CAPÍTULO 4 / TEMA 4

Conversión de unidades

Sin unidades de medidas no podríamos comparar las cosas y por ende, la medición no existiría. Es común que una misma magnitud tenga diferentes unidades de medida y por eso es necesario realizar conversiones entre ellas. La conversión de unidades permite simplificar cálculos y establecer comparaciones de manera más fácil. 

Conversión de unidades de longitud

En el Sistema Internacional de Unidades (SI) se utiliza el metro como unidad de longitud. Se denota con el símbolo m y no lleva punto al final.

Existen medidas que provienen del metro y son conocidas como submúltiplos y múltiplos. Los submúltiplos son las subdivisiones de un metro. Por ejemplo, si dividimos un metro en diez partes iguales cada una de esas partes mide un decímetro, el decímetro es un submúltiplo del metro y se denota como dm.

Hay unidades derivadas del metro que son mucho más grandes, por ejemplo, mil metros equivalen a un kilómetro. En este caso el kilómetro es un múltiplo del metro y se denota como km.

Múltiplos y submúltiplos del metro

Unidad de medida Símbolo Equivalencia en metros
Kilómetros km 1 km = 1.000 m
Hectómetro hm 1 hm = 100 m
Decámetro dam 1 dam = 10 m
Metro m 1 m
Decímetro dm 1 dm = 0,1 m
Centímetro cm 1 cm = 0,01 m
Milímetro mm 1 mm = 0,001 m

De menor a mayor, observa que las unidades aumentan un cero en relación al metro y si lo miramos en sentido contrario disminuyen un cero. Esto nos permite convertir unidades de este tipo entre sí.

¿Cómo realizar conversiones de longitud?

Para convertir unidades de longitud debemos imaginarnos que las unidades se encuentran ubicadas cada una de mayor a menor en cada escalón de una escalera. El kilómetro (km) se encuentra en el escalón más alto y el milímetro (mm) en el más bajo.

Para convertir una unidad en otra, debemos ubicarnos en el escalón de la unidad que queremos convertir y luego contar el número de escalones que tenemos que movernos para llegar a la unidad deseada. Si subimos de escalón tenemos que multiplicar por 10 en cada escalón que nos desplacemos y si bajamos de escalón tenemos que dividir entre 10 por cada escalón.

Un truco útil para estos ejercicios es multiplicar la medida inicial por el número 1 seguido de tantos ceros según el número de escalones que hayamos subido o bajado respectivamente. Por ejemplo, si bajamos dos escalones tenemos que multiplicar la medida inicial por 100, pero si subimos dos escalones dividimos la unidad inicial entre 100.

– Transforma 5 metros a centímetros

Lo primero es observar el diagrama y ubicarnos en la unidad inicial que es el metro. Observa que el centímetro se encuentra dos escalones por debajo, así que tenemos que multiplicar la medida inicial que es 5 por 100.

5\times 100=500

Por lo tanto:

5\; m=\mathbf{500\; cm}

Quiere decir que 5 m equivalen a 500 cm, en longitud miden lo mismo solo que con diferente unidad.

 

– Transformar 2.500 centímetros a decímetros

En este caso, para convertir centímetro a decímetros tenemos que subir un escalón, así que dividimos la unidad inicial entre 10.

2.500 \, \div \, 10 = 250

Por lo tanto:

2.500\; cm = \mathbf{250\; dm}

 

¿Sabías qué?
La palabra “metro” proviene del término griego “metron” que quiere decir “medida”.

Pequeñas unidades

Los investigadores usan unidades especiales para medir cosas que no se pueden percibir a simple vista como una bacteria, un virus o una molécula. En estos casos usan el micrómetro (µm) y el nanómetro (nm). El micrómetro equivale a la millonésima parte de un metro y el nanómetro es la mil millonésima parte de un metro.

Estas unidades son tan pequeñas que si pudieras dividir un milímetro de la regla en mil partes iguales, cada parte mediría un micrómetro y si este lo pudieras dividir a su vez en mil partes iguales, cada parte mediría un nanómetro. La mayoría de las bacterias miden entre 1 y 10 micrómetros mientras que los virus suelen medir de 30 a 90 nm.

Conversión de unidades de capacidad

La unidad de capacidad aceptada por el Sistema Internacional de unidades es el litro. Se denota con la letra ele mayúscula o minúscula: “l” o “L”. Al igual que en las unidades de longitud el litro tiene múltiplos y submúltiplos.

Múltiplos y submúltiplos del litro

De mayor a menor se indican los múltiplos y submúltiplos del litro:

Unidad de medida Símbolo Equivalencia en metros
Kilolitro kL 1 kL = 1.000 L
Hectolitro hL 1 hL = 100 L
Decalitro daL 1 daL = 10 L
Litro L 1 L
Decilitro dL 1 dL = 0,1 L
Centilitro cL 1 cL = 0,01 L
Mililitro mL 1 mL = 0,001 L

¿Cómo realizar conversiones de capacidad?

El procedimiento es el mismo que el usado para transformar unidades de longitud, la diferencia son la unidades, porque en unidades de capacidad se emplea el litro con sus múltiplos y submúltiplos. De manera que el diagrama en este caso quedaría:

– Transforma 50 litros a mililitros

Para transformar litros a milímetros hay que bajar tres escalones, es decir, se debe multiplicar entre 1.000.

50\times 1.000 = 50.000

Por lo tanto:

50\; L =\mathbf{50.000\; mL}

 

– Transforma 300 decalitros a kilolitros

Para transformar decalitros a kilolitros se deben subir dos posiciones, por lo cual se debe dividir entre 100.

300\div 100 = 100

Por lo tanto:

300\; daL = \mathbf{3\; kL}

 

Origen del litro

Esta unidad de capacidad se empezó a utilizar por primera vez en el año 1795 en Francia. Hoy en día es muy usado para describir la capacidad de algunos electrodomésticos y utensilios de cocina.

Conversión de unidades de tiempo

Las unidades de tiempo más comunes de mayor a menor son la hora, el minuto y el segundo.

Unidad de tiempo Símbolo
Hora h
Minuto min
Segundo s

Se cumple que:

  • 1 hora = 60 minutos
  • 1 minuto = 60 segundos

Observa que cada unidad es sesenta veces menor que la anterior, por eso, se habla de que es un sistema sexagesimal. Para convertir unidades se aplica un formato similar al de la conversión de longitud y capacidad pero en vez de multiplicar o dividir por 10, se hace por 60.

– Transforma 13 horas a minutos

Para transformar horas a minutos tenemos que movernos una posición hacia abajo, de manera que hay que multiplicar por 60.

13\times 60=780

Por lo tanto:

13\, h= \mathbf{780\, min}

 

– Transforma 900 segundos a minutos

Para transformar segundos a minutos se debe subir un escalón hacia arriba, de manera que debemos dividir entre 60.

900\div60=15

Por lo tanto:

900\; s=\mathbf{15\; min}

 

Oficina Internacional de Pesas y Medidas

Es un organismo que fue creado en 1875 en París, Francia. Su misión es velar por la uniformidad en las mediciones a nivel mundial. En sus instalaciones se encuentra un cilindro de metal de 1 kg que hasta el año 2019 era usado como patrón de esta unidad.

¡A practicar!

1. Escribe el símbolo de las siguientes unidades de medición.

a) Hectómetro

Solución
hm

b) Decilitro

Solución
dL

c) Hora

Solución
h

d) Decámetro

Solución
dam

e) Kilolitro

Solución
kL

2. ¿Cuál de las siguientes unidades permite medir la longitud?

a) Segundo

b) Hectolitro

c) Minuto

d) Centímetro

e) Hora

Solución
Centímetro.

3. Transforma las siguientes cantidades.

a) 5 kilómetros a metros.

Solución
5 km = 5.000 m

b) 10 minutos a segundos.

Solución
10 min = 600 s

c) 40 mililitros a centilitros.

Solución
40 mL = 4 cL

d) 8.000 decámetros a kilómetros.

Solución
8.000 dam = 80 km

e) 120 minutos a horas.

Solución
120 min = 2 h

e) 400 decímetros a metro.

Solución
400 dm = 40 m

RECURSOS PARA DOCENTES

Artículo “Medidas de longitud”

Este artículo explica qué son las unidades de longitud y se concentra en los múltiplos y submúltiplos del metro. También describe cómo realizar conversiones entre este tipo de magnitudes.

VER

Artículo “Múltiplos y submúltiplos del: metro, gramo, litro”

Este artículo no solamente detalla cada uno de los múltiplos y submúltiplos del metro, sino que también los de el gramo y el litro. En cada caso muestra como realizar las respectivas conversiones.

VER

Artículo “El tiempo”

Este artículo hace una breve descripción de lo que es el tiempo y por qué es tan difícil definirlo incluso para los científicos experimentados.

VER

CAPÍTULO 4 / TEMA 3

El tiempo

El tiempo es una magnitud física que permite llevar un orden de los sucesos. En otras palabras, gracias al tiempo podemos distinguir lo que pasó la semana pasada, ayer u hoy. En la actualidad, para determinar el tiempo usamos sistemas que dividen los días en 24 horas. Por medio de los relojes podemos conocer en qué hora del día estamos.

Lectura del tiempo

El ser humano siempre ha sentido la necesidad de medir el tiempo, ya sea para la duración de acontecimientos o para establecer separaciones de sucesos. Por eso, a lo largo de la historia han existido una serie de calendarios basados principalmente en ciclos lunares o solares.

Algunos calendarios son más precisos que otros, pero todos buscan una sola cosa: tener noción del tiempo.

VER INFOGRAFÍA

Unidades de tiempo

Las unidades de tiempo más comunes son la hora, el minuto y el segundo, donde se cumple que:

  • 1 hora = 60 minutos
  • 1 minuto = 60 segundos

Sin embargo, existen otras unidades para medir el tiempo:

  • 1 día = 24 horas
  • 1 semana = 7 días
  • 1 año común = 365 días
  • 1 año bisiesto = 366 días
  • 1 lustro = 5 años
  • 1 década = 10 años
  • 1 siglo = 100 años
  • 1 milenio = 1.000 años

Los relojes

Son instrumentos usados para medir el tiempo. A lo largo de la historia han pasado de ser relojes solares y de arena, a relojes cada vez más sofisticados como los relojes inteligentes de hoy en día. Los más usados en la actualidad son los relojes analógicos y los digitales.

¿Cómo leer la hora en relojes analógicos?

Una reloj analógico se caracteriza por tener agujas o manecillas que indican las horas, los minutos y los segundos a través de ciertos marcadores y números. Los elementos de un reloj analógico son los siguientes:

  • Las manecillas: son las agujas que marcan las horas, minutos y segundos. La más chica de ellas indica la hora y se denomina horario; la aguja grande más larga indica los minutos y se denomina minutero; la aguja más fina y que va más rápido indica los segundos y se denomina segundero.
  • Marcadores: son las doce partes en las que está dividida la circunferencia del reloj. Estas partes están rotuladas con los números del 1 al 12 y cada una, a su vez, está dividida en cinco subdivisiones más pequeñas marcadas con segmentos de rectas.

¿Sabías qué?
Existen relojes digitales que imitan a los relojes analógicos por contener agujas en pantallas LCD. Debido a su formato también son considerados relojes analógicos.

El horario tarda 12 horas en dar la vuelta completa, de manera que en un día tiene que realizar dos vueltas completas. El minutero tarda 60 minutos que equivalen a 1 hora en dar la vuelta completa, y el segundero tarda 60 segundos en dar una vuelta completa que equivalen a 1 minuto.

Cuando el minutero se encuentra en el número 12 significa que han transcurrido 0 minutos de la hora que marca el horario, por lo tanto, al leer la hora indicada y agregamos la expresión “en punto“. Por ejemplo:

El reloj muestra las ocho en punto.

El reloj muestra las dos en punto.

Como ya vimos, el reloj está dividido en 12 secciones y cada una de ellas está subdivide en cinco, es decir, el reloj está dividido en 60 partes iguales que equivalen a cada minuto contenido en una hora. Quiere decir que si partimos del número 12 y miramos solamente los segmentos donde aparecen marcados los números, notaremos como los minutos se incrementan de cinco en cinco.

En este sentido, si el minutero se encuentra sobre el número 1, significa que han pasado 5 minutos; si se encuentra en el número 2 indica que pasaron 10 minutos y así sucesivamente hasta el número 12 que indica que no ha pasado ningún minuto aún. Para leer la hora en estos casos, decimos la hora marcada por el horario y luego leemos los minutos.

El reloj muestra las ocho y cinco minutos.

El reloj muestra las diez y veinticinco minutos.

¿Sabías qué?
Cuando el horario se encuentra entre dos números, la hora que indica corresponde al número menor de los dos.

Cuando el minutero está en el número 3, 6 y 9, la hora se suele mencionar de manera particular.

– Cuando el minutero está en el 3 indica que han transcurrido 15 minutos, es decir una cuarta parte de lo que dura una hora. Por eso, después de decir la hora agregamos la expresión “…y cuarto”.

El reloj muestra las once y cuarto.

– Cuando el minutero está en el 6 significa que han pasado 30 minutos, es decir, la mitad de una hora, por eso decimos “…y media”.

El reloj muestra las nueve y media.

– Cuando el minutero está en el 9 han pasado 45 minutos lo significa que falta un cuarto de hora (quince minutos) para la hora siguiente. Por eso decimos “un cuarto para…” y luego la hora próxima.

El reloj muestra un cuarto para las siete.

En algunos países en lugar de decir “un cuarto para” se lee la hora próxima y se agrega la expresión “menos cuarto”. En este sentido, el ejemplo anterior se leería como “las siete menos cuarto”.

Para otros casos, se lee la hora mostrada por el horario y luego los minutos indicados por el minutero.

 

¿Cómo leer la hora en relojes digitales?

En el reloj digital no se observan manecillas sino que expresa la hora y los minutos separados por dos puntos. Las primeras dos cifras corresponden a las horas y las dos cifras que se encuentran a la derecha de los dos puntos indican los minutos.

La lectura es similar a la de los relojes analógicos, la diferencia es que la hora y los minutos se observan de manera más directa. Primero leemos la hora y después los minutos

En los casos a los cuales aplique se agregan las expresiones “…en punto”, “…y cuarto”, “…y media” y “un cuarto para…”.

 Son las ocho en punto.

 Son las ocho y cuarto.

 Son las ocho y media.

 Son un cuarto para las nueve.

 Son las ocho y treinta y cinco minutos.

VER INFOGRAFÍA

Las abreviaturas a. m. y p. m.

Son abreviaturas que suelen aparecer en los relojes digitales. La abreviatura a. m. significa que la hora leída corresponde a antes del mediodía, mientras que p. m. se usa para indicar las horas después del mediodía.

Sistema horario de 24 horas

El sistema usado por los relojes analógicos es de 12 horas. Por lo tanto tiene que completar dos ciclos para cubrir un día. El sistema de 24 horas lleva este nombre porque divide al día en las 24 horas totales que lo conforman. Por eso no necesita de las siglas a. m. y p. m. En este sistema las 00:00 horas o 00:00 h corresponden a las 12 a. m., hora desde la cual se empiezan a contar las horas de manera ascendente. En esta convención de tiempo el día se mide de medianoche a medianoche.

Formato 24 horas Formato 12 horas
00:00 h 12:00 a. m.
01:00 h 01:00 a. m.
02:00 h 02:00 a. m.
03:00 h 03:00 a. m.
04:00 h 04:00 a. m.
05:00 h 05:00 a. m.
06:00 h 06:00 a. m.
07:00 h 07:00 a. m.
08:00 h 08:00 a. m.
09:00 h 09:00 a. m.
10:00 h 10:00 a. m.
11:00 h 11:00 a. m.
12:00 h 12:00 m.
13:00 h 01:00 p. m.
14:00 h 02:00 p. m.
15:00 h 03:00 p. m.
16:00 h 04:00 p. m.
17:00 h 05:00 p. m.
18:00 h 06:00 p. m.
19:00 h 07:00 p. m.
20:00 h 08:00 p. m.
21:00 h 09:00 p. m.
22:00 h 10:00 p. m.
23:00 h 11:00 p. m.
El sistema de 24 horas es usado en diversas áreas, de hecho, en algunos países se ha estandarizado como sistema de notación del tiempo. Es común su empleo en el área militar y en el de la astronomía. También suele usarse en áreas como la medicina para llevar registros de la historia clínica de los pacientes. Otros usos se dan en aeropuertos y otras terminales de transportes.

¡A practicar!

1. ¿Qué hora indican los relojes?

a) 

Solución
Son las once y cinco minutos.

b)

Solución
Son las once y media.

c)

Solución
Son las ocho y cuarto.

c)

Solución
Son las tres y media

2. ¿Qué hora observas en estos relojes?

a)

Solución
Son las tres y veinte minutos.

b)

Solución
Son las diez en punto.

c)

Solución
Son las once y cuarto.

3. ¿A qué hora del sistema de 12 horas corresponde?

a) Las ocho y treinta y cinco minutos.

b) Las treinta y cinco para las diecinueve.

c) Las nueve y media.

d) Las seis y treinta y cinco minutos.

Solución
d) Las seis y treinta y cinco minutos.

RECURSOS PARA DOCENTES

Artículo “Medidas de tiempo”

Este artículo describe las principales unidades de tiempo y propone una serie de operaciones que se pueden realizar con unidades de tiempo.

VER

Artículo “Reloj de arena”

El presente artículo destacado describe a este sencillo pero asombroso invento que utilizaban nuestros antepasados para medir el tiempo.

VER

Artículo “Los calendarios”

Este artículo describe el origen de los calendarios y las característica del calendario gregoriano, uno de los más usados hoy en día. También explica otros tipos de calendarios que han sido utilizados por diversas culturas como la maya y la egipcia.

VER

CAPÍTULO 4 / TEMA 2

Instrumentos de medición

Si hay algo que los seres humanos hemos necesitado desde siempre es tomar mediciones: las personas medimos desde las raciones de comida, hasta los grandes territorios. Los instrumentos de medición permiten conocer las cantidades de diferentes magnitudes como la longitud, el volumen, el tiempo, etc. Las unidades de medida son una referencia y pueden ser convencionales o no.

Características de los principales instrumentos de medición

Un instrumento de medición presenta las siguientes características:

  • Cota inferior: corresponde al valor mínimo de la magnitud que puede medir el instrumento.
  • Cota superior: corresponde al valor máximo que puede medir el instrumento.
  • Sensibilidad: corresponde a la mínima variación de la magnitud que puede detectar el instrumento.
  • Exactitud: corresponde a la capacidad del instrumento de acercarse al valor real de la magnitud leída.
  • Fiabilidad: corresponde a qué tan consistente sea la medición del instrumento, es decir, que el instrumento pueda medir la misma cantidad en las mismas condiciones y en diferentes ocasiones.
El termómetro de mercurio es un instrumento que en la actualidad comienza a estar en desuso en el área de la salud por los riesgos de toxicidad, sin embargo, en el pasado era usado para medir la temperatura corporal. Su cota inferior suele ser de 35 °C y su cota superior suele estar en los 42 °C. Quiere decir que puede medir valores entre esas dos temperaturas.

Calidad de medición

Hay instrumentos con mayor precisión y sensibilidad que otros, por lo tanto presentan mayor exactitud. Por ejemplo, las balanzas se usan para medir la masa de los cuerpos. En un mercado se usan balanzas convencionales con una cota inferior de 1 gramo y en lugares como laboratorios y fábricas pueden usar balanzas tan sensibles que permiten obtener lecturas muy pequeñas como 0,00001 g.

Para que tengas una idea, la masa de un grano de arroz es de 0,03 gramos y las balanzas de un laboratorio pueden medir cantidades 1.000 veces menores que eso, ¡increíble!

VER INFOGRAFÍA

Instrumentos de medición comunes en la escuela

En la escuela solemos usar instrumentos para medir longitudes de las cosas, como la regla o una escuadra. La longitud es una magnitud que permite medir distancias entre dos puntos, con ella podemos medir el tamaño de una recta o el de los lados de una figura geométrica.

Las reglas y escuadras que usamos en la escuela tienen una escala graduada en centímetros y milímetros. Cada centímetro está dividido en milímetros. Pueden estar construidas de materiales como metal, plástico o madera y pueden ser flexibles o rígidas. Las escuadras además de medir longitudes sirven para construir rectas paralelas y perpendiculares.

 

Otro instrumento de medición usado en la escuela es el transportador, que sirve para medir ángulos, presenta su escala en grados y es muy usado en disciplinas como la arquitectura y el dibujo técnico.

¿Sabías qué?
Hay dos tipos de transportador, el circular que se encuentra graduado de 0° a 360° y el semicircular que está graduado de 0° a 180°.

Cuando usamos el reloj, medimos el tiempo que ha transcurrido. Las unidades de tiempo se expresan en segundos minutos y horas. Hay otros instrumentos de medición de tiempo como el cronómetro, por ejemplo, que suele ser usado por los entrenadores para evaluar el desempeño de los deportistas.

Unidades de medidas no convencionales

Todas las unidades de medida son una referencia para medir la cosas. Hay unidades convencionales que se usan en gran parte del mundo, como el metro para medir la longitud o el segundo para medir el tiempo, pero también hay otras que podemos usar para medir de una manera menos convencional y que nos permiten establecer comparaciones, como nuestras manos, dedos o pies.

Podemos usar nuestra mano como unidad de medida para medir la longitud de un cuaderno, simplemente tenemos que ver cuántas veces ese patrón de medida se encuentra en el objeto. Incluso podemos usar otros objetos como un lápiz como referencia de medida. En este caso se habla de unidades no convencionales porque no pertenecen al Sistema Internacional de Unidades.

Por ejemplo:

– El cuaderno mide dos manos y media.
– El lápiz mide seis dedos.

La pulgada y los reyes

A lo largo de la historia se ha usado la pulgada como unidad de longitud. La pulgada era empleada por los monarcas, quienes empleaban la medida desde el nudillo del pulgar hasta el extremo del dedo. Este sistema de medida tuvo muchos inconvenientes porque no todos los reyes tenían el mismo tamaño de falanges, y existían pulgadas de diferentes medidas, lo que generaba confusión.

Por razones como esas, los sistemas de medición se unificaron en sistemas más homogéneos como el Sistema Internacional de Medidas. En la actualidad hay países como Estados Unidos que aún emplean la pulgada como medida de longitud que equivale a 2,54 cm.

¡A practicar!

1. ¿Cómo se denomina al máximo valor que puede medir un instrumento de medición?

a) Cota inferior.

b) Sensibilidad.

c) Cota superior.

d) Confiabilidad.

Solución
c) Cota superior.

2. ¿Cuál es una medida no convencional?

a) El metro.

b) El segundo.

c) El centímetro.

d) El dedo.

Solución
d) El dedo.

3. ¿Qué podemos medir con las unidades de longitud?

a) La distancia entre dos puntos.

b) La capacidad de un recipiente.

c) El tiempo.

d) La temperatura de una persona.

Solución
a) La distancia entre dos puntos.

4. Observa los siguientes instrumentos de medición y determina qué podemos medir con cada uno.

a) 

Solución
La longitud.

b) 

Solución
El tiempo.

c)

Solución
La medida de ángulos.

d) 

Solución
La masa.

RECURSOS PARA DOCENTES

Artículo “Sistema Internacional de unidades”

Este artículo explica qué es el Sistema Internacional de unidades y describe sus principales unidades básicas y derivadas, así como su importancia en la actualidad.

VER

Tarjetas educativas “Instrumentos de laboratorio”

Este micrositio muestra los principales instrumentos de laboratorio, dentro de los cuales se encuentran varios instrumentos de medición.

VER

Infografía “Balanza”

Esta infografía muestra uno de los instrumentos de medición más usados: la balanza. También describe sus tipos y sus características principales.

VER

CAPÍTULO 3 / TEMA 2

LA LONGITUD

LA LONGITUD NOS PERMITE SABER QUÉ TAN LARGO, ALTO O ANCHO ES UN OBJETO, TAMBIÉN NOS PERMITE CONOCER LA DISTANCIA QUE HAY DE LA CASA A LA ESCUELA. LA UNIDAD PRINCIPAL PARA MEDIR LA LONGITUD ES EL METRO, PERO TAMBIÉN PODEMOS USAR OTRAS, COMO LOS CENTÍMETROS O LOS KILÓMETROS.

¿QUÉ ES LA LONGITUD?

LA LONGITUD ES LA DISTANCIA O ESPACIO QUE HAY ENTRE DOS PUNTOS. LO REPRESENTAMOS CON UNA LÍNEA RECTA.

LA LÍNEA ROJA NOS INDICA EL LARGO DEL PIZARRÓN.

UNO DE LOS EJEMPLOS MÁS COMUNES DE LONGITUD LO PODEMOS VER EN NUESTRO CRECIMIENTO. A MEDIDA QUE PASA EL TIEMPO NUESTRAS EXTREMIDADES SE HACEN MÁS LARGAS Y NOS HACEMOS MÁS ALTOS. PASAMOS DE MEDIR UNOS CUANTOS CENTÍMETROS AL SER BEBÉS, PARA LUEGO TENER MÁS DE UN METRO DE ALTURA CUANDO SOMOS ADULTOS. HAZ LA PRUEBA, ¿CUÁL ES TU ALTURA?

Comparemos longitudes

OBSERVA LA LÍNEA ROJA QUE VA DESDE EL COMIENZO HASTA EL FINAL DE CADA LÁPIZ. ESTA LÍNEA INDICA LA LONGITUD DE LOS LÁPICES. 

¿CUÁL LÁPIZ TIENE MAYOR LONGITUD?, ¿CUÁL LÁPIZ TIENE MENOR LONGITUD?

EL LÁPIZ VERDE TIENE MAYOR LONGITUD QUE EL LÁPIZ AMARILLO.

EL LÁPIZ AMARILLO TIENE MENOR LONGITUD QUE EL LÁPIZ VERDE.

 

¡COMPAREMOS!

OBSERVA ESTOS LÁPICES DE COLORES, RESPONDE LAS PREGUNTAS.

  • ¿CUÁL LÁPIZ TIENE MAYOR LONGITUD?
SOLUCIÓN
EL LÁPIZ VERDE TIENE MAYOR LONGITUD.
  • ¿CUÁL LÁPIZ TIENE MENOR LONGITUD?
SOLUCIÓN
EL LÁPIZ AMARILLO TIENE MENOR LONGITUD.
  • ENTRE EL LÁPIZ AZUL Y AMARILLO, ¿CUÁL TIENE MAYOR LONGITUD?
SOLUCIÓN
EL LÁPIZ AZUL TIENE MAYOR LONGITUD QUE EL LÁPIZ AMARILLO.
  • ENTRE EL LÁPIZ VERDE Y ROJO, ¿CUÁL TIENE MAYOR LONGITUD?
SOLUCIÓN
EL LÁPIZ VERDE TIENE MAYOR LONGITUD QUE EL LÁPIZ ROJO.
  • ENTRE EL LÁPIZ ROJO Y AMARILLO, ¿CUÁL TIENE MENOR LONGITUD?
SOLUCIÓN
EL LÁPIZ AMARILLO TIENE MENOR LONGITUD QUE EL LÁPIZ ROJO.
  • ENTRE EL LÁPIZ AZUL Y VERDE, ¿CUÁL TIENE MENOR LONGITUD?
SOLUCIÓN
EL LÁPIZ AZUL TIENE MENOR LONGITUD QUE EL LÁPIZ VERDE.

NO TODOS LOS OBJETOS SON PLANOS, MUCHOS TIENEN PROFUNDIDAD COMO ESTA CAJA. LA LONGITUD NOS AYUDA A SABER EL LARGO, ALTO Y ANCHO DE LAS COSAS.

LA LÍNEA ROJA INDICA LO ALTO DE LA CAJA.

LA LÍNEA AZUL INDICA EL LARGO DE LA CAJA.

LA LÍNEA VERDE INDICA EL ANCHO DE LA CAJA.

¡COMPAREMOS!

  • ¿CUÁL CAJA ES MÁS LARGA?

SOLUCIÓN
LA CAJA VERDE ES MÁS LARGA QUE LA CAJA NARANJA.
  • ¿CUÁL CAJA ES MÁS ALTA?

SOLUCIÓN
LA CAJA VERDE ES MÁS ALTA QUE A CAJA NARANJA.
  • ¿CUÁL CAJA ES MÁS ANCHA?

SOLUCIÓN
LA CAJA NARANJA ES MÁS ANCHA QUE LA CAJA VERDE.
¿Sabías qué?
LAS MONTAÑAS SE MIDEN EN METROS. LA MÁS ALTA DEL PLANETA ES EL MONTE EVEREST, EN ASIA, CON 8.848 METROS DE ALTURA.

EL METRO Y EL CENTÍMETRO

EL METRO ES UNA UNIDAD DE LONGITUD QUE USAMOS PARA MEDIR OBJETOS GRANDES, PERO NO ES LA ÚNICA, EL CENTÍMETRO TAMBIÉN ES UNA UNIDAD DE MEDIDA DE LONGITUD Y LA USAMOS PARA MEDIR OBJETOS PEQUEÑOS. POR EJEMPLO:

  • ESTA MESA MIDE 1 METRO DE LARGO.

  • ESTE LÁPIZ MIDE 15 CENTÍMETROS DE LARGO.

KILÓMETRO: UNIDAD PARA UNA GRAN LONGITUD

EL KILÓMETRO ES UNA UNIDAD DE MEDIDA DE LONGITUD QUE ES IGUAL A 1.000 METROS. LA USAMOS CUANDO LAS DISTANCIAS ENTRE DOS PUNTOS SON MUY GRANDES, POR EJEMPLO, DE UNA CIUDAD A OTRA.

LOS ATLETAS PUEDEN LLEGAR A CORRER CARRERAS DE LARGA DISTANCIAS QUE VAN DESDE LOS 5 KILÓMETROS HASTA LOS 20 KILÓMETROS O MÁS.

¿qué es la distancia?

LA DISTANCIA NOS PERMITE SABER EL ESPACIO QUE SEPARA UN OBJETO DE OTRO. OBSERVA LAS DOS CASAS, ¿ESTÁN JUNTAS?

NO. NO ESTÁN JUNTAS.

EL ESPACIO QUE SEPARA A LA CASA AZUL DE LA CASA ROJA SE LLAMA DISTANCIA.

VER INFOGRAFÍA

¿CÓMO MEDIR LA LONGITUD DE ALGO CON UNA REGLA?

UNO DE LOS INSTRUMENTOS DE MEDIDA MÁS USADOS EN LAS ESCUELAS ES LA REGLA. CON ELLA PODEMOS MEDIR OBJETOS Y DISTANCIAS PEQUEÑAS.

¿QUÉ ES LA REGLA?

LA REGLA ES UN INSTRUMENTO QUE SIRVE PARA MEDIR OBJETOS PEQUEÑOS. PUEDE ESTAR FABRICADA CON DISTINTOS MATERIALES, COMO PLÁSTICO, METAL O MADERA. POR LO GENERAL, EN LA ESCUELA USAMOS REGLAS DE PLÁSTICO DURO O FLEXIBLE. CON ESTA REGLA PODEMOS MEDIR OBJETOS DE HASTA 20 CENTÍMETROS.

 

PARA MEDIR OBJETOS CON UNA REGLA SEGUIMOS ESTOS PASOS:

1. NOS ASEGURAMOS DE QUE EL OBJETO ESTÉ COLOCADO A LA ALTURA DEL NÚMERO CERO (0).

2. LEEMOS EL NÚMERO HASTA EL QUE SE EXTIENDE EL OBJETO. EN ESTE CASO EL LÁPIZ LLEGA HASTA EL 16, ENTONCES, EL LÁPIZ MIDE 16 CENTÍMETROS.

LA CINTA MÉTRICA PERMITE MEDIR OBJETOS CON PARTES CURVAS GRACIAS A SU FLEXIBILIDAD. LAS COSTURERAS Y DISEÑADORES DE ROPA SIEMPRE LA USAN PARA CONFECCIONAR ATUENDOS. HAY DE DIFERENTES LONGITUDES, PERO LA QUE VEMOS CON MÁS FRECUENCIA ES LA DE 1 METRO Y MEDIO. TAMBIÉN LA USAN ALGUNOS DOCTORES PARA MEDIR ALGUNAS PARTES DEL CUERPO DE SUS PACIENTES.

¡A PRACTICAR!

1. RESPONDE LAS PREGUNTAS.

  • ¿CUÁNTO MIDE EL CLAVO?

SOLUCIÓN
EL CLAVO MIDE 3 CENTÍMETROS.
  • ¿CUÁNTO MIDE LA HOJA?

 

SOLUCIÓN
LA HOJA MIDE 7 CENTÍMETROS.
  • ¿CUÁNTO MIDE EL PINCEL?

 

SOLUCIÓN
EL PINCEL MIDE 15 CENTÍMETROS.
  • ¿CUÁNTO MIDE LA TIRA AMARILLA?

SOLUCIÓN
LA CINTA AMARILLA MIDE 9 CENTÍMETROS.
  • ¿CUÁNTO MIDE LA CINTA AZUL?

SOLUCIÓN
LA CINTA AZUL MIDE 19 CENTÍMETROS.
  • ¿CUÁNTO MIDE LA CINTA ROJA?

SOLUCIÓN
LA CINTA ROJA MIDE 2 CENTÍMETROS.

 

2. ¿CUÁL DE LAS SIGUIENTES MANERAS ES LA CORRECTA PARA MEDIR LA TIRA GRIS?

A) 

B) 

RESPUESTAS
LA MANERA CORRECTA ES LA A), PORQUE EL INICIO ESTÁ UBICADO EN EL NÚMERO 0.
RECURSOS PARA DOCENTES

Video “Unidades métricas”

El siguiente artículo permitirá profundizar en las características y usos de las distintas unidades métricas.

VER

CAPÍTULO 1 / TEMA 2

vALOR POSICIONAL

En nuestro sistema de numeración utilizamos solo 10 cifras para escribir todos los números, pero cada una de estas cifras puede tener valores distintos según su posición, por ejemplo, en el número 222, el primer 2 de izquierda a derecha vale 200, el segundo 20 y el tercero 2. Esto es lo que llamamos valor posicional y puedes aplicarlo a cualquier número.

¿qué es el Valor posicional?

Estos son los diez dígitos de nuestro sistema de numeración decimal. Con ellos podemos formar cualquier cantidad de números. El valor posicional de cada uno importa porque nos indica el valor total, pues no es lo mismo tener $ 321 que $ 123. A pesar de que tienen las mismas cifras (1, 2 y 3), con $ 321 puedes comprar más cosas que con $ 123.

El valor posicional es el valor que tiene una cifra en un número y depende de su posición o lugar. Estas posiciones se conocen como unidad, decena y centena; y según la clase pueden ser “de miles” o “de millones. Observa estas equivalencias:

  • 1 unidad = 1 U
  • 1 decena = 10 U
  • 1 centena = 100 U
  • 1 unidad de mil = 1.000 U
  • 1 decena de mil = 10.000 U

– Ejemplo 1:

El número 473 tiene tres cifras y cada una ocupa estas posiciones:

 

– Ejemplo 2:

El número 2.984 tiene 4 cifras y cada una ocupa estas posiciones:

¿Sabías qué?
Los valores posicionales tienen estas abreviaturas: U (unidades), D (decenas), C (centenas), UM (unidades de mil) y DM (decenas de mil).

Tabla posicional

Podemos ubicar todas las cifras de un número en una tabla posicional. Esta nos ayuda a ver con facilidad el valor de cada una de las cifras por medio de columnas identificadas.

Esta es una tabla posicional para números de 6 cifras. Observa que en las columnas de color en azul están las unidades, las decenas y las centenas; mientras que en las columnas de color naranja están las unidades de mil, las decenas de mil y las centenas de mil.

¿cómo representar números en la tabla posicional?

Si queremo ubicar las cifras de un número en la tabla posicional tenemos que empezar por la primera cifra de derecha a izquierda, esa será la unidad. La segunda cifra de derecha a izquierda será la decena, la siguiente la centena y así sucesivamente.

– Ejemplo:

Ubica las cifras del número 7.946 en la tabla posicional.

Como la primera cifra de derecha a izquierda es el 6, colocamos el 6 en la casilla de las unidades. Luego el 4 en la de las decenas, el 9 en las centena y el 7 en las unidades de mil.

¡A practicar!

Ubica estos números en la tabla posicional:

  • 8.104
Solución

  • 582
Solución

  • 1.789
Solución

Conocer el valor posicional de las cifras de cada número resulta de gran utilidad cuando manejamos dinero. Por lo general, los billetes y monedas vienen con valores de 1, 10 y 100 unidades. De este modo, si necesitamos pagar una cuenta de $ 483, solo debemos tomar 4 billetes de $ 100, 8 de $ 10 y 3 de $ 1.

– Problema 1

En una pastelería se hacen entregas de donas todas las semanas. El transporte de las donas se hace en cajas de 100, cajas de 10 y otras sueltas. Esta semana se pidieron las siguientes cantidades: 318, 173, 486 y 300. Si el encargado prepara los pedidos, ¿cuántas cajas de 100 y de 10 necesita para cada orden? ¿cuántas donas irán sueltas en cada caso?

  • Primer pedido

El primer pedido es de 318 donas. Lo primero que hacemos es ubicar este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 3 centenas = 3 veces 100
  • 1 decena = 1 vez 10
  • 8 unidades = 8 veces 1

Hagamos la representación con las cajas y donas:

Por lo tanto, el encargado necesita 3 cajas de 100, 1 caja de 10 y 8 donas sueltas.


  • Segundo pedido

El segundo pedido es de 163 donas. Ubicamos este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 1 centenas = 1 vez 100
  • 6 decenas = 6 veces 10
  • 3 unidades = 3 veces 1

Hagamos la representación con las cajas y donas:

Para este pedido el encargado necesita 1 caja de 100, 6 cajas de 10 y 3 donas sueltas.

¡Responde!

¿Cómo preparó el encargado los demás pedidos?

  • Tercer pedido
Solución

Este pedido es de 245 donas. Ubicamos este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 2 centenas = 2 veces 100
  • 4 decenas = 4 veces 10
  • 5 unidades = 5 veces 1

Hagamos la representación con las cajas y donas:

Para este pedido el encargado necesita 2 cajas de 100, 4 cajas de 10 y 5 donas sueltas.

  • Cuarto pedido
Solución

Este pedido es de 300 donas. Ubicamos este número en una tabla posicional.

En la tabla posicional vemos que hay:

  • 3 centenas = 3 veces 100

Hagamos la representación con las cajas y donas:

Para este pedido el encargado necesita 3 cajas de 100.

– Problema 2

En un juego de fichas, cada una de estas figuras indica una cantidad de puntos.

Observa que:

  • 1 cubo azul = 1 unidad
  • 1 barra roja = 1 decena
  • 1 placa verde = 1 centena
  • 1 caja amarilla = 1 unidad de mil

Carla sacó estas fichas, ¿cuántos puntos obtuvo?

  • Hay 2 cajas amarillas → 2 unidades de mil
  • Hay 1 placa verde → 1 centena
  • Hay 3 barras rojas → 3 decenas
  • Hay 8 cubos azules → 8 unidades

En una tabla posicional colocamos cada cifra según el valor que tenga.

Carla obtuvo 2.138 puntos.


Pedro sacó estas fichas, ¿cuántos puntos obtuvo?

  • Hay 5 cajas amarillas → 5 unidades de mil
  • Hay 0 placa verde → 0 centena
  • Hay 2 barras rojas → 2 decenas
  • Hay 3 cubos azules → 3 unidades

En una tabla posicional colocamos cada cifra según el valor que tenga.

Pedro obtuvo 5.023 puntos.

¿Sabías qué?
Hubo dos civilizaciones antiguas que usaron el principio de posición y representaron la ausencia de unidades mediante el cero: los babilonios y los mayas.

Descomposición aditiva de un número

La descomposición aditiva consiste en expresar un número como una suma de dos o más números. Para esta descomposición consideramos los valores posicionales.

Por ejemplo, el número 3.456 se coloca de esta manera en una tabla posicional:

En la tabla vemos que hay:

  • 3 unidades de mil = 3 veces 1.000 = 3.000
  • 4 centenas = 4 veces 100 = 400
  • 5 decenas = 5 veces 10 = 50
  • 6 unidades = 6 veces 1 = 6

Por lo tanto, podemos decir que el número 3.456 es igual a la suma de todos sus valores posicionales. Observa:

3.456 = 3.000 + 400 + 50 + 6

 

El ábaco es uno de los objetos más antiguos utilizados por el hombre para realizar sus operaciones matemáticas y quizás el de mayor distribución a nivel mundial. Esta herramienta o instrumento se utiliza para hacer cálculos manuales por medio de piezas de colores que representan los valores posicionales de una cifra.

¡A practicar!

Escribe la descomposición aditiva de los siguientes números:

  • 7.342
Solución

Valores posicionales

  • 7 unidades de mil = 7 veces 1.000 = 7.000
  • 3 centenas = 3 veces 100 = 300
  • 4 decenas = 4 veces 10 = 40
  • 2 unidades = 2 veces 1 = 2

Descomposición aditiva

7.342 = 7.000 + 300 + 40 + 2

  • 9.716
Solución

Valores posicionales

  • 9 unidades de mil = 9 veces 1.000 = 9.000
  • 7 centenas = 7 veces 100 = 700
  • 1 decena = 1 vez 10 = 10
  • 6 unidades = 6 veces 1 = 6

Descomposición aditiva

9.716 = 9.000 = 700 + 10 + 6

  • 8.053
Solución

Valores posicionales

  • 8 unidades de mil = 8 veces 1.000 = 8.000
  • 5 decenas = 5 veces 10 = 50
  • 3 unidades = 3 veces 1 = 3

Descomposición aditiva

8.053 = 8.000 + 50 + 3

¿Sabías qué?
Cuando el valor de una cifra es cero (0) no se escribe en la descomposición.

¡Hora de practicar!

1. Escribe el valor posicional de los dígitos en color rojo.

216

Solución
Unidad.

1.971

Solución
Centena.

7.031

Solución
Centena.

532

Solución
Decena.

828

Solución
Unidad.

6.220

Solución
Decena.

9.483

Solución
Unidad de mil.

2. Une la descomposición con el numero correspondiente.

Solución

RECURSOS PARA DOCENTES

Artículo “Composición y descomposición de números”

Este artículo explica cómo realizar composiciones y descomposiciones aditivas que ayudarán al alumno a realizar cálculos mentales con números naturales.

VER 

Artículo “Sistemas posicionales de numeración”

En este artículo podrás profundizar sobre la representación de los números en varios sistemas de numeración.

VER

Artículo “Descomposición de números”

Con este recurso tendrás las herramientas necesarias para hacer la descomposición de aditiva de los números naturales.

VER

CAPÍTULO 3 / TEMA 7 (REVISIÓN)

SISTEMAS DE MEDIDAS | ¿qué aprendimos?

UNIDADES DE MEDIDA

MEDIR ES COMPARAR. CUANDO HACEMOS ESTO USAMOS UNIDADES DE MEDIDA QUE SON LAS CANTIDADES ESTABLECIDAS PARA UNA MAGNITUD, ES DECIR, LAS MEDIDAS ACEPTADAS EN TU PAÍS PARA SABER LA LONGITUD, LA MASA, LA CAPACIDAD O EL TIEMPO DE ALGO. SU NECESIDAD DE APLICACIÓN LOGRÓ SATISFACER NECESIDADES BÁSICAS DE LOS PRIMEROS POBLADORES COMO LA CREACIÓN DE VESTIMENTA, LA CANTIDAD DE ALIMENTOS Y LA ALTURA DE SUS CONSTRUCCIONES.

UNA MAGNITUD ES UNA CANTIDAD QUE PUEDE SER MEDIDA, COMO LA LONGITUD, LA CUAL SE MIDE CON LA REGLA O ESCUADRA.

LA LONGITUD

LA LONGITUD ES UNA MAGNITUD MUY UTILIZADA POR LOS SERES HUMANOS. SU UNIDAD DE MEDIDA PRINCIPAL ES EL METRO, EL CUAL SE UTILIZA PARA MEDIR EL LARGO DE UN OBJETO O LA DISTANCIA ENTRE UN LUGAR Y OTRO. POR LO GENERAL SE USA PARA SABER A QUÉ DISTANCIA SE ENCUENTRA UNA PERSONA DE UN LUGAR AL QUE DESEA LLEGAR. LOS INSTRUMENTOS QUE SIRVEN PARA MEDIR LA LONGITUD SON LA REGLA GRADUADA O LA CINTA MÉTRICA.

LAS CINTAS MÉTRICAS ESTÁN MARCADOS CON RAYAS QUE REPRESENTAN SUS UNIDADES. LO COMÚN ES VER CINTAS MÉTRICAS CON METROS, CENTÍMETROS Y MILÍMETROS.

MASA

LA MASA ES LA CANTIDAD DE MATERIA QUE TIENE UN CUERPO. SEGÚN EL SISTEMA INTERNACIONAL DE MEDIDAS SU UNIDAD DE MEDIDA PRINCIPAL ES EL KILOGRAMO. EN ALGUNOS CASOS TAMBIÉN SE UTILIZAN SUS UNIDADES DERIVADAS MENORES, COMO LO SON EL GRAMO O EL MILIGRAMO. LA MASA SE MIDE CON UN INSTRUMENTO LLAMADO BALANZA.

LA BALANZA ES EL INSTRUMENTO MÁS POPULAR PARA MEDIR LA MASA DE LOS CUERPOS. EN LA MISMA SE PUEDE VISUALIZAR LAS UNIDADES DE MEDIDAS QUE MÁS SE UTILIZAN: EL KILOGRAMO Y EL GRAMO.

LA CAPACIDAD

LA CAPACIDAD ES UNA MAGNITUD QUE DETERMINA LA CANTIDAD DE SUSTANCIA QUE PUEDE ALMACENAR UN RECIPIENTE. SU UNIDAD PRINCIPAL ES EL LITRO Y SE UTILIZA A MENUDO EN LOS ALIMENTOS EN ESTADO LÍQUIDO QUE SON ENVASADOS. LA CAPACIDAD DE UN RECIPIENTE INDICA CUÁNTO LÍQUIDO PUEDE CONTENER Y TENDRÁ MÁS CAPACIDAD CUANTO MAYOR SEA EL VOLUMEN DE ESTE.

LA JARRA DE JUGO TIENE MÁS CAPACIDAD QUE EL VASO. EL TAMAÑO DEL RECIPIENTE TIENE RELACIÓN CON EL VOLUMEN DE LÍQUIDO QUE PUEDE CONTENER.

EL TIEMPO

EL TIEMPO ES UNA MAGNITUD QUE MUESTRA LA DURACIÓN DE LO EVENTOS. EL TIEMPO PUEDE SER MEDIDO Y, A DIFERENCIA DE LAS OTRAS MAGNITUDES, TIENE DIFERENTES UNIDADES DE MEDIDAS. LAS MENORES A UN DÍA SON LAS HORAS, LOS MINUTOS Y LOS SEGUNDOS; LAS MAYORES A UN DÍA SON LAS SEMANAS, LOS MESES, LOS AÑOS, LAS DÉCADAS, LOS SIGLOS, ETC. EL TIEMPO ESTÁ RELACIONADA CON EL MOVIMIENTO DE LA TIERRA.

EL MOVIMIENTO DE ROTACIÓN DE LA TIERRA SOBRE SU PROPIO EJE DETERMINA EL DÍA Y LA NOCHE. EL MOVIMIENTO DE TRASLACIÓN DETERMINA LAS ESTACIONES DEL AÑO Y EL AÑO COMÚN DE 365 DÍAS.

EL CALENDARIO

EL CALENDARIO ES UN SISTEMA CREADO POR EL HOMBRE PARA CONTABILIZAR EL TRANSCURSO DEL TIEMPO. EL CALENDARIO USADO ACTUALMENTE POR TODO EL MUNDO ES EL CALENDARIO GREGORIANO, QUE TIENE EN CUENTA EL CALENDARIO SOLAR. EL MISMO EXPONE QUE UN AÑO TIENE 365 DÍAS DIVIDIDO EN 12 MESES. CADA CUATRO AÑOS SE SUMA 1 DÍA AL AÑO Y ESTE RECIBE EL NOMBRE DE “AÑO BISIESTO”.

LAS PARTES DE UN CALENDARIO ANUAL DETERMINAN LOS MESES, LAS SEMANAS Y LOS DÍAS QUE TIENE UN AÑO.

CAPÍTULO 2 / TEMA 1

adición y sustracción

La adición y la sustracción son dos operaciones muy usadas en la cotidianidad. La primera consiste en combinar o agrupar números; y la segunda, en cambio, consiste en quitar números a un grupo. Saber los valores posicionales de cada cifra nos ayudan a hacer sumas y restas con números grandes por reagrupación de sus unidades, decenas y centenas. 

Las primeras operaciones básicas que todos aprendemos son la adición y la sustracción. Estas nos ayudan día a día en cálculos cotidianos, como saber cuántos juguetes tenemos en total, cuánto dinero gastamos en el desayuno, cuánta tarea nos falta por hacer o cuántas horas faltan para ver nuestro programa favorito.

ADICIÓN POR REAGRUPACIÓN

La adición es una operación básica en la que combinamos dos o más números para obtener una cantidad final o total. El símbolo empleado para hacer esta operación es “+“.

Toda adición consta de dos partes:

  • Sumandos: son los números que vamos a sumar.
  • Suma: es el resultado de la suma.

La adición por reagrupación es un método que consiste en agrupar las unidades, decenas y centenas del número. Para sumar dos números como 12.468 y 147.314, los pasos son los siguientes:

1. Ubica los sumandos uno arriba del otro de tal manera que los valores posicionales estén en una misma columna, es decir, unidades con unidades, decenas con decenas, centenas con centenas, y así sucesivamente.

2. Suma cada columna a partir de las unidades. Escribe en la parte inferior de la columna el resultado. Si el resultado de la suma en una columna es de dos cifras, coloca el número de la unidad de dicho número en la parte inferior y la decena la sumanos a la columna siguiente.

Propiedades de la adición

Propiedad conmutativa

Esta propiedad indica que el orden de los números no afecta el resultado de la suma.

– Ejemplo:

  • 12.046 + 71 = 71 + 12.046

 

Observa que sin importar la ubicación de los sumandos, el resultado es el mismo.

¡Hay otra solución! 

Podemos representar la propiedad conmutativa de otra manera. Para la suma anterior es así:

Propiedad asociativa

Esta propiedad indica que la forma en la que agrupemos los sumandos no afecta el resultado.

– Ejemplo:

  • (856.127 + 12.713) + 82.311 = 951.151

Primero resolvemos la suma que está dentro de los paréntesis y al final sumamos 82.311.

  • 856.127 + (12.713 + 82.311) = 951.151

Primero resolvemos las sumas que están dentro de los paréntesis y al final sumamos 856.127.

En ambas ocasiones el resultado es el mismo sin importar la manera en la que se agruparon.

¡Hay otra solución!

Podemos representar la propiedad asociativa de otra manera. Para la suma anterior es así:

Elemento neutro

Esta propiedad indica que si a cualquier número le sumamos cero el resultado será el mismo número.

– Ejemplo:

  • 148.583 + 0 = 148.583

Ábaco: una herramienta para contar

El ábaco es una herramienta o instrumento que se utiliza para realizar cálculos manuales a través de contadores o marcadores que representan ciertas cantidades. Es uno de los objetos más antiguos utilizados por el hombre para realizar sus operaciones matemáticas y quizás el de mayor distribución a nivel mundial.

sustracción por reagrupación

La sustracción, al igual que la adición, es una operación básica. Es considerada una operación opuesta a la adición, ya que consiste en quitar una cantidad a otra. Se representa con el símbolo ““.

Las partes de esta operación son:

  • Minuendo: es el número al cual le quitamos una cantidad.
  • Sustraendo: es el número que resta al minuendo.
  • Diferencia: es el resultado de la operación.

La sustracción por reagrupación es un método que consiste en agrupar las unidades, decenas y centenas del número. Para restar dos números como 549.763 y 95.126, los pasos son los siguientes:

1. Ubica el minuendo sobre el sustraendo y verifica que los valores posicionales de cada cifra coincidan en la misma columna.

2. Comienza a restar desde la columna de las unidades, de derecha a izquierda. Cuando en una columna una cifra del minuendo es menor que la del sustraendo, esta toma una decena del minuendo de la izquierda. En estos casos, el minuendo que prestó una decena se reduce y debemos considerar el valor de la nueva cifra.

¿Sabías qué?
En la sustracción no existen las mismas propiedades que en la adición.

Propiedades de la sustracción

Elemento neutro

Si a un número se le resta 0, el resultado es el mismo número.

– Ejemplo:

  • 245.630 − 0 = 245.630

Elemento simétrico

Si dos números iguales se restan, el resultado siempre es 0.

– Ejemplo:

  • 983.124 − 983.124 = 0

En una ciudad se recolectaron 55.879 botellas de plástico para reciclar. Si solo se han reciclado 48.250 botellas, ¿cuántas botellas faltan para terminar la tarea? Responder esta pregunta es fácil cuando sabemos las restas por reagrupación. Así que restamos: 55.879 – 49.250 = 6.629. Entonces, aún faltan 6.629 botellas por reciclar.

Problemas de adición y sustracción

Para resolver problemas matemáticos debemos seguir una serie de pasos. Observa estos ejemplos:

1. Juan tenía en el banco $ 132.798 y le pagaron por la venta de su vehículo $ 369.000. ¿Cuánto dinero tiene Juan ahora?

  • Datos

Dinero en el banco: $ 132.798

Pago por el vehículo: $ 369.000

  • Pregunta

¿Cuánto dinero tiene Juan ahora?

  • Piensa

Para saber la cantidad total de dinero que Juan tiene ahora debemos sumar el dinero que tenía en el banco y el dinero que le pagaron.

  • Calcula

  • Solución

Juan tiene $ 501.798 en el banco.


2. Gabriel jugaba un videojuego. En un día obtuvo 412.312 puntos en el primer partido, 469.142 puntos en el segundo partido y 111.222 en el tercero. ¿Cuántos puntos obtuvo en total ese día?

  • Datos

Puntos en el primer partido: 412.312

Puntos en el segundo partido: 469.142

Puntos en el tercer partido: 111.222

  • Pregunta

¿Cuántos puntos obtuvo en total?

  • Piensa

Para hallar la cantidad total de puntos solo debemos sumar todos los puntos que obtuve en los tres partidos. Según la propiedad asociativa, no importa cómo se agrupen los números, el resultado siempre será el mismo.

  • Calcula

  • Solución

Gabriel obtuvo 992.676 puntos ese día en el videojuego.


3. Carla y Pedro tomaban fotografías en el parque. Carla tomó 2.546 fotografía y Pedro tomó 620 fotografía menos que ella. ¿Cuántas fotografía tomaron los dos?

  • Datos

Fotografía tomadas por Carla: 2.546

Fotografía tomadas por Pedro: 620 menos que Carla

  • Pregunta

¿Cuántas fotografía tomaron los dos?

  • Piensa
  1. Hay que hallar las fotos que tomó Pedro. Para esto restamos 620 a la cantidad de fotos que tomó Carla.
  2. Para saber el total de fotos tomadas entre los dos solo debemos sumar la cantidad de foto que tomaron ambos.
  • Calcula

1. Fotos tomadas por Pedro:

2. Fotos tomadas por los dos:

  • Solución

Carla y Pedro tomaron 4.472 fotografías.


¡A practicar!

Resuelve las siguientes operaciones:

  • 18.654 + 987 =
    Solución
    18.654 + 987 = 19.641
  • 546.821 + 12.547 =
    Solución
    546.821 + 12.547 = 559.368
  • 452.365 − 0 =
    Solución
    452.365 − 0 = 452.365
  • 89.546 + 6.547 + 3.245 =
    Solución
    89.546 + 6.547 + 3.245 = 99.338
  • 81.974 − 9.634 =
    Solución
    81.974 − 9.634 = 72.340
  • 15.689 − 15.689 =
    Solución
    15.689 − 15.689 = 0
  • 35.785 + 54.753 + 56.852 =
    Solución
    35.785 + 54.753 + 56.852 =147.390
  • 258.369 + 0 =
    Solución
    258.369 + 0 = 258.369

RECURSOS PARA DOCENTES

Artículo “Operaciones básicas de los número naturales y sus propiedades”

Este artículo explica las propiedades de las operaciones básicas con los números naturales, lo que te permitirá ampliar el tema.

VER

Artículo “Cómo enseñar a sumar y restar”

Este recurso contiene sugerencias y prácticas que puedes emplear para enseñar operaciones como la suma y la resta.

VER

Artículo “Resta de números naturales

Este recurso te permitirá profundizar sobre los elementos que conforman una sustracción, sus propiedades y usos.

VER

CAPÍTULO 3 / TEMA 4

LA CAPACIDAD

LA CAPACIDAD SURGE CON LA NECESIDAD DE ESTABLECER UNA MEDIDA DE “LO QUE CABE” DENTRO DE UN OBJETO. POR EJEMPLO, EN UNA LLAVE NO CABE NINGUNA SUSTANCIA, PERO DENTRO DE UN VASO SÍ CABEN OBJETOS Y LÍQUIDOS, COMO AGUA O JUGO. LA UNIDAD DE MEDIDA DE LA CAPACIDAD ES EL LITRO. A CONTINUACIÓN APRENDERÁS CÓMO EMPLEARLA.

¿QUÉ ES LA CAPACIDAD?

OBSERVA ESTOS VASOS, ¿EN CUÁL HAY MÁS AGUA?

HAY MÁS AGUA EN EL VASO B.

AHORA OBSERVA ESTOS VASOS, ¿EN CUÁL CABE MÁS AGUA?

CABE MÁS AGUA EN EL VASO C. 

LA CAPACIDAD ES UNA MAGNITUD QUE SE CARACTERIZA POR CONTENER UNA CIERTA CANTIDAD DE SUSTANCIA. GENERALMENTE SE UTILIZA PARA ESTABLECER LA CANTIDAD DE LÍQUIDO QUE TIENE UN RECIPIENTE.

OBSERVA DE NUEVO LOS VASOS DE ARRIBA, ¿CUALES TIENEN MAYOR CAPACIDAD?

EN EL PRIMER EJEMPLO, LOS DOS VASOS TIENEN LA MISMA CAPACIDAD, PERO EN EL SEGUNDO EJEMPLO, EL VASO C TIENE MAYOR CAPACIDAD QUE EL VASO D.

LA CAPACIDAD INDICA CUÁNTO LÍQUIDO PUEDE CONTENER UN RECIPIENTE Y SU UNIDAD DE MEDIDA ES EL LITRO. NO DEBE CONFUNDIRSE CON EL VOLUMEN, QUE ES EL ESPACIO OCUPADO POR EL LÍQUIDO Y SU UNIDAD ES EL METRO CÚBICO. EN LA IMAGEN VEMOS DOS VASOS, ¿CUÁL TIENE MAYOR CAPACIDAD? ¡LOS DOS TIENEN LA MISMA CAPACIDAD PORQUE PUEDEN CONTENER EL MISMO VOLUMEN!

¿SABÍAS QUÉ?
TODOS LOS CUERPOS OCUPAN UN VOLUMEN EN TRES DIMENSIONES: LARGO, ANCHO Y ALTO.

¡COMPAREMOS CAPACIDADES!

¿DÓNDE CABE MÁS AGUA?, ¿CUÁL RECIPIENTE TIENE MAYOR CAPACIDAD?

EN EL BOTELLÓN CABE MÁS AGUA QUE EN LA LATA. EL BOTELLÓN TIENE MAYOR CAPACIDAD.


EN EL BARRIL CABE MÁS AGUA QUE EN LA JARRA. EL BARRIL TIENE MAYOR CAPACIDAD.


EN LA PISCINA CABE MÁS AGUA QUE EN LA PIPA. LAS PISCINA TIENE MAYOR CAPACIDAD.


¡ES TU TURNO!

SOLUCIÓN
EN LA JARRA CABE MÁS AGUA QUE EN EL CARTÓN DE JUGO. LA JARRA TIENE MAYOR CAPACIDAD.

SOLUCIÓN
EN LA CISTERNA CABE MÁS AGUA QUE EN LA BOTELLA. LA CISTERNA TIENE MAYOR CAPACIDAD.

¿CÓMO SE MIDE LA CAPACIDAD?

LA CAPACIDAD SE PUEDE MEDIR CON VARIOS INSTRUMENTOS, COMO JARRAS MEDIDORAS, GOTEROS Y CUCHARAS. EN OTROS CASOS ENCONTRAMOS ENVASES CON SU CAPACIDAD YA DELIMITADA, POR EJEMPLO UNA BOTELLA DE 1 LITRO Y MEDIO DE AGUA, O UNA CAJA DE 1 LITRO DE LECHE.

LAS JARRAS MEDIDORAS SON TRANSPARENTES, FABRICADAS DE PLÁSTICO O VIDRIO; Y TIENEN RAYAS O MARCAS QUE REPRESENTAN LA MEDIDA DE CAPACIDAD HASTA ESE PUNTO. ES POSIBLE QUE TENGAS UNA EN CASA PORQUE SON DE GRAN AYUDA CUANDO PREPARAMOS RECETAS. ALGUNAS TIENEN LAS MEDIDAS EN MILILITROS (mL), LITROS (L) O CENTÍMETRO CÚBICO (cm3 O cc).

PRINCIPALES UNIDADES DE CAPACIDAD

LA UNIDAD PRINCIPAL DE LA CAPACIDAD ES EL LITRO, PERO NO ES LA ÚNICA. TAMBIÉN EXISTEN SUS MÚLTIPLOS, QUE REPRESENTAN UNA CANTIDAD MAYOR QUE EL LITRO, Y SUS SUBMÚLTIPLOS, QUE REPRESENTAN UNA CANTIDAD MENOR QUE EL LITRO. POR EJEMPLO:

UNA JARRA TIENE CAPACIDAD DE 1 LITRO.

ALGUNAS BOTELLAS TIENEN CAPACIDAD DE 500 MILILITROS.

 UN CARTÓN PEQUEÑO DE JUGO TIENE CAPACIDAD DE 250 MILILITROS.


OBSERVA LAS EQUIVALENCIAS:

EN 1 LITRO HAY DOS ½ LITROS.

EN UN LITRO HAY CUATRO ¼ DE LITRO.

¡MUY IMPORTANTE!

1 LITRO = 1.000 MILILITROS

½ LITRO = 500 MILILITROS

¼ DE LITRO = 250 MILILITROS

 

1 L = ½ L + ½ L

1 L = ¼ L + ¼ L + ¼ L + ¼ L

– EJEMPLO:

OBSERVA LA TAZA MEDIDORA, ¿QUÉ CAPACIDAD TIENE?, ¿CUÁNTA AGUA HAY?

ESTA TAZA MEDIDORA TIENE CAPACIDAD PARA 1 LITRO.

 

NO ESTÁ LLENA DE AGUA HASTA LA MARCA DE 1 LITRO.

 

SI CONTAMOS LAS MARCAS, HAY AGUA HASTA LA MITAD DE 1 LITRO, ES DECIR, ½ LITRO.

 

POR LO TANTO, LA TAZA MEDIDORA TIENE ½ LITRO O 500 MILILITROS DE AGUA. 

TODOS LOS RECIPIENTES DE LOS PRODUCTOS QUE CONSEGUIMOS EN UN SUPERMERCADO VIENEN CON ETIQUETAS QUE INDICAN LA CAPACIDAD O VOLUMEN. ALGUNOS TIENEN LAS UNIDADES DE CAPACIDAD DEL ENVASE Y OTROS TIENEN LAS UNIDADES DE VOLUMEN DE LAS SUSTANCIAS CONTENIDAS. ¡BUSCA EN TU CASA ALGÚN RECIPIENTE Y LEE SUS UNIDADES DE MEDIDA!

RELACIÓN ENTRE centímetro CÚBICO Y miliLITRO

AUNQUE LA CAPACIDAD Y EL VOLUMEN NO SON LO MISMO, TIENEN MUCHA RELACIÓN ENTRE SÍ. CUANDO NOS REFERIMOS A LA CAPACIDAD HABLAMOS DEL ESPACIO VACÍO QUE TIENE UN RECIPIENTE PARA SER LLENADO, MIENTRAS QUE EL VOLUMEN ES EL ESPACIO OCUPADO POR EL CUERPO.

DE ESTE MODO, UN OBJETO QUE TENGA CAPACIDAD PARA 1 MILILITRO SERÁ OCUPADO POR UN VOLUMEN DE 1 CENTÍMETRO CÚBICO. ASÍ QUE:

1 MILILITRO (mL) = 1 CENTÍMETRO CÚBICO (cm3)

¡A PRACTICAR!

1. ESTOS RECIPIENTES TIENEN DEBAJO SU CAPACIDAD. CONVIÉRTELA EN LITROS O MILILITROS SEGÚN SEA EL CASO.

SOLUCIÓN

A) 5 LITROS = 5.000 MILILITROS

B) ¼ LITRO = 250 MILILITROS

C) 1.000 MILILITROS = 1 LITRO

 

2. COMPLETAR LA TABLA TENIENDO EN CUENTA LA EQUIVALENCIA 1 cm3 = 1 mL.

2 cm3 = ____ mL

SOLUCIÓN
2

____ cm3 = 6 mL

SOLUCIÓN
6

____ cm3 = 42 mL

SOLUCIÓN
42

96 cm3 = ____ mL

SOLUCIÓN
96
RECURSOS PARA DOCENTES

Artículo: “Volumen y capacidad: aplicaciones”

En el siguiente artículo podrás encontrar un trabajo sobre la relación entre volumen y capacidad y varias estrategias de enseñanza.

VER

CAPÍTULO 3 / TEMA 3

MASA

UNA DE LAS PROPIEDADES QUE SE PUEDEN MEDIR DE LOS CUERPOS ES LA MASA. UN ESCRITORIO, UN GATO, UN GLOBO, UN JUGO O UNA HORMIGA SON CUERPOS CON MASA. LA MANERA MÁS SENCILLA DE MEDIRLA ES CON UNA BALANZA Y ES PROBABLE QUE TENGAS UNA EN CASA PORQUE TAMBIÉN SON NECESARIAS PARA SABER NUESTRO PESO A MEDIDA QUE CRECEMOS.

¿QUÉ ES LA MASA?

LA MASA ES LA CANTIDAD DE MATERIA QUE CONTIENE UN CUERPO. TODOS LOS OBJETOS O CUERPOS TIENEN MASA, YA SEA EN ESTADO SÓLIDO, LÍQUIDO O GASEOSO. POR EJEMPLO, UN LÁPIZ, EL AGUA Y EL AIRE TIENEN MASA.

TODOS LOS CUERPOS ESTÁN HECHOS DE MATERIA Y ALGUNOS TIENEN MÁS O MENOS QUE OTROS. POR EJEMPLO, UN CARRO TIENE MÁS MASA QUE UNA PELOTA, O UN HOMBRE ADULTO TIENE MÁS MASA QUE UN BEBÉ RECIÉN NACIDO. NO SIEMPRE PODEMOS SABER QUÉ CUERPO ES MÁS PESADO POR OBSERVACIÓN, EN ESOS CASOS USAMOS INSTRUMENTOS COMO LA BALANZA O LA BÁSCULA.

CUANDO ALGUIEN PREGUNTA CUÁL ES EL PESO DE UNA PERSONA, ESTE SE EXPRESA EN KILOGRAMOS. ESTO SUCEDE PORQUE LA ACCIÓN DE DETERMINAR LA MASA DE UN CUERPO EN UNA BALANZA SE LLAMA “PESAR”.

¿SABÍAS QUÉ?
EL PESO Y LA MASA NO SON LO MISMO. LA MASA ES INDEPENDIENTE DEL LUGAR DONDE LA MIDAMOS, SIN EMBARGO, EL PESO NO. CUANTO MÁS ALEJADOS DEL CENTRO DE LA TIERRA NOS ENCONTREMOS, MENOR SERÁ NUESTRO PESO.

¿CON QUÉ SE MIDE LA MASA?

LA MASA SE MIDE CON UN INSTRUMENTO LLAMADO BALANZA. LA BALANZA MIDE LA MASA DE CUERPOS Y OBJETOS. TAMBIÉN SE UTILIZAN OTROS INSTRUMENTOS COMO LOS PLATILLOS EN LOS LABORATORIOS O LAS BALANZAS ELECTRÓNICAS PARA PESAR ALIMENTOS.

LAS BALANZAS SE UTILIZAN PARA PESAR LOS ALIMENTOS QUE SE VENDEN EN LOS COMERCIOS, YA SEA CARNE, PESCADO O FRUTAS. TAMBIÉN SE EMPLEAN EN LOS LABORATORIOS PARA PESAR PEQUEÑAS CANTIDADES SUSTANCIAS, Y EN LOS HOGARES PARA PESAR LOS ALIMENTOS QUE COMPONEN UNA RECETA. HAY MUCHOS TIPOS DE BALANZA, UNAS MÁS PRECISAS QUE OTRAS.

 

LAS BALANZAS DE DOS PLATILLOS SON DE MUCHA AYUDA PARA COMPARAR MASAS, POR EJEMPLO:

  • LAS DOS MACETAS TIENEN IGUAL MASA PORQUE LA BALANZA ESTÁ EN EQUILIBRIO.

  • LA PIÑA TIENE MAYOR MASA QUE LA FRESA PORQUE LA BALANZA ESTÁ INCLINADA HACIA SU LADO.

  • LA CALABAZA TIENE MAYOR MASA QUE EL LIMÓN PORQUE LA BALANZA ESTÁ INCLINADA HACIA SU LADO.

 

TIPOS DE BALANZA

LA BALANZA ES UN INSTRUMENTO QUE PODEMOS VER EN LOS COMERCIOS, EN LOS CONSULTORIOS MÉDICOS, EN LOS LABORATORIOS O HASTA EN NUESTRAS CASAS. HAY MUCHOS TIPOS, PERO LAS MÁS COMUNES SON LAS MECÁNICAS, CON PLATILLOS Y ESFERAS O REGLAS CON MARCAS; Y LAS ELECTRÓNICAS CON PANTALLAS QUE MUESTRAN DIRECTAMENTE EL VALOR DE LA MASA.

KILOGRAMO Y GRAMO

EL SISTEMA INTERNACIONAL DE MEDIDAS SOSTIENE QUE LA UNIDAD DE MEDIDA PRINCIPAL DE LA MASA ES EL KILOGRAMO. EN ALGUNOS CASOS TAMBIÉN SE UTILIZAN SUS UNIDADES DERIVADAS MENORES, COMO LO SON EL GRAMO O EL MILIGRAMO.

¿SABÍAS QUÉ?
LA ABREVIATURA DEL KILOGRAMO ES “kg” Y LA DE LOS GRAMOS ES “g”.

UN PERRO PUEDE PESAR 20 KILOGRAMOS.

UNA BANANA PUEDE PESAR 150 GRAMOS.

UNA HORMIGA PUEDE PESAR 3 MILIGRAMOS.

ALGUNAS EQUIVALENCIAS DE INTERÉS SON LAS SIGUIENTES:

  • 1 KILOGRAMOS ES IGUAL A DOS MEDIOS KILOS.

  • 1 KILOGRAMO ES IGUAL A CUATRO CUARTOS DE KILO.

OTRAS EQUIVALENCIAS

  • 1 KILOGRAMO = 1.000 GRAMOS
  • ½ KILOGRAMOS = 500 GRAMOS
  • ¼ KILOGRAMOS = 250 GRAMOS

¿CÓMO CONVERTIR KILOGRAMOS A GRAMOS?

LA MASA DE MUCHOS PRODUCTOS DEL MERCADO PUEDEN ESTAR MEDIDAS EN KILOGRAMOS, POR EJEMPLO, 2 KILOGRAMOS DE HARINA. PERO SI NECESITAMOS LA MASA EN GRAMOS PARA PREPARAR UNA RECETA, ¿CÓMO HACEMOS?

CAMBIAR UNA MISMA CANTIDAD A OTRA UNIDAD ES MUY FÁCIL. PARA CONVERTIR KILOGRAMOS A GRAMOS SOLO TIENES QUE AGREGAR TRES CEROS A LA CIFRA DE LOS KILOGRAMOS. POR EJEMPLO:

1 KILOGRAMO = 1.000 GRAMOS

2 KILOGRAMOS = 2.000 GRAMOS

3 KILOGRAMOS = 3.000 GRAMOS

 

OBSERVA ESTAS CAJAS, ¿CUÁNTOS GRAMOS PESAN EN TOTAL?

A) 

HAY DOS CAJAS. CADA CAJA PESA 1 KILOGRAMO.

YA SABEMOS QUE:

1 KILOGRAMO = 1.000 GRAMOS

 

ASÍ QUE:

2 KILOGRAMOS = 2.000 GRAMOS

 

RESPUESTA: EN TOTAL LAS CAJAS PESAN 2 KILOGRAMOS.

 


B) 

HAY DOS CAJAS. UNA CAJA PESA 1 KILOGRAMO Y LA OTRA PESA ½ KILOGRAMO.

YA SABEMOS QUE:

1 KILOGRAMO = 1.000 GRAMOS

½ KILOGRAMO = 500 GRAMOS

 

ASÍ QUE:

1.000 GRAMOS + 500 GRAMOS = 1.500 GRAMOS

 

RESPUESTA: EN TOTAL LAS CAJAS PESAN 1.500 GRAMOS.


C) 

HAY TRES CAJAS. UNA CAJA PESA 1 KILOGRAMO Y LAS OTRAS DOS PESAN ¼ DE KILOGRAMO CADA UNA.

YA SABEMOS QUE:

1 KILOGRAMOS = 1.000 GRAMOS

¼ DE KILOGRAMO = 250 GRAMOS

 

ASÍ QUE:

1.000 GRAMOS + 250 GRAMOS + 250 GRAMOS = 1.500 GRAMOS

 

RESPUESTA: EN TOTAL LAS CAJAS PESAN 1.500 GRAMOS.

 

¡A PRACTICAR!

1. ¿CUÁNTOS GRAMOS PESAN EN TOTAL ESTAS CAJAS?

SOLUCIÓN

HAY TRES CAJAS.

1 CAJA DE 1 KILOGRAMO = 1.000 GRAMOS

1 CAJA DE ½ KILOGRAMO = 500 GRAMOS

1 CAJA DE ¼ DE KILOGRAMO = 250 GRAMOS

ASÍ QUE:

1.000 GRAMOS + 500 GRAMOS + 250 GRAMOS = 1.750 GRAMOS

EN TOTAL LAS CAJAS PESAN 1.750 GRAMOS. 

 

2. CONVIERTE LOS KILOGRAMOS A GRAMOS:

  • 7 KILOGRAMOS Y MEDIO = _____ GRAMOS

SOLUCIÓN
7.500
  • 8 KILOGRAMOS = _____ GRAMOS

SOLUCIÓN
8.000
  • 9 KILOGRAMOS = _____ GRAMOS

SOLUCIÓN
9.000
  • 9 KILOGRAMOS Y MEDIO = ____ GRAMOS

SOLUCIÓN
9.500

CAPÍTULO 5 / TEMA 8 (REVISIÓN)

Geometría y mediciones | ¿Qué aprendimos?

Perímetro

El perímetro es el contorno de una figura geométrica. En el caso de los polígonos regulares, el perímetro lo calculamos al multiplicar la cantidad de sus lados por la longitud de uno de estos. Otra forma de calcular el perímetro es a través de la suma de cada uno de los lados de una figura. En cambio, el perímetro del círculo es igual a la multiplicación del número pi por el diámetro de la circunferencia. Existen también figuras compuestas que están formadas por dos o más figuras geométricas, para calcular su perímetro basta con sumar cada uno de los lados.

El perímetro tiene múltiples aplicaciones en disciplinas como la arquitectura y también se usa en el ámbito militar.

Ángulos

Uno de los elementos fundamentales para la geometría es el ángulo, el cual está formado por un par de semirrectas denominadas lados que tienen un origen común o vértice. Uno de los sistemas más usados para medir ángulos es el sistema sexagesimal, en el que medimos los ángulos en grados, minutos y segundos. De acuerdo a su tamaño, los ángulos pueden clasificarse en agudos, rectos, obtusos y llanos. Los agudos son mayores a 0° pero menores a 90°, los rectos miden 90°, los obtusos son mayores a 90° pero menores de 180° y los llanos miden siempre 180°.

El transportador es uno de los instrumentos más usados para medir ángulos.

Área

Para calcular superficies usamos el área, que es la extensión comprendida por una figura. Para cada figura plana existe una fórmula que permite determinar su área. En el Sistema Internacional de Unidades se emplea el metro cuadrado (m2) como unidad de medida de área, pero también podemos usar otras unidades derivadas, como el centímetro cuadrado (cm2) o el milímetro cuadrado (mm2). Podemos obtener el área de las figuras compuestas al descomponerlas en figuras geométricas más simples, para luego sumar las áreas de cada una.

El conocimiento del área puede ser aplicado para calcular cuántas baldosas son necesarias para cubrir una superficie.

Sistemas de referencia

Uno de los sistemas de referencias más usados es el sistema cartesiano, el cual está formado por dos ejes en el plano: uno horizontal denominado eje X o de las abscisas y otro vertical denominado eje Y o de las ordenadas. Para representar un punto en el plano cartesiano necesitamos sus coordenadas en el eje X y en el eje Y: la intersección de ambas coordenadas constituye su ubicación. Por otro lado, las figuras pueden experimentar transformaciones isométricas, es decir, cambios de posición y orientación que no afectan su forma. Estas transformaciones son: traslación, rotación y simetría.

Los sistemas de referencia son usados por el ser humano para medir las posiciones y las magnitudes de las cosas.

Cuadriláteros

Un cuadrilátero es un polígono de cuatro lados, y aunque se pueden clasificar en varios grupos, comparten elementos en común: tienen cuatro ángulos, la suma de estos es siempre igual 360° y tienen dos diagonales que dividen al cuadrado en triángulos. De manera general, los cuadriláteros son clasificados como paralelogramos, trapecios y trapezoides. Los paralelogramos tienen sus lados opuestos paralelos y pueden ser cuadrados, rombos y rectángulos. Los trapecios tienen dos de sus lados paralelos y los trapezoides no tienen ningún lado paralelo.

El campo de fútbol tiene forma de rectángulo que es un tipo de cuadrilátero.

Capacidad y volumen

El volumen es el espacio que ocupa un objeto mientras que la capacidad indica la cantidad que un objeto puede contener dentro de él. Todos los objetos tienen volumen pero no todos tienen capacidad. En el caso de los sólidos y los líquidos mientras mayor sea su volumen, mayor espacio van a ocupar. No es lo mismo el volumen de un grano de arroz que el de un edificio. Algunas unidades de volumen son el metro cúbico (m3), el centímetro cúbico (cm3) y milímetro cúbico (mm3), entre otras. El litro es una medida de capacidad que equivale a 1.000 cm3.

A pesar de estar muy relacionadas, no se deben confundir las medidas de volumen con las de capacidad.

La circunferencia

La circunferencia es una curva plana con todos sus puntos ubicados a la misma distancia del origen o centro. No debe ser confundida con el círculo que corresponde al área contenida dentro de ella, es decir, la circunferencia es el perímetro del círculo. Presenta ciertos elementos como el radio, el diámetro, la tangente, la cuerda, el arco y la semicircunferencia. Uno de los instrumentos usados para su trazado es el compás.

Los antiguos griegos empleaban la recta y la circunferencia como figuras básicas en sus cálculos.