CAPÍTULO 3 / TEMA 5

Problemas con fracciones

La fracciones están presentes en la vida cotidiana. Su utilidad es inmensa y sin ellas muchos cálculos matemáticos serían más complejos. La resolución de operaciones como la suma, la resta, la división y la multiplicación se lleva a cabo de una manera particular cuando involucran fracciones.

Cálculo de fracciones equivalentes

Las fracciones equivalentes son aquellas que representan la misma cantidad pero sus numeradores y denominadores no son iguales. Se pueden calcular por amplificación o por simplificación:

Para encontrar una fracción equivalente por amplificación tenemos que multiplicar el numerador y denominador por un mismo número. En este caso, las fracciones \frac{1}{2} y \frac{2}{4} son equivalentes porque:

Por otro lado, para calcular una fracción equivalente por simplificación, debemos hacer el procedimiento contrario, es decir, dividir el numerador y denominador por un mismo número. En este caso, ambos términos de la fracción deben tener un divisor común, de lo contrario se dice que la fracción es irreducible.

Las fracciones \frac{10}{4} y \frac{5}{2} son fracciones equivalentes porque:

¿Sabías qué?
Las fracciones irreducibles son aquellas cuyo numerador y denominador no tienen un divisor común.

Adición y sustracción de fracciones homogéneas

Sumar o restar fracciones homogéneas es sencillo. Primero se suman o restan los numeradores según indique el signo y el número obtenido será el numerador de la fracción resultante, luego se coloca el mismo denominador. Por ejemplo:

Calcula: \frac{1}{3}+\frac{4}{3}

Suma los dos numeradores, que son 1 y 4, y luego coloca el mismo denominador de las fracciones. La fracción resultante es entonces \frac{5}{3}.

Calcula: \frac{7}{5}-\frac{3}{5}

Resta los numeradores, 7 y 3, y el número obtenido será el numerador de la fracción resultante cuyo denominador será el mismo de las fracciones originales. En este caso, el resultado es \frac{4}{5}.

En la práctica simplificamos fracciones hasta su mínima expresión, es decir, obtenemos fracciones equivalentes que no tengan divisores comunes entre su numerador y su denominador. Hacemos esto porque dichas fracciones simplifican la escritura y los cálculos. Por lo general, para reducir fracciones empleamos los criterios de la divisibilidad.

VER INFOGRAFÍA

Adición y sustracción de fracciones heterogéneas

Las fracciones heterogéneas son aquellas que tienen distinto denominador. Un método para resolver adiciones y sustracciones de este tipo de fracciones es el método en cruz, el cual consiste en calcular fracciones equivalentes con el mismo denominador y luego sumar o restar según indique el signo.

Pasos para resolver sumas y restas de fracciones heterogéneas

  1. Multiplica el numerador de la primera fracción por el denominador de la segunda fracción, luego coloca el signo según indique la operación y seguido de eso multiplica el denominador de la primera fracción por el numerador de la segunda. La suma o resta de esos dos productos será el numerador de la fracción resultante.
  2. Multiplica el denominador de la primera fracción por el denominador de la segunda, el resultado de esa multiplicación será el denominador de la fracción resultante.

Calcula: \frac{4}{3}+\frac{5}{2}

Se aplican los pasos anteriores, es decir: multiplicamos el numerador de la primera fracción (4) por el denominador de la segunda (2), colocamos el signo más (+) y luego multiplicamos el denominador de la primera fracción (3) por el numerador de la segunda fracción (5). Ambos productos forman parte del numerador de la fracción resultante.

Luego multiplicamos los denominadores y el producto formará parte del denominador de la fracción resultante.

Resolvemos los productos.

Finalmente, resolvemos la suma en el denominador y obtenemos el resultado:

 

Calcula: \frac{5}{2}-\frac{1}{4}

El procedimiento es el mismo que el anterior, pero al momento de realizar los productos cruzados colocamos el signo menos (−) y luego restamos. El procedimiento sería el siguiente:

Simplificación

Podemos simplificar la fracción \frac{18}{8} y llevarla a su mínima expresión, para esto solo dividimos el numerador y el denominador por dos (2). Por lo tanto:

\frac{18}{8}=\frac{9}{4}

Multiplicación de fracciones

La multiplicación de fracciones se realiza de forma lineal entre sus elementos, es decir, primero multiplicamos todos los numeradores y el producto será el numerador resultante. Luego multiplicamos todos los denominadores y el producto será el denominador de la fracción resultante.

Calcular: \frac{5}{3}\times \frac{3}{2}.

Simplificación

Podemos simplificar la fracción \frac{15}{6} y llevarla a su mínima expresión, para esto solo dividimos el numerador y el denominador por tres (3). Por lo tanto:

\frac{15}{6}=\frac{5}{2}

La inversa de una fracción es aquella en la que su numerador es igual al denominador y el denominador es igual al numerador de la primera fracción en ambos casos. La inversa de la fracción 3/2 es 2/3 y la inversa de 5/8 es 8/5. Si multiplicamos una fracción por su inversa, el resultado siempre va a ser la unidad. En este sentido 3/2 x 2/3 = 1 y 5/8 x 8/5 = 1.
¡A practicar!

1. Resuelve las siguientes adiciones y sustracciones de fracciones:

a) \frac{7}{9}+\frac{1}{9}

Solución
\frac{8}{9}

b) \frac{3}{5}-\frac{1}{2}

Solución
\frac{1}{10}

c) \frac{9}{7}+\frac{5}{7}

Solución
\frac{14}{7}

La fracción simplificada es \frac{2}{1}=2

d) \frac{13}{20}-\frac{8}{20}

Solución
\frac{5}{20}

La fracción simplificada es \frac{1}{4}

e) \frac{4}{5}+\frac{6}{9}

Solución
\frac{66}{45}

La fracción simplificada es \frac{22}{15}.

2. Resuelve las siguientes multiplicaciones:

a) \frac{3}{5}\times \frac{4}{9}

Solución
\frac{12}{45}

La fracción simplificada es \frac{4}{15}

b) \frac{5}{8}\times \frac{3}{9}

Solución
\frac{15}{72}

La fracción simplificada es \frac{5}{24}.

c) \frac{1}{8}\times \frac{7}{2}

Solución
\frac{7}{16}

d) \frac{3}{8}\times \frac{4}{7}

Solución
\frac{12}{56}

La fracción simplificada es \frac{3}{14}.

e) \frac{9}{4}\times \frac{8}{3}

Solución
\frac{72}{12}

La fracción equivalente es \frac{6}{1}=6

RECURSOS PARA DOCENTES

Artículo “Adición y sustracción de fracciones”

En este artículo destacado se exponen diferentes formas de resolver adiciones y sustracciones de fracciones con igual o diferente denominador.

VER

Artículo “Multiplicación y división de fracciones”

En este artículo se expone cómo resolver problemas de multiplicación de fracciones. También describe como realizar la simplificación de estos números y ayuda a comenzar a trabajar con problemas de división de fracciones.

VER

CAPÍTULO 5 / TEMA 1

Perímetro

El contorno de una figura geométrica se denomina perímetro. De acuerdo al tipo de figura, el contorno puede ser calculado por medio de la suma de sus lados o a través de diferentes fórmulas. Estas operaciones tienen muchas aplicaciones en la vida cotidiana: por ejemplo, sirven para determinar la longitud de la cerca de una casa.

Cálculo de perímetro en figuras planas

El perímetro es la longitud del contorno de una figura. Para calcular el perímetro de una figura, simplemente tenemos que sumar cada uno de sus lados.

Es importante tener presente que existen figuras con lados regulares como el cuadrado, y figuras con lados irregulares como en el caso de un rectángulo. Las figuras regulares son conocidas como polígonos regulares y los más comunes son:

POLÍGONO NÚMERO DE LADOS
Triángulo equilátero 3
Cuadrado 4
Pentágono 5
Hexágono 6
Heptágono 7
Octágono 8
Eneágono 9
Decágono 10

¿Sabías qué?
De acuerdo a sus lados, los triángulos son clasificados en: equiláteros (tres lados iguales), isósceles (dos lados iguales) y escalenos (ningún lado igual).

VER INFOGRAFÍA

La ventaja de los polígonos regulares es que al tener todos sus lados iguales su perímetro es igual a la longitud de uno de sus lados multiplicada por la cantidad de lados que este tiene. La fórmula sería:

 P=n\times L

Donde:
P = perímetro.
n = número de lados de la figura.
L = longitud de un lado de la figura.

Un ejemplo de cálculo de perímetro

– Calcula el perímetro de un cuadrado cuyos lados miden 5 cm:

El cuadrado es un polígono regular de cuatro lados iguales, por lo tanto, calculamos su perímetro de la siguiente forma:

P = 4 × 5 cm

Resolvemos la multiplicación y el resultado obtenido es:

P = 20 cm

Observa que al final añadimos la unidad de longitud inicial, que son centímetros (cm), pero puede ser cualquier otra unidad de medida, los pasos en estos casos siempre son los mismos.

Otro camino

Aunque las fórmulas permiten realizar cálculos más sencillos, el perímetro también puede determinarse a través de la suma de cada uno de los lados. En el caso del ejemplo anterior sabemos que cada lado mide 5 cm, de manera que tenemos que sumar los cuatro lados para obtener el perímetro:

P = 5 cm + 5 cm + 5 cm + 5 cm = 20 cm

Esta forma de calcular el perímetro suele aplicarse a figuras que tienen al menos un lado diferente, pues al no tener sus lados iguales, no es posible aplicar la fórmula de polígonos regulares. Un ejemplo sería:

– Calcula el perímetro del siguiente triángulo:

Al sumar cada uno de sus lados obtenemos que:

P = 6 cm + 7 cm + 5 cm = 18 cm

Este triángulo escaleno tiene un perímetro de 18 cm.

 

El perímetro de un círculo

El perímetro de un círculo se denomina circunferencia, y para calcularlo empleamos un número matemático muy particular: el número pi, llamado así porque se escribe con la letra π del alfabeto griego, que lleva ese mismo nombre. Este número es irracional, por lo tanto es infinito. Se obtiene al dividir la longitud de la circunferencia entre su diámetro. Los primeros 10 números decimales del número pi son 3,1415926535…

La fórmula para determinar el perímetro de un círculo es:

P = π × d

Donde:

π = número pi (en los cálculos generalmente se redondea hasta los dos decimales).

d = la longitud del diámetro de la circunferencia.

Perímetro de figuras compuestas

Primero que todo, es importante saber que una figura compuesta está formada por dos o más figuras geométricas, por lo que tienen un arreglo irregular de lados y ángulos. En el caso de estas figuras, realizamos el cálculo del perímetro de la misma forma que en el ejemplo anterior del triángulo.

Observemos esta figura:

Es una figura compuesta porque está formada por un cuadrado y un triángulo:

Determinamos el perímetro de esta figura al sumar solo los lados exteriores de la figura:

P = 5 cm + 5 cm + 1 cm + 7 cm + 9 cm = 27 cm

El perímetro de la figura es 27 cm.

Las figuras compuestas pueden estar formadas por triángulos, cuadrados, rectángulos, trapecios, círculos, etc. Conocer sus diferentes elementos es importante al momento de resolver problemas de perímetros y de áreas, ya que no se puede aplicar una fórmula en común: es necesario identificar las figuras geométricas que integran la figura compuesta.

Aplicaciones del perímetro

Debido a que el perímetro y el área representan las magnitudes fundamentales al momento de trabajar con figuras geométricas y polígonos, sus usos en la vida cotidiana son frecuentes.

En el caso del perímetro, disciplinas como la arquitectura lo emplean para determinar la frontera de un objeto como en el caso de la cerca de una edificación o la valla de un campo. Sus usos también se extiende al ámbito militar, donde permite delimitar las áreas de interés ofensivo o de defensa.

La geometría

Es una rama de la matemática encargada del estudio de las figuras, sus propiedades y medidas en el plano y en el espacio. Su origen no es reciente, de hecho, antiguas civilizaciones como las del Antiguo Egipto, Sumeria y Babilonia ya la empleaban en mediciones de terrenos y en la construcción de edificaciones. Mucho tiempo después, los antiguos griegos la empezaron a perfeccionar y hoy en día es una disciplina fundamental.

 

¡A practicar!

1. Calcular el perímetro de las siguientes figuras:

a)

Solución
P = 15 cm
b) 
Solución
P = 12 cm
c) 
Solución
P = 48 cm
d) 
Solución
P = 18 cm
e) 
Solución
P = 34 cm

2. ¿Cuál de las siguientes figuras es un polígono regular?

a) 

b) 

c) 

d) 

e) 

Solución
c) Es un polígono regular porque tiene 6 lados iguales y se denomina hexágono.

RECURSOS PARA DOCENTES

Artículo “Áreas y perímetro”

En este cuadro comparativo se muestra una tabla con las fórmulas de área y perímetro para las principales figuras geométricas.

VER

Artículo “Perímetro de polígonos”

En este artículo se explica cómo realizar el cálculo de perímetro en el caso específico de los diferentes tipos de polígonos.

VER

CAPÍTULO 4 / TEMA 3

FIGURAS PLANAS

TODOS LOS OBJETOS QUE NOS RODEAN TIENEN UNA FORMA Y MUCHOS DE ELLOS SON PLANOS, ES DECIR, SOLO TIENEN DOS DIMENSIONES Y NO TIENEN RELIEVE. LAS FIGURAS PLANAS MÁS COMUNES SON EL CÍRCULO, EL TRIÁNGULO EL CUADRADO Y EL RECTÁNGULO. CON ESTE ARTÍCULO APRENDERÁS A DIFERENCIAR ESTAS FIGURAS.

LAS FIGURAS PLANAS ESTÁN DELIMITADAS POR LÍNEAS RECTAS O CURVAS, ASÍ QUE MUCHOS DE LOS INSTRUMENTOS QUE USAMOS EN LA ESCUELA SIRVEN PARA DIBUJARLAS. POR EJEMPLO, CON LAS REGLAS Y ESCUADRAS PODEMOS DISEÑAR CUADRADOS, RECTÁNGULOS Y TRIÁNGULOS; MIENTRAS QUE CON EL COMPÁS PODEMOS HACER CÍRCULOS Y CIRCUNFERENCIAS CON PRECISIÓN. ¡INTÉNTALO!

¿QUÉ ES UNA FIGURA PLANA?

UNA FIGURA PLANA ES AQUELLA QUE ESTÁ DEFINIDA POR LÍNEAS RECTAS O CURVAS. ADEMÁS, SOLO TIENE DOS DIMENSIONES: ALTO Y ANCHO.

¿VES ALGUNA FIGURA?

ESTE DIBUJO ESTÁ ELABORADO SOLO CON FIGURAS PLANAS, ¿PUEDES RECONOCER ALGUNAS?

¿CUÁLES SON LAS FIGURAS PLANAS?

HAY MUCHOS TIPOS DE FIGURAS PLANAS, LAS MÁS COMUNES SON EL CÍRCULO, EL TRIÁNGULO, EL CUADRADO Y EL RECTÁNGULO.

OBSERVA ESTOS GRUPOS DE FIGURAS, ¿EN QUÉ SE PARECEN?

  • LAS FIGURAS DE COLOR ROJO SON CUADRADOS.
  • LAS FIGURAS DE COLOR AZUL SON CÍRCULOS.
  • LAS FIGURAS DE COLOR AMARILLO SON TRIÁNGULOS.
  • LAS FIGURAS DE COLOR VERDE SON RECTÁNGULOS.

¿CUÁLES SON LOS ELEMENTOS DE LAS FIGURAS?

CÍRCULO

UN CÍRCULO ES UNA FIGURA PLANA FORMADA POR UNA CURVA CERRADA Y REDONDA QUE SIEMPRE TIENE LA MISMA DISTANCIA DEL CENTRO.

¿CUÁLES SON SUS ELEMENTOS?

EL CENTRO, LA CIRCUNFERENCIA, EL DIÁMETRO Y EL RADIO.

¿SABÍAS QUÉ?
LA LÍNEA QUE BORDEA AL CÍRCULO SE LLAMA CIRCUNFERENCIA.

TRIÁNGULO

UN TRIÁNGULO ES UNA FIGURA PLANA FORMADA POR TRES LADOS.

¿CUÁLES SON SUS ELEMENTOS?

LOS LADOS Y LOS VÉRTICES.

CLASIFICACIÓN DE LOS TRIÁNGULOS

SEGÚN SUS LADOS LOS TRIÁNGULOS PUEDEN SER EQUILÁTEROS, ISÓSCELES O ESCALENOS.

CUADRADO

UN CUADRADO ES UNA FIGURA PLANA CON CUATRO LADOS IGUALES.

¿CUÁLES SON SUS ELEMENTOS?

LOS LADOS Y LOS VÉRTICES.

RECTÁNGULO

UN RECTÁNGULO ES UNA FIGURA PLANA CON CUATRO RECTAS Y CON LADOS OPUESTOS PARALELOS.

¿CUÁLES SON SUS ELEMENTOS?

EL LARGO, EL ANCHO Y LOS VÉRTICES.

 

¿QUÉ ES EL TANGRAM?

ES UN JUEGO DE ORIGEN CHINO EN EL QUE PODEMOS FORMAR DIVERSAS FIGURAS CON SIETE PIEZAS BÁSICAS LLAMADAS “TANS”:

  • CINCO (5) TRIÁNGULOS.
  • UN (1) CUADRADO.
  • UN (1) PARALELOGRAMO.

ESTAS PIEZAS O “TANS” SE GUARDAN DE TAL MANERA QUE FORMAN UN CUADRADO.

FIGURAS PLANAS EN LOS OBJETOS

OBSERVA ESTOS OBJETOS, ¿A CUÁL FIGURA PLANA SE PARECEN?

RESPONDE:

  • ¿CUÁLES OBJETOS SE PARECEN A UN CÍRCULO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS SE PARECEN A UN RECTÁNGULO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS SE PARECEN A UN CUADRADO?
SOLUCIÓN

  • ¿CUÁLES OBJETOS SE PARECEN A UN TRIÁNGULO?
SOLUCIÓN

¡A PRACTICAR!

1. COLOREA LAS FIGURAS DE LA SIGUIENTE MANERA:

  • CÍRCULOS DE COLOR AZUL.
  • TRIÁNGULOS DE COLOR AMARILLO.
  • RECTÁNGULOS DE COLOR VERDE.
  • CUADRADO DE COLOR ROJO.

SOLUCIÓN

2. COLOREA DE ROJO LAS FIGURAS PLANAS FORMADAS POR TRES LADOS Y TRES VÉRTICES.

SOLUCIÓN

3. RESPONDE LAS PREGUNTAS.

  • ¿CUÁNTOS LADOS TIENE EL CUADRADO?
SOLUCIÓN
EL CUADRADO TIENE CUATRO (4) LADOS IGUALES.
  • ¿CUÁNTOS LADOS TIENE UN TRIÁNGULO?
SOLUCIÓN
EL TRIÁNGULO TIENE TRES LADOS.
  • ¿QUÉ ES UNA CIRCUNFERENCIA?
SOLUCIÓN
ES LA LÍNEA QUE BORDEA AL CÍRCULO.
  • ¿QUÉ ES UN TRIÁNGULO ISÓSCELES?
SOLUCIÓN
ES UNA TRIÁNGULO CON DOS LADOS IGUALES.
  • ¿LOS RECTÁNGULOS TIENEN CUATRO LADOS IGUALES?
SOLUCIÓN
NO. LOS RECTÁNGULOS TIENEN DOS LADOS MÁS LARGOS QUE LOS OTROS DOS.
RECURSOS PARA DOCENTES

Artículo “Clasificación de los triángulos”

Con este recurso podrá profundizar sobre los diversos tipos de triángulos, figura básica de la geometría plana.

VER

Artículo “Círculo”

Un círculo es una región plana encerrada por una circunferencia. Todos sus elementos podrá verlos en este artículo.

VER

 

CAPÍTULO 3 / TEMA 2

MASA

Para determinar la masa de un cuerpo u objeto podemos utilizar distintas unidades de medida, la más conocida es el kilogramo. Gracias a esta unidad sabemos la masa de nuestro cuerpo y decimos qué tan pesados somos, o qué cantidad de ingredientes debemos utilizar para una receta. 

La masa es una propiedad que nos permite determinar la cantidad de materia que posee un cuerpo, esto podemos saberlo con exactitud si usamos una balanza. Las unidades principales para medir la masa son el kilogramo (kg) y el gramo (g).

El gramo y sus múltiplos

La masa es la cantidad de materia que contiene un cuerpo. Esta propiedad nos permite determinar el peso de cualquier persona, objeto, sustancia o material. Por ejemplo, cuando vamos al supermercado podemos pesar la cantidad productos que queremos comprar, como bananos, tomates y naranjas; también podemos determinar nuestro propio peso e incluso podemos saber cuánto pesa algo tan pequeño como un grano de arroz.

Las unidades principales para medir la masa son el gramo (g) y el kilogramo (kg).

El kilogramo lo empleamos para determinar la masa de cuerpos pesados o grandes, mientras que el gramo lo empleamos para determinar la masa de cuerpos livianos o pequeños. Así, si queremos conocer la masa de una sandía usamos el kilogramo y si queremos conocer la masa de una nuez usamos el gramo.

 

El kilogramo lo empleamos para determinar la masa de cuerpos pesados o grandes, mientras que el gramo lo empleamos para determinar la masa de cuerpos livianos o pequeños. La balanza es una herramienta de medición que nos permite conocer exactamente la masa de cualquier cuerpo, se usa de forma habitual en supermercados, fábricas y restaurantes.

Representamos el gramo con la letra g y sus múltiplos son el kilogramo (kg), el hectogramo (hg) y el decagramo (dag). Las equivalencias son las siguientes:

  • 1 kilogramo (kg) = 1.000 gramo (g)
  • 1 hectogramo (hg) = 100 gramos (g)
  • 1 decagramo (dag) = 10 gramos (g)

Unidad apropiada de acuerdo al tamaño del cuerpo

Además de lo múltiplos, el gramo tiene submúltiplos, es decir, unidades que nos permiten saber la masa de objetos muy pequeños. Estos son el decigramo (dg), el centigramo (cg) y el miligramo (mg). Sus equivalencias son las siguientes:

  • 1 decigramo (dg) = 0,1 gramos (g)
  • 1 centigramo (cg) = 0,01 gramos (g)
  • 1 miligramo (mg) = 0,001 gramos (g)

Veamos algunos ejemplos:

 

Por lo general, algunos productos del supermercado están en empaques de 1 kilogramo, pero también los hay de 1/2 kilogramo o 1/4 de kilogramo. Observa estos ejemplos:

– Dos empaques de 1/2 kilogramo de arroz son iguales a un empaque de 1 kilogramo de arroz.

– Cuatro empaques de 1/4 de kilogramo de arroz son iguales a 1 kilogramo de arroz.

 

Del mismo modo puede verlo aquí:

¡Es tu turno!

1. ¿Cuántos kilogramos de arroz podemos formar con cuatro empaques de ½ kilogramo?

Solución
2 kilogramos.

2. ¿Cuántos ¼ de kilogramo de arroz necesitamos para formar ½ kilogramo de arroz?

Solución
Dos ¼ de kilogramo.

Origen del kilogramo

El kilogramo es la única unidad básica que se ha definido por un objeto: una barra de aleación de platino e iridio fabricada en 1879. En 1889, el prototipo fue ratificado como la masa estándar del kilogramo en la primera Conferencia General de Pesas y Medidas y en la actualidad está ubicado en Sèvres, Francia. En 2019, la barra prototipo dejó de ser el patrón de referencia del kilogramo.

conversiones

Si queremos comparar la masa de una roca y una nuez, pero una está en kilogramos y la otra en gramos, lo primero que debemos hacer es convertir las unidades. De esta manera las dos tendrán la misma unidad y podremos hacer la comparación.

Con este esquema podrás convertir gramos a sus múltiplos y viceversa:

Para convertir unidades de masa existen dos métodos:

  • El primero consiste en mover a la derecha o a la izquierda la coma del número tantos lugares como casillas sean necesarias para llegar a la unidad deseada.
  • El segundo consiste en multiplicar o dividir por diez tantas veces como casillas se necesiten para llegar a la unidad deseada.

Ejemplo:

– Convierte 5,82 kg a g.

Primer método

Dibuja el cuadro y mueve tantos lugares a la derecha de los kilogramos como sean necesarios hasta llegar a la posición de los gramos.

Como nos desplazamos tres lugares a la derecha, movemos la coma del número tres lugares a la derecha.

Observa que después de dos (2) agregamos un cero y al lado la coma.

Entonces, 5,82 kg son equivalentes a 5.820 g.

 

Segundo método

Multiplica tres veces seguidas por diez (10).

Observa que tres veces diez (10) es igual a 10 x 10 x 10 = 1.000. Así que puedes multiplicar de forma directa:

5,82 x 1.000 = 5.820

El resultado será el mismo, 5,82 kg son equivalentes a 5.820 g.

Otro ejemplo:

– Convierte 953 g a kg.

Primer método

Dibuja el cuadro y mueve tantos lugares a la izquierda de los gramos como sean necesarios hasta llegar a la posición de los kilogramos.

Como nos desplazamos tres lugares a la izquierda, movemos la coma tres lugares a la izquierda.

Entonces, 953 g son equivalentes a 0,953 kg.

 

Segundo método

Divide tres veces seguidas por diez (10).

Observa que tres veces diez (10) es igual a 10 x 10 x 10 = 1.000. Así que puedes multiplicar de forma directa:

953 ÷ 1.000 = 0,953

El resultado será el mismo, 953 g son equivalentes a 0,953 kg.



¡A practicar!

Convierte las unidades:

  • 8 kg a g.
Solución
8.000 g.
  • 58 dag a g.
Solución
580 g.
  • 150 g a hg.
Solución
1,5 hg.

 

¿Sabías qué?

Muchos sistemas de medición estuvieron basados en el uso de las partes del cuerpo humano.

comparación de masas

Podemos comparar las masas de objetos por medio de expresiones como “mayor que”, “menor que” o “igual a”.

Todos los días comparamos la masa de los objetos por medio de la observación y consideramos su tamaño . Por ejemplo:

  • ¿Cuál vehículo tiene mayor masa?

  • ¿Cuál fruta tiene menor masa?

 

Aunque el tamaño de un objeto puede darnos una señal de su masa, no siempre indicará si es o no pesado, así que no podemos saber la masa de un cuerpo solo por observación. Para determinar la masa de un cuerpo con exactitud necesitamos un instrumento como la báscula o la balanza.

Por ejemplo:

  • ¿Cuál de los niños es más pesado?

Para comparar estas masa, lo primero que debemos hacer es convertir una de ellas para tener unidades iguales. En este caso, vamos a convertir los gramos a kilogramos. Como ya sabemos, solo debemos dividir por diez (10) tres veces seguidas o dividir directamente por 1.000.

Vemos que 24.000 g son equivalentes a 24 kg.

Ahora sí podemos compararlas y determinar cuál de las cantidades es la mayor.

Como 30 es mayor que 24 (30 > 24), decimos que Miguel es más pesado que Patricia.

Masa y peso: ¿son lo mismo?

No. La masa es la cantidad de materia que posee un cuerpo, en cambio, el peso es la fuerza que ejerce la gravedad sobre un cuerpo de determinada masa. Si una persona tiene una masa de 75 kg en la Tierra, también la tendrá en la Luna, pero su peso será distinto, ya que la aceleración de la gravedad es diferente.

¡A practicar!

  1. ¿Cuál animal tiene mayor masa?

Solución
El elefante tiene mayor masa.

2. ¿Cuál de los objetos tiene mayor masa?

Solución
1.500 gramos son equivalentes a 1,5 kilogramos, y como 1,5 es menor que 3 (1,5 < 3), decimos que el objeto A tiene mayor masa.

balanza analógica

Aunque suelen confundirse los términos “balanza” y “báscula” no son lo mismo. Ambos instrumentos se usan para medir masa, pero la báscula mide la fuerza ejercida por un objeto fijado a la fuerza de gravedad, en cambio, la balanza mide la masa de un objeto por comparación con otra ya conocida.

La balanza es un instrumento usado para pesar, operación en la que se determina la masa de un cuerpo por medio de la comparación de su masa con la de otro cuerpo con masa definida. Las balanzas son muy comunes en los laboratorios y supermercados. Sus tipos son muy variados.

VER INFOGRAFÍA

Las balanzas analógicas se caracterizan por no utilizar ningún componente electrónico y están provistas de una escala en kilogramos o en gramos. En este tipo de balanzas el peso será la cifra que indique la aguja. Observa esta:

 

 

La balanza de la imagen tiene una capacidad máxima de medida de 7 kilogramos, cada uno de los espacios grandes con números representan a los kilogramos, entre ellos hay espacios con líneas de tamaño mediano que representan 0,5 kg y espacios pequeños sin números que representan a los decimales de la balanza, cada espacio tiene un valor de 0,1 kg.

Ejemplo:

– ¿Cuánto pesa la sandía?

La aguja está después del 3 pero antes del 4, entonces son 3 kilogramos. Los decimales están a cinco espacios pequeños después del 3, cada espacio representa 0,1 kg. Entonces:

5 x 0,1 kg = 0,5 kg

Al final, sumamos los kilogramos con los decimales:

      3 kg + 0,5 kg = 3,5 kg

Por lo tanto, la sandía pesa 3,5 kilogramos.

 

¡A practicar!

¿Cuánto pesan las nueces?

RESPUESTAS
Las nueces pesan 1,2 kg.

problemas de masa

1. Fabián tiene dos cachorros, uno se llama Brando y el otro Manchas, Fabián quiere saber cuál de los dos cachorros es el más pesado, Brando pesa 2,5 kilogramos y Manchas pesa 2.800 gramos.

Solución

Primero convertimos los gramos a kilogramos. Para esto dividimos  2.800 entre 1.000:

2.800 ÷ 1.000 = 2,8

Como 2,8 es mayor que 2,5 (2,8 > 2,5) decimos que Mancha es más pesada que Brando.

 

2. Ana compró dos tartas, una de vainilla que pesa 2,3 kilogramos y una de chocolate que pesa 1.850 gramos. ¿Cuál de las dos tartas es más pesada?

Solución

Primero convertimos los gramos a kilogramos. Para esto dividimos 1.850 entre 1.000:

1.850 ÷ 1.000 = 1,85

Como 1,85 es menor que 2,3 (1,85 < 2,3) decimos que la torta de chocolate es menos pesada que la de vainilla.

 

3. Un albañil lleva una carretilla con 20 kilogramos de arena, si descarga 2.000 gramos en la obra ¿Cuántos kilos quedan en la carretilla?

Solución

Primero convertimos los gramos a kilogramos. Para esto dividimos 2.000 entre 1.000:

2.000 ÷ 1.000 = 2

Se descargaron 2 kilogramos.

Para saber la masa de arena que quedó debemos hacer una resta:

20 kg − 2 kg = 18 kg

Por lo tanto, quedaron 18 kilogramos de arena en la carretilla.

 

4. Mariana quiere hacer un pastel de chocolate, la receta le indica que debe utilizar 0,6 kg de harina y 0,14 kg de cacao, pero su balanza solo pesa en gramos, ¿cuáles son las conversiones que debe hacer Mariana para poder pesar los ingredientes en su balanza?

Solución

Primero convertimos los kilogramos a gramos. Para esto multiplicamos la masa deseada de harina y cacao por 1.000.

0,6 x 1.000 = 600

0,14 x 1.000 = 140

Mariana debe pesar 600 gramos de harina y 140 gramos de cacao.

RECURSOS PARA DOCENTES

Unidades de medida

El siguiente material le permitirá trabajar con sus alumnos las unidades de medida: longitud, peso, capacidad y tiempo.

VER

CAPÍTULO 3 / TEMA 6 (REVISIÓN)

Fracciones | ¿Qué aprendimos?

¿Qué son las fracciones?

Una fracción está formada por dos términos principales: el numerador y el denominador. Estos son números enteros que están separados por una línea horizontal denominada raya divisoria o raya fraccionaria. Una fracción es la división de un entero o una unidad en partes iguales. El numerador indica las partes a considerar de esa división y el denominador indica las partes en las que se dividió el entero o unidad. Estos números son más antiguos que lo que se piensa y están relacionados con la división.

Las fracciones están presentes en la vida cotidiana, sobre todo en las mediciones usadas en la cocina, pero también están presentes en algunas monedas.

Fracciones diversas

De acuerdo a la relación que exista entre el numerador y el denominador, las fracciones pueden ser propiasimpropias. Las fracciones propias son aquellas en las que el numerador es menor que el denominador, contrario a las fracciones impropias, en las que el numerador es mayor que el denominador. Por otro lado, si comparamos dos o más fracciones, estas pueden ser homogéneas o heterogéneas. Las fracciones homogéneas son las que poseen el mismo denominador, las heterogéneas, en cambio, presentan diferentes denominadores.

Las fracciones pueden expresarse en forma de gráfica o viceversa. Lo emocionante de ellas es que las usamos a diario para dividir cosas o cantidades.

Gráficas de fracciones

Las fracciones suelen expresarse en gráficos para interpretar de manera más sencilla los datos. La forma para representar estos gráficos dependen del tipo de fracción. Si la fracción es propia elegimos cualquier figura, la dividimos en partes iguales según el denominador y señalamos las partes que indique el numerador. Cuando se trata de una fracción impropia dividimos una figura geométrica en las partes que señale el denominador, pero debido a que en este tipo de fracción el numerador es mayor que el denominador, serán necesarias más de una figuras.

Los números mixtos son un tipo de número fraccionario que posee una parte entera y otra fraccionaria.

Orden de fracción

Las fracciones presentan un sentido de orden, es decir, hay fracciones que son mayores o menores que otras. Una herramienta muy útil para reconocer este orden es la recta numérica. Se trata de un gráfico en forma de línea horizontal en el que los números están ordenados de menor a mayor. Para ubicar fracciones propias en la recta numérica dividimos la unidad en segmentos iguales según indique el denominador y la fracción se ubicaría en el número de segmento indicado por el numerador. Las fracciones impropias, por su parte, deben ser transformadas en números mixtos.

En la recta numérica, si se toma un número como referencia, los números de su izquierda son menores a él y los de la derecha mayores.

Problemas con fracciones

Las fracciones, además de ayudarnos a resolver problemas que impliquen proporciones, nos permiten resolver las operaciones básicas matemáticas como la adición, la sustracción, la multiplicación y al división. En el caso de la adición y la sustracción de fracciones debemos tener en cuenta su tipo: si las fracciones son homogéneas sumamos o restamos los numeradores y colocamos el denominador, si son heterogéneas usamos el método de cruz para resolverlas. Las multiplicaciones se resuelven de forma lineal, al multiplicar los numeradores y los denominadores.

La adición y sustracción de fracciones heterogéneas suele realizarse por el método en cruz que permite calcular de manera directa fracciones equivalentes.

CAPÍTULO 4 / TEMA 3

elementos geométricos

Para dibujar elementos geométricos en una hoja de papel podemos inspirarnos en elementos que vemos a nuestro alrededor. Por ejemplo, un clavo en la pared, la senda peatonal o el cable de luz que atraviesa nuestra calle.

El plano, el punto y la recta son algunos de los elementos geométricos con los que podemos dibujar figuras. Cada una de ellas tienen dimensiones distintas: el plano tiene dos, la recta tiene una y el punto no tiene. Sobre un plano podemos trazar rectas, y estas rectas no son más que una sucesión de puntos. ¡Intenta hacer rectas en una hoja de papel!

El punto

El punto sirve para indicar una posición y se nombra con una letra mayúscula.

¿Sabías qué?
El matemático griego Euclides fue el primero en dar una definición del punto en geometría.

la recta

La recta es una sucesión infinita de puntos orientada en una misma dirección. No tiene principio ni final y la longitud es su única dimensión. Con dos puntos podemos trazar una recta y la nombramos con una letra minúscula.

Según la posición que tomen las rectas en un plano estas pueden ser paralelas o secantes. También existen las coincidentes que se representan una sobre otra.

Dos rectas son paralelas cuando no se cortan en ningún punto por más que intentemos extenderlas.

Dos rectas son secantes cuando se cortan en un punto y pueden ser perpendiculares u oblicuas. Las rectas perpendiculares son aquellas que al cortarse en un punto forman cuatro ángulos rectos, mientras que las rectas oblicuas son aquellas que al cortarse en un punto no forman ángulos rectos.

Veremos un ejemplo para entender más cómo se cortan las rectas. El siguiente esquema representa las calles de una ciudad, cada una lleva un nombre para poder identificarlas.

  • Francia y Neuquén son calles paralelas, observa que nunca se cortan.
  • Italia y España son perpendiculares. Notarás que las rectas se cortan en forma de cruz, lo que formará cuatro ángulos rectos.
  • Peña y Quiroga son oblicuas porque al cruzarse no forman ángulos rectos.

¡A practicar!

  1. ¿Cómo son las calles Roca y Neuquén?
    Solución
    Son perpendiculares.
  2. ¿Como son las calles Italia y Quiroga?
    Solución
    Son oblicuas.
  3. ¿Cómo son las calles Peña y Roca?
    Solución
    Son paralelas.
  4. ¿Peña y Francia son calles paralelas?
    Solución
    No. Son perpendiculares.
  5. Si extendemos más la calle Roca hasta que se cruce con Quiroga, ¿estas calles serán oblicuas?
    Solución
    Sí.
  6. ¿Italia y Francia son paralelas?
    Solución
    Sí, nunca se cortan.
  7. ¿España y Peña son perpendiculares?
    Solución
    No. Son paralelas.
  8. ¿Neuquén y Quiroga pueden ser calles oblicuas?
    Solución
    Sí, al extender las dos calles demostramos que se cortan.

El rayo

El rayo, también conocido como semirrecta, tiene un punto de origen pero no tiene fin, se extiende hacia el infinito.

el segmento

El segmento es la distancia que existe entre dos puntos de una recta, esto quiere decir que tiene un origen y un final. Además expresa gráficamente una medida.

Podemos marcar infinitos segmentos en una recta. Observa este ejemplo y anota los segmentos:

Desde el punto A al D hay tres segmentos: AB, AC y AD. Desde el punto B al D hay dos segmentos: BC y BD y por último nos queda el segmento CD. Por lo tanto, en la recta hay 6 segmentos.

¡A practicar!

  1. En la recta k, ¿cuántos segmentos hay?
    Solución
    Hay 3 segmentos.
  2. ¿Qué segmentos se forman en la recta k?
    Solución
    AB, AC y BC.
  3. En la recta s, ¿cuántos segmentos hay?
    Solución
    Hay 3 segmentos.
  4. ¿Qué segmentos se forman en la recta s?
    Solución
    FC, FG y CG.
  5. ¿En todas las rectas se forman la misma cantidad de segmentos?
    Solución
    Sí.
  6. ¿Qué segmentos se forman en la recta t?
    Solución
    DE, DB y BE.
  7. ¿Cuántos segmentos se forman en total?
    Solución
    9 segmentos.

elementos geométricos en la vida cotidiana

La geometría forma parte de nuestras vidas, a donde miremos hay figuras y cuerpos geométricos e incluso puntos que marcan donde estamos o dónde queremos ir. Las rectas pueden estar representadas por las calles de la ciudad, los cables de energía eléctrica, hasta el rayo o semirrecta se forma si un auto viaja desde un punto de inicio, por ejemplo una estación de servicio en línea recta. Los segmentos los podemos encontrar en los barrotes de una reja, todo lo que nos rodea puede convertirse en un elemento geométrico.

Las rectas pueden estar representadas por las calles de la ciudad, los cables de energía eléctrica, hasta el rayo o semirrecta se forma si un auto viaja desde un punto de inicio, por ejemplo una estación de servicio en línea recta. Los segmentos los podemos encontrar en los barrotes de una reja o en los rieles de un tren.

Al estilo de Mondrian

Para el pintor Piet Mondrian el arte era representado a través de líneas rectas y colores primarios, creía que mostraba el orden armonioso del universo. Si observamos esta imagen al estilo de las pinturas de Mondrian, las líneas rectas se convierten en rectas que al cortarse unas con otras obtenemos segmentos. Algunas de las rectas que se forman son paralelas y otras perpendiculares.

Actividades

Observa la siguiente imagen y responde.

  1. ¿Cuáles de las siguientes rectas son paralelas?
    Solución
    Las rectas a, b, c y d son paralelas entre sí.
  2. ¿Cuáles de las siguientes rectas son perpendiculares?
    Solución
    La recta “e” es perpendicular con a, b, c y d.
  3. ¿Cuáles de las siguientes rectas son oblicuas?
    Solución
    La recta f es oblicua con a, b y c.
  4. Si extendemos la recta f, ¿las recta d y e también son oblicuas con ella?
    Solución
    Sí.
RECURSOS PARA DOCENTES

Artículo “Rectas”

El siguiente recurso le permitirá profundizar la información brindada sobre las rectas.

VER

CAPÍTULO 5 / TEMA 3

Área

El área mide la extensión de una superficie, por eso permite saber información importante de las cosas, como el tamaño de un país o la cantidad de baldosas que se necesitan en el piso de una casa. De acuerdo al tipo de figura, el área puede calcularse a través de fórmulas o mediante la descomposición de las figuras en otras más sencillas.

Cálculo de áreas en figuras planas

El área es la superficie o extensión comprendida en una figura. En el caso de las figuras planas, para calcular su área es necesario reconocer cada figura, porque su cálculo es diferente en cada caso.

Triángulos

En los triángulos se cumple que su área es igual a la base por la altura y el resultado se divide entre dos:

A=\frac{b\times h}{2}

– Calcula el área del siguiente triángulo:

A=\frac{3 \, cm \times 4\, cm}{2} = \frac{12 \, cm^{2}}{2}=\mathbf{6\, cm^{2}}

Es importante tener en cuenta que al multiplicar dos unidades de longitud (en este caso centímetros) escribimos el producto al cuadrado; es decir, colocamos el exponente “2” arriba de la unidad de medida, por eso se escribe cm2, y se lee “centímetros cuadrados”.

El área y las unidades al cuadrado

En el Sistema Internacional de Unidades el área siempre se expresa en unidades de longitud elevadas al cuadrado, esto se debe a que el área es la medida de una superficie. Un área de 15 cm2 quiere decir que esa superficie está cubierta por 15 cuadrados que miden 1 cm en cada uno de sus lados. Otras unidades de área comunes son: mm2 (milímetros cuadrados), m2 (metro cuadrado) y km2 (kilómetro cuadrado).

VER INFOGRAFÍA

Cuadrados

El área de un cuadrado es igual a la multiplicación de dos de sus lados. Como los lados de un cuadrado son todos iguales, la fórmula también se puede expresar como la medida de un lado al cuadrado.

A = l\times l =l^{2}

– Calcula el área del siguiente cuadrado

A= 3\, m\times 3\,m = \mathbf{9\, m^{2}}

Es un cuadrado de nueve metros cuadrados de área.

Rectángulos y romboides

El área de los rectángulos y romboides es igual al producto de su base por su altura.

A=b\times h

 

 

– Calcula el área del siguiente rectángulo:

A=10\, mm\times 5\, mm =\mathbf{50\, mm^{2}}

Rombos

El área de un rombo es igual al producto de su diagonal mayor (D) y su diagonal menor (d) dividido entre 2.

A=\frac{D\times d}{2}

– Calcula el área del siguiente rombo:

A = \frac{9\, cm\times 5\, cm}{2}=\frac{45\, cm^{2}}{2}=\mathbf{22,5\, cm^{2}}

El área del rombo es de 22,5 centímetros cuadrados.

Trapecios

En el caso de los trapecios el área es igual a la suma de su base mayor y su base menor, el resultado se divide entre 2 y luego se multiplica por la altura.

A = \frac{B+ b}{2}\times h

– Calcula el área del siguiente trapecio:

\small A= \frac{9\, mm+ 15\, mm}{2}\times 4\, mm=\frac{24\, mm}{2}\times 4\, mm=12\, mm\times 4\, mm = \mathbf{48\, mm^{2}}

El trapecio tiene un área de 48 milímetros cuadrados.

Polígonos regulares

Los polígonos regulares son figuras geométricas donde todos sus lados miden lo mismo. En todos los polígonos regulares se cumple que:

A= \frac{N\times L\times ap}{2}

Donde:

N = número de lados del polígono regular.

L = longitud de uno de los lados.

ap = longitud de la apotema.

¿Sabías qué?
La apotema es la menor distancia que existe entre el centro de un polígono y cualquiera de sus lados.

– Calcula el área del siguiente polígono regular:

A=\frac{6\times 4\, cm\times 3,4\, cm}{2}=\frac{24\, cm\times 3,4\, cm}{2}= \frac{81,6\, cm^{2}}{2}=\mathbf{40,8\, \mathbf{cm^{2}}}

Observa que en este caso como el polígono regular tiene seis lados (hexágono) se coloca el número 6. El área de este hexágono es de 40,8 centímetros cuadrados.

¿Cómo calcular el área de un círculo?

Para determinar el área de un círculo se debe multiplicar el número pi (que aunque es un número infinito se redondea a 3,14) por el radio de la circunferencia elevado al cuadrado, es decir;  \bg_white A = \pi \times r^{2}. El área para un círculo con un radio igual a 2 cm, por ejemplo; se calcularía como A = 3,14\times (2\, cm)^{2}=3,14\times4\, cm^{2} =\mathbf{12,56\, cm^{2}}.

 

Cálculo de áreas en figuras compuestas

Las figuras compuestas se llaman así porque están formadas por dos o más figuras geométricas. Para calcular el área en estas figuras debemos “separar” las figuras geométricas presentes y calcular por separado el área de cada una. El área total de la figura compuesta será igual a la sumatoria de las áreas de las figuras geométricas que la conformen.

– Calcula el área de la siguiente figura compuesta:

Lo primero para resolver es identificar las figuras geométricas presentes, en este caso es un triángulo (figura 1) y un rectángulo (figura 2).

Calculamos las áreas de las figuras por separado.

– Área del triángulo:

La altura es un dato del problema y es 2 cm, la base del triángulo tiene la misma longitud que la base mayor del rectángulo, por lo tanto tiene el mismo valor que es 5 cm. Calculamos el área según la fórmula de área para el triángulo:

A_{1} = \frac{b\times h}{2}=\frac{5\, cm\times 2\, cm}{2}=\frac{10\, cm^{2}}{2} = \mathbf{5\, cm^{2}}

– Área del rectángulo:

Calculamos con la fórmula de área para rectángulos.

A_{2} = b\times h=5\, cm\times 4\, cm = \mathbf{20\, }\mathbf{cm^{2}}

 

El área total es igual a la sumatoria de las áreas de las figuras geométricas calculadas:

A = A_{1}+A_{2}= 5\, cm^{2}+20\, cm^{2} =\mathbf{25\, cm^{2}}

Quiere decir que el área de la figura compuesta es de 25 centímetros cuadrados.

¿Por qué es útil conocer el área?

Conocer la superficie del área tiene múltiples usos desde los cotidianos hasta lo científico. Por ejemplo, gracias al área podemos saber cuánta tela necesita un vestido, o cuántas baldosas son necesarias en la construcción de un piso. También se usa para realizar comparaciones, por ejemplo, con el área podemos comparar países de acuerdo a su tamaño. O, también, podemos estimar la superficie de un planeta de acuerdo a su forma.

Además, el área es un parámetro usado en otras fórmulas más avanzadas como los cálculos de presiones. Por otra parte, las diferentes medidas permiten cuantificar desde áreas de tamaños microscópicos hasta áreas del tamaño de una estrella.

Aunque el Sistema Internacional de Unidades es el más extendido en el mundo, no todos los países emplean el metro cuadrado y sus múltiplos o submúltiplos para hablar de área. Hay países, como Estados Unidos, que emplea la yarda cuadrada (equivalente a 0,863 metros cuadrados), otras unidades usadas son la pulgada cuadrada, el pie cuadrado, la hectárea y el acre.
¡A practicar!

1. Calcular el área de las siguientes figuras:

a)

Solución
A = 6 cm2
b) 
Solución
A = 20 m2
c) 
Solución
A = 18 cm2
d) 
Solución
A = 61,5 mm2
e) 
Solución
A = 79 cm2

2. ¿A cuál de estas figuras corresponde la fórmula de área A = b\times h?

a) 

b) 

c) 

d) 

e) 

Solución
d) Es un romboide.

RECURSOS PARA DOCENTES

Video “Resolución del área”

En este video se explica cómo resolver cálculos de áreas en figuras compuestas y se muestran dos de las fórmulas de área más usadas.

VER

Artículo “Perímetro y área”

Este artículo explica ejercicios de perímetro y áreas. Toma como referencia diferentes unidades de medida y conversiones.

VER

Artículo “Cuerpos redondos. Áreas y volúmenes”

En el presente artículo se explica como realizar cálculos de área en cuerpos redondos, sí como las características de este tipo de figuras.

VER

 

CAPÍTULO 1 / TEMA 1

LECTURA Y CONTEO

LA NECESIDAD DE CONTAR ES CASI TAN ANTIGUA COMO LA EXISTENCIA DE LOS HUMANOS EN LA TIERRA. EL CONTEO Y LOS NÚMEROS SURGIERON POR LA NECESIDAD DEL HOMBRE DE CONTROLAR LA CANTIDAD DE ELEMENTOS QUE ERAN DE SU PROPIEDAD, COMO LOS ALIMENTOS, LOS ANIMALES O LAS TIERRAS.

NO SABEMOS CON EXACTITUD EL ORIGEN DE LOS NÚMEROS, PERO SÍ SABEMOS QUE NO HAN SIDO COMO LOS CONOCEMOS HOY DÍA. CONTAR CUÁNTAS PERSONAS HABÍA EN UNA CUEVA, EXPRESAR A QUÉ DISTANCIA ESTABA EL RÍO O CUÁNTAS FRUTAS SE RECOLECTARON FUERON ALGUNAS DE LAS INQUIETUDES DEL HOMBRE PRIMITIVO Y LA RAZÓN POR LA EMPEZÓ A BUSCAR MÉTODOS PARA EXPRESAR CANTIDADES.

Escritura y lectura de números

NUESTRO SISTEMA DE NUMERACIÓN ES DECIMAL POSICIONAL.

  • ES DECIMAL PORQUE SOLO TIENE DIEZ CIFRAS. CADA CIFRA SE EXPRESA CON UN SÍMBOLO:

0: CERO

1: UNO

2: DOS

3: TRES

4: CUATRO

5: CINCO

6: SEIS

7: SIETE

8: OCHO

9: NUEVE

  • ES POSICIONAL PORQUE CADA CIFRA TIENE UN VALOR DIFERENTE SEGÚN SU POSICIÓN.

POR EJEMPLO, EN EL NÚMERO 111 CADA CIFRA TIENE UNA VALOR DISTINTO. OBSERVA:

  • 1 UNIDAD ES IGUAL A 1 UNIDAD.
  • 1 DECENA ES IGUAL A 10 UNIDADES.
  • 1 CENTENA ES IGUAL A 100 UNIDADES.

 

¿QUÉ ES EL ÁBACO?

EL ÁBACO ES UN INSTRUMENTO DIDÁCTICO ELABORADO EN MADERA QUE SE UTILIZA PARA CONTAR O PARA REALIZAR SUMAS O RESTAS. POR LO GENERAL TIENE DIEZ TIRAS CON ESFERAS DE COLORES QUE SE MUEVEN DE UN LADO A OTRO. VARIAS CULTURAS LO CONSIDERAN UNA HERRAMIENTA DE CÁLCULO UNIVERSAL. ES UN RECURSO MUY DIVERTIDO, ÚTIL Y FÁCIL DE USAR.

¿CÓMO LEER Y ESCRIBIR NÚMEROS DE DOS CIFRAS?

AL TENER EN CUENTA LAS UNIDADES, ES IMPORTANTE COMPRENDER LA COMPOSICIÓN DE LAS DECENAS EXACTAS. ESTAS ESTÁN FORMADAS POR LAS CIFRAS BÁSICAS SEGUIDAS DE UN CERO. SE ESCRIBEN ASÍ:

10: DIEZ

20: VEINTE

30: TREINTA

40: CUARENTA

50: CINCUENTA

60: SESENTA

70: SETENTA

80: OCHENTA

90: NOVENTA

LOS NÚMEROS DEL 0 AL 99

OBSERVA ESTA CUADRÍCULA. LAS UNIDADES ESTÁN CON COLOR ROJO Y LAS DECENAS CON COLOR AZUL.

¿TE ANIMAS A COMPLETARLA?

COMO VES, LAS DECENAS SE MANTIENEN IGUALES Y DE MANERA ORDENADA SE MODIFICA LA UNIDAD.

SI QUEREMOS ESCRIBIR O LEER LOS NÚMEROS DEL 11 AL 19 Y DEL 21 AL 29, ES IMPORTANTE SABER QUE SE NOMBRAN CON UNA SOLA PALABRA. OBSERVA:

11: ONCE

12: DOCE

13: TRECE

14: CATORCE

15: QUINCE

16: DIECISÉIS

17: DIECISIETE

18: DIECIOCHO

19: DIECINUEVE

21: VEINTIUNO

22: VEINTIDÓS

23: VEINTITRÉS

24: VEINTICUATRO

25: VEINTICINCO

26: VEINTISÉIS

27: VEINTISIETE

28: VEINTIOCHO

29: VEINTINUEVE

 

LOS NÚMEROS DEL 31 EN ADELANTE SE NOMBRAN CON TRES PALABRAS, EXCEPTO LAS DECENAS EXACTAS. PARA LEERLOS SIGUE ESTOS PASOS:

  1. LEE EL NOMBRE DE LA DECENA EXACTA SEGUIDA DE LA PALABRA “Y”.
  2. LEE EL NOMBRE DE LA UNIDAD.

 

POR EJEMPLO:

  • ¿CÓMO SE LEE EL NÚMERO 34?

30 SE LEE “TREINTA”.

4 SE LEE “CUATRO”.

POR LO TANTO, EL NÚMERO 34 SE LEE “TREINTA Y CUATRO”.

 

  • ¿CÓMO SE LEE EL NÚMERO 46?

40 SE LEE “CUARENTA”.

6 SE LEE “SEIS”.

POR LO TANTO, EL NÚMERO 46 SE LEE “CUARENTA Y SEIS”.

 

¡A PRACTICAR!

¿CÓMO SE LEEN ESTOS NÚMEROS?

  • 55
SOLUCIÓN

50 SE LEE “CINCUENTA”.

5 SE LEE “CINCO”.

EL NÚMERO 55 SE LEE “CINCUENTA Y CINCO”.

  • 63
SOLUCIÓN

60 SE LEE “SESENTA”.

3 SE LEE “TRES”.

EL NÚMERO 63 SE LEE “SESENTA Y TRES”.

 

NUESTRO SISTEMA NUMÉRICO ESTÁ CONFORMADO POR SOLO DIEZ CIFRAS: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9. CON ESTAS PODEMOS CREAR INFINIDAD DE NÚMEROS. LOS NÚMEROS CON UNA CIFRA SE DENOMINAN UNIDADES; CUANDO TIENEN DOS CIFRAS, A LA PRIMERA DE IZQUIERDA A DERECHA SE LA LLAMA DECENA; Y CUANDO TIENEN TRES CIFRAS, A LA PRIMERA DE IZQUIERDA A DERECHA SE LA LLAMA CENTENA.

¿CÓMO LEER Y ESCRIBIR NÚMEROS DE TRES CIFRAS?

AQUELLOS NÚMEROS CON TRES CIFRAS ESTÁN FORMADOS POR UNIDADES, DECENAS Y CENTENAS. LAS CENTENAS EXACTAS SE COMPONEN DE LAS UNIDADES BÁSICAS SEGUIDAS DE DOS CERO. SE ESCRIBEN ASÍ:

100: CIEN

200: DOSCIENTOS

300: TRESCIENTOS

400: CUATROCIENTOS

500: QUINIENTOS

600: SEISCIENTOS

700: SETECIENTOS

800: OCHOCIENTOS

900: NOVECIENTOS

 

PARA ESCRIBIR Y LEER NÚMEROS DE TRES CIFRAS SE SIGUEN LOS SIGUIENTES PASOS:

  1. LEE EL NOMBRE DE LA CENTENA EXACTA.
  2. LEE EL NOMBRE DE LA DECENA EXACTA SEGUIDA DE LA PALABRA “Y”.
  3. LEE EL NOMBRE DE LA UNIDAD.

 

POR EJEMPLO:

  • ¿CÓMO SE LEE EL NÚMERO 548?

500 SE LEE “QUINIENTOS”.

40 SE LEE “CUARENTA”.

8 SE LEE “OCHO”.

POR LO TANTO, EL NÚMERO 548 SE LEE “QUINIENTOS CUARENTA Y OCHO”.

 

  • ¿CÓMO SE LEE EL NÚMERO 612?

600 SE LEE “SEISCIENTOS”.

12 SE LEE “DOCE”.

POR LO TANTO, 612 SE LEE “SEISCIENTOS DOCE”.

 

¡A PRACTICAR!

¿CÓMO SE LEEN ESTOS NÚMEROS?

  • 768
SOLUCIÓN

700 SE LEE “SETECIENTOS”.

60 SE LEE “SESENTA”.

8 SE LEE “OCHO”.

EL NÚMERO 768 SE LEE “SETECIENTOS SESENTA Y OCHO”.

  • 842
SOLUCIÓN

800 SE LEE “OCHOCIENTOS”.

40 SE LEE “CUARENTA”.

2 SE LEE “DOS”.

EL NÚMERO 842 SE LEE “OCHOCIENTOS CUARENTA Y DOS”.

NÚMEROS PARES

LOS NÚMEROS PARES SON AQUELLOS QUE TERMINAN EN 0, 2, 4, 6 Y 8.

¿QUÉ PASA SI TENEMOS NÚMEROS MÁS GRANDES, COMO POR EJEMPLO UN NÚMERO DE DOS O TRES CIFRAS? EN ESE CASO, SOLO DEBEMOS TENER EN CUENTA LA UNIDAD.

58

EL NÚMERO 58 ES PAR PORQUE TERMINA EN 8.

¿SABIAS QUÉ?
PARA DARTE CUENTA QUÉ NÚMEROS SON PARES TAMBIÉN PUEDES CONTAR DE DOS EN DOS. POR EJEMPLO: 12, 14, 16, 18…

EJEMPLOS:

  • 150

EL NÚMERO 150 ES PAR PORQUE TERMINA EN 0.

  • 476

EL NÚMERO 476 ES PAR PORQUE TERMINA EN 6.

NÚMEROS IMPARES

LOS NÚMEROS IMPARES SON AQUELLOS QUE TERMINAN EN 1, 3, 5, 7 Y 9.

PARA DARNOS CUENTA DE ESTO, SI TENEMOS UN NÚMERO DE DOS CIFRAS, SOLO DEBEMOS CONSIDERAR LA UNIDAD.

65

EL NÚMERO 65 ES IMPAR PORQUE TERMINA EN 5.

 

EJEMPLOS:

  • 261

EL NÚMERO 261 ES UN NÚMERO IMPAR PORQUE TERMINA EN 1.

  • 969

EL NÚMERO 969 ES UN NÚMERO IMPAR PORQUE TERMINA EN 9.

 

LOS NÚMEROS PARES E IMPARES

SI VOLVEMOS A LA CUADRÍCULA, LOS NÚMEROS PARES Y LOS NÚMEROS IMPARES COMPARTEN LA MISMA COLUMNA.

COMO PODRÁS VER, EN LAS COLUMNAS CELESTES ESTÁN LOS NÚMEROS PARES QUE TERMINAN EN 0, 2, 4, 6 Y 8 Y EN LAS COLUMNAS AMARILLAS ESTÁN LOS NÚMEROS IMPARES QUE TERMINAN EN 1, 3, 5, 7 Y 9.

EJERCICIOS

1. PIENSA Y RESPONDE.

  • ¿CUÁLES SON LOS NÚMEROS PARES MAYORES QUE 15 Y MENORES QUE 20?
SOLUCIÓN
16 Y 18.
  • ¿CUÁLES SON LOS NÚMEROS IMPARES MENORES QUE 100 PERO MAYORES QUE 90?
SOLUCIÓN
91, 93, 95, 97 Y 99.
  • ¿CUÁLES SON LOS NÚMEROS PARES MAYORES QUE 580 Y MENORES QUE 585?
SOLUCIÓN
582 Y 584.
  • ¿CUÁLES SON LOS NÚMEROS IMPARES MAYORES QUE 440 Y MENORES QUE 445?
SOLUCIÓN
441 Y 443.

2. ESCRIBE LOS SIGUIENTES NÚMEROS EN LETRA.

  • 17
SOLUCIÓN
DIECISIETE.
  • 19
SOLUCIÓN
DIECINUEVE.
  • 24
SOLUCIÓN
VEINTICUATRO.
  • 41
SOLUCIÓN
CUARENTA Y UNO.
  • 57
SOLUCIÓN
CINCUENTA Y SIETE.
  • 269
SOLUCIÓN
DOSCIENTOS SESENTA Y NUEVE.
  • 577
SOLUCIÓN
SETECIENTOS SETENTA Y SIETE.
  • 782
SOLUCIÓN
SETECIENTOS OCHENTA Y DOS.
  • 998
SOLUCIÓN
NOVECIENTOS NOVENTA Y OCHO.

3. ¿ES UN NÚMERO PAR O IMPAR? COMPLETA.

  • 21 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 45 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 56 ES UN NÚMERO ____.
SOLUCIÓN
PAR
  • 484 ES UN NÚMERO ____.
SOLUCIÓN
PAR
  • 499 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 687 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 225 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 738 ES UN NÚMERO ____.
SOLUCIÓN
PAR
RECURSOS PARA DOCENTES

Artículo destacado “Situaciones problemáticas”

Este artículo ayudará a afianzar el conteo de números y ejercitar con situaciones problemáticas, números ya abordados.

VER

CAPÍTULO 1 / TEMA 1

LECTURA Y REPRESENTACIÓN DE NÚMEROS

Los números son símbolos escritos que reflejan cantidades de objetos reales e imaginarios. Por ejemplo, vemos números en las medidas y posiciones en el orden de llegada de una carrera, en la tabla de puntajes de un juego o en actividades cotidianas, como cuando cambiamos de canal con el control remoto del televisor.

Lectura de números hasta el 10.000

Existen ocasiones en las que usamos números que involucran una, dos, tres o más cifras. Cada una de estas cifras tiene un valor según la posición que tengan dentro del número. De acuerdo a esta posición y a los nombres de cada dígito podremos nombrar números de hasta cinco o más cifras.

Desde hace miles de años, el hombre ha sentido la necesidad de expresar cantidades a partir de sistemas de signos comprensibles por toda su comunidad. Los números arábigos, desarrollados en la India y transmitidos por los árabes, son los diez dígitos del sistema de numeración decimal: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. Con ellos formamos infinidad de números.

Ejemplo:

Si queremos leer el número 542, lo primero que hacemos es ubicar cada cifra en una tabla de valor posicional como esta:

Donde:

U: unidades

D: decenas

C: centenas

Observa que:

  • El 5 está ubicado en la posición de las centenas → 5 x 100 = 500, se lee “quinientos”.
  • El 4 está ubicado en la posición de la decenas → 4 x 10 = 40, se lee “cuarenta”.
  • El 2 está ubicado en la posición de la unidades → 2 x 1 = 2, se lee “dos”.

Por lo tanto, el número 542 se lee: “quinientos cuarenta y dos”.

 

Otro ejemplo:

Para el leer el número 709 realizamos una tabla de valor posicional y ubicamos sus cifras:

Observa que:

  • El 7 está ubicado en la posición de las centenas → 7 x 100 = 700, se lee “setecientos”.
  • El 9 está ubicado en la posición de la unidades → 9 x 1 = 2, se lee “nueve”.

El número 709 se lee: “setecientos nueve”.

¡Atención a los ceros!

¿Qué pasa cuando una posición está ocupada por el cero (0)?

En estos casos no tomamos en cuenta su valor posicional para la lectura del número.

Para leer números mayores a 999 colocamos un punto después de las centenas, es decir, a la izquierda de la tercera cifra. Este punto indica el comienzo de una clase llamada miles.

De este modo, para escribir y leer correctamente el número 2435, primero colocamos un punto al lado izquierdo de la centena. El punto rojo se lee “mil”:

2.435

Luego ubicamos cada cifra en una tabla posicional. Esta vez, añadimos las unidades, decenas y centenas de mil.

Observa que:

  • El 2 está ubicado en la posición de las unidades de mil → 2 x 1.000 = 2.000, se lee “dos mil”.
  • El 4 está ubicado en la posición de la centenas → 4 x 100 = 400, se lee “cuatrocientos”.
  • El 3 está ubicado en la posición de la decenas → 3 x 10 = 30, se lee “treinta”.
  • El 5 está ubicado en la posición de las unidades → 5 x 1 = 5, se lee “cinco”.

El número 2.435 se lee: “dos mil cuatrocientos treinta y cinco”.

 

Ejemplo:

– Lee el número 6.028.

  • El 6 está ubicado en la posición de las unidades de mil → 6 x 1.000 = 6.000, se lee “seis mil”.
  • El 2 está ubicado en la posición de la decenas → 2 x 10 = 20, se lee “veinte”.
  • El 8 está ubicado en la posición de las unidades → 8 x 1 = 8, se lee “ocho”.

El número 6.028 se lee: “seis mil veintiocho”

Representación de cantidades

La cinta métrica o metro es un instrumento de medida que consiste en una cinta flexible graduada. Con ella medimos líneas rectas y superficies curvas. Se utiliza en casa y en la construcción. Tiene marcas divisorias con números que representan los centímetros (cm) y los milímetros (mm). Su largo promedio es de 2 metros.

Para representar cantidades utilizamos 10 dígitos que combinados entre sí forman infinitos números y, como ya sabes, cada dígito cambia su valor según la posición que tenga en el número. Por lo tanto, la misma cifra puede tener distintos valores. Observa:

Esta información es útil si tuviésemos, por ejemplo, que pagar una cuenta y debemos descomponer un número grande. Los billetes y monedas por lo general señalan el valor de una unidad (1), de una decena (10) o de una centena (100). Por ejemplo, si tienes monedas de $ 1 y billetes de $ 10 y $ 100  y debes pagar $ 435, ¿cuántos billetes y monedas tomarías de cada uno?

De la tabla de valor posicional observamos sus valores relativos:

Ahora sabemos que si tomamos 5 monedas de $ 1; 3 billetes de $ 10 y 4 billetes de $ 100, tenemos $ 435. De modo gráfico puedes verlo a continuación:

Podemos concluir que 435 = (4 x 100) + (3 x 10) + (5 x 1)

¡A practicar!

¿Cuántos billetes y monedas de $ 1 , $ 10 y $ 100 necesitarías para formar estas cantidades?

  • 876
Solución

8 billetes de $ 100

7 billetes de $ 10

6 monedas de $ 1

  • 1.000
Solución
10 billetes de $ 100 
  • 611
Solución
6 billetes de $ 100

1 billete de $ 10

1 moneda de $ 1

¿Dónde usamos los números?

  • En los carteles que indican la numeración de las calles. Por ejemplo, calle Maipú del 800 al 900.
  • En los precios de los productos que se compran y venden en la juguetería. Por ejemplo, una muñeca cuesta $ 850, es decir, ochocientos cincuenta pesos.
  • En el número que señala la balanza cuando nos pesamos. Por ejemplo, Juan se pesó en la balanza de la farmacia y su peso fue 65 kilogramos.
  • En el dinero entregado al vendedor cuando se paga el precio de un producto. Por ejemplo, la mamá de Pedro fue a la verdulería y gastó $ 420, entonces le dio al vendedor cuatro billetes de $ 100 y dos billetes de $ 10.
¿Sabías que...?

En el sistema de numeración egipcio se simbolizaban los múltiplos de 10 (1, 10, 100, 1.000, 10.000, 100.000 y 1.000.000) con dibujos denominados ideogramas que representaban conceptos o ideas.

Aproximación por redondeo

Consiste en reducir o aumentar la cantidad del número para acercarlo al número redondo más próximo en la recta númerica. Redondear números te ayudará a manejar mejor los cálculos mentales cuando no necesites una respuesta exacta.

Redondear números permite realizar las cuentas de manera más sencilla y estimar el resultado por medio de números más cercanos y redondos. En la vida cotidiana es muy común redondear cantidades cuando nos faltan monedas o queremos usar pocos billetes para pagar el precio exacto de los productos comprados en los comercios.

Pasos para aproximar un número a la decena más cercana

1. Identifica la cifra que está en la posición de las unidades.

2. Si la cifra que está en la posición de las unidades es menor que cinco (5), no cambies la decena y escribe un cero (0) en el lugar de las unidades.

3. Si la cifra que está ubicada en la posición de las unidades es igual o mayor que cinco (5), aumenta una unidad en la decena y escribe un cero (0) en el lugar de las unidades.

– Redondea el número 343 a su decena más cercana.

Primero identificamos la unidad:

343

Luego, como la unidad es menor que cinco (3 < 5), mantenemos la decena igual y escribimos un cero (0) en el lugar de la unidades:

343 ≈ 340

Por lo tanto, el número 343 es aproximadamente igual a 340.

¿Sabías qué?
El símbolo “≈” se lee “aproximadamente igual a”.

 

– Redondea el número 2.589 a su decena más cercana.

Primero identificamos la unidad.

2.589

Luego, como la unidad es mayor que cinco (9 > 5), aumentamos la decena una unidad y escribimos un cero en el lugar de las unidades.

2.589 ≈ 2.590

Por lo tanto, el número 2.589 es aproximadamente igual a 2.590.

 

Pasos para aproximar un número a la centena más cercana

1. Identifica la cifra que está en la posición de las decenas.

2. Si la cifra que está en la posición de las decenas es menor que cinco (5), no cambies la centena y escribe un cero (0) en el lugar de las decenas y de las unidades.

3. Si la cifra que está ubicada en la posición de las decenas es igual o mayor que cinco (5), aumenta una unidad en la centena y escribe un cero (0) en el lugar de las decenas y de las unidades.

– Redondea el número 9.411 a la centena más cercana

Primero identificamos la decena.

9.411

Luego, como la decena es menor que cinco (1 < 5), no cambiamos la centena y escribimos un cero (0) en el lugar de las decenas y de las unidades:

9.411 ≈ 9.400

Por lo tanto, el número 9.411 es aproximadamente igual a 9.400.

 

– Redondea el número 6.382 a la centena más cercana.

Primero identificamos la decena.

6.382

Luego, como la decena es mayor que cinco (8 > 5), aumentamos la centena una unidad y escribimos un cero en el lugar de las decenas y de las unidades.

6.382 ≈ 6.400

Por lo tanto, el número 6.382 es aproximadamente igual a 6.400.

¡A practicar!

Una familia se va de viaje y cuando llegan al kilómetro 485 hacen una parada para comer en una estación de servicio. Luego siguen su camino. En el kilómetro 495 se detiene el auto por falta de combustible y el padre tiene que salir a buscar gasolina. Él sabe que en el kilómetro 500 también hay una estación de servicio.

¿Hacia dónde le conviene ir si quiere caminar la menor cantidad de kilómetros posible? ¿Hacia la estación de servicio del kilómetro 485 o a la del kilómetro 500?

Solución

Le conviene ir a la estación de servicio del kilómetro 500 porque está a menor distancia que la otra.

Números ordinales

Los números ordinales sirven para representar un orden y se escriben antes de un sustantivo, por ejemplo “tercer grado”, donde la primera palabra es el número ordinal y la segunda es el sustantivo al que se refiere. También se usan en las colecciones de libros, el que tiene el número 1 es el primero, el que tiene el número 2 es el segundo y así sucesivamente.

Los números ordinales nos indican la posición en la que se ubica un elemento en una sucesión o lista. Para representarlos usamos números naturales seguidos por una letra que indica el género (masculino-femenino) del sustantivo al que se refieren. Por ejemplo:

  • El 5.º auto, se lee “el quinto auto”.
  • La 6.ª mesa, se lee “la quinta mesa”.

Estos números sirven para designar los pisos que hay en un edificio e indicar la dirección de vivienda de una persona. Por ejemplo, departamento A del 2º piso:

Estos son los nombres de los números ordinales del 1 al 50:

Número arábigo Número ordinal
1.º/1.ª primero/primera
2.º/2.ª segundo/segunda
3.º/3.ª tercero/tercera
4.º/4.ª cuarto/cuarta
5.º/5.ª quinto/quinta
6.º/6.ª sexto/sexta
7.º/7.ª séptimo/séptima
8.º/8.ª octavo/octava
9.º/9.ª noveno/novena
10.º/10.ª décimo/décima
11.º/11.ª décimo primero/décimo primera
12.º/12.ª décimo segundo/décimo segunda
13.º/13.ª décimo tercero/décimo tercera
14.º/14.ª décimo cuarto/décimo cuarta
15.º/15.ª décimo quinto/décimo quinta
16.º/16.ª décimo sexto/décimo sexta
17.º/17.ª décimo séptimo/décimo séptima
18.º/18.ª décimo octavo/décimo octava
19.º/19.ª décimo noveno/décimo novena
20.º/20.ª vigésimo/vigésima
30.º/30.ª trigésimo/trigésima
40.º/40.ª cuadragésimo/cuadragésima
50.º/50.ª quincuagésimo/quincuagésima

Para escribir números ordinales mayores al 20 primero se escribe el número ordinal del primer valor relativo, luego se escribe el del segundo, por ejemplo:

  • 25.º es igual a “vigésimo quinto”.
  • 42.º es igual a “cuadragésimo segundo”.
¿Sabías qué?

El número ordinal correspondiente al once puede ser nombrado como “décimo primero” o “undécimo”. En el caso del número 12, se lo denomina “décimo segundo” o “duodécimo”.

Números romanos

El reloj de la imagen indica la hora en una circunferencia numerada según el sistema romano. Este sistema de numeración fue inventado en la Antigua Roma y se basaba en la suma y resta de valores representados por letras mayúsculas. A pesar de estar en desuso, se lo puede encontrar en libros, objetos y denominaciones en la actualidad.

Cuando hablamos de números romanos nos referimos a un sistema de numeración que usa letras mayúsculas para representar cantidades. Está compuesto por siete letras y cada una tiene un valor diferente.

¿Para qué se usan los números romanos en la actualidad?

  • Nombrar los siglos históricos: siglo I antes de Cristo o siglo XX.
  • Numerar tomos, capítulos, partes de una obra literaria, actos y escenas de una obra teatral: tomo III, capítulo IV o escena VIII.
  • Nombrar reyes, papas y emperadores: Felipe IV o Juan Pablo II.
  • Denominar congresos, campeonatos y festivales: IV Congreso de la infancia o XIII Muestra de cine independiente.

Reglas para escribir números romanos

– Si a la derecha de una letra se escribe otra igual o de menor valor, sus valores se suman. Ejemplo:

VI = 5 + 1 = 6

XXI = 10 + 10 + 1= 21

LXVII = 50 + 10 + 5 + 1 + 1 = 67

 

– La letra I, colocada a la izquierda de V o X, les resta 1. Ejemplo:

IV = 5 − 1 = 4

IX = 10 − 1 = 9

 

– La letra X, colocada a la izquierda de L o C, les resta 10. Ejemplo:

XC = 100 − 10 = 90

XL = 50 − 10 = 40

 

– La letra C, colocada a la izquierda de D o M, les resta 100. Ejemplo:

CD = 500 − 100 = 400

CM = 1.000 − 100 = 900

 

– No se pueden repetir las letras I, X, C y M más de tres veces seguidas. Ejemplo:

XIII = 10 + 1 + 1 + 1 = 13

XXXIII = 10 + 10 + 10 + 1 + 1 + 1 = 33

MMM = 1.000 + 1.000 + 1.000 = 3.000

 

– Las letras V, L y D no pueden duplicarse, porque otras ya representan su valor. Ejemplo:

X = 10 (2 veces 5)

C = 100 (2 veces 50)

M = 1.000 (2 veces 500)

 

– Una raya encima de una letra o grupo de letras multiplica su valor por mil.

\overline{V} = 5.000

\overline{X} = 10.000

 

VER INFOGRAFÍA

 

Ejercicios

a) Escribe los números en cifras o en palabras, según corresponda.

  • Setecientos cincuenta y dos
Solución
Setecientos cincuenta y dos = 752
  • Mil cien
Solución
Mil cien = 1.100
  • 1.308
Solución
1.308 = mil trescientos ocho
  • 8.444
Solución
8.444 = ocho mil cuatrocientos cuarenta y cuatro
  • 10.000
Solución
10.000 = diez mil

b) Escribe los números ordinales en palabras:

  • 4.ª
Solución
4.ª = cuarta
  • 7.º
Solución
7.º = séptimo
  • 12.º
Solución
12.º = décimo segundo o duodécimo
  • 17.º
Solución
17.º = décimo séptimo
  • 20.ª
Solución
20.ª = vigésima
  • 23.º
Solución
23.º = vigésimo tercero
  • 34.ª
Solución
34.ª = trigésima cuarta
  • 40.º
Solución
40.º = cuadragésimo
  • 46.ª
Solución
46.ª = cuadragésima sexta

c) Descubre los números romanos que están mal representados y escríbelos correctamente.

Número en sistema decimal Número en sistema romano
4 IV
9 VIIII
15 VVV
40 XL
150 CL
1.000 CMC
Solución
  • VIIII no es la representación de 9, porque no se puede repetir la letra I más de tres veces. La escritura correcta es IX.
  • VVV no es la representación de 15, ya que no se puede repetir la letra V más de tres veces. La escritura correcta es XV.
  • CMC no es la representación de 1.000, porque hay un símbolo que tiene exactamente ese valor. La escritura correcta es M.

d) Aproxima por redondeo los siguientes números a la decena.

  • 46
Solución
46 ≈ 50
  • 493
Solución
493 ≈ 490
  • 2.456
Solución
2.456 ≈ 2.460

RECURSOS PARA DOCENTES

Artículo “Sistemas de numeración”

Es una lectura ampliatoria sobre la numeración a lo largo de la historia. Una síntesis que contextualiza y explica el funcionamiento de algunos sistemas de numeración que han sentado las bases de lo que hoy conocemos como aritmética: babilónico, egipcio, chino, griego, romano y decimal.

VER

Artículo “Números grandes”

Artículo que explica cómo leer números grandes sin dificultades, a partir de dos saberes básicos en cuanto a la numeración: leer números de tres cifras y reconocer el valor posicional de cada dígito en un número. Recomendado para enseñar lectura y escritura de números a niños de 3.° grado en adelante.

VER

CAPÍTULO 4 / TEMA 2

CUERPOS GEOMÉTRICOS

Los cuerpos geométricos ocupan un lugar en el espacio y poseen tres dimensiones: alto, largo y ancho. Un ejemplo de esto son los dados, los cuales tienen forma de cubo; o una pelota de fútbol, que tiene forma de esfera. Si miras a tu alrededor, es posible que encuentres diferentes cuerpos geométricos con los que interactúas todos los días.

cuerpos geométricos y sus tipos

Existen dos tipos de cuerpos geométricos: los poliedros y los cuerpos redondos.

Los poliedros tienen todas sus caras planas y no pueden rodar. Entre los poliedros más conocidos encontramos:

VER INFOGRAFÍA

Pirámides de Egipto

Las pirámides de Egipto fueron construidas hace miles de años por el primer arquitecto reconocido en la historia: Imhotep. Estos increíbles monumentos servían como tumba para los faraones y fueron construidos en forma de pirámide cuadrangular porque simbolizan los rayos del Sol. Creían que, de esta manera, el alma de los faraones iría directo al cielo.

Los cuerpos redondos están formados por una cara en forma curva y pueden rodar. Encontramos los siguientes:

¿Sabías qué?

El Sol es la esfera más perfecta que se ha observado hasta el momento. Si esta esfera estuviese, vacía necesitaríamos un millón de planetas Tierra para llenarla.

elementos de los cuerpos geométricos

Los elementos de un cuerpo geométrico son: caras, aristas y vértices.

  • Caras: son figuras planas que rodean el cuerpo geométrico. Las caras de las bases sirven para apoyarse en el plano.
  • Aristas: son las uniones entre dos caras de un cuerpo.
  • Vértices: son los puntos de unión de tres o más aristas.

Atomium

Es una de las construcciones más impresionantes de Bruselas y fue construida para la exposición universal de 1958. Está construido por 9 esferas y su diseño completo tiene forma de cubo. En la esfera más alta los visitantes pueden conocer el restaurante circular y una de las vistas panorámicas más grandiosas de la ciudad. Una de las esferas tiene una exposición con los detalles de su construcción, mientras que otra está dedicada a juegos interactivos para niños.

¡Observa y responde!

  • ¿Qué elementos de la imagen son cuerpos redondos?
    Solución
    La lata de gaseosa, la Tierra y el cono de tránsito.
  • ¿Qué elementos son poliedros?
    Solución
    La caja de cereal, la pirámide y la caja marrón.
  • ¿Cómo se llama el cuerpo geométrico representado por la lata de gaseosa?
    Solución
    Cilindro.
  • ¿Cómo se llama el cuerpo geométrico representado por la caja marrón?
    Solución
    Cubo.
  • ¿Qué forma tiene la base de la pirámide?
    Solución
    Cuadrangular.
  • ¿Cuántas caras, vértices y aristas tiene esta pirámide?
    Solución
    5 caras, 5 vértices y 8 aristas.
  • ¿Qué cuerpo geométrico es la Tierra?
    Solución
    Una esfera.
  • ¿Cuántas caras, vértices y aristas tiene la caja de cereales?
    Solución
    6 caras, 8 vértice y 12 aristas.
  • ¿Qué cuerpo geométrico representa la caja de cereal?
    Solución
    Un prisma cuadrangular.

construcción de cuerpos geométricos

Podemos dibujar figuras planas como el triángulo en una hoja con las herramientas de geometría, pero para construir un cuerpo geométrico necesitamos dibujar con perspectiva, ya que estos cuerpos tienen profundidad. Veremos que los diagramas nos ayudarán a identificar las características que tiene cada cuerpo geométrico.

¿Qué podemos observar en este diagrama? ¿Qué cuerpo geométrico será? Como vemos, está formado por triángulos que son las caras del cuerpo. El triángulo que se encuentra en el medio es la base de la figura y el resto serán las caras laterales. El cuerpo geométrico que cumple con estas características es la pirámide triangular.

¡A practicar!

  1. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Un cono.
  2. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Una pirámide cuadrangular.
  3. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Un cubo.

Relación de los cuerpos geométricos y las figuras planas

Las caras de los cuerpos geométricos están formadas por figuras planas. Si observamos una caja de zapatos con la tapa al frente, notaremos que la figura plana es un rectángulo. ¿Qué pasará con la forma de las caras si la apoyamos en la mesa?

La forma de las caras también son rectángulos, entonces, la caja en forma de prisma con caras rectangulares está relacionada directamente con la figura plana llamada rectángulo.

Pirámide del Louvre

El museo de Louvre en París es uno de los museos más importantes de Francia y en su entrada se encuentra una pirámide de cristal, justo en el patio del palacio y en frente al jardín de las Tullerías. La diseñó Ieoh Ming Pei y tiene las mismas medidas que la pirámide de Keops ubicada en Egipto. Este monumento con forma de pirámide cuadrangular posee todas sus caras triangulares cubiertas por 673 placas de vidrio con formas de triángulos y rombos.

¡Cuenta caras, vértices y aristas!

  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    7 caras, 10 vértices y 15 aristas.
  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    7 caras, 8 vértices y 12 aristas.

  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    8 caras, 12 vértices y 18 aristas.

 

RECURSOS PARA DOCENTES

Artículo “Prismas”

Este recurso le permitirá obtener más información sobre los prismas y sus características.

VER

Artículo “Cuerpos redondos. Áreas y volúmenes.”

Este artículo le permitirá profundizar sobre la manera en que se generan los cuerpos de redondos y las características de los mismos.

VER