La adición es una de las cuatro operaciones básicas que utilizamos de forma habitual y se caracteriza porque nos permite añadir una cantidad a otra. Los términos de la adición son los sumandos y la suma. Para resolver adiciones usamos el algoritmo de la suma que consiste ordenar los sumando de manera que las unidades de mil, las centenas, las decenas y las unidades se encuentren en una misma columna. Si la suma de una columna es un número de dos cifras (mayor a 9), se coloca el valor de la segunda cifra y el valor de la primera se suma al resultado de la siguiente columna a la izquierda. Esta operación cumple varias propiedades como la conmutativa, la asociativa y la del elemento neutro.
SUSTRACCIÓN
La sustracción es una operación matemática que consiste en quitar o restar una cantidad a otra para determinar la diferencia. Esta operación es inversa a la suma y está formada por el minuendo, elsustraendo y la diferencia. El minuendo es la cantidad a la que se le va a restar, el sustraendo es la cantidad que se resta y la diferencia es el resultado de la sustracción. En la sustracciones los números se agrupan en columnas al igual que en la adición. Si el minuendo es mayor al sustraendo restamos de forma convencional. En caso contrario, debemos desagrupar la cifra de la columna siguiente y canjear un valor posicional.
OPERACIONES COMBINADAS
Las operaciones combinadas son aquellas en las que aparecen varias cálculos aritméticos. Para este tipo de problemas resolvemos primero las operaciones que están entre paréntesis y luego resolvemos las operaciones en el orden que aparecen de izquierda a derecha. En caso de que la operación combinada no tenga paréntesis resolvemos de acuerdo al orden que aparecen los términos de izquierda a derecha.
multiplicación
La multiplicación es sumar un mismo números tantas veces como indique otro. Por esta razón, esta operación se encuentra estrechamente relacionada con la adición. De hecho, toda adición iterada (adición que posee todos sus sumandos iguales) puede ser representada a través de la multiplicación. Su elementos principales son los factores y el producto. Los primeros son los números que se multiplican y el segundo corresponde al resultado. Para multiplicaciones de una cifra se ordenan los factores de forma vertical, se multiplica la unidad del segundo factor por la unidad del primero y luego se anota el resultado en la parte inferior, después se multiplica la unidad del segundo factor por la decena del primero y se anota el resultado.
división
La división es una operación matemática que consiste en realizar reparticiones equitativas o formar grupos con la misma cantidad de elementos. Es una operación inversa a la multiplicación y puede considerarse una sustracción sucesiva. Los elementos de la división son el dividendo, el divisor, el cociente y el residuo o resto. El dividendo es la cantidad que se va a repartir, el divisor es la cantidad en la que se va a dividir, el cociente es el resultado y el residuo o resto es la parte que no se puede dividir. Para resolver divisiones buscamos un número que al ser multiplicado por el divisor sea igual o cercano al valor del dividendo.
La adición o suma es una de las operaciones básicas de las matemáticas. La usamos casi todos los días y gracias a ella sabemos cuántos alumnos hay en una escuela, cuántas pelotas hay en la cancha o cuántos libros tenemos. Como verás, sumar números de 4 cifras implica un orden y podemos hacerlo de acuerdo a sus propiedades.
la adición y sus elementos
La adición es una operación que consiste en añadir una cantidad a otra. Los términos de la adición son los sumandos y la suma.
¿CÓMO resolver una adición?
Si un número tiene más de tres cifras conviene usar el algoritmo de la suma. Esto consiste en ordenar los sumandos de tal manera que las unidades, las decenas, las centenas y las unidades de mil están en las mismas columnas. Luego sumamos cada posición desde la derecha. Los pasos son los siguientes:
1. Sumamos las unidades: 8 + 1 = 9.
2. Sumamos las decenas: 7 + 2 = 9.
3. Sumamos las centenas: 4 + 3 = 7.
4. Sumamos las unidades de mil: 3 + 3 = 6.
– Otros ejemplos:
¡Es tu turno!
Realiza esta sumas:
8.605 + 1.382
5.074 + 4.523
1.841 + 7.106
Solución
Equivalencia de interés
1 unidad de mil = 1.000 unidades
1 centena = 100 unidades
1 decena = 10 unidades
1 unidad = 1 unidad
¿Sabías qué?
La operación opuesta a la adición es la sustracción o resta.
¿cómo resolver una adición con llevadas?
Las adiciones o sumas con llevadas las podemos resolver de la misma manera que las adiciones anteriores, la única diferencia es que debemos reagrupar las decenas, centenas o unidades de mil cuando una de las sumas de las posiciones sea superior a 9. Para sumas de números de cuatro cifras los pasos son estos:
1. Sumamos las unidades: 2 + 5 = 7.
2. Sumamos las decenas: 3 + 6 = 9.
3. Sumamos las centenas: 6 + 6 = 12. Como el resultado es mayor a 9 colocamos la unidad (2) en la casilla debajo de la suma de centenas y el 1 lo colocamos en la columna de las unidades de mil.
4. Sumamos las unidades de mil y consideramos el 1 agregado antes: 1 + 2 + 3 = 6.
– Otros ejemplos:
¿Sabías qué?
En una adición o suma podemos hacer llevadas en una o más cifras.
propiedades de la adición
La adición tiene algunas propiedades que la caracterizan. Estas son: la propiedad conmutativa, la propiedadasociativa y el elemento neutro.
Propiedad conmutativa
Al invertir o cambiar de lugar los sumandos el resultado es el mismo, es decir, el orden de los sumandos no altera la suma obtenida.
Propiedad asociativa
Sin importar la agrupación de los términos el resultado será el mismo.
Elemento neutro
La suma de todo número más cero es igual al mismo número, de manera que 0 es el elemento neutro de la suma.
1.568 + 0 = 1.568
¡A practicar!
1. Resuelve las siguientes adiciones:
5.328 + 2.419
Solución
3.686 + 5.607
Solución
4.368 + 5.177
Solución
8.645 + 480
Solución
5.502 + 3.199
Solución
6.098 + 2.174
Solución
2. Resuelve estas adiciones y aplica la propiedad conmutativa:
560 + 199
Solución
560 + 199 = 759
199 + 560 = 759
1.795 + 528
Solución
1.795 + 528 = 2.323
528 + 1.795 = 2.323
237 + 797
Solución
237 + 797 = 1.034
797 + 237 = 1.034
1.300 + 788
Solución
1.300 + 788 = 2.088
788 + 1.300 = 2.088
3. Realiza la siguientes sumas y aplica la propiedad distributiva.
150 + 430 + 670
Solución
(150 + 430) + 670 = 580 + 670 = 1.250
150 + (430 + 670) = 150 + 1.100 = 1.250
720 + 340 + 480
Solución
(720 + 340) + 480 = 1.060 + 480 = 1.540
720 + (340 + 480) = 720 + 820 = 1.540
500 + 200 + 400
Solución
(500 + 200) + 400 = 700 + 400 = 1.100
500 + (200 + 400) = 500 + 600 = 1.100
6.000 + 500 + 1.000
Solución
(6.000 + 500) + 1.000 = 6.500 + 1.000 = 7.500
6.000 + (500 + 1.000) = 6.000 + 1.500 = 7.500
RECURSOS PARA DOCENTES
Artículo “Cómo enseñar a sumar y a restar”
El siguiente material le brindará orientaciones generales para enseñar a sus alumnos a sumar y a restar.
La radicación consiste en la obtención de un número que se ha multiplicado por sí mismo n cantidad de veces bajo el operador de la raíz, por eso también se conoce como “raíz enésima de un número”. De este modo, también podemos decir que la radicación es la operación inversa a la potenciación y, al igual que esta última, presenta propiedades importantes que aprenderás a continuación.
¿Qué es la radicación?
Es una operación que consiste en hallar números que multiplicados por sí mismos tantas veces como indica el índice de la raíz den como resultado al radicando. Puede verse como la operación inversa a la potenciación.
– Ejemplo:
Elementos de una raíz
Toda raíz cuenta con tres elementos:
Índice (n): orden de la raíz que se aplica al radicando. Indica cuántas veces multiplicamos un número por sí mismo para obtener el radicando.
Radicando (a): número sometido a la raíz del orden determinado por el índice.
Raíz (b): resultado de la radicación, el cual elevado al orden de la raíz da como resultado el radicando.
principales propiedades de la radicación
Las propiedades de la radicación tienen una gran cantidad de aplicaciones y, del mismo modo que en la potenciación, no se deben aplicar las propiedades a las operaciones de suma y resta, sino solo a las de multiplicación y división.
Propiedades de la radicación
Raíz de cero
Raíz de la unidad
Raíz de un producto
Raíz de un cociente
Potencia de una raíz
Raíz de una raíz
¿Sabías qué?
La mayoría de los números irracionales pueden ser expresados a partir de una raíz, por ejemplo, o .
raíz cuadrada de números negativos
La raíz cuadrada de números negativos no tiene solución dentro de los números reales () porque no existe un número (positivo o negativo) que al ser multiplicado por sí mismo resulte en otro negativo. Por ejemplo, la raíz cuadrada de 4 es igual a 2 porque 22 es igual a 4.
Pero esta raíz también tiene otra solución negativa:
Recuerda que la regla de los signos indica que al multiplicar símbolos iguales el resultado es positivo.
Ahora, ¿cuál será la raíz cuadrada de −4?
La raíz cuadrada de −4 no existe en los números reales porque no hay un número que al multiplicarse por sí mismo resulte en −4.
Sin embargo, esto no significa que no tenga solución posible, sino que pertenece a otro grupo numérico: los números complejos. Los números complejos incluyen una parte imaginaria que sirve para obtener resultados que no pertenecen a los reales.
Soluciones de una raíz
Siempre que el radicando sea negativo, la raíz tendrá solución real solo si el índice es impar, en cambio, si el índice es par, el resultado pertenecerá a los números imaginarios. Esto se debe a la regla de los signos, pues si multiplicamos por sí mismo un número negativo una cantidad de veces par (2, 4, 6, 8,…) el resultado será igualmente positivo.
aplicación de las propiedades de la radicación
Raíz de cero
Toda raíz cuyo radicando sea cero es igual a cero, siempre y cuando su índice sea diferente de dicho número.
– Ejemplo:
Raíz de la unidad
La raíz de la unidad es igual a uno.
– Ejemplo:
Raíz de un producto
La raíz de un producto es igual al producto de las raíces de los factores.
– Ejemplo:
Raíz de un cociente
La raíz de un cociente es igual al cociente de las raíces del dividendo y del divisor.
– Ejemplo:
Potencia de una raíz
La potencia de una raíz es igual a la misma raíz con el radicando elevado a dicha potencia.
– Ejemplo:
¡Existe otro método!
La potencia de una raíz es igual al radicando elevado al cociente de las potencias.
Raíz de una raíz
La raíz de una raíz es igual otra raíz con el mismo radicando y cuyo índice es igual al producto de los índices.
– Ejemplo:
Números irracionales
Existen números que no se pueden expresar como el cociente de dos enteros. Estos reciben el nombre de número irracionales y las raíces son un ejemplo de ellos. Uno de los números irracionales más famosos es el número pi (π). A lo largo de la historia el valor de pi ha tenido distintas aproximaciones y se lo usa, entre otras cosas, para el cálculo de superficies y volúmenes de circunferencias y esferas.
Suma y resta de radicales
Podemos sumar y restar radicales siempre y cuando estos sean semejantes, es decir, que tengan el mismo índice y el mismo radicando. Cuando esto sucede, solo sumamos o restamos los coeficientes y mantenemos el radical igual.
– Ejemplo:
¡A practicar!
Resuelve estas raíces y aplica las propiedades.
Solución
Solución
Solución
Solución
Solución
Solución
Solución
Solución
Solución
RECURSOS PARA DOCENTES
Artículo “Los números irracionales”
En el artículo podrá encontrar los números irracionales más conocidos y su representación en la recta numérica. Es un buen complemento para afianzar la importancia de la radicación y experimentar sus aplicaciones.
Es posible que identifiques diversas figuras geométricas al observar el mundo que te rodea y los objetos presentes en él. La mayoría de estas figuras están compuestas por semirrectas unidas por un punto en común, es decir, un vértice. Esa porción del plano delimitada por dos semirrectas que nacen de un mismo punto se conoce como ángulo y según su medida puede ser de distintos tipos.
¿qué es un ángulo?
Es una porción del plano delimitada por dos semirrectas, las cuales también son llamadas lados. Ambos lados coinciden en un punto de origen o vértice. La abertura de un lado con respecto al otro es la que denominamos ángulo.
Con una letra griega, por ejemplo α y se lee “ángulo alpha”. En esta imagen vemos un ángulo α = 52,13°.
Con los puntos correspondientes a las semirrectas que lo constituyen y al vértice. Estos puntos se nombran mediante letras, por ejemplo, en la imagen vemos el ángulo AOB.
CLASIFICACIÓN DE LOS ÁNGULOS
Los ángulos se clasificar según tres criterios diferentes: su medida, su posición y la suma de sus medidas con otros ángulos.
¿Sabías qué?
Los ángulos se miden en grados (°).
Ángulos según su medida
Ángulo completo: tiene una amplitud de 360°, significa que es un giro completo.
Ángulo nulo: tiene una amplitud de 0°.
Ángulo llano: tiene una amplitud de 180°, podrás verlo representado como una línea recta.
Ángulo cóncavo: tiene una amplitud mayor que 180° pero menor que 360°.
Ángulo convexo: tiene una amplitud menor que 180°.
Dentro de los ángulos convexos encontramos otras clasificaciones:
Ángulos rectos: miden 90°.
Ángulos obtusos: miden más de 90°.
Ángulos agudos: miden menos de 90°.
Ángulos según su posición
Según su posición los ángulos pueden ser:
Adyacentes: son aquellos que tienen el vértice y un lado en común. Al sumar las amplitudes de cada uno de ellos el resultado será 180°.
Consecutivos: son aquellos que comparten tanto el vértice como uno de sus lados.
Opuestos por el vértice: son aquellos que solo tienen el vértice en común.
Ángulos según la suma de su medida con otros ángulos
Los ángulos también pueden clasificarse según el resultado obtenido al sumar la medida de la amplitud de un ángulo con la de otro ángulo, así sabrás que:
Un ángulo es suplementario con otro si la suma de sus amplitudes da como resultado un ángulo de 180°.
Un ángulo es complementario con otro si la suma de sus amplitudes da como resultado un ángulo de 90°.
MEDICIÓN DE ÁNGULOS
Por lo general, la medición de los ángulos se realiza por medio de un transportador.
¿Qué es un transportador?
Es un instrumento geométrico que puede tener una forma circular o semicircular y se utiliza para medir gráficamente un ángulo así como para construirlo. Cuenta con graduaciones o marcas iguales que sirven de escala para identificar la medida del ángulo. Los transportadores circulares están divididos en 360 partes iguales, mientras que los semicirculares están divididos en 180 partes iguales. Cada una de estas partes representa un grado (1°) .
Para medir un ángulo con transportador seguimos estos pasos:
1. Identificamos el vértice, es decir, el punto del que nacen las semirrectas y hacemos que coincida con el centro del transportador.
2. Verificamos que el cero (0) en el transportador esté justo sobre uno de los lados del ángulo.
3. Observamos el valor que marca el otro lado que pasa por la escala graduada. En este caso, la medida del ángulo â = 165°.
¿Sabías qué?
Los transportadores tienen escalas graduadas dobles: una va en sentido de las manecillas del reloj y las otra en sentido contrario. Siempre debes recordar comenzar a medir a partir del cero.
LOS ÁNGULOS EN LAS FIGURAS GEOMÉTRICAS
Las figuras geométricas planas poseen ángulos interiores, ubicados dentro de la figuras; y ángulos exteriores, ubicados entre un lado de la figura y el otro lado siguiente.
Los ángulos interiores de los triángulos siempre suman 180°. Según sus ángulos los triángulos pueden ser:
Nombre
Figura
Características
Triángulo rectángulo
Tiene un ángulo recto (90°).
Triángulo acutángulo
Tiene todos sus ángulos agudos (menores a 90°).
Triángulo obtusángulo
Tiene un ángulo obtuso (mayores a 90° pero menores a 180°).
Ángulos interiores de los cuadriláteros
En el caso de los cuadriláteros, la suma de sus cuatro ángulos internos siempre es igual a 360°. De acuerdo al tipo de cuadrilátero el valor del ángulo puede variar. Su clasificación es la siguiente:
Nombre
Figura
Característica
Cuadrado
Tiene cuatro ángulos rectos (90°).
Rectángulo
Tiene cuatro ángulos rectos (90°).
Rombo
Tiene ángulos opuestos iguales.
Romboide
Tiene ángulos opuestos iguales.
Trapecio rectángulo
Tiene dos ángulos rectos (90°).
Trapecio isósceles
Los dos ángulos de la base menor son iguales. Los dos ángulos de la base mayor son iguales.
Trapecio escaleno
Todos sus ángulos son diferentes.
¿Sabías qué?
La palabra “geometría” viene de geo que significa “Tierra”, y de metría que significa “medir”.
Ángulos internos de polígonos regulares
Los polígonos regulares son aquellos que tienen todos sus ángulos internos iguales. Para calcular su valor se emplea la ecuación (n − 2) × 180°/n donde n es el número de lados que tiene el polígono. Por ejemplo, para un hexágono se sustituye la n por el número 6 que corresponde al número de sus lados y obtenemos que (6 − 2) × 180°/6 = 120°, lo que quiere decir que cada uno de los ángulos internos de un hexágono mide 120°.
¡A practicar!
1. Observa los ángulos entre estas rectas. Completa la tabla con los ángulos solicitados.
Tipo de ángulo
Nombre del ángulo
Recto
Ángulo α
Agudo
Obtuso
Complementario
Suplementario
Adyacente
Solución
Tipo de ángulo
Nombre del ángulo
Recto
Ángulo α
Agudo
Ángulo β
Obtuso
Ángulo GOC
Complementario
Ángulos BOE y EOC
Suplementario
Ángulos EOG y GOF
Adyacente
Ángulos AOC y COB
2. Calcula los ángulos complementarios y suplementarios para los siguientes ángulos:
β = 50°
Solución
Ángulo complementario = 40° porque 50° + 40° = 90°.
Ángulo suplementario = 130° porque 50° + 130° = 180°.
γ = 15°
Solución
Ángulo complementario = 75° porque 15° + 75° = 90°.
Ángulo suplementario = 165° porque 15° + 165° = 180°.
δ = 75°
Solución
Ángulo complementario = 15° porque 75° + 15 = 90°.
Ángulo suplementario = 105° porque 75° + 105° = 180°.
RECURSOS PARA DOCENTES
Artículo “Ángulos”
En el siguiente artículo encontrarás información sistematizada sobre las diferentes clasificaciones de los ángulos.
Las fracciones son divisiones sin resolver. Están formadas por una raya de fracción que divide al numerador del denominador. El numerador es la parte que tomamos del entero y el denominador indica las partes en las que se divide al entero. Las fracciones pueden ser propias, impropias y aparentes. Las fracciones propias tienen un numerador menor que el denominador; las impropias tienen un numerador mayor que el denominador; y las aparentes son iguales a un entero.
representación de fracciones
Para leer una fracción solo tenemos que leer al numerador como cualquier otro número y al denominador según unas simples reglas: medios si es 2, tercios si es 3, cuartos si es 4, quintos si es 5 y así sucesivamente. A partir de números mayores a diez añadimos el sufijo –avos; como onceavos. Los gráficos de las fracciones se representan por medio de figuras divididas en tantas partes como muestra el denominador y con tantas partes pintadas como señala el numerador.
tipos de fracciones
Dos o más fracciones son homogéneas si comparten el mismo denominador, en cambio, si dos o más fracciones tienen distinto denominador se las llama heterogéneas. También existen las fracciones propias o puras, que son aquellas que tienen un numerador menor que el denominador y siempre son menores a un entero; y las fracciones impropias o impuras, que tienen un numerador mayor que el denominador y son mayores a uno.
operaciones con fracciones homogéneas
Para sumar y restar fracciones homogéneas primero sumamos o restamos los numeradores y mantenemos el mismo denominador. Así como ordenamos números naturales, también lo podemos hacer con las fracciones, para esto usamos los símbolos de relación como > (mayor que) y < (menor que). Por otro lado, existen fracciones con distintos numeradores y denominadores pero que representan la misma cantidad, a estas se las conoce como fracciones equivalentes.
Si la mamá de Carla compró 1/2 kg de naranjas y su papá compró 3/2 kg de naranjas, ¿cuántos kg de naranja hay en total? Esta situación la podemos encontrar a diario en nuestra vida. Para resolverla tenemos que involucrar operaciones básicas como la suma o la resta a números fraccionarios. Las características de cada fracción nos indicarán qué pasos tenemos que seguir.
Recordemos que dos o más fracciones son homogéneas cuando comparten el mismo denominador. Sumar este tipo de fracciones es muy fácil. Primero sumamoslos numeradores, el número resultante será el numerador de la fracción y mantenemosel mismo denominador. Veamos un ejemplo:
– Otros ejemplos:
sustracción de fracciones homogéneas
Del mismo modo que se resuelve la suma de fracciones homogéneas, en la sustracción primero restamos los numeradores y conservamos el mismo denominador. Por ejemplo:
– Otros ejemplos:
fracciones equivalentes
Las fracciones equivalentes son fracciones que tienen distinto numerador y denominador pero representan una misma cantidad. Hay dos métodos para calcular fracciones equivalentes: por amplificación y por simplificación.
Por el método de amplificación multiplicamos el numerador y el denominador por un mismo número.
Por ejemplo, es la fracción equivalente a , porque tanto el numerador como el denominador fueron multiplicados por 3.
Por el método de simplificación dividimos el numerador y el denominador por un mismo número.
Por ejemplo, la fracción es equivalente a porque tanto el numerador como el denominador fueron divididos por 2.
¿Cómo sabemos si dos fracciones son equivalentes?
El cálculo que permite determinar si dos fracciones son iguales es el método de multiplicar cruzado los numeradores y denominadores de ambas fracciones.
Para saber si y son fracciones equivalentes debes seguir estos pasos:
1. Multiplica el numerador de la primera fracción por el denominador de la segunda.
2. Multiplica el numerador de la segunda fracción por el denominador de la primera.
3. Compara los dos resultados. Sin los dos son iguales significa que las dos fracciones son equivalentes.
orden de fracciones
Todos los números tienen un orden y las fracciones no son la excepción. Para establecer ese orden podemos comparar sus elementos y determinar si son mayores, menores o iguales unas con otras. Los símbolos que se usan para compararlas son:
Símbolo
Significado
>
Mayor que
<
Menor que
Cuando las fracciones tienen igual denominador y se quiere saber si una es mayor que la otra solo tenemos que comparar sus numeradores. Una fracción es mayor que otra si tiene el numerador más grande. Por ejemplo:
porque 7 es mayor que 5.
Para determinar si una fracción es menor que otra y sus denominadores son iguales, solo comparamos los numeradores. Veamos un ejemplo:
porque 8 es menor que 13.
problemas
Día a día nos cruzamos con problemas que involucran fracciones y son las diferentes operaciones básicas las que nos permiten resolverlos. Algunas veces nos toca comparar fracciones para saber, por ejemplo, quién comió más chocolate; otras veces cuántas partes de jugo se tomó y cuántas quedan.
Pasos a seguir para resolver problemas con fracciones
Los siguientes pasos también servirán para resolver problemas con números naturales.
Lee atentamente el problema.
Identifica y anota los datos del problema.
Piensa qué pide el problema, ¿qué pregunta hace?
Establece qué operaciones permiten resolver el problema.
Haz los cálculos.
Relee la pregunta del problema para luego contestarla.
1. Carla y María se repartieron una barra de chocolate en 6 partes iguales, Carla comió y María . ¿Quién comió más chocolate?
Datos
Cantidad de chocolate que comió Carla:
Cantidad de chocolate que comió María:
Pregunta
¿Quién comió más chocolate?
Piensa
Para saber quién comió más hay que comparar las dos fracciones. Como son homogéneas solo no fijamos en los numeradores.
Calcula
porque 3 es mayor que 2.
Respuesta
Carla comió más chocolate que María.
2. Pedro tenía en la heladera de litro de jugo de naranja. Si tomó de litro, ¿cuánto jugo le quedó?
Datos
Litros de jugo naranja en la heladera:
Litros de jugo que tomó Pedro:
Pregunta
¿Cuánto jugo le quedó?
Piensa
Hay que restar la cantidad de jugo que tomó Pedro a la cantidad de jugo que había en la heladera.
Calcula
Respuesta
A Pedro le quedaron de litro de jugo de naranja.
3. Si Pedro prepara de litro de jugo y los une con de litro de jugo que le quedaron, ¿cuánto jugo tiene ahora?
Datos
Litros de jugo que preparó Pedro:
Litro de jugo que ya tiene Pedro:
Pregunta
¿Cuánto jugo tiene ahora?
Piensa
Para saber la cantidad total de jugo hay que sumar las dos cantidades.
Calcula
Respuesta
Pedro tiene ahora de litro de jugo de naranja.
¡A practicar!
1. Resuelve las siguientes operaciones.
Solución
Solución
Solución
Solución
2. Ordenar de mayor a menor las siguientes fracciones.
Solución
3. Ordenar de menor a mayor las siguientes fracciones.
Solución
4. Determina si las siguientes fracciones son equivalentes.
y
Solución
Son fracciones equivalentes porque 3 × 15 = 45 y 9 × 5 = 45.
y
Solución
No son fracciones equivalentes porque 2 × 42 = 84 y 10 × 9 = 90.
y
Solución
Son fracciones equivalentes porque 6 × 9 = 54 y 18 × 3 = 54.
5. Marianela se va de vacaciones con su familia. En la primera hora de viaje recorrieron del trayecto y en la segunda hora, del trayecto. ¿Cuánto del trayecto ya recorrieron?
Solución
Recorrieron del trayecto.
6. Marcos tiene de una tarta y le regala a su vecino , ¿cuánto le queda de la tarta?
Solución
Le queda de tarta.
RECURSOS PARA DOCENTES
Artículo “Adición y sustracción de fracciones”
Este recurso permitirá profundizar en el tema de la suma y resta de fracciones.
Hay fracciones que aunque parezcan diferentes representan la misma cantidad. Por ejemplo, si un amigo te ofrece 1/2 de un alfajor y otro te ofrece 2/4 de un alfajor, ¿quién te ofrece más? ¡Ninguno! ¡Los dos ofrecen lo mismo! Este tipo de fracciones son conocidas como fracciones equivalentes y son muy fáciles de distinguir.
¿QUÉ ES UNA FRACCIÓN EQUIVALENTE?
Decimos que dos o más fracciones son equivalentes cuando todas ellas representan a la misma cantidad, es decir, al mismo número. Veamos un ejemplo:
Podemos observar que en ambas fracciones pintamos la misma porción del entero, lo que quiere decir que ambas fracciones representan la misma cantidad. Por lo tanto, decimos que y son fracciones equivalentes, y las podemos escribir así:
¿Hay una sola fracción equivalente?
Cada fracción tiene muchas fracciones equivalentes. Por ejemplo, otra fracción equivalente de es :
Entonces, como las 3 fracciones son equivalentes entre sí, podemos escribir:
¿Cómo saber si dos fracciones son equivalentes?
Dos fracciones son equivalentes si al multiplicar sus términos en forma de cruz el resultado el mismo.
y son fracciones equivalentes porque
y no son equivalentes porque
¡Es tu turno!
¿Estas fracciones son equivalentes?
y
Solución
y son fracciones equivalentes porque
y
Solución
y no son fracciones equivalentes porque
¿cómo CONVERTIR FRACCIONES EQUIVALENTES?
Las fracciones equivalentes se pueden obtener por medio de dos métodos: amplificación y simplificación.
Amplificación de fracciones
Para obtener fracciones equivalentes por amplificación debemos multiplicar al numerador y al denominador de la fracción por un mismo número distinto de cero.
Si al numerador y al denominador de la fracción los multiplicamos por 3, obtenemos y por lo tanto, ambas fracciones son equivalentes.
Así, si multiplicamos al numerador y al denominador por 4, obtenemos otra fracción equivalente: .
Y si multiplicamos por 5, obtenemos otra: .
Podemos escribir las fracciones obtenidas de la siguiente manera:
¡Puedes comprobarlo!
Las fracciones equivalentes, a pesar de tener numeradores y denominadores diferentes, representan una misma cantidad. Puedes corroborar esto si divides el numerador entre el denominador.
Simplificación de fracciones
Para obtener fracciones equivalentes por simplificación debemos dividir al numerador y al denominador de la fracción por un mismo número distinto de cero. Pero en este caso, el número debe ser un divisor común entre el numerador y el denominador. Es decir, tanto el numerador como el denominador se deben poder dividir por el número.
Si al numerador y al denominador de la fracción los dividimos por 3, obtenemos , que es una fracción equivalente.
Los divisores comunes entre 30 y 15 son: 3, 5, 15. Entonces, también podemos simplificar la fracción si dividimos el numerador y denominador por 5, cuyo resultado es .
Y si dividimos por 15, obtenemos , otra fracción equivalente.
Como todas representan la misma cantidad, podemos escribirlas de este modo:
¿Sabías qué?
Cuando una fracción no puede simplificarse se dice que es una fracción irreducible.
APLICACIÓN DE LAS FRACCIONES EQUIVALENTES EN OPERACIONES DE FRACCIONES
Podemos usar las fracciones equivalentes para sumar y restar fracciones heterogéneas (aquellas que tienen distinto denominador). Para estos solo tenemos que convertirlas en fracciones homogéneas, es decir, en fracciones con igual denominador. Luego sumamos o restamos los numeradores y conservamos el denominador.
– Ejemplo:
Los denominadores son 4 y 2. Pero si en la segunda fracción multiplicamos numerador y denominador por 2, obtenemos , que es una fracción equivalente.
Entonces, la suma queda así:
También podemos representar esta fracción final de una manera más simple si encontramos un divisor común. Como 18 y 4 son divisible por 2, su fracción equivalente es .
Por lo tanto:
– Otro ejemplo:
Los denominadores son 5 y 2, así que debemos encontrar el mínimo común múltiplo entre ambos, que es 10. Para llegar de 5 a 10, debemos multiplicar a 5 por 2. Entonces, amplificamos la fracción por 2:
Y para llegar de 2 a 10, debemos multiplicar a 2 por 5. Amplificamos esta fracción por 5:
La resta queda así:
¡A practicar!
1. Indica si estas equivalencias son verdaderas o falsas.
Solución
Falso. Estas fracciones no son equivalentes porque 8 × 44 ≠ 11 × 33.
Solución
Verdadero. Estas fracciones sí son equivalentes porque 1 × 15 = 5 × 3.
Solución
Falso. Estas fracciones no son equivalentes porque 4 × 24 ≠ 12 × 20.
Solución
Falso. Estas fracciones no son equivalentes porque 9 × 30 ≠ 10 × 36.
Solución
Verdadero. Estas fracciones sí son equivalentes porque 7 × 16 = 8 × 14.
Solución
Falso. Estas fracciones no son equivalentes porque 9 × 24 ≠ 6 × 36.
2. Realiza los siguientes cálculos. Utiliza sus fracciones equivalentes:
Solución
Solución
Solución
Solución
RECURSOS PARA DOCENTES
Artículo “Fracciones equivalentes”
En este artículo podrás ahondar en los conceptos de amplificación y simplificación de fracciones, hasta llegar al concepto de fracción irreducible.
En este micrositio, las tarjetas te ayudarán a profundizar en el procedimiento que debe realizarse en las operaciones matemáticas de adición, resta, multiplicación y división de fracciones homogéneas y heterogéneas.
Cada vez que necesitamos hacer una multiplicación del mismo número repetidas veces, recurrimos a la potenciación. Esta operación, así como muchas otras, cumple con ciertas propiedades. ¿Cuál es la manera correcta de aplicarlas?, ¿cuáles son los beneficios? A continuación, aprenderás cuáles son y sus aplicaciones prácticas.
principales propiedades de la potencia
Las propiedades de potenciación tienen una gran cantidad de aplicaciones, pero también tienen ciertas restricciones y es importante conocerlas para no cometer errores en su resolución. Entonces, siempre que apliquemos las propiedades será a las operaciones de multiplicación y división, nunca será a las operaciones de suma y resta.
Enverde están las operaciones a las que aplicaremos las propiedades de potenciación, y en rojo, las operaciones a las que no podremos aplicarlas nunca.
En la siguiente tabla podrás observar las propiedades de la potenciación:
Propiedades de la potenciación
Producto de potencia de igual base
am · an = a(m + n)
Cociente de potencia de igual base
am / an = a(m − n)
Potencia de potencia
(am)n = an · m
Producto de potencias con bases diferentes y exponentes iguales
an · bn = (a · b)n
Cociente de potencias con bases diferentes y exponentes iguales
an / bn = (a / b)n
Exponente negativo
a−n = 1 / an
¿Sabías qué?
Cuando el exponente es negativo, mientras mayor sea su valor más pequeño será el resultado.
Notación científica
La notación científica es una forma de expresar cantidades muy grandes o muy pequeñas que le ha permitido a los científicos simplificar sus cálculos. Es conocida también como notación o patrón exponencial porque emplea potencias de base 10 dentro de su expresión. Las potencias de base 10 son iguales a la unidad seguida de tantos ceros como indique el exponente. Un ejemplo de notación científica lo vemos en las masas de los objetos astronómicos, por ejemplo, la masa de la Luna es de aproximadamente 735 × 1020 kg.
Ejemplos prácticos
Aplicación a la suma y resta
La aplicación de las propiedades corresponde a varias operaciones matemáticas pero no a la suma y la resta. Sin embargo, eso no significa que no pueda aplicarse a ejercicios donde existan muchos términos que se suman o se restan. Cuando esto sucede, se aplican las propiedades solo a los términos por separado.
Producto de una potencia de igual base
Cuando existe una multiplicación entre dos potencias con igual base, el resultado final será la misma base elevada a la suma de los exponente de potencias que se multiplicaron. Por ejemplo:
53 ·52= 5(3 + 2)= 55
42 ·40= 4(2 + 0)= 42
68 · 62 · 63 = 6(8 + 2 + 3) = 613
Cociente de una potencia de igual base
Cuando dividimos dos potencias con igual base el procedimiento es similar al de la multiplicación, con la diferencia de que aquí restamos los exponentes de las potencias. Por ejemplo:
53/ 52= 5(3 − 2)= 51
42/ 40= 4(2 − 0)= 42
Potencia de una potencia
Cuando tenemos una base elevada a un exponente n, y esta a su vez está elevada a otro exponente m, el resultado final lo obtenemos al multiplicar ambos exponentes (n · m). Por ejemplo:
(42)4= 42 · 4= 48
(33)3= 33 · 3= 39
Producto de potencias con bases diferentes y exponentes iguales
Si multiplicamos dos potencias con igual exponente y bases distintas, el resultado será igual a mantener el exponente y solo multiplicar las bases. Por ejemplo:
53· 43= (5 · 4)3
32·22= (3 · 2)2
Cociente de potencias con bases diferentes y exponentes iguales
De igual manera que en el caso anterior, el resultado será el cociente de las bases elevadas al exponente. Por ejemplo:
53/ 43= (5/4)3
32/ 22= (3/2)2
Exponente negativo
Cuando el exponente es negativo, la potencia será igual a la inversa de su base y el mismo exponente con signo positivo. Por ejemplo:
(2)−2= (1/2)2= 1/22= 1/4
(1/2)−1= 2
Potencia de decimales y fracciones
Cuando las bases son decimales o fracciones, las propiedades se mantienen sin distinción. Por ejemplo:
(0,1)2= (0,1) · (0,1) = 0,01
Observa que 0,1 = 1 · 10−1 , y aquí se puede aplicar la propiedad de potencia de potencia.
(0,1)2= (1 · 10(−1))2= 10(−1) · 2= 10−2= 0,01
De la misma manera, si sabemos que 0,1 = 1/10:
(0,1)2= (1/10)2= 1/102= 1/100 = 0,01
Cualquiera sea la expresión que se elija para resolver la operación se debe llegar al mismo resultado.
¡A practicar!
Aplica la propiedad correspondiente en cada caso:
34· 31 · 33
Solución
34 · 31 · 33 = 3(4 + 1 + 3) = 38 = 6.561
62 / 62
Solución
62 / 62 = 6(2 − 2) = 60 = 1
(7−1)−3
Solución
(7−1)−3 = 7(−1) · (−3) = 73 = 343
63· 83
Solución
63 · 83 = (6 · 8)3 = 483 = 110.592
(−1/2)−2
Solución
(−1/2)−2 = (−2)2 = (−2) · (−2) = 4
83 / 43
Solución
83 / 43 = (8/4)3 = 23 = 8
RECURSOS PARA DOCENTES
Artículo “Ejercicios de propiedades de la potencia”
En el artículo podrá reforzar las propiedades de potenciación vistas a partir de ejemplos y ejercicios. También se explica la importancia de la correcta aplicación de las propiedades en cada término al sumar o restar.
En nuestro sistema de numeración utilizamos solo 10 cifras para escribir todos los números, pero cada una de estas cifras puede tener valores distintos según su posición, por ejemplo, en el número 222, el primer 2 de izquierda a derecha vale 200, el segundo 20 y el tercero 2. Esto es lo que llamamos valor posicional y puedes aplicarlo a cualquier número.
¿qué es el Valor posicional?
El valor posicional es el valor que tiene una cifra en un número y depende de su posición o lugar. Estas posiciones se conocen como unidad, decena y centena; y según la clase pueden ser “de miles” o “de millones. Observa estas equivalencias:
1 unidad = 1 U
1 decena = 10 U
1 centena = 100 U
1 unidad de mil = 1.000 U
1 decena de mil = 10.000 U
– Ejemplo 1:
El número 473 tiene tres cifras y cada una ocupa estas posiciones:
– Ejemplo 2:
El número 2.984 tiene 4 cifras y cada una ocupa estas posiciones:
¿Sabías qué?
Los valores posicionales tienen estas abreviaturas: U (unidades), D (decenas), C (centenas), UM (unidades de mil) y DM (decenas de mil).
Tabla posicional
Podemos ubicar todas las cifras de un número en una tabla posicional. Esta nos ayuda a ver con facilidad el valor de cada una de las cifras por medio de columnas identificadas.
Esta es una tabla posicional para números de 6 cifras. Observa que en las columnas de color en azul están las unidades, las decenas y las centenas; mientras que en las columnas de color naranja están las unidades de mil, las decenas de mil y las centenas de mil.
¿cómo representar números en la tabla posicional?
Si queremo ubicar las cifras de un número en la tabla posicional tenemos que empezar por la primera cifra de derecha a izquierda, esa será la unidad. La segunda cifra de derecha a izquierda será la decena, la siguiente la centena y así sucesivamente.
– Ejemplo:
Ubica las cifras del número 7.946 en la tabla posicional.
Como la primera cifra de derecha a izquierda es el 6, colocamos el 6 en la casilla de las unidades. Luego el 4 en la de las decenas, el 9 en las centena y el 7 en las unidades de mil.
¡A practicar!
Ubica estos números en la tabla posicional:
8.104
Solución
582
Solución
1.789
Solución
– Problema 1
En una pastelería se hacen entregas de donas todas las semanas. El transporte de las donas se hace en cajas de 100, cajas de 10 y otras sueltas. Esta semana se pidieron las siguientes cantidades: 318, 173, 486 y 300. Si el encargado prepara los pedidos, ¿cuántas cajas de 100 y de 10 necesita para cada orden? ¿cuántas donas irán sueltas en cada caso?
Primer pedido
El primer pedido es de 318 donas. Lo primero que hacemos es ubicar este número en una tabla posicional.
En la tabla posicional vemos que hay:
3 centenas = 3 veces 100
1 decena = 1 vez 10
8 unidades = 8 veces 1
Hagamos la representación con las cajas y donas:
Por lo tanto, el encargado necesita 3 cajas de 100, 1 caja de 10 y 8 donas sueltas.
Segundo pedido
El segundo pedido es de 163 donas. Ubicamos este número en una tabla posicional.
En la tabla posicional vemos que hay:
1 centenas = 1 vez 100
6 decenas = 6 veces 10
3 unidades = 3 veces 1
Hagamos la representación con las cajas y donas:
Para este pedido el encargado necesita 1 caja de 100, 6 cajas de 10 y 3 donas sueltas.
¡Responde!
¿Cómo preparó el encargado los demás pedidos?
Tercer pedido
Solución
Este pedido es de 245 donas. Ubicamos este número en una tabla posicional.
En la tabla posicional vemos que hay:
2 centenas = 2 veces 100
4 decenas = 4 veces 10
5 unidades = 5 veces 1
Hagamos la representación con las cajas y donas:
Para este pedido el encargado necesita 2 cajas de 100, 4 cajas de 10 y 5 donas sueltas.
Cuarto pedido
Solución
Este pedido es de 300 donas. Ubicamos este número en una tabla posicional.
En la tabla posicional vemos que hay:
3 centenas = 3 veces 100
Hagamos la representación con las cajas y donas:
Para este pedido el encargado necesita 3 cajas de 100.
– Problema 2
En un juego de fichas, cada una de estas figuras indica una cantidad de puntos.
Observa que:
1 cubo azul = 1 unidad
1 barra roja = 1 decena
1 placa verde = 1 centena
1 caja amarilla = 1 unidad de mil
Carla sacó estas fichas, ¿cuántos puntos obtuvo?
Hay 2 cajas amarillas → 2 unidades de mil
Hay 1 placa verde → 1 centena
Hay 3 barras rojas → 3 decenas
Hay 8 cubos azules → 8 unidades
En una tabla posicional colocamos cada cifra según el valor que tenga.
Carla obtuvo 2.138 puntos.
Pedro sacó estas fichas, ¿cuántos puntos obtuvo?
Hay 5 cajas amarillas → 5 unidades de mil
Hay 0 placa verde → 0 centena
Hay 2 barras rojas → 2 decenas
Hay 3 cubos azules → 3 unidades
En una tabla posicional colocamos cada cifra según el valor que tenga.
Pedro obtuvo 5.023 puntos.
¿Sabías qué?
Hubo dos civilizaciones antiguas que usaron el principio de posición y representaron la ausencia de unidades mediante el cero: los babilonios y los mayas.
Descomposición aditiva de un número
La descomposición aditiva consiste en expresar un número como una suma de dos o más números. Para esta descomposición consideramos los valores posicionales.
Por ejemplo, el número 3.456 se coloca de esta manera en una tabla posicional:
En la tabla vemos que hay:
3 unidades de mil = 3 veces 1.000 = 3.000
4 centenas = 4 veces 100 = 400
5 decenas = 5 veces 10 = 50
6 unidades = 6 veces 1 = 6
Por lo tanto, podemos decir que el número 3.456 es igual a la suma de todos sus valores posicionales. Observa:
3.456 = 3.000 + 400 + 50 + 6
¡A practicar!
Escribe la descomposición aditiva de los siguientes números:
7.342
Solución
Valores posicionales
7 unidades de mil = 7 veces 1.000 = 7.000
3 centenas = 3 veces 100 = 300
4 decenas = 4 veces 10 = 40
2 unidades = 2 veces 1 = 2
Descomposición aditiva
7.342 = 7.000 + 300 + 40 + 2
9.716
Solución
Valores posicionales
9 unidades de mil = 9 veces 1.000 = 9.000
7 centenas = 7 veces 100 = 700
1 decena = 1 vez 10 = 10
6 unidades = 6 veces 1 = 6
Descomposición aditiva
9.716 = 9.000 = 700 + 10 + 6
8.053
Solución
Valores posicionales
8 unidades de mil = 8 veces 1.000 = 8.000
5 decenas = 5 veces 10 = 50
3 unidades = 3 veces 1 = 3
Descomposición aditiva
8.053 = 8.000 + 50 + 3
¿Sabías qué?
Cuando el valor de una cifra es cero (0) no se escribe en la descomposición.
¡Hora de practicar!
1. Escribe el valor posicional de los dígitos en color rojo.
216
Solución
Unidad.
1.971
Solución
Centena.
7.031
Solución
Centena.
532
Solución
Decena.
828
Solución
Unidad.
6.220
Solución
Decena.
9.483
Solución
Unidad de mil.
2. Une la descomposición con el numero correspondiente.
Solución
RECURSOS PARA DOCENTES
Artículo “Composición y descomposición de números”
Este artículo explica cómo realizar composiciones y descomposiciones aditivas que ayudarán al alumno a realizar cálculos mentales con números naturales.
La adición y la sustracción son dos operaciones muy usadas en la cotidianidad. La primera consiste en combinar o agrupar números; y la segunda, en cambio, consiste en quitar números a un grupo. Saber los valores posicionales de cada cifra nos ayudan a hacer sumas y restas con números grandes por reagrupación de sus unidades, decenas y centenas.
ADICIÓN POR REAGRUPACIÓN
La adición es una operación básica en la que combinamos dos o más números para obtener una cantidad final o total. El símbolo empleado para hacer esta operación es “+“.
Toda adición consta de dos partes:
Sumandos: son los números que vamos a sumar.
Suma: es el resultado de la suma.
La adición por reagrupación es un método que consiste en agrupar las unidades, decenas y centenas del número. Para sumar dos números como 12.468 y 147.314, los pasos son los siguientes:
1. Ubica los sumandos uno arriba del otro de tal manera que los valores posicionales estén en una misma columna, es decir, unidades con unidades, decenas con decenas, centenas con centenas, y así sucesivamente.
2. Suma cada columna a partir de las unidades. Escribe en la parte inferior de la columna el resultado. Si el resultado de la suma en una columna es de dos cifras, coloca el número de la unidad de dicho número en la parte inferior y la decena la sumanos a la columna siguiente.
Propiedades de la adición
Propiedad conmutativa
Esta propiedad indica que el orden de los números no afecta el resultado de la suma.
– Ejemplo:
12.046 + 71 = 71 + 12.046
Observa que sin importar la ubicación de los sumandos, el resultado es el mismo.
¡Hay otra solución!
Podemos representar la propiedad conmutativa de otra manera. Para la suma anterior es así:
Propiedad asociativa
Esta propiedad indica que la forma en la que agrupemos los sumandos no afecta el resultado.
– Ejemplo:
(856.127 + 12.713) + 82.311 = 951.151
Primero resolvemos la suma que está dentro de los paréntesis y al final sumamos 82.311.
856.127 + (12.713 + 82.311) = 951.151
Primero resolvemos las sumas que están dentro de los paréntesis y al final sumamos 856.127.
En ambas ocasiones el resultado es el mismo sin importar la manera en la que se agruparon.
¡Hay otra solución!
Podemos representar la propiedad asociativa de otra manera. Para la suma anterior es así:
Elemento neutro
Esta propiedad indica que si a cualquier número le sumamos cero el resultado será el mismo número.
– Ejemplo:
148.583 + 0 = 148.583
Ábaco: una herramienta para contar
El ábaco es una herramienta o instrumento que se utiliza para realizar cálculos manuales a través de contadores o marcadores que representan ciertas cantidades. Es uno de los objetos más antiguos utilizados por el hombre para realizar sus operaciones matemáticas y quizás el de mayor distribución a nivel mundial.
sustracción por reagrupación
La sustracción, al igual que la adición, es una operación básica. Es considerada una operación opuesta a la adición, ya que consiste en quitar una cantidad a otra. Se representa con el símbolo “−“.
Las partes de esta operación son:
Minuendo: es el número al cual le quitamos una cantidad.
Sustraendo: es el número que resta al minuendo.
Diferencia: es el resultado de la operación.
La sustracción por reagrupación es un método que consiste en agrupar las unidades, decenas y centenas del número. Para restar dos números como 549.763 y 95.126, los pasos son los siguientes:
1. Ubica el minuendo sobre el sustraendo y verifica que los valores posicionales de cada cifra coincidan en la misma columna.
2. Comienza a restar desde la columna de las unidades, de derecha a izquierda. Cuando en una columna una cifra del minuendo es menor que la del sustraendo, esta toma una decena del minuendo de la izquierda. En estos casos, el minuendo que prestó una decena se reduce y debemos considerar el valor de la nueva cifra.
¿Sabías qué?
En la sustracción no existen las mismas propiedades que en la adición.
Propiedades de la sustracción
Elemento neutro
Si a un número se le resta 0, el resultado es el mismo número.
– Ejemplo:
245.630 − 0 = 245.630
Elemento simétrico
Si dos números iguales se restan, el resultado siempre es 0.
– Ejemplo:
983.124 − 983.124 = 0
Problemas de adición y sustracción
Para resolver problemas matemáticos debemos seguir una serie de pasos. Observa estos ejemplos:
1. Juan tenía en el banco $ 132.798 y le pagaron por la venta de su vehículo $ 369.000. ¿Cuánto dinero tiene Juan ahora?
Datos
Dinero en el banco: $ 132.798
Pago por el vehículo: $ 369.000
Pregunta
¿Cuánto dinero tiene Juan ahora?
Piensa
Para saber la cantidad total de dinero que Juan tiene ahora debemos sumar el dinero que tenía en el banco y el dinero que le pagaron.
Calcula
Solución
Juan tiene $ 501.798 en el banco.
2. Gabriel jugaba un videojuego. En un día obtuvo 412.312 puntos en el primer partido, 469.142 puntos en el segundo partido y 111.222 en el tercero. ¿Cuántos puntos obtuvo en total ese día?
Datos
Puntos en el primer partido: 412.312
Puntos en el segundo partido: 469.142
Puntos en el tercer partido: 111.222
Pregunta
¿Cuántos puntos obtuvo en total?
Piensa
Para hallar la cantidad total de puntos solo debemos sumar todos los puntos que obtuve en los tres partidos. Según la propiedad asociativa, no importa cómo se agrupen los números, el resultado siempre será el mismo.
Calcula
Solución
Gabriel obtuvo 992.676 puntos ese día en el videojuego.
3. Carla y Pedro tomaban fotografías en el parque. Carla tomó 2.546 fotografía y Pedro tomó 620 fotografía menos que ella. ¿Cuántas fotografía tomaron los dos?
Datos
Fotografía tomadas por Carla: 2.546
Fotografía tomadas por Pedro: 620 menos que Carla
Pregunta
¿Cuántas fotografía tomaron los dos?
Piensa
Hay que hallar las fotos que tomó Pedro. Para esto restamos 620 a la cantidad de fotos que tomó Carla.
Para saber el total de fotos tomadas entre los dos solo debemos sumar la cantidad de foto que tomaron ambos.
Calcula
1. Fotos tomadas por Pedro:
2. Fotos tomadas por los dos:
Solución
Carla y Pedro tomaron 4.472 fotografías.
¡A practicar!
Resuelve las siguientes operaciones:
18.654 + 987 =
Solución
18.654 + 987 = 19.641
546.821 + 12.547 =
Solución
546.821 + 12.547 = 559.368
452.365 − 0 =
Solución
452.365 − 0 = 452.365
89.546 + 6.547 + 3.245 =
Solución
89.546 + 6.547 + 3.245 = 99.338
81.974 − 9.634 =
Solución
81.974 − 9.634 = 72.340
15.689 − 15.689 =
Solución
15.689 − 15.689 = 0
35.785 + 54.753 + 56.852 =
Solución
35.785 + 54.753 + 56.852 =147.390
258.369 + 0 =
Solución
258.369 + 0 = 258.369
RECURSOS PARA DOCENTES
Artículo “Operaciones básicas de los número naturales y sus propiedades”
Este artículo explica las propiedades de las operaciones básicas con los números naturales, lo que te permitirá ampliar el tema.