que puede medir el instrumento.
  • Sensibilidad: corresponde a la mínima variación de la magnitud que puede detectar el instrumento.
  • Exactitud: corresponde a la capacidad del instrumento de acercarse al valor real de la magnitud leída.
  • Fiabilidad: corresponde a qué tan consistente sea la medición del instrumento, es decir, que el instrumento pueda medir la misma cantidad en las mismas condiciones y en diferentes ocasiones.
El termómetro de mercurio es un instrumento que en la actualidad comienza a estar en desuso en el área de la salud por los riesgos de toxicidad, sin embargo, en el pasado era usado para medir la temperatura corporal. Su cota inferior suele ser de 35 °C y su cota superior suele estar en los 42 °C. Quiere decir que puede medir valores entre esas dos temperaturas.

Calidad de medición

Hay instrumentos con mayor precisión y sensibilidad que otros, por lo tanto presentan mayor exactitud. Por ejemplo, las balanzas se usan para medir la masa de los cuerpos. En un mercado se usan balanzas convencionales con una cota inferior de 1 gramo y en lugares como laboratorios y fábricas pueden usar balanzas tan sensibles que permiten obtener lecturas muy pequeñas como 0,00001 g.

Para que tengas una idea, la masa de un grano de arroz es de 0,03 gramos y las balanzas de un laboratorio pueden medir cantidades 1.000 veces menores que eso, ¡increíble!

VER INFOGRAFÍA

Instrumentos de medición comunes en la escuela

En la escuela solemos usar instrumentos para medir longitudes de las cosas, como la regla o una escuadra. La longitud es una magnitud que permite medir distancias entre dos puntos, con ella podemos medir el tamaño de una recta o el de los lados de una figura geométrica.

Las reglas y escuadras que usamos en la escuela tienen una escala graduada en centímetros y milímetros. Cada centímetro está dividido en milímetros. Pueden estar construidas de materiales como metal, plástico o madera y pueden ser flexibles o rígidas. Las escuadras además de medir longitudes sirven para construir rectas paralelas y perpendiculares.

 

Otro instrumento de medición usado en la escuela es el transportador, que sirve para medir ángulos, presenta su escala en grados y es muy usado en disciplinas como la arquitectura y el dibujo técnico.

¿Sabías qué?
Hay dos tipos de transportador, el circular que se encuentra graduado de 0° a 360° y el semicircular que está graduado de 0° a 180°.

Cuando usamos el reloj, medimos el tiempo que ha transcurrido. Las unidades de tiempo se expresan en segundos minutos y horas. Hay otros instrumentos de medición de tiempo como el cronómetro, por ejemplo, que suele ser usado por los entrenadores para evaluar el desempeño de los deportistas.

Unidades de medidas no convencionales

Todas las unidades de medida son una referencia para medir la cosas. Hay unidades convencionales que se usan en gran parte del mundo, como el metro para medir la longitud o el segundo para medir el tiempo, pero también hay otras que podemos usar para medir de una manera menos convencional y que nos permiten establecer comparaciones, como nuestras manos, dedos o pies.

Podemos usar nuestra mano como unidad de medida para medir la longitud de un cuaderno, simplemente tenemos que ver cuántas veces ese patrón de medida se encuentra en el objeto. Incluso podemos usar otros objetos como un lápiz como referencia de medida. En este caso se habla de unidades no convencionales porque no pertenecen al Sistema Internacional de Unidades.

Por ejemplo:

– El cuaderno mide dos manos y media.
– El lápiz mide seis dedos.

La pulgada y los reyes

A lo largo de la historia se ha usado la pulgada como unidad de longitud. La pulgada era empleada por los monarcas, quienes empleaban la medida desde el nudillo del pulgar hasta el extremo del dedo. Este sistema de medida tuvo muchos inconvenientes porque no todos los reyes tenían el mismo tamaño de falanges, y existían pulgadas de diferentes medidas, lo que generaba confusión.

Por razones como esas, los sistemas de medición se unificaron en sistemas más homogéneos como el Sistema Internacional de Medidas. En la actualidad hay países como Estados Unidos que aún emplean la pulgada como medida de longitud que equivale a 2,54 cm.

¡A practicar!

1. ¿Cómo se denomina al máximo valor que puede medir un instrumento de medición?

a) Cota inferior.

b) Sensibilidad.

c) Cota superior.

d) Confiabilidad.

Solución
c) Cota superior.

2. ¿Cuál es una medida no convencional?

a) El metro.

b) El segundo.

c) El centímetro.

d) El dedo.

Solución
d) El dedo.

3. ¿Qué podemos medir con las unidades de longitud?

a) La distancia entre dos puntos.

b) La capacidad de un recipiente.

c) El tiempo.

d) La temperatura de una persona.

Solución
a) La distancia entre dos puntos.

4. Observa los siguientes instrumentos de medición y determina qué podemos medir con cada uno.

a) 

Solución
La longitud.

b) 

Solución
El tiempo.

c)

Solución
La medida de ángulos.

d) 

Solución
La masa.

RECURSOS PARA DOCENTES

Artículo “Sistema Internacional de unidades”

Este artículo explica qué es el Sistema Internacional de unidades y describe sus principales unidades básicas y derivadas, así como su importancia en la actualidad.

VER

Tarjetas educativas “Instrumentos de laboratorio”

Este micrositio muestra los principales instrumentos de laboratorio, dentro de los cuales se encuentran varios instrumentos de medición.

VER

Infografía “Balanza”

Esta infografía muestra uno de los instrumentos de medición más usados: la balanza. También describe sus tipos y sus características principales.

VER

CAPÍTULO 2 / TEMA 1

adición y sustracción

La adición y la sustracción son dos operaciones muy usadas en la cotidianidad. La primera consiste en combinar o agrupar números; y la segunda, en cambio, consiste en quitar números a un grupo. Saber los valores posicionales de cada cifra nos ayudan a hacer sumas y restas con números grandes por reagrupación de sus unidades, decenas y centenas. 

Las primeras operaciones básicas que todos aprendemos son la adición y la sustracción. Estas nos ayudan día a día en cálculos cotidianos, como saber cuántos juguetes tenemos en total, cuánto dinero gastamos en el desayuno, cuánta tarea nos falta por hacer o cuántas horas faltan para ver nuestro programa favorito.

ADICIÓN POR REAGRUPACIÓN

La adición es una operación básica en la que combinamos dos o más números para obtener una cantidad final o total. El símbolo empleado para hacer esta operación es “+“.

Toda adición consta de dos partes:

  • Sumandos: son los números que vamos a sumar.
  • Suma: es el resultado de la suma.

La adición por reagrupación es un método que consiste en agrupar las unidades, decenas y centenas del número. Para sumar dos números como 12.468 y 147.314, los pasos son los siguientes:

1. Ubica los sumandos uno arriba del otro de tal manera que los valores posicionales estén en una misma columna, es decir, unidades con unidades, decenas con decenas, centenas con centenas, y así sucesivamente.

2. Suma cada columna a partir de las unidades. Escribe en la parte inferior de la columna el resultado. Si el resultado de la suma en una columna es de dos cifras, coloca el número de la unidad de dicho número en la parte inferior y la decena la sumanos a la columna siguiente.

Propiedades de la adición

Propiedad conmutativa

Esta propiedad indica que el orden de los números no afecta el resultado de la suma.

– Ejemplo:

  • 12.046 + 71 = 71 + 12.046

 

Observa que sin importar la ubicación de los sumandos, el resultado es el mismo.

¡Hay otra solución! 

Podemos representar la propiedad conmutativa de otra manera. Para la suma anterior es así:

Propiedad asociativa

Esta propiedad indica que la forma en la que agrupemos los sumandos no afecta el resultado.

– Ejemplo:

  • (856.127 + 12.713) + 82.311 = 951.151

Primero resolvemos la suma que está dentro de los paréntesis y al final sumamos 82.311.

  • 856.127 + (12.713 + 82.311) = 951.151

Primero resolvemos las sumas que están dentro de los paréntesis y al final sumamos 856.127.

En ambas ocasiones el resultado es el mismo sin importar la manera en la que se agruparon.

¡Hay otra solución!

Podemos representar la propiedad asociativa de otra manera. Para la suma anterior es así:

Elemento neutro

Esta propiedad indica que si a cualquier número le sumamos cero el resultado será el mismo número.

– Ejemplo:

  • 148.583 + 0 = 148.583

Ábaco: una herramienta para contar

El ábaco es una herramienta o instrumento que se utiliza para realizar cálculos manuales a través de contadores o marcadores que representan ciertas cantidades. Es uno de los objetos más antiguos utilizados por el hombre para realizar sus operaciones matemáticas y quizás el de mayor distribución a nivel mundial.

sustracción por reagrupación

La sustracción, al igual que la adición, es una operación básica. Es considerada una operación opuesta a la adición, ya que consiste en quitar una cantidad a otra. Se representa con el símbolo ““.

Las partes de esta operación son:

  • Minuendo: es el número al cual le quitamos una cantidad.
  • Sustraendo: es el número que resta al minuendo.
  • Diferencia: es el resultado de la operación.

La sustracción por reagrupación es un método que consiste en agrupar las unidades, decenas y centenas del número. Para restar dos números como 549.763 y 95.126, los pasos son los siguientes:

1. Ubica el minuendo sobre el sustraendo y verifica que los valores posicionales de cada cifra coincidan en la misma columna.

2. Comienza a restar desde la columna de las unidades, de derecha a izquierda. Cuando en una columna una cifra del minuendo es menor que la del sustraendo, esta toma una decena del minuendo de la izquierda. En estos casos, el minuendo que prestó una decena se reduce y debemos considerar el valor de la nueva cifra.

¿Sabías qué?
En la sustracción no existen las mismas propiedades que en la adición.

Propiedades de la sustracción

Elemento neutro

Si a un número se le resta 0, el resultado es el mismo número.

– Ejemplo:

  • 245.630 − 0 = 245.630

Elemento simétrico

Si dos números iguales se restan, el resultado siempre es 0.

– Ejemplo:

  • 983.124 − 983.124 = 0

En una ciudad se recolectaron 55.879 botellas de plástico para reciclar. Si solo se han reciclado 48.250 botellas, ¿cuántas botellas faltan para terminar la tarea? Responder esta pregunta es fácil cuando sabemos las restas por reagrupación. Así que restamos: 55.879 – 49.250 = 6.629. Entonces, aún faltan 6.629 botellas por reciclar.

Problemas de adición y sustracción

Para resolver problemas matemáticos debemos seguir una serie de pasos. Observa estos ejemplos:

1. Juan tenía en el banco $ 132.798 y le pagaron por la venta de su vehículo $ 369.000. ¿Cuánto dinero tiene Juan ahora?

  • Datos

Dinero en el banco: $ 132.798

Pago por el vehículo: $ 369.000

  • Pregunta

¿Cuánto dinero tiene Juan ahora?

  • Piensa

Para saber la cantidad total de dinero que Juan tiene ahora debemos sumar el dinero que tenía en el banco y el dinero que le pagaron.

  • Calcula

  • Solución

Juan tiene $ 501.798 en el banco.


2. Gabriel jugaba un videojuego. En un día obtuvo 412.312 puntos en el primer partido, 469.142 puntos en el segundo partido y 111.222 en el tercero. ¿Cuántos puntos obtuvo en total ese día?

  • Datos

Puntos en el primer partido: 412.312

Puntos en el segundo partido: 469.142

Puntos en el tercer partido: 111.222

  • Pregunta

¿Cuántos puntos obtuvo en total?

  • Piensa

Para hallar la cantidad total de puntos solo debemos sumar todos los puntos que obtuve en los tres partidos. Según la propiedad asociativa, no importa cómo se agrupen los números, el resultado siempre será el mismo.

  • Calcula

  • Solución

Gabriel obtuvo 992.676 puntos ese día en el videojuego.


3. Carla y Pedro tomaban fotografías en el parque. Carla tomó 2.546 fotografía y Pedro tomó 620 fotografía menos que ella. ¿Cuántas fotografía tomaron los dos?

  • Datos

Fotografía tomadas por Carla: 2.546

Fotografía tomadas por Pedro: 620 menos que Carla

  • Pregunta

¿Cuántas fotografía tomaron los dos?

  • Piensa
  1. Hay que hallar las fotos que tomó Pedro. Para esto restamos 620 a la cantidad de fotos que tomó Carla.
  2. Para saber el total de fotos tomadas entre los dos solo debemos sumar la cantidad de foto que tomaron ambos.
  • Calcula

1. Fotos tomadas por Pedro:

2. Fotos tomadas por los dos:

  • Solución

Carla y Pedro tomaron 4.472 fotografías.


¡A practicar!

Resuelve las siguientes operaciones:

  • 18.654 + 987 =
    Solución
    18.654 + 987 = 19.641
  • 546.821 + 12.547 =
    Solución
    546.821 + 12.547 = 559.368
  • 452.365 − 0 =
    Solución
    452.365 − 0 = 452.365
  • 89.546 + 6.547 + 3.245 =
    Solución
    89.546 + 6.547 + 3.245 = 99.338
  • 81.974 − 9.634 =
    Solución
    81.974 − 9.634 = 72.340
  • 15.689 − 15.689 =
    Solución
    15.689 − 15.689 = 0
  • 35.785 + 54.753 + 56.852 =
    Solución
    35.785 + 54.753 + 56.852 =147.390
  • 258.369 + 0 =
    Solución
    258.369 + 0 = 258.369

RECURSOS PARA DOCENTES

Artículo “Operaciones básicas de los número naturales y sus propiedades”

Este artículo explica las propiedades de las operaciones básicas con los números naturales, lo que te permitirá ampliar el tema.

VER

Artículo “Cómo enseñar a sumar y restar”

Este recurso contiene sugerencias y prácticas que puedes emplear para enseñar operaciones como la suma y la resta.

VER

Artículo “Resta de números naturales

Este recurso te permitirá profundizar sobre los elementos que conforman una sustracción, sus propiedades y usos.

VER

CAPÍTULO 5 / TEMA 7

La circunferencia

Una de las curvas más estudiadas en la geometría es, sin duda, la circunferencia. Tiene características únicas y ha sido pieza fundamental en invenciones humanas como la rueda. Para trazar esta figura usamos el compás, y su longitud está determinada por un número muy particular: el número pi.

¿Qué es una circunferencia?

Es la curva plana y cerrada cuyos puntos equidistan del centro; es decir, están a la misma distancia del centro de la circunferencia.

Los griegos y la circunferencia

Sin lugar a duda, los antiguos griegos tuvieron una gran influencia en el perfeccionamiento de la geometría. Para ellos, la línea recta y la circunferencia eran muy importantes en sus construcciones matemáticas, lo que permitió que realizaran increíbles descubrimientos para su época. Por ejemplo, Eratóstene de Cirene, que vivió entre 276 y 194 a. C., fue la primera persona en calcular la circunferencia de la Tierra.

Elementos de la circunferencia

En la circunferencia se pueden observar los siguientes elementos:

Centro: es el punto en torno al cual equidistan todos los puntos de la curva.

Radio: es un segmento de recta que une el centro de la circunferencia con cualquiera de sus puntos.

Diámetro: es un segmento de recta que une a dos puntos de la circunferencia y pasa por el centro de la misma. Su longitud es igual al doble del radio.

Cuerda: es un segmento de recta que une a dos puntos de la circunferencia sin pasar por el centro.

Arco: es una porción de la circunferencia que se encuentra limitada por una cuerda.

Semicircunferencia: es la porción de circunferencia limitada por el diámetro. Equivale a la mitad de la circunferencia.

Posiciones de una recta en relación a la circunferencia

Recta tangente: es la recta que comparte un mismo y único punto con la circunferencia.

Recta secante: es la recta que comparte dos puntos con la circunferencia.

Recta exterior: es la recta que no comparte ningún punto con la circunferencia.

¿Sabías qué?
La circunferencia de la tierra mide cerca de 40.000 km de longitud.

Diferencia entre círculo y circunferencia

Es posible que confundamos los conceptos de círculo y circunferencia porque están muy relacionados entre sí, pero se trata de dos términos diferentes. El círculo es una figura plana que corresponde al área contenida dentro de una circunferencia. La circunferencia, por su parte, representa el perímetro del círculo, es decir, es la línea que forma el contorno de la figura.

VER INFOGRAFÍA

El círculo es una figura que presenta diferentes elementos, como el semicírculo, los sectores circulares y los segmentos circulares. El primero es el área comprendida entre el diámetro y una semicircunferencia; el segundo consiste en las regiones comprendidas entre dos radios y el arco que estos forman; y el tercero se trata de los segmentos que se forman entre una cuerda y su arco.

Trazado de circunferencias

El compás es el instrumento por excelencia para trazar circunferencias y su origen es muy antiguo. Un compás consta de los siguientes elementos principales:

  1. Un mango.
  2. Una punta metálica.
  3. Una punta trazadora.
  4. Dos brazos regulables.

El uso de esta herramienta es relativamente sencillo. Para trazar una circunferencia con un compás lo primero que debemos hacer es conocer el radio de la circunferencia y trazarlo con la ayuda de una regla. Luego posicionamos la punta metálica en uno de los extremos del segmento y luego abrimos los brazos hasta que la punta trazadora esté ubicada en el otro extremo del segmento. Finalmente, con ayuda del mango, trazamos la circunferencia.

Circunferencias a nuestro alrededor

Un anillo o un aro son ejemplos de circunferencias, pero hay muchos más. Al ser una circunferencia el contorno de un círculo, la observamos en los bordes de las ruedas de los autos, en un molde para hacer una torta o un pastel y hasta incluso en juguetes como los platos voladores.

Las circunferencias han sido elementos fundamentales en el desarrollo de la geometría y con ello también han permitido a los seres humanos realizar grandes invenciones como la rueda.

La circunferencia es el contorno de una de las figuras más comunes: el círculo. Es frecuente observarlas en platos, ruedas, pasteles, diseños y pinturas. Han permitido realizar cálculos y aproximaciones, como el descubrimiento del número pi que relaciona la longitud de la circunferencia con su radio y que ha tenido numerosas aplicaciones prácticas.

 

¡A practicar!

  1. Además del centro, ¿qué elementos de la circunferencia observas?

a) 

Solución
Diámetro.

b)

Solución
Arco.

c)

Solución
Cuerda.

d)

Solución
Radio.

2. ¿Cuál de las siguientes rectas es una tangente?

a) 

b) 

c) 

d) 

Solución
c)  Es tangente porque solo comparte un punto en común con la circunferencia.

 

RECURSOS PARA DOCENTES

Artículo “Circunferencia”

El siguiente artículo explica de forma resumida qué es una circunferencia y los diferentes elementos que la integran como el radio, la cuerda, el diámetro, etc.

VER

Artículo “Ángulos en la circunferencia”

Este artículo relaciona los conceptos de ángulo y circunferencia, así como también explica sus características.

VER

CAPÍTULO 5 / TEMA 6

Volumen y capacidad

El volumen y la capacidad son dos conceptos que empleamos a diario. A veces necesitamos medir la cantidad de agua para una receta y otras veces necesitamos saber cuánto puede contener un molde para tortas. En el primer caso hablamos de volumen y en el segundo de capacidad. A pesar de estar relacionados, cada magnitud emplea distintas unidades de medida para los cálculos.

Cálculo de volumen de cubos

Así como en área empleamos cuadrados como referencia para medir una superficie, en la medición del volumen empleamos cubos como referencia.

El volumen es el espacio ocupado por un objeto. Por ejemplo, si una caja tiene un volumen de 200 cm3 (centímetros cúbicos) quiere decir que está formado por 200 cubos que miden 1 cm en cada lado, cada uno.

Para comprender mejor el concepto de volumen, debemos aprender cómo calcularlo en cubos. La fórmula es la siguiente:

V=a\times a\times a

Donde:

V = volumen.

a = longitud de los lados del cubo.

La fórmula de volumen también puede expresarse como V=a^{3}

– Ejemplo:

Calcula el volumen del siguiente cubo:

Como es un cubo, cada lado mide 3 cm y hay que aplicar la fórmula de volumen, es decir, multiplicar la longitud de un lado tres veces:

V = 3\, cm\times 3\, cm\times3\, cm = \mathbf{27\, cm^{3}}

Observa que la unidad centímetro se multiplicó tres veces, por lo tanto, al final se expresa en cm3.

VER INFOGRAFÍA

¿Sabías qué?
Un cubo tiene tres dimensiones: alto, ancho y profundidad.
Cuando medimos, relacionamos una cantidad con una unidad de medida base, en otras palabras, medir es un proceso de comparación. El volumen es una característica muy importante de los cuerpos porque permite saber cuánto ocupa el mismo en el espacio. Los científicos suelen medir volúmenes de muestras en sus diferentes estudios y ensayos a través de equipos especializados.

Comparación de volúmenes

Todos los objetos ocupan un lugar en el espacio, por lo tanto tienen volumen. Ese espacio ocupado depende de las características del material, por eso, para realizar comparaciones entre objetos usamos medidas de volumen.

Cuanto mayor sea el lugar que ocupe un cuerpo en el espacio, mayor será su volumen. Por ejemplo, el volumen que ocupa un grano de arroz no es igual al volumen que ocupa un edificio.

Observa las siguientes figuras:

Imaginemos que cada cubo equivale a 1 cm3, ¿cuántos cubos de 1 cm3 tiene la figura 1?, ¿y la figura 2?, ¿cuál figura tiene mayor volumen?

  • La figura 1 tiene 5 cubos de 1 cm3, así que su volumen es de 5 cm3.
  • La figura 2 tiene 15 cubos de 1 cm3, así que su volumen es de 15 cm3.

La figura 2 tiene mayor volumen que la figura 1 y, por lo tanto, ocupa mayor espacio.

Otras unidades de volumen

La unidad empleada por el Sistema Internacional de Unidades es el metro cúbico (m3), sin embargo, esta unidad tiene múltiplos y submúltiplos que en situaciones cotidianas suelen emplearse, por ejemplo, el milímetro cúbico (mm3), el decímetro cúbico (dm3), el centímetro cúbico (cm3), etc.

También existen otras unidades de volumen como pulgada cúbica (pulg3) y pie cúbico (pie3).

El litro y las unidades de capacidad

La capacidad es la propiedad que tienen los objeto de contener a otras sustancias dentro de él. Por ejemplo, es común ver en el supermercado diferentes productos con envases en los que hay cierto volumen en su interior, ya sea de gaseosas, aceites o detergentes. El litro (L) es la medida de capacidad que vemos en las etiquetas de estos artículos.

Al ocupar un lugar en el espacio, todos los objetos tienen volumen pero no todos tienen capacidad. Por ejemplo, un objeto sólido como una barra de metal, tiene volumen pero no tiene capacidad.

Relación entre capacidad y volumen

La capacidad que tiene un recipiente es equivalente al volumen del objeto. De este modo, si construimos un cubo de 10 cm en cada lado y lo llenamos con agua en su interior, notaremos que la capacidad de ese cubo es igual a 1 litro ya que su volumen es igual a 1.000 cm3.

Recordemos que:

V=10 \, cm\times 10 \, cm\times 10 \, cm = 1.000\,\, cm^{3}

1\: L = 1.000\: cm^{3}

Algunas equivalencias útiles

  • 1 litro es igual a 2 medios litros.

1\: L = \left ( \frac{1}{2}+\frac{1}{2} \right )\: L

 

  • 1 litro es igual a 4 cuartos de litro.

1\: L = \left ( \frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4} \right )\: L

 

  • Medio litro es igual a 2 cuartos de litro.

\frac{1}{2}\: L = \left ( \frac{1}{4}+\frac{1}{4} \right )\: L

 

¡A practicar!

  1. Calcula el volumen de los siguientes cubos.

a)

Solución
V = 2 x 2 x 2 = 8 cm3.

b)

Solución
V = 1 x 1 x 1 = 1 cm3.

c)

Solución
V = 4 x 4 x 4 = 64 cm3.

d)

Solución
V = 5 x 5 x 5 =125 cm3.

2. ¿Cuál de los siguientes cubos tiene un volumen igual a 343 cm3?

a) 

b) 

c) 

d) 

Solución
b) Porque V = 7\, cm\times 7\, cm\times7\, cm = \mathbf{343\, cm^{3}}.

 

RECURSOS PARA DOCENTES

Video “Volumen de los cuerpos sólidos”

Este video muestra cómo se forman los cuerpos geométricos y explica las diferentes fórmulas de volumen en cada caso.

VER

Artículo “Volumen y capacidad: aplicaciones”

Este artículo explica las diferentes unidades de medición de volumen, al igual que las diferentes situaciones en las que puedes aplicarlo.

VER

Artículo “Sistemas de medición”

En este artículo destacado se explica qué es un sistema de medición, sus aplicaciones y los diferentes tipos de instrumentos para medir algunas unidades.

VER