CAPÍTULO 3 / TEMA 2

MASA

Para determinar la masa de un cuerpo u objeto podemos utilizar distintas unidades de medida, la más conocida es el kilogramo. Gracias a esta unidad sabemos la masa de nuestro cuerpo y decimos qué tan pesados somos, o qué cantidad de ingredientes debemos utilizar para una receta. 

La masa es una propiedad que nos permite determinar la cantidad de materia que posee un cuerpo, esto podemos saberlo con exactitud si usamos una balanza. Las unidades principales para medir la masa son el kilogramo (kg) y el gramo (g).

El gramo y sus múltiplos

La masa es la cantidad de materia que contiene un cuerpo. Esta propiedad nos permite determinar el peso de cualquier persona, objeto, sustancia o material. Por ejemplo, cuando vamos al supermercado podemos pesar la cantidad productos que queremos comprar, como bananos, tomates y naranjas; también podemos determinar nuestro propio peso e incluso podemos saber cuánto pesa algo tan pequeño como un grano de arroz.

Las unidades principales para medir la masa son el gramo (g) y el kilogramo (kg).

El kilogramo lo empleamos para determinar la masa de cuerpos pesados o grandes, mientras que el gramo lo empleamos para determinar la masa de cuerpos livianos o pequeños. Así, si queremos conocer la masa de una sandía usamos el kilogramo y si queremos conocer la masa de una nuez usamos el gramo.

 

El kilogramo lo empleamos para determinar la masa de cuerpos pesados o grandes, mientras que el gramo lo empleamos para determinar la masa de cuerpos livianos o pequeños. La balanza es una herramienta de medición que nos permite conocer exactamente la masa de cualquier cuerpo, se usa de forma habitual en supermercados, fábricas y restaurantes.

Representamos el gramo con la letra g y sus múltiplos son el kilogramo (kg), el hectogramo (hg) y el decagramo (dag). Las equivalencias son las siguientes:

  • 1 kilogramo (kg) = 1.000 gramo (g)
  • 1 hectogramo (hg) = 100 gramos (g)
  • 1 decagramo (dag) = 10 gramos (g)

Unidad apropiada de acuerdo al tamaño del cuerpo

Además de lo múltiplos, el gramo tiene submúltiplos, es decir, unidades que nos permiten saber la masa de objetos muy pequeños. Estos son el decigramo (dg), el centigramo (cg) y el miligramo (mg). Sus equivalencias son las siguientes:

  • 1 decigramo (dg) = 0,1 gramos (g)
  • 1 centigramo (cg) = 0,01 gramos (g)
  • 1 miligramo (mg) = 0,001 gramos (g)

Veamos algunos ejemplos:

 

Por lo general, algunos productos del supermercado están en empaques de 1 kilogramo, pero también los hay de 1/2 kilogramo o 1/4 de kilogramo. Observa estos ejemplos:

– Dos empaques de 1/2 kilogramo de arroz son iguales a un empaque de 1 kilogramo de arroz.

– Cuatro empaques de 1/4 de kilogramo de arroz son iguales a 1 kilogramo de arroz.

 

Del mismo modo puede verlo aquí:

¡Es tu turno!

1. ¿Cuántos kilogramos de arroz podemos formar con cuatro empaques de ½ kilogramo?

Solución
2 kilogramos.

2. ¿Cuántos ¼ de kilogramo de arroz necesitamos para formar ½ kilogramo de arroz?

Solución
Dos ¼ de kilogramo.

Origen del kilogramo

El kilogramo es la única unidad básica que se ha definido por un objeto: una barra de aleación de platino e iridio fabricada en 1879. En 1889, el prototipo fue ratificado como la masa estándar del kilogramo en la primera Conferencia General de Pesas y Medidas y en la actualidad está ubicado en Sèvres, Francia. En 2019, la barra prototipo dejó de ser el patrón de referencia del kilogramo.

conversiones

Si queremos comparar la masa de una roca y una nuez, pero una está en kilogramos y la otra en gramos, lo primero que debemos hacer es convertir las unidades. De esta manera las dos tendrán la misma unidad y podremos hacer la comparación.

Con este esquema podrás convertir gramos a sus múltiplos y viceversa:

Para convertir unidades de masa existen dos métodos:

  • El primero consiste en mover a la derecha o a la izquierda la coma del número tantos lugares como casillas sean necesarias para llegar a la unidad deseada.
  • El segundo consiste en multiplicar o dividir por diez tantas veces como casillas se necesiten para llegar a la unidad deseada.

Ejemplo:

– Convierte 5,82 kg a g.

Primer método

Dibuja el cuadro y mueve tantos lugares a la derecha de los kilogramos como sean necesarios hasta llegar a la posición de los gramos.

Como nos desplazamos tres lugares a la derecha, movemos la coma del número tres lugares a la derecha.

Observa que después de dos (2) agregamos un cero y al lado la coma.

Entonces, 5,82 kg son equivalentes a 5.820 g.

 

Segundo método

Multiplica tres veces seguidas por diez (10).

Observa que tres veces diez (10) es igual a 10 x 10 x 10 = 1.000. Así que puedes multiplicar de forma directa:

5,82 x 1.000 = 5.820

El resultado será el mismo, 5,82 kg son equivalentes a 5.820 g.

Otro ejemplo:

– Convierte 953 g a kg.

Primer método

Dibuja el cuadro y mueve tantos lugares a la izquierda de los gramos como sean necesarios hasta llegar a la posición de los kilogramos.

Como nos desplazamos tres lugares a la izquierda, movemos la coma tres lugares a la izquierda.

Entonces, 953 g son equivalentes a 0,953 kg.

 

Segundo método

Divide tres veces seguidas por diez (10).

Observa que tres veces diez (10) es igual a 10 x 10 x 10 = 1.000. Así que puedes multiplicar de forma directa:

953 ÷ 1.000 = 0,953

El resultado será el mismo, 953 g son equivalentes a 0,953 kg.



¡A practicar!

Convierte las unidades:

  • 8 kg a g.
Solución
8.000 g.
  • 58 dag a g.
Solución
580 g.
  • 150 g a hg.
Solución
1,5 hg.

 

¿Sabías qué?

Muchos sistemas de medición estuvieron basados en el uso de las partes del cuerpo humano.

comparación de masas

Podemos comparar las masas de objetos por medio de expresiones como “mayor que”, “menor que” o “igual a”.

Todos los días comparamos la masa de los objetos por medio de la observación y consideramos su tamaño . Por ejemplo:

  • ¿Cuál vehículo tiene mayor masa?

  • ¿Cuál fruta tiene menor masa?

 

Aunque el tamaño de un objeto puede darnos una señal de su masa, no siempre indicará si es o no pesado, así que no podemos saber la masa de un cuerpo solo por observación. Para determinar la masa de un cuerpo con exactitud necesitamos un instrumento como la báscula o la balanza.

Por ejemplo:

  • ¿Cuál de los niños es más pesado?

Para comparar estas masa, lo primero que debemos hacer es convertir una de ellas para tener unidades iguales. En este caso, vamos a convertir los gramos a kilogramos. Como ya sabemos, solo debemos dividir por diez (10) tres veces seguidas o dividir directamente por 1.000.

Vemos que 24.000 g son equivalentes a 24 kg.

Ahora sí podemos compararlas y determinar cuál de las cantidades es la mayor.

Como 30 es mayor que 24 (30 > 24), decimos que Miguel es más pesado que Patricia.

Masa y peso: ¿son lo mismo?

No. La masa es la cantidad de materia que posee un cuerpo, en cambio, el peso es la fuerza que ejerce la gravedad sobre un cuerpo de determinada masa. Si una persona tiene una masa de 75 kg en la Tierra, también la tendrá en la Luna, pero su peso será distinto, ya que la aceleración de la gravedad es diferente.

¡A practicar!

  1. ¿Cuál animal tiene mayor masa?

Solución
El elefante tiene mayor masa.

2. ¿Cuál de los objetos tiene mayor masa?

Solución
1.500 gramos son equivalentes a 1,5 kilogramos, y como 1,5 es menor que 3 (1,5 < 3), decimos que el objeto A tiene mayor masa.

balanza analógica

Aunque suelen confundirse los términos “balanza” y “báscula” no son lo mismo. Ambos instrumentos se usan para medir masa, pero la báscula mide la fuerza ejercida por un objeto fijado a la fuerza de gravedad, en cambio, la balanza mide la masa de un objeto por comparación con otra ya conocida.

La balanza es un instrumento usado para pesar, operación en la que se determina la masa de un cuerpo por medio de la comparación de su masa con la de otro cuerpo con masa definida. Las balanzas son muy comunes en los laboratorios y supermercados. Sus tipos son muy variados.

VER INFOGRAFÍA

Las balanzas analógicas se caracterizan por no utilizar ningún componente electrónico y están provistas de una escala en kilogramos o en gramos. En este tipo de balanzas el peso será la cifra que indique la aguja. Observa esta:

 

 

La balanza de la imagen tiene una capacidad máxima de medida de 7 kilogramos, cada uno de los espacios grandes con números representan a los kilogramos, entre ellos hay espacios con líneas de tamaño mediano que representan 0,5 kg y espacios pequeños sin números que representan a los decimales de la balanza, cada espacio tiene un valor de 0,1 kg.

Ejemplo:

– ¿Cuánto pesa la sandía?

La aguja está después del 3 pero antes del 4, entonces son 3 kilogramos. Los decimales están a cinco espacios pequeños después del 3, cada espacio representa 0,1 kg. Entonces:

5 x 0,1 kg = 0,5 kg

Al final, sumamos los kilogramos con los decimales:

      3 kg + 0,5 kg = 3,5 kg

Por lo tanto, la sandía pesa 3,5 kilogramos.

 

¡A practicar!

¿Cuánto pesan las nueces?

RESPUESTAS
Las nueces pesan 1,2 kg.

problemas de masa

1. Fabián tiene dos cachorros, uno se llama Brando y el otro Manchas, Fabián quiere saber cuál de los dos cachorros es el más pesado, Brando pesa 2,5 kilogramos y Manchas pesa 2.800 gramos.

Solución

Primero convertimos los gramos a kilogramos. Para esto dividimos  2.800 entre 1.000:

2.800 ÷ 1.000 = 2,8

Como 2,8 es mayor que 2,5 (2,8 > 2,5) decimos que Mancha es más pesada que Brando.

 

2. Ana compró dos tartas, una de vainilla que pesa 2,3 kilogramos y una de chocolate que pesa 1.850 gramos. ¿Cuál de las dos tartas es más pesada?

Solución

Primero convertimos los gramos a kilogramos. Para esto dividimos 1.850 entre 1.000:

1.850 ÷ 1.000 = 1,85

Como 1,85 es menor que 2,3 (1,85 < 2,3) decimos que la torta de chocolate es menos pesada que la de vainilla.

 

3. Un albañil lleva una carretilla con 20 kilogramos de arena, si descarga 2.000 gramos en la obra ¿Cuántos kilos quedan en la carretilla?

Solución

Primero convertimos los gramos a kilogramos. Para esto dividimos 2.000 entre 1.000:

2.000 ÷ 1.000 = 2

Se descargaron 2 kilogramos.

Para saber la masa de arena que quedó debemos hacer una resta:

20 kg − 2 kg = 18 kg

Por lo tanto, quedaron 18 kilogramos de arena en la carretilla.

 

4. Mariana quiere hacer un pastel de chocolate, la receta le indica que debe utilizar 0,6 kg de harina y 0,14 kg de cacao, pero su balanza solo pesa en gramos, ¿cuáles son las conversiones que debe hacer Mariana para poder pesar los ingredientes en su balanza?

Solución

Primero convertimos los kilogramos a gramos. Para esto multiplicamos la masa deseada de harina y cacao por 1.000.

0,6 x 1.000 = 600

0,14 x 1.000 = 140

Mariana debe pesar 600 gramos de harina y 140 gramos de cacao.

RECURSOS PARA DOCENTES

Unidades de medida

El siguiente material le permitirá trabajar con sus alumnos las unidades de medida: longitud, peso, capacidad y tiempo.

VER

CAPÍTULO 3 / TEMA 6 (REVISIÓN)

Fracciones | ¿Qué aprendimos?

¿Qué son las fracciones?

Una fracción está formada por dos términos principales: el numerador y el denominador. Estos son números enteros que están separados por una línea horizontal denominada raya divisoria o raya fraccionaria. Una fracción es la división de un entero o una unidad en partes iguales. El numerador indica las partes a considerar de esa división y el denominador indica las partes en las que se dividió el entero o unidad. Estos números son más antiguos que lo que se piensa y están relacionados con la división.

Las fracciones están presentes en la vida cotidiana, sobre todo en las mediciones usadas en la cocina, pero también están presentes en algunas monedas.

Fracciones diversas

De acuerdo a la relación que exista entre el numerador y el denominador, las fracciones pueden ser propiasimpropias. Las fracciones propias son aquellas en las que el numerador es menor que el denominador, contrario a las fracciones impropias, en las que el numerador es mayor que el denominador. Por otro lado, si comparamos dos o más fracciones, estas pueden ser homogéneas o heterogéneas. Las fracciones homogéneas son las que poseen el mismo denominador, las heterogéneas, en cambio, presentan diferentes denominadores.

Las fracciones pueden expresarse en forma de gráfica o viceversa. Lo emocionante de ellas es que las usamos a diario para dividir cosas o cantidades.

Gráficas de fracciones

Las fracciones suelen expresarse en gráficos para interpretar de manera más sencilla los datos. La forma para representar estos gráficos dependen del tipo de fracción. Si la fracción es propia elegimos cualquier figura, la dividimos en partes iguales según el denominador y señalamos las partes que indique el numerador. Cuando se trata de una fracción impropia dividimos una figura geométrica en las partes que señale el denominador, pero debido a que en este tipo de fracción el numerador es mayor que el denominador, serán necesarias más de una figuras.

Los números mixtos son un tipo de número fraccionario que posee una parte entera y otra fraccionaria.

Orden de fracción

Las fracciones presentan un sentido de orden, es decir, hay fracciones que son mayores o menores que otras. Una herramienta muy útil para reconocer este orden es la recta numérica. Se trata de un gráfico en forma de línea horizontal en el que los números están ordenados de menor a mayor. Para ubicar fracciones propias en la recta numérica dividimos la unidad en segmentos iguales según indique el denominador y la fracción se ubicaría en el número de segmento indicado por el numerador. Las fracciones impropias, por su parte, deben ser transformadas en números mixtos.

En la recta numérica, si se toma un número como referencia, los números de su izquierda son menores a él y los de la derecha mayores.

Problemas con fracciones

Las fracciones, además de ayudarnos a resolver problemas que impliquen proporciones, nos permiten resolver las operaciones básicas matemáticas como la adición, la sustracción, la multiplicación y al división. En el caso de la adición y la sustracción de fracciones debemos tener en cuenta su tipo: si las fracciones son homogéneas sumamos o restamos los numeradores y colocamos el denominador, si son heterogéneas usamos el método de cruz para resolverlas. Las multiplicaciones se resuelven de forma lineal, al multiplicar los numeradores y los denominadores.

La adición y sustracción de fracciones heterogéneas suele realizarse por el método en cruz que permite calcular de manera directa fracciones equivalentes.

CAPÍTULO 4 / TEMA 3

elementos geométricos

Para dibujar elementos geométricos en una hoja de papel podemos inspirarnos en elementos que vemos a nuestro alrededor. Por ejemplo, un clavo en la pared, la senda peatonal o el cable de luz que atraviesa nuestra calle.

El plano, el punto y la recta son algunos de los elementos geométricos con los que podemos dibujar figuras. Cada una de ellas tienen dimensiones distintas: el plano tiene dos, la recta tiene una y el punto no tiene. Sobre un plano podemos trazar rectas, y estas rectas no son más que una sucesión de puntos. ¡Intenta hacer rectas en una hoja de papel!

El punto

El punto sirve para indicar una posición y se nombra con una letra mayúscula.

¿Sabías qué?
El matemático griego Euclides fue el primero en dar una definición del punto en geometría.

la recta

La recta es una sucesión infinita de puntos orientada en una misma dirección. No tiene principio ni final y la longitud es su única dimensión. Con dos puntos podemos trazar una recta y la nombramos con una letra minúscula.

Según la posición que tomen las rectas en un plano estas pueden ser paralelas o secantes. También existen las coincidentes que se representan una sobre otra.

Dos rectas son paralelas cuando no se cortan en ningún punto por más que intentemos extenderlas.

Dos rectas son secantes cuando se cortan en un punto y pueden ser perpendiculares u oblicuas. Las rectas perpendiculares son aquellas que al cortarse en un punto forman cuatro ángulos rectos, mientras que las rectas oblicuas son aquellas que al cortarse en un punto no forman ángulos rectos.

Veremos un ejemplo para entender más cómo se cortan las rectas. El siguiente esquema representa las calles de una ciudad, cada una lleva un nombre para poder identificarlas.

  • Francia y Neuquén son calles paralelas, observa que nunca se cortan.
  • Italia y España son perpendiculares. Notarás que las rectas se cortan en forma de cruz, lo que formará cuatro ángulos rectos.
  • Peña y Quiroga son oblicuas porque al cruzarse no forman ángulos rectos.

¡A practicar!

  1. ¿Cómo son las calles Roca y Neuquén?
    Solución
    Son perpendiculares.
  2. ¿Como son las calles Italia y Quiroga?
    Solución
    Son oblicuas.
  3. ¿Cómo son las calles Peña y Roca?
    Solución
    Son paralelas.
  4. ¿Peña y Francia son calles paralelas?
    Solución
    No. Son perpendiculares.
  5. Si extendemos más la calle Roca hasta que se cruce con Quiroga, ¿estas calles serán oblicuas?
    Solución
    Sí.
  6. ¿Italia y Francia son paralelas?
    Solución
    Sí, nunca se cortan.
  7. ¿España y Peña son perpendiculares?
    Solución
    No. Son paralelas.
  8. ¿Neuquén y Quiroga pueden ser calles oblicuas?
    Solución
    Sí, al extender las dos calles demostramos que se cortan.

El rayo

El rayo, también conocido como semirrecta, tiene un punto de origen pero no tiene fin, se extiende hacia el infinito.

el segmento

El segmento es la distancia que existe entre dos puntos de una recta, esto quiere decir que tiene un origen y un final. Además expresa gráficamente una medida.

Podemos marcar infinitos segmentos en una recta. Observa este ejemplo y anota los segmentos:

Desde el punto A al D hay tres segmentos: AB, AC y AD. Desde el punto B al D hay dos segmentos: BC y BD y por último nos queda el segmento CD. Por lo tanto, en la recta hay 6 segmentos.

¡A practicar!

  1. En la recta k, ¿cuántos segmentos hay?
    Solución
    Hay 3 segmentos.
  2. ¿Qué segmentos se forman en la recta k?
    Solución
    AB, AC y BC.
  3. En la recta s, ¿cuántos segmentos hay?
    Solución
    Hay 3 segmentos.
  4. ¿Qué segmentos se forman en la recta s?
    Solución
    FC, FG y CG.
  5. ¿En todas las rectas se forman la misma cantidad de segmentos?
    Solución
    Sí.
  6. ¿Qué segmentos se forman en la recta t?
    Solución
    DE, DB y BE.
  7. ¿Cuántos segmentos se forman en total?
    Solución
    9 segmentos.

elementos geométricos en la vida cotidiana

La geometría forma parte de nuestras vidas, a donde miremos hay figuras y cuerpos geométricos e incluso puntos que marcan donde estamos o dónde queremos ir. Las rectas pueden estar representadas por las calles de la ciudad, los cables de energía eléctrica, hasta el rayo o semirrecta se forma si un auto viaja desde un punto de inicio, por ejemplo una estación de servicio en línea recta. Los segmentos los podemos encontrar en los barrotes de una reja, todo lo que nos rodea puede convertirse en un elemento geométrico.

Las rectas pueden estar representadas por las calles de la ciudad, los cables de energía eléctrica, hasta el rayo o semirrecta se forma si un auto viaja desde un punto de inicio, por ejemplo una estación de servicio en línea recta. Los segmentos los podemos encontrar en los barrotes de una reja o en los rieles de un tren.

Al estilo de Mondrian

Para el pintor Piet Mondrian el arte era representado a través de líneas rectas y colores primarios, creía que mostraba el orden armonioso del universo. Si observamos esta imagen al estilo de las pinturas de Mondrian, las líneas rectas se convierten en rectas que al cortarse unas con otras obtenemos segmentos. Algunas de las rectas que se forman son paralelas y otras perpendiculares.

Actividades

Observa la siguiente imagen y responde.

  1. ¿Cuáles de las siguientes rectas son paralelas?
    Solución
    Las rectas a, b, c y d son paralelas entre sí.
  2. ¿Cuáles de las siguientes rectas son perpendiculares?
    Solución
    La recta “e” es perpendicular con a, b, c y d.
  3. ¿Cuáles de las siguientes rectas son oblicuas?
    Solución
    La recta f es oblicua con a, b y c.
  4. Si extendemos la recta f, ¿las recta d y e también son oblicuas con ella?
    Solución
    Sí.
RECURSOS PARA DOCENTES

Artículo “Rectas”

El siguiente recurso le permitirá profundizar la información brindada sobre las rectas.

VER

CAPÍTULO 5 / TEMA 3

Área

El área mide la extensión de una superficie, por eso permite saber información importante de las cosas, como el tamaño de un país o la cantidad de baldosas que se necesitan en el piso de una casa. De acuerdo al tipo de figura, el área puede calcularse a través de fórmulas o mediante la descomposición de las figuras en otras más sencillas.

Cálculo de áreas en figuras planas

El área es la superficie o extensión comprendida en una figura. En el caso de las figuras planas, para calcular su área es necesario reconocer cada figura, porque su cálculo es diferente en cada caso.

Triángulos

En los triángulos se cumple que su área es igual a la base por la altura y el resultado se divide entre dos:

A=\frac{b\times h}{2}

– Calcula el área del siguiente triángulo:

A=\frac{3 \, cm \times 4\, cm}{2} = \frac{12 \, cm^{2}}{2}=\mathbf{6\, cm^{2}}

Es importante tener en cuenta que al multiplicar dos unidades de longitud (en este caso centímetros) escribimos el producto al cuadrado; es decir, colocamos el exponente “2” arriba de la unidad de medida, por eso se escribe cm2, y se lee “centímetros cuadrados”.

El área y las unidades al cuadrado

En el Sistema Internacional de Unidades el área siempre se expresa en unidades de longitud elevadas al cuadrado, esto se debe a que el área es la medida de una superficie. Un área de 15 cm2 quiere decir que esa superficie está cubierta por 15 cuadrados que miden 1 cm en cada uno de sus lados. Otras unidades de área comunes son: mm2 (milímetros cuadrados), m2 (metro cuadrado) y km2 (kilómetro cuadrado).

VER INFOGRAFÍA

Cuadrados

El área de un cuadrado es igual a la multiplicación de dos de sus lados. Como los lados de un cuadrado son todos iguales, la fórmula también se puede expresar como la medida de un lado al cuadrado.

A = l\times l =l^{2}

– Calcula el área del siguiente cuadrado

A= 3\, m\times 3\,m = \mathbf{9\, m^{2}}

Es un cuadrado de nueve metros cuadrados de área.

Rectángulos y romboides

El área de los rectángulos y romboides es igual al producto de su base por su altura.

A=b\times h

 

 

– Calcula el área del siguiente rectángulo:

A=10\, mm\times 5\, mm =\mathbf{50\, mm^{2}}

Rombos

El área de un rombo es igual al producto de su diagonal mayor (D) y su diagonal menor (d) dividido entre 2.

A=\frac{D\times d}{2}

– Calcula el área del siguiente rombo:

A = \frac{9\, cm\times 5\, cm}{2}=\frac{45\, cm^{2}}{2}=\mathbf{22,5\, cm^{2}}

El área del rombo es de 22,5 centímetros cuadrados.

Trapecios

En el caso de los trapecios el área es igual a la suma de su base mayor y su base menor, el resultado se divide entre 2 y luego se multiplica por la altura.

A = \frac{B+ b}{2}\times h

– Calcula el área del siguiente trapecio:

\small A= \frac{9\, mm+ 15\, mm}{2}\times 4\, mm=\frac{24\, mm}{2}\times 4\, mm=12\, mm\times 4\, mm = \mathbf{48\, mm^{2}}

El trapecio tiene un área de 48 milímetros cuadrados.

Polígonos regulares

Los polígonos regulares son figuras geométricas donde todos sus lados miden lo mismo. En todos los polígonos regulares se cumple que:

A= \frac{N\times L\times ap}{2}

Donde:

N = número de lados del polígono regular.

L = longitud de uno de los lados.

ap = longitud de la apotema.

¿Sabías qué?
La apotema es la menor distancia que existe entre el centro de un polígono y cualquiera de sus lados.

– Calcula el área del siguiente polígono regular:

A=\frac{6\times 4\, cm\times 3,4\, cm}{2}=\frac{24\, cm\times 3,4\, cm}{2}= \frac{81,6\, cm^{2}}{2}=\mathbf{40,8\, \mathbf{cm^{2}}}

Observa que en este caso como el polígono regular tiene seis lados (hexágono) se coloca el número 6. El área de este hexágono es de 40,8 centímetros cuadrados.

¿Cómo calcular el área de un círculo?

Para determinar el área de un círculo se debe multiplicar el número pi (que aunque es un número infinito se redondea a 3,14) por el radio de la circunferencia elevado al cuadrado, es decir;  \bg_white A = \pi \times r^{2}. El área para un círculo con un radio igual a 2 cm, por ejemplo; se calcularía como A = 3,14\times (2\, cm)^{2}=3,14\times4\, cm^{2} =\mathbf{12,56\, cm^{2}}.

 

Cálculo de áreas en figuras compuestas

Las figuras compuestas se llaman así porque están formadas por dos o más figuras geométricas. Para calcular el área en estas figuras debemos “separar” las figuras geométricas presentes y calcular por separado el área de cada una. El área total de la figura compuesta será igual a la sumatoria de las áreas de las figuras geométricas que la conformen.

– Calcula el área de la siguiente figura compuesta:

Lo primero para resolver es identificar las figuras geométricas presentes, en este caso es un triángulo (figura 1) y un rectángulo (figura 2).

Calculamos las áreas de las figuras por separado.

– Área del triángulo:

La altura es un dato del problema y es 2 cm, la base del triángulo tiene la misma longitud que la base mayor del rectángulo, por lo tanto tiene el mismo valor que es 5 cm. Calculamos el área según la fórmula de área para el triángulo:

A_{1} = \frac{b\times h}{2}=\frac{5\, cm\times 2\, cm}{2}=\frac{10\, cm^{2}}{2} = \mathbf{5\, cm^{2}}

– Área del rectángulo:

Calculamos con la fórmula de área para rectángulos.

A_{2} = b\times h=5\, cm\times 4\, cm = \mathbf{20\, }\mathbf{cm^{2}}

 

El área total es igual a la sumatoria de las áreas de las figuras geométricas calculadas:

A = A_{1}+A_{2}= 5\, cm^{2}+20\, cm^{2} =\mathbf{25\, cm^{2}}

Quiere decir que el área de la figura compuesta es de 25 centímetros cuadrados.

¿Por qué es útil conocer el área?

Conocer la superficie del área tiene múltiples usos desde los cotidianos hasta lo científico. Por ejemplo, gracias al área podemos saber cuánta tela necesita un vestido, o cuántas baldosas son necesarias en la construcción de un piso. También se usa para realizar comparaciones, por ejemplo, con el área podemos comparar países de acuerdo a su tamaño. O, también, podemos estimar la superficie de un planeta de acuerdo a su forma.

Además, el área es un parámetro usado en otras fórmulas más avanzadas como los cálculos de presiones. Por otra parte, las diferentes medidas permiten cuantificar desde áreas de tamaños microscópicos hasta áreas del tamaño de una estrella.

Aunque el Sistema Internacional de Unidades es el más extendido en el mundo, no todos los países emplean el metro cuadrado y sus múltiplos o submúltiplos para hablar de área. Hay países, como Estados Unidos, que emplea la yarda cuadrada (equivalente a 0,863 metros cuadrados), otras unidades usadas son la pulgada cuadrada, el pie cuadrado, la hectárea y el acre.
¡A practicar!

1. Calcular el área de las siguientes figuras:

a)

Solución
A = 6 cm2
b) 
Solución
A = 20 m2
c) 
Solución
A = 18 cm2
d) 
Solución
A = 61,5 mm2
e) 
Solución
A = 79 cm2

2. ¿A cuál de estas figuras corresponde la fórmula de área A = b\times h?

a) 

b) 

c) 

d) 

e) 

Solución
d) Es un romboide.

RECURSOS PARA DOCENTES

Video “Resolución del área”

En este video se explica cómo resolver cálculos de áreas en figuras compuestas y se muestran dos de las fórmulas de área más usadas.

VER

Artículo “Perímetro y área”

Este artículo explica ejercicios de perímetro y áreas. Toma como referencia diferentes unidades de medida y conversiones.

VER

Artículo “Cuerpos redondos. Áreas y volúmenes”

En el presente artículo se explica como realizar cálculos de área en cuerpos redondos, sí como las características de este tipo de figuras.

VER

 

CAPÍTULO 1 / TEMA 1

LECTURA Y CONTEO

LA NECESIDAD DE CONTAR ES CASI TAN ANTIGUA COMO LA EXISTENCIA DE LOS HUMANOS EN LA TIERRA. EL CONTEO Y LOS NÚMEROS SURGIERON POR LA NECESIDAD DEL HOMBRE DE CONTROLAR LA CANTIDAD DE ELEMENTOS QUE ERAN DE SU PROPIEDAD, COMO LOS ALIMENTOS, LOS ANIMALES O LAS TIERRAS.

NO SABEMOS CON EXACTITUD EL ORIGEN DE LOS NÚMEROS, PERO SÍ SABEMOS QUE NO HAN SIDO COMO LOS CONOCEMOS HOY DÍA. CONTAR CUÁNTAS PERSONAS HABÍA EN UNA CUEVA, EXPRESAR A QUÉ DISTANCIA ESTABA EL RÍO O CUÁNTAS FRUTAS SE RECOLECTARON FUERON ALGUNAS DE LAS INQUIETUDES DEL HOMBRE PRIMITIVO Y LA RAZÓN POR LA EMPEZÓ A BUSCAR MÉTODOS PARA EXPRESAR CANTIDADES.

Escritura y lectura de números

NUESTRO SISTEMA DE NUMERACIÓN ES DECIMAL POSICIONAL.

  • ES DECIMAL PORQUE SOLO TIENE DIEZ CIFRAS. CADA CIFRA SE EXPRESA CON UN SÍMBOLO:

0: CERO

1: UNO

2: DOS

3: TRES

4: CUATRO

5: CINCO

6: SEIS

7: SIETE

8: OCHO

9: NUEVE

  • ES POSICIONAL PORQUE CADA CIFRA TIENE UN VALOR DIFERENTE SEGÚN SU POSICIÓN.

POR EJEMPLO, EN EL NÚMERO 111 CADA CIFRA TIENE UNA VALOR DISTINTO. OBSERVA:

  • 1 UNIDAD ES IGUAL A 1 UNIDAD.
  • 1 DECENA ES IGUAL A 10 UNIDADES.
  • 1 CENTENA ES IGUAL A 100 UNIDADES.

 

¿QUÉ ES EL ÁBACO?

EL ÁBACO ES UN INSTRUMENTO DIDÁCTICO ELABORADO EN MADERA QUE SE UTILIZA PARA CONTAR O PARA REALIZAR SUMAS O RESTAS. POR LO GENERAL TIENE DIEZ TIRAS CON ESFERAS DE COLORES QUE SE MUEVEN DE UN LADO A OTRO. VARIAS CULTURAS LO CONSIDERAN UNA HERRAMIENTA DE CÁLCULO UNIVERSAL. ES UN RECURSO MUY DIVERTIDO, ÚTIL Y FÁCIL DE USAR.

¿CÓMO LEER Y ESCRIBIR NÚMEROS DE DOS CIFRAS?

AL TENER EN CUENTA LAS UNIDADES, ES IMPORTANTE COMPRENDER LA COMPOSICIÓN DE LAS DECENAS EXACTAS. ESTAS ESTÁN FORMADAS POR LAS CIFRAS BÁSICAS SEGUIDAS DE UN CERO. SE ESCRIBEN ASÍ:

10: DIEZ

20: VEINTE

30: TREINTA

40: CUARENTA

50: CINCUENTA

60: SESENTA

70: SETENTA

80: OCHENTA

90: NOVENTA

LOS NÚMEROS DEL 0 AL 99

OBSERVA ESTA CUADRÍCULA. LAS UNIDADES ESTÁN CON COLOR ROJO Y LAS DECENAS CON COLOR AZUL.

¿TE ANIMAS A COMPLETARLA?

COMO VES, LAS DECENAS SE MANTIENEN IGUALES Y DE MANERA ORDENADA SE MODIFICA LA UNIDAD.

SI QUEREMOS ESCRIBIR O LEER LOS NÚMEROS DEL 11 AL 19 Y DEL 21 AL 29, ES IMPORTANTE SABER QUE SE NOMBRAN CON UNA SOLA PALABRA. OBSERVA:

11: ONCE

12: DOCE

13: TRECE

14: CATORCE

15: QUINCE

16: DIECISÉIS

17: DIECISIETE

18: DIECIOCHO

19: DIECINUEVE

21: VEINTIUNO

22: VEINTIDÓS

23: VEINTITRÉS

24: VEINTICUATRO

25: VEINTICINCO

26: VEINTISÉIS

27: VEINTISIETE

28: VEINTIOCHO

29: VEINTINUEVE

 

LOS NÚMEROS DEL 31 EN ADELANTE SE NOMBRAN CON TRES PALABRAS, EXCEPTO LAS DECENAS EXACTAS. PARA LEERLOS SIGUE ESTOS PASOS:

  1. LEE EL NOMBRE DE LA DECENA EXACTA SEGUIDA DE LA PALABRA “Y”.
  2. LEE EL NOMBRE DE LA UNIDAD.

 

POR EJEMPLO:

  • ¿CÓMO SE LEE EL NÚMERO 34?

30 SE LEE “TREINTA”.

4 SE LEE “CUATRO”.

POR LO TANTO, EL NÚMERO 34 SE LEE “TREINTA Y CUATRO”.

 

  • ¿CÓMO SE LEE EL NÚMERO 46?

40 SE LEE “CUARENTA”.

6 SE LEE “SEIS”.

POR LO TANTO, EL NÚMERO 46 SE LEE “CUARENTA Y SEIS”.

 

¡A PRACTICAR!

¿CÓMO SE LEEN ESTOS NÚMEROS?

  • 55
SOLUCIÓN

50 SE LEE “CINCUENTA”.

5 SE LEE “CINCO”.

EL NÚMERO 55 SE LEE “CINCUENTA Y CINCO”.

  • 63
SOLUCIÓN

60 SE LEE “SESENTA”.

3 SE LEE “TRES”.

EL NÚMERO 63 SE LEE “SESENTA Y TRES”.

 

NUESTRO SISTEMA NUMÉRICO ESTÁ CONFORMADO POR SOLO DIEZ CIFRAS: 0, 1, 2, 3, 4, 5, 6, 7, 8 Y 9. CON ESTAS PODEMOS CREAR INFINIDAD DE NÚMEROS. LOS NÚMEROS CON UNA CIFRA SE DENOMINAN UNIDADES; CUANDO TIENEN DOS CIFRAS, A LA PRIMERA DE IZQUIERDA A DERECHA SE LA LLAMA DECENA; Y CUANDO TIENEN TRES CIFRAS, A LA PRIMERA DE IZQUIERDA A DERECHA SE LA LLAMA CENTENA.

¿CÓMO LEER Y ESCRIBIR NÚMEROS DE TRES CIFRAS?

AQUELLOS NÚMEROS CON TRES CIFRAS ESTÁN FORMADOS POR UNIDADES, DECENAS Y CENTENAS. LAS CENTENAS EXACTAS SE COMPONEN DE LAS UNIDADES BÁSICAS SEGUIDAS DE DOS CERO. SE ESCRIBEN ASÍ:

100: CIEN

200: DOSCIENTOS

300: TRESCIENTOS

400: CUATROCIENTOS

500: QUINIENTOS

600: SEISCIENTOS

700: SETECIENTOS

800: OCHOCIENTOS

900: NOVECIENTOS

 

PARA ESCRIBIR Y LEER NÚMEROS DE TRES CIFRAS SE SIGUEN LOS SIGUIENTES PASOS:

  1. LEE EL NOMBRE DE LA CENTENA EXACTA.
  2. LEE EL NOMBRE DE LA DECENA EXACTA SEGUIDA DE LA PALABRA “Y”.
  3. LEE EL NOMBRE DE LA UNIDAD.

 

POR EJEMPLO:

  • ¿CÓMO SE LEE EL NÚMERO 548?

500 SE LEE “QUINIENTOS”.

40 SE LEE “CUARENTA”.

8 SE LEE “OCHO”.

POR LO TANTO, EL NÚMERO 548 SE LEE “QUINIENTOS CUARENTA Y OCHO”.

 

  • ¿CÓMO SE LEE EL NÚMERO 612?

600 SE LEE “SEISCIENTOS”.

12 SE LEE “DOCE”.

POR LO TANTO, 612 SE LEE “SEISCIENTOS DOCE”.

 

¡A PRACTICAR!

¿CÓMO SE LEEN ESTOS NÚMEROS?

  • 768
SOLUCIÓN

700 SE LEE “SETECIENTOS”.

60 SE LEE “SESENTA”.

8 SE LEE “OCHO”.

EL NÚMERO 768 SE LEE “SETECIENTOS SESENTA Y OCHO”.

  • 842
SOLUCIÓN

800 SE LEE “OCHOCIENTOS”.

40 SE LEE “CUARENTA”.

2 SE LEE “DOS”.

EL NÚMERO 842 SE LEE “OCHOCIENTOS CUARENTA Y DOS”.

NÚMEROS PARES

LOS NÚMEROS PARES SON AQUELLOS QUE TERMINAN EN 0, 2, 4, 6 Y 8.

¿QUÉ PASA SI TENEMOS NÚMEROS MÁS GRANDES, COMO POR EJEMPLO UN NÚMERO DE DOS O TRES CIFRAS? EN ESE CASO, SOLO DEBEMOS TENER EN CUENTA LA UNIDAD.

58

EL NÚMERO 58 ES PAR PORQUE TERMINA EN 8.

¿SABIAS QUÉ?
PARA DARTE CUENTA QUÉ NÚMEROS SON PARES TAMBIÉN PUEDES CONTAR DE DOS EN DOS. POR EJEMPLO: 12, 14, 16, 18…

EJEMPLOS:

  • 150

EL NÚMERO 150 ES PAR PORQUE TERMINA EN 0.

  • 476

EL NÚMERO 476 ES PAR PORQUE TERMINA EN 6.

NÚMEROS IMPARES

LOS NÚMEROS IMPARES SON AQUELLOS QUE TERMINAN EN 1, 3, 5, 7 Y 9.

PARA DARNOS CUENTA DE ESTO, SI TENEMOS UN NÚMERO DE DOS CIFRAS, SOLO DEBEMOS CONSIDERAR LA UNIDAD.

65

EL NÚMERO 65 ES IMPAR PORQUE TERMINA EN 5.

 

EJEMPLOS:

  • 261

EL NÚMERO 261 ES UN NÚMERO IMPAR PORQUE TERMINA EN 1.

  • 969

EL NÚMERO 969 ES UN NÚMERO IMPAR PORQUE TERMINA EN 9.

 

LOS NÚMEROS PARES E IMPARES

SI VOLVEMOS A LA CUADRÍCULA, LOS NÚMEROS PARES Y LOS NÚMEROS IMPARES COMPARTEN LA MISMA COLUMNA.

COMO PODRÁS VER, EN LAS COLUMNAS CELESTES ESTÁN LOS NÚMEROS PARES QUE TERMINAN EN 0, 2, 4, 6 Y 8 Y EN LAS COLUMNAS AMARILLAS ESTÁN LOS NÚMEROS IMPARES QUE TERMINAN EN 1, 3, 5, 7 Y 9.

EJERCICIOS

1. PIENSA Y RESPONDE.

  • ¿CUÁLES SON LOS NÚMEROS PARES MAYORES QUE 15 Y MENORES QUE 20?
SOLUCIÓN
16 Y 18.
  • ¿CUÁLES SON LOS NÚMEROS IMPARES MENORES QUE 100 PERO MAYORES QUE 90?
SOLUCIÓN
91, 93, 95, 97 Y 99.
  • ¿CUÁLES SON LOS NÚMEROS PARES MAYORES QUE 580 Y MENORES QUE 585?
SOLUCIÓN
582 Y 584.
  • ¿CUÁLES SON LOS NÚMEROS IMPARES MAYORES QUE 440 Y MENORES QUE 445?
SOLUCIÓN
441 Y 443.

2. ESCRIBE LOS SIGUIENTES NÚMEROS EN LETRA.

  • 17
SOLUCIÓN
DIECISIETE.
  • 19
SOLUCIÓN
DIECINUEVE.
  • 24
SOLUCIÓN
VEINTICUATRO.
  • 41
SOLUCIÓN
CUARENTA Y UNO.
  • 57
SOLUCIÓN
CINCUENTA Y SIETE.
  • 269
SOLUCIÓN
DOSCIENTOS SESENTA Y NUEVE.
  • 577
SOLUCIÓN
SETECIENTOS SETENTA Y SIETE.
  • 782
SOLUCIÓN
SETECIENTOS OCHENTA Y DOS.
  • 998
SOLUCIÓN
NOVECIENTOS NOVENTA Y OCHO.

3. ¿ES UN NÚMERO PAR O IMPAR? COMPLETA.

  • 21 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 45 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 56 ES UN NÚMERO ____.
SOLUCIÓN
PAR
  • 484 ES UN NÚMERO ____.
SOLUCIÓN
PAR
  • 499 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 687 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 225 ES UN NÚMERO ____.
SOLUCIÓN
IMPAR
  • 738 ES UN NÚMERO ____.
SOLUCIÓN
PAR
RECURSOS PARA DOCENTES

Artículo destacado “Situaciones problemáticas”

Este artículo ayudará a afianzar el conteo de números y ejercitar con situaciones problemáticas, números ya abordados.

VER

CAPÍTULO 1 / TEMA 1

LECTURA Y REPRESENTACIÓN DE NÚMEROS

Los números son símbolos escritos que reflejan cantidades de objetos reales e imaginarios. Por ejemplo, vemos números en las medidas y posiciones en el orden de llegada de una carrera, en la tabla de puntajes de un juego o en actividades cotidianas, como cuando cambiamos de canal con el control remoto del televisor.

Lectura de números hasta el 10.000

Existen ocasiones en las que usamos números que involucran una, dos, tres o más cifras. Cada una de estas cifras tiene un valor según la posición que tengan dentro del número. De acuerdo a esta posición y a los nombres de cada dígito podremos nombrar números de hasta cinco o más cifras.

Desde hace miles de años, el hombre ha sentido la necesidad de expresar cantidades a partir de sistemas de signos comprensibles por toda su comunidad. Los números arábigos, desarrollados en la India y transmitidos por los árabes, son los diez dígitos del sistema de numeración decimal: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9. Con ellos formamos infinidad de números.

Ejemplo:

Si queremos leer el número 542, lo primero que hacemos es ubicar cada cifra en una tabla de valor posicional como esta:

Donde:

U: unidades

D: decenas

C: centenas

Observa que:

  • El 5 está ubicado en la posición de las centenas → 5 x 100 = 500, se lee “quinientos”.
  • El 4 está ubicado en la posición de la decenas → 4 x 10 = 40, se lee “cuarenta”.
  • El 2 está ubicado en la posición de la unidades → 2 x 1 = 2, se lee “dos”.

Por lo tanto, el número 542 se lee: “quinientos cuarenta y dos”.

 

Otro ejemplo:

Para el leer el número 709 realizamos una tabla de valor posicional y ubicamos sus cifras:

Observa que:

  • El 7 está ubicado en la posición de las centenas → 7 x 100 = 700, se lee “setecientos”.
  • El 9 está ubicado en la posición de la unidades → 9 x 1 = 2, se lee “nueve”.

El número 709 se lee: “setecientos nueve”.

¡Atención a los ceros!

¿Qué pasa cuando una posición está ocupada por el cero (0)?

En estos casos no tomamos en cuenta su valor posicional para la lectura del número.

Para leer números mayores a 999 colocamos un punto después de las centenas, es decir, a la izquierda de la tercera cifra. Este punto indica el comienzo de una clase llamada miles.

De este modo, para escribir y leer correctamente el número 2435, primero colocamos un punto al lado izquierdo de la centena. El punto rojo se lee “mil”:

2.435

Luego ubicamos cada cifra en una tabla posicional. Esta vez, añadimos las unidades, decenas y centenas de mil.

Observa que:

  • El 2 está ubicado en la posición de las unidades de mil → 2 x 1.000 = 2.000, se lee “dos mil”.
  • El 4 está ubicado en la posición de la centenas → 4 x 100 = 400, se lee “cuatrocientos”.
  • El 3 está ubicado en la posición de la decenas → 3 x 10 = 30, se lee “treinta”.
  • El 5 está ubicado en la posición de las unidades → 5 x 1 = 5, se lee “cinco”.

El número 2.435 se lee: “dos mil cuatrocientos treinta y cinco”.

 

Ejemplo:

– Lee el número 6.028.

  • El 6 está ubicado en la posición de las unidades de mil → 6 x 1.000 = 6.000, se lee “seis mil”.
  • El 2 está ubicado en la posición de la decenas → 2 x 10 = 20, se lee “veinte”.
  • El 8 está ubicado en la posición de las unidades → 8 x 1 = 8, se lee “ocho”.

El número 6.028 se lee: “seis mil veintiocho”

Representación de cantidades

La cinta métrica o metro es un instrumento de medida que consiste en una cinta flexible graduada. Con ella medimos líneas rectas y superficies curvas. Se utiliza en casa y en la construcción. Tiene marcas divisorias con números que representan los centímetros (cm) y los milímetros (mm). Su largo promedio es de 2 metros.

Para representar cantidades utilizamos 10 dígitos que combinados entre sí forman infinitos números y, como ya sabes, cada dígito cambia su valor según la posición que tenga en el número. Por lo tanto, la misma cifra puede tener distintos valores. Observa:

Esta información es útil si tuviésemos, por ejemplo, que pagar una cuenta y debemos descomponer un número grande. Los billetes y monedas por lo general señalan el valor de una unidad (1), de una decena (10) o de una centena (100). Por ejemplo, si tienes monedas de $ 1 y billetes de $ 10 y $ 100  y debes pagar $ 435, ¿cuántos billetes y monedas tomarías de cada uno?

De la tabla de valor posicional observamos sus valores relativos:

Ahora sabemos que si tomamos 5 monedas de $ 1; 3 billetes de $ 10 y 4 billetes de $ 100, tenemos $ 435. De modo gráfico puedes verlo a continuación:

Podemos concluir que 435 = (4 x 100) + (3 x 10) + (5 x 1)

¡A practicar!

¿Cuántos billetes y monedas de $ 1 , $ 10 y $ 100 necesitarías para formar estas cantidades?

  • 876
Solución

8 billetes de $ 100

7 billetes de $ 10

6 monedas de $ 1

  • 1.000
Solución
10 billetes de $ 100 
  • 611
Solución
6 billetes de $ 100

1 billete de $ 10

1 moneda de $ 1

¿Dónde usamos los números?

  • En los carteles que indican la numeración de las calles. Por ejemplo, calle Maipú del 800 al 900.
  • En los precios de los productos que se compran y venden en la juguetería. Por ejemplo, una muñeca cuesta $ 850, es decir, ochocientos cincuenta pesos.
  • En el número que señala la balanza cuando nos pesamos. Por ejemplo, Juan se pesó en la balanza de la farmacia y su peso fue 65 kilogramos.
  • En el dinero entregado al vendedor cuando se paga el precio de un producto. Por ejemplo, la mamá de Pedro fue a la verdulería y gastó $ 420, entonces le dio al vendedor cuatro billetes de $ 100 y dos billetes de $ 10.
¿Sabías que...?

En el sistema de numeración egipcio se simbolizaban los múltiplos de 10 (1, 10, 100, 1.000, 10.000, 100.000 y 1.000.000) con dibujos denominados ideogramas que representaban conceptos o ideas.

Aproximación por redondeo

Consiste en reducir o aumentar la cantidad del número para acercarlo al número redondo más próximo en la recta númerica. Redondear números te ayudará a manejar mejor los cálculos mentales cuando no necesites una respuesta exacta.

Redondear números permite realizar las cuentas de manera más sencilla y estimar el resultado por medio de números más cercanos y redondos. En la vida cotidiana es muy común redondear cantidades cuando nos faltan monedas o queremos usar pocos billetes para pagar el precio exacto de los productos comprados en los comercios.

Pasos para aproximar un número a la decena más cercana

1. Identifica la cifra que está en la posición de las unidades.

2. Si la cifra que está en la posición de las unidades es menor que cinco (5), no cambies la decena y escribe un cero (0) en el lugar de las unidades.

3. Si la cifra que está ubicada en la posición de las unidades es igual o mayor que cinco (5), aumenta una unidad en la decena y escribe un cero (0) en el lugar de las unidades.

– Redondea el número 343 a su decena más cercana.

Primero identificamos la unidad:

343

Luego, como la unidad es menor que cinco (3 < 5), mantenemos la decena igual y escribimos un cero (0) en el lugar de la unidades:

343 ≈ 340

Por lo tanto, el número 343 es aproximadamente igual a 340.

¿Sabías qué?
El símbolo “≈” se lee “aproximadamente igual a”.

 

– Redondea el número 2.589 a su decena más cercana.

Primero identificamos la unidad.

2.589

Luego, como la unidad es mayor que cinco (9 > 5), aumentamos la decena una unidad y escribimos un cero en el lugar de las unidades.

2.589 ≈ 2.590

Por lo tanto, el número 2.589 es aproximadamente igual a 2.590.

 

Pasos para aproximar un número a la centena más cercana

1. Identifica la cifra que está en la posición de las decenas.

2. Si la cifra que está en la posición de las decenas es menor que cinco (5), no cambies la centena y escribe un cero (0) en el lugar de las decenas y de las unidades.

3. Si la cifra que está ubicada en la posición de las decenas es igual o mayor que cinco (5), aumenta una unidad en la centena y escribe un cero (0) en el lugar de las decenas y de las unidades.

– Redondea el número 9.411 a la centena más cercana

Primero identificamos la decena.

9.411

Luego, como la decena es menor que cinco (1 < 5), no cambiamos la centena y escribimos un cero (0) en el lugar de las decenas y de las unidades:

9.411 ≈ 9.400

Por lo tanto, el número 9.411 es aproximadamente igual a 9.400.

 

– Redondea el número 6.382 a la centena más cercana.

Primero identificamos la decena.

6.382

Luego, como la decena es mayor que cinco (8 > 5), aumentamos la centena una unidad y escribimos un cero en el lugar de las decenas y de las unidades.

6.382 ≈ 6.400

Por lo tanto, el número 6.382 es aproximadamente igual a 6.400.

¡A practicar!

Una familia se va de viaje y cuando llegan al kilómetro 485 hacen una parada para comer en una estación de servicio. Luego siguen su camino. En el kilómetro 495 se detiene el auto por falta de combustible y el padre tiene que salir a buscar gasolina. Él sabe que en el kilómetro 500 también hay una estación de servicio.

¿Hacia dónde le conviene ir si quiere caminar la menor cantidad de kilómetros posible? ¿Hacia la estación de servicio del kilómetro 485 o a la del kilómetro 500?

Solución

Le conviene ir a la estación de servicio del kilómetro 500 porque está a menor distancia que la otra.

Números ordinales

Los números ordinales sirven para representar un orden y se escriben antes de un sustantivo, por ejemplo “tercer grado”, donde la primera palabra es el número ordinal y la segunda es el sustantivo al que se refiere. También se usan en las colecciones de libros, el que tiene el número 1 es el primero, el que tiene el número 2 es el segundo y así sucesivamente.

Los números ordinales nos indican la posición en la que se ubica un elemento en una sucesión o lista. Para representarlos usamos números naturales seguidos por una letra que indica el género (masculino-femenino) del sustantivo al que se refieren. Por ejemplo:

  • El 5.º auto, se lee “el quinto auto”.
  • La 6.ª mesa, se lee “la quinta mesa”.

Estos números sirven para designar los pisos que hay en un edificio e indicar la dirección de vivienda de una persona. Por ejemplo, departamento A del 2º piso:

Estos son los nombres de los números ordinales del 1 al 50:

Número arábigo Número ordinal
1.º/1.ª primero/primera
2.º/2.ª segundo/segunda
3.º/3.ª tercero/tercera
4.º/4.ª cuarto/cuarta
5.º/5.ª quinto/quinta
6.º/6.ª sexto/sexta
7.º/7.ª séptimo/séptima
8.º/8.ª octavo/octava
9.º/9.ª noveno/novena
10.º/10.ª décimo/décima
11.º/11.ª décimo primero/décimo primera
12.º/12.ª décimo segundo/décimo segunda
13.º/13.ª décimo tercero/décimo tercera
14.º/14.ª décimo cuarto/décimo cuarta
15.º/15.ª décimo quinto/décimo quinta
16.º/16.ª décimo sexto/décimo sexta
17.º/17.ª décimo séptimo/décimo séptima
18.º/18.ª décimo octavo/décimo octava
19.º/19.ª décimo noveno/décimo novena
20.º/20.ª vigésimo/vigésima
30.º/30.ª trigésimo/trigésima
40.º/40.ª cuadragésimo/cuadragésima
50.º/50.ª quincuagésimo/quincuagésima

Para escribir números ordinales mayores al 20 primero se escribe el número ordinal del primer valor relativo, luego se escribe el del segundo, por ejemplo:

  • 25.º es igual a “vigésimo quinto”.
  • 42.º es igual a “cuadragésimo segundo”.
¿Sabías qué?

El número ordinal correspondiente al once puede ser nombrado como “décimo primero” o “undécimo”. En el caso del número 12, se lo denomina “décimo segundo” o “duodécimo”.

Números romanos

El reloj de la imagen indica la hora en una circunferencia numerada según el sistema romano. Este sistema de numeración fue inventado en la Antigua Roma y se basaba en la suma y resta de valores representados por letras mayúsculas. A pesar de estar en desuso, se lo puede encontrar en libros, objetos y denominaciones en la actualidad.

Cuando hablamos de números romanos nos referimos a un sistema de numeración que usa letras mayúsculas para representar cantidades. Está compuesto por siete letras y cada una tiene un valor diferente.

¿Para qué se usan los números romanos en la actualidad?

  • Nombrar los siglos históricos: siglo I antes de Cristo o siglo XX.
  • Numerar tomos, capítulos, partes de una obra literaria, actos y escenas de una obra teatral: tomo III, capítulo IV o escena VIII.
  • Nombrar reyes, papas y emperadores: Felipe IV o Juan Pablo II.
  • Denominar congresos, campeonatos y festivales: IV Congreso de la infancia o XIII Muestra de cine independiente.

Reglas para escribir números romanos

– Si a la derecha de una letra se escribe otra igual o de menor valor, sus valores se suman. Ejemplo:

VI = 5 + 1 = 6

XXI = 10 + 10 + 1= 21

LXVII = 50 + 10 + 5 + 1 + 1 = 67

 

– La letra I, colocada a la izquierda de V o X, les resta 1. Ejemplo:

IV = 5 − 1 = 4

IX = 10 − 1 = 9

 

– La letra X, colocada a la izquierda de L o C, les resta 10. Ejemplo:

XC = 100 − 10 = 90

XL = 50 − 10 = 40

 

– La letra C, colocada a la izquierda de D o M, les resta 100. Ejemplo:

CD = 500 − 100 = 400

CM = 1.000 − 100 = 900

 

– No se pueden repetir las letras I, X, C y M más de tres veces seguidas. Ejemplo:

XIII = 10 + 1 + 1 + 1 = 13

XXXIII = 10 + 10 + 10 + 1 + 1 + 1 = 33

MMM = 1.000 + 1.000 + 1.000 = 3.000

 

– Las letras V, L y D no pueden duplicarse, porque otras ya representan su valor. Ejemplo:

X = 10 (2 veces 5)

C = 100 (2 veces 50)

M = 1.000 (2 veces 500)

 

– Una raya encima de una letra o grupo de letras multiplica su valor por mil.

\overline{V} = 5.000

\overline{X} = 10.000

 

VER INFOGRAFÍA

 

Ejercicios

a) Escribe los números en cifras o en palabras, según corresponda.

  • Setecientos cincuenta y dos
Solución
Setecientos cincuenta y dos = 752
  • Mil cien
Solución
Mil cien = 1.100
  • 1.308
Solución
1.308 = mil trescientos ocho
  • 8.444
Solución
8.444 = ocho mil cuatrocientos cuarenta y cuatro
  • 10.000
Solución
10.000 = diez mil

b) Escribe los números ordinales en palabras:

  • 4.ª
Solución
4.ª = cuarta
  • 7.º
Solución
7.º = séptimo
  • 12.º
Solución
12.º = décimo segundo o duodécimo
  • 17.º
Solución
17.º = décimo séptimo
  • 20.ª
Solución
20.ª = vigésima
  • 23.º
Solución
23.º = vigésimo tercero
  • 34.ª
Solución
34.ª = trigésima cuarta
  • 40.º
Solución
40.º = cuadragésimo
  • 46.ª
Solución
46.ª = cuadragésima sexta

c) Descubre los números romanos que están mal representados y escríbelos correctamente.

Número en sistema decimal Número en sistema romano
4 IV
9 VIIII
15 VVV
40 XL
150 CL
1.000 CMC
Solución
  • VIIII no es la representación de 9, porque no se puede repetir la letra I más de tres veces. La escritura correcta es IX.
  • VVV no es la representación de 15, ya que no se puede repetir la letra V más de tres veces. La escritura correcta es XV.
  • CMC no es la representación de 1.000, porque hay un símbolo que tiene exactamente ese valor. La escritura correcta es M.

d) Aproxima por redondeo los siguientes números a la decena.

  • 46
Solución
46 ≈ 50
  • 493
Solución
493 ≈ 490
  • 2.456
Solución
2.456 ≈ 2.460

RECURSOS PARA DOCENTES

Artículo “Sistemas de numeración”

Es una lectura ampliatoria sobre la numeración a lo largo de la historia. Una síntesis que contextualiza y explica el funcionamiento de algunos sistemas de numeración que han sentado las bases de lo que hoy conocemos como aritmética: babilónico, egipcio, chino, griego, romano y decimal.

VER

Artículo “Números grandes”

Artículo que explica cómo leer números grandes sin dificultades, a partir de dos saberes básicos en cuanto a la numeración: leer números de tres cifras y reconocer el valor posicional de cada dígito en un número. Recomendado para enseñar lectura y escritura de números a niños de 3.° grado en adelante.

VER

CAPÍTULO 4 / TEMA 2

CUERPOS GEOMÉTRICOS

Los cuerpos geométricos ocupan un lugar en el espacio y poseen tres dimensiones: alto, largo y ancho. Un ejemplo de esto son los dados, los cuales tienen forma de cubo; o una pelota de fútbol, que tiene forma de esfera. Si miras a tu alrededor, es posible que encuentres diferentes cuerpos geométricos con los que interactúas todos los días.

cuerpos geométricos y sus tipos

Existen dos tipos de cuerpos geométricos: los poliedros y los cuerpos redondos.

Los poliedros tienen todas sus caras planas y no pueden rodar. Entre los poliedros más conocidos encontramos:

VER INFOGRAFÍA

Pirámides de Egipto

Las pirámides de Egipto fueron construidas hace miles de años por el primer arquitecto reconocido en la historia: Imhotep. Estos increíbles monumentos servían como tumba para los faraones y fueron construidos en forma de pirámide cuadrangular porque simbolizan los rayos del Sol. Creían que, de esta manera, el alma de los faraones iría directo al cielo.

Los cuerpos redondos están formados por una cara en forma curva y pueden rodar. Encontramos los siguientes:

¿Sabías qué?

El Sol es la esfera más perfecta que se ha observado hasta el momento. Si esta esfera estuviese, vacía necesitaríamos un millón de planetas Tierra para llenarla.

elementos de los cuerpos geométricos

Los elementos de un cuerpo geométrico son: caras, aristas y vértices.

  • Caras: son figuras planas que rodean el cuerpo geométrico. Las caras de las bases sirven para apoyarse en el plano.
  • Aristas: son las uniones entre dos caras de un cuerpo.
  • Vértices: son los puntos de unión de tres o más aristas.

Atomium

Es una de las construcciones más impresionantes de Bruselas y fue construida para la exposición universal de 1958. Está construido por 9 esferas y su diseño completo tiene forma de cubo. En la esfera más alta los visitantes pueden conocer el restaurante circular y una de las vistas panorámicas más grandiosas de la ciudad. Una de las esferas tiene una exposición con los detalles de su construcción, mientras que otra está dedicada a juegos interactivos para niños.

¡Observa y responde!

  • ¿Qué elementos de la imagen son cuerpos redondos?
    Solución
    La lata de gaseosa, la Tierra y el cono de tránsito.
  • ¿Qué elementos son poliedros?
    Solución
    La caja de cereal, la pirámide y la caja marrón.
  • ¿Cómo se llama el cuerpo geométrico representado por la lata de gaseosa?
    Solución
    Cilindro.
  • ¿Cómo se llama el cuerpo geométrico representado por la caja marrón?
    Solución
    Cubo.
  • ¿Qué forma tiene la base de la pirámide?
    Solución
    Cuadrangular.
  • ¿Cuántas caras, vértices y aristas tiene esta pirámide?
    Solución
    5 caras, 5 vértices y 8 aristas.
  • ¿Qué cuerpo geométrico es la Tierra?
    Solución
    Una esfera.
  • ¿Cuántas caras, vértices y aristas tiene la caja de cereales?
    Solución
    6 caras, 8 vértice y 12 aristas.
  • ¿Qué cuerpo geométrico representa la caja de cereal?
    Solución
    Un prisma cuadrangular.

construcción de cuerpos geométricos

Podemos dibujar figuras planas como el triángulo en una hoja con las herramientas de geometría, pero para construir un cuerpo geométrico necesitamos dibujar con perspectiva, ya que estos cuerpos tienen profundidad. Veremos que los diagramas nos ayudarán a identificar las características que tiene cada cuerpo geométrico.

¿Qué podemos observar en este diagrama? ¿Qué cuerpo geométrico será? Como vemos, está formado por triángulos que son las caras del cuerpo. El triángulo que se encuentra en el medio es la base de la figura y el resto serán las caras laterales. El cuerpo geométrico que cumple con estas características es la pirámide triangular.

¡A practicar!

  1. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Un cono.
  2. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Una pirámide cuadrangular.
  3. Observa las características del diagrama, ¿qué cuerpo geométrico se forma?
    Solución
    Un cubo.

Relación de los cuerpos geométricos y las figuras planas

Las caras de los cuerpos geométricos están formadas por figuras planas. Si observamos una caja de zapatos con la tapa al frente, notaremos que la figura plana es un rectángulo. ¿Qué pasará con la forma de las caras si la apoyamos en la mesa?

La forma de las caras también son rectángulos, entonces, la caja en forma de prisma con caras rectangulares está relacionada directamente con la figura plana llamada rectángulo.

Pirámide del Louvre

El museo de Louvre en París es uno de los museos más importantes de Francia y en su entrada se encuentra una pirámide de cristal, justo en el patio del palacio y en frente al jardín de las Tullerías. La diseñó Ieoh Ming Pei y tiene las mismas medidas que la pirámide de Keops ubicada en Egipto. Este monumento con forma de pirámide cuadrangular posee todas sus caras triangulares cubiertas por 673 placas de vidrio con formas de triángulos y rombos.

¡Cuenta caras, vértices y aristas!

  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    7 caras, 10 vértices y 15 aristas.
  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    7 caras, 8 vértices y 12 aristas.

  • Observa el siguiente cuerpo geométrico. ¿Cuántas caras, vértices y aristas tiene?
    Solución
    8 caras, 12 vértices y 18 aristas.

 

RECURSOS PARA DOCENTES

Artículo “Prismas”

Este recurso le permitirá obtener más información sobre los prismas y sus características.

VER

Artículo “Cuerpos redondos. Áreas y volúmenes.”

Este artículo le permitirá profundizar sobre la manera en que se generan los cuerpos de redondos y las características de los mismos.

VER

CAPÍTULO 4 / TEMA 1

uBICACIÓN ESPACIAL

La ubicación espacial nos sirve para conocer dónde estamos con respecto a otras personas, objetos o lugares; de modo que podamos señalar con facilidad nuestra ubicación. Esta nos permite desarrollar el sentido de la orientación y nos ayuda a no perdernos, por ejemplo, cuando vamos a la escuela.

relaciones espaciales

Para decir dónde nos encontramos podemos utilizar términos como “arriba”, “abajo”, “delante”, “detrás”, “al lado”, “a la izquierda” y “a la derecha”. Si usamos este tipo de expresiones para comunicar nuestra ubicación o la de un objeto será mucho más fácil que nos encuentren a nosotros o al objeto.

Observa a los niños en el parque, ¿qué posición tienen respecto a los objetos?

– María está arriba del tobogán.   – Laura está abajo de la cometa.                                       – La pelota está delante de los niños.                                         – El tobogán está detrás del arenero.                                       – El subibaja está a la derecha del arenero.                               – El tobogán está a la izquierda de las hamacas.                           – Sofía está al lado del tobogán.                                     – La arena está adentro del balde.                                         – Juan está detrás de la hamaca.

ubicación en un plano

Para ubicar un punto en el plano nos podemos mover en cuatro direcciones: arriba (↑), abajo (↓), a la izquierda (←) y a la derecha (→). Veamos cómo funciona:

Un grupo de piratas a bordo de un barco recorre los océanos en busca de tesoros. Necesitan orientarse con precisión para llegar a la tierra de las joyas. El capitán del barco marcó el recorrido en su mapa. Para ir del punto A al punto B se movió de la siguiente manera: tres (3) lugares hacia abajo y un (1) lugar a la izquierda.

¡A practicar!

Observa el mapa anterior y responde las preguntas:

  • ¿Cuál es el recorrido desde el punto C al punto D?
    Solución
    2 lugares hacia abajo y 4 lugares a la izquierda.
  • ¿Cuál es el recorrido desde el punto E al punto F?
    Solución
    3 lugares hacia abajo y 2 lugares a la derecha.
  • ¿Y del punto G al punto H?
    Solución
    3 lugares hacia arriba y 1 lugar a la derecha.
  • Si quisiera volver del punto D al punto al C, ¿cuál sería el recorrido?
    Solución
    4 lugares a la derecha y 2 lugares hacia arriba.
  • ¿Y para volver del punto H al G?
    Solución
    1 lugar a la izquierda y 3 lugares hacia abajo.
  • ¿El recorrido para volver del punto F al punto E es: 2 lugares a la derecha y 3 lugares hacia arriba?
    Solución
    No. El recorrido es: 2 lugares a la izquierda y 3 lugares hacia arriba.

¿Qué son las coordenadas?

Son las líneas horizontales y verticales que en conjunto dan conocer la posición de un punto en el plano. Estas líneas también se llaman ejes y un dato de cada una forma una coordenada. Observa cómo se escriben:

Si queremos ubicar el punto C en este plano seguimos los siguientes pasos:

  1. Nos movemos 3 lugares hacia la derecha (→) en la línea horizontal (eje x ) a partir del 0.
  2. Nos movemos 6 lugares hacia arriba (↑) en la línea vertical (eje y).

Por lo tanto, las coordenadas del punto C se escriben: (3,6).

¿Sabías qué?

Las coordenadas siempre se escriben con el mismo orden: primero el eje x (horizontal) y luego el eje y (vertical).

¡A practicar!

  • ¿En qué coordenadas está el punto E?
    Solución
    (4,1)
  • ¿En qué coordenadas está el punto B?
    Solución
    (1,4)
  • ¿El punto D está en las coordenadas (1,0)?
    Solución
    No. El punto D está en las coordenadas (0,1).

¡Otros tipos de coordenadas!

Hallar puntos en un plano es una actividad recurrente en diversas ciencias y profesiones. Por ejemplo, los astrónomos usan este sistema para conocer la posición de las estrellas, planetas y otros cuerpos celestes; de la misma forma, los marinos lo emplean para conocer las coordenadas geográficas y así llegar de un punto a otro del planeta, también lo usan para comunicarse con los diferentes puertos.

Con los avances tecnológicos, las coordenadas de cualquier lugar son más fáciles de conocer, por eso, a través de aplicaciones en celulares, tabletas y computadoras miles de personas se localizan en todo el mundo.

¿Sabías qué?
René Descartes utilizó por primera vez los ejes de coordenadas. Los usó para saber las distintas posiciones en las que se iba a posar una mosca en el techo de la casa en la que vivía.

ubicación en una cuadrícula

Una cuadrícula puede estar formada por números o por letras y nos permite encontrar elementos que están en ella por medio de coordenadas.

La siguiente cuadrícula representa un barrio. En las coordenadas (D,4) está la casa.

¡A practicar!

Encuentra las coordenadas de los otros lugares del barrio.

  • ¿En qué coordenadas está el parque?
    Solución
    (B,3)
  • ¿En qué coordenadas está la escuela?
    Solución
    (C,2)
  • ¿En qué coordenadas está el bombero?
    Solución
    (A,1)

¡Es tu turno!

Ubica en qué coordenadas te gustaría que hubiese un kiosco.

¡Juega la batalla naval con familia y amigos!

Con una cuadrícula como la que acabamos de conocer, pero con más filas y columnas, puedes jugar un juego llamado la batalla naval o hundir la flota. El objetivo del juego es hundir el barco del jugador contrario.

Cada jugador tendrá diez barcos en total: un barco que ocupe cuatro cuadrados, dos barcos que ocupen tres cuadrados, tres barcos que ocupen dos cuadrados y cuatro barcos que ocupen un cuadrado. Una vez que inicie el juego, cada jugador dará tres coordenadas como las que aprendimos anteriormente, por ejemplo (A,2), (C,5) y (E,7). Si en alguna de ellas no está el barco del jugador contrario este dirá “agua” y si está dirá “barco hundido”.

Ganará el jugador que hunda todos los barcos contrarios.

¡Practiquemos!

Observa con atención la siguiente cuadrícula llena de frutas y verduras. Responde las preguntas.

  1. ¿En qué posición se encuentran las bananas con respecto a los kiwis?
    Solución
    Las bananas se encuentran a la izquierda de los kiwis.
  2. Las uvas se encuentran ________ del morrón. 
    Solución
    arriba
  3. ¿En qué coordenadas está la sandía?
    Solución
    (C,1)
  4. ¿En qué posición se encuentra el durazno con respecto a los ajos?
    Solución
    El durazno se encuentra a la derecha de los ajos.
  5. El coco se encuentra ________ de la sandía.
    Solución
    abajo
  6. ¿En qué coordenadas están las uvas?
    Solución
    (A,2)
  7. ¿En qué posición se encuentra el tomate con respecto a las bananas?
    Solución
    El tomate se encuentra arriba de las bananas.
  8. Las frutillas se encuentran a la ________ del durazno.
    Solución
    derecha
  9. ¿En qué coordenadas están las bananas?
    Solución
    (B,3)
  10. ¿En qué coordenadas están las frutillas?
    Solución
    (C,4)

RECURSOS PARA DOCENTES

Artículo “Plano Cartesiano”

Este recurso le permitirá tener un conocimiento más amplio sobre los planos cartesianos: plano formado por dos rectas numéricas perpendiculares entre sí.

VER

Artículo “Ejes cartesianos”

Con este artículo podrá profundizar sobre el uso de los ejes cartesianos en la ubicación de puntos en el plano.

VER

CAPÍTULO 1 / TEMA 3

NÚMEROS ENTEROS

¿Te has preguntado qué números utilizarías para representar temperaturas por debajo de 0 ºC? o ¿qué números utilizarías para indicar la altura del monte Everest? Para describir estas situaciones usamos los números enteros, un conjunto numérico que abarca desde los números negativos hasta los positivos.

Muchas situaciones de la vida cotidiana requieren el uso de los números enteros. Un ejemplo de ello es la economía a nivel mundial, la cual necesita de estos para poder registrar las entradas y salidas de dinero (las entradas serán enteros positivos y las salidas enteros negativos). Esto es con el fin de poder contabilizar las ganancias o las pérdidas.

¿QUÉ SON los NÚMEROS ENTEROS?

Los números enteros abarcan todos los números naturales \mathbb{N}, así como también el cero y los números negativos o menores que cero. Matemáticamente, el conjunto de números enteros es representado con la letra \mathbb{Z} y se expresa de la siguiente manera:

\mathbb{Z}=\left \{ ...,\, -3,\, -2,\, -1,\, 0,\, +1,\, +2,\, +3,...\right \}

Estos números continúan hasta infinito, tanto del lado de los positivos como del lado de los negativos.

Por lo general, los números enteros positivos \mathbb{Z}^{+} no requieren el uso del signo más (+) para resaltarlos, caso contrario ocurre con los enteros negativos \mathbb{Z}^{-}, que sí requieren el uso obligatorio del signo menos (−) para diferenciarlos.

Por ejemplo:

Los siguientes números enteros positivos+3.674 y +5.876.541 se pueden escribir de dos formas:

  • Con el signo positivo antes del número: +3.674 +5.876.541.
  • Sin el signo positivo antes del número: 3.674 y 5.876.541.

Por otra parte, los números enteros negativos 614 y 9.780 requieren el uso obligatorio del signo menos (−) antes de ellos. No colocar el signo negativo antes del número lo convierte en un número positivo.

 

LA RECTA NUMÉRICA

También es conocida como la recta real y se representa con una línea recta. Esta contiene todos los números reales \mathbb{R}.

¿Cómo dibujar una recta numérica?

Traza una línea de forma horizontal con flechas en ambos extremos como la siguiente:

Divide la línea en segmentos iguales con la misma distancia entre ellos:

Coloca el número cero (0) en el centro de la recta:Comienza a colocar los números en cada intervalo: del lado derecho del cero van los enteros positivos y del lado izquierdo van los enteros negativos.

Ubicación de los números en la recta numérica

La recta numérica puede contener:

    1. Enteros positivos y negativos como: −17 y +11.
    2. Números decimales o en forma de fracción como: −8/5 que es igual a −1,6 y 4/5 que es igual a 0,8.

¿Sabías qué?
La línea recta fue introducida por John Wallis, un matemático Inglés que alrededor del año 1670 la empleó para representar de modo gráfico los números naturales.

¡A practicar!

Ubica estos número en la recta numérica:

  • +150
Solución
  • −180
Solución
  • +19
Solución
  • 3/2
Solución

  • −0,5
Solución

APLICACIÓN DE NÚMEROS ENTEROS

Los números enteros son utilizados en muchas situaciones de nuestra vida, algunos ejemplos son los siguientes:

  • Para indicar la altitud o altura sobre el nivel del mar.

En todo nuestro planeta existen distintas altitudes, tal son los casos del monte Everest en el Himalaya, el cual posee una altitud de +8.848 msnm y la costa del mar Muerto que se encuentra a unos 417 msnm.

  • Para indicar los pisos de un edificio.

Al caminar por el centro de la ciudad habrás visto algún edificio, estos están divididos por pisos y cada piso corresponde a un número. El piso que se encuentra en el mismo nivel de la calle es la planta baja, le corresponde el número 0. Los niveles que están arriba de él se indican con enteros positivos y los que se encuentra debajo, llamados subterráneos o sótanos, se señalan con los negativos.

Otras aplicaciones

  • Para realizar mediciones de temperatura.

¿Has escuchado hablar del Polo Sur y el Polo Norte de nuestro planeta tierra? La temperatura en esos lugares puede variar entre los 89 ºC y los 0 ºC. A esos valores, por lo general se les llama temperaturas bajo 0.

Por otra parte, existen lugares como Kuwait con temperaturas que pueden llegar a los +63 ºC.

  • Para contabilizar pérdidas o ganancias.

Las cuentas bancarias realizan registros de entradas de dinero con números enteros positivos, y los retiros o pagos con los números enteros negativos.

Por ejemplo:

Una persona recibe 2.000 $ en su cuenta y luego realiza una transferencia de 1.000  $ para pagar una computadora. ¿Cuánto dinero tendrá en la cuenta luego de la transferencia?

Recibe dinero: +2.000 $

Transferencia de dinero: 1.000 $

Total de dinero en la cuenta: +2.000 $  1.000 $ = +1.000 $

Entonces, el dinero que la persona tendrá en su cuenta luego de realizar la transferencia será 1.000 $.

  • Para dibujar ejes de coordenadas o eje cartesiano se emplean los números enteros
Ejercicios

  • Juan se encuentra al nivel del mar y quiere escalar una montaña. Decide subir 50 m, luego desciende 25 m para tomar una herramienta que se le cayó. Al agarrar la herramienta decide terminar su escalada y sube 80 m. ¿A qué altura sobre el nivel del mar se encuentra?
Solución

Ubicación de Juan sobre el nivel del mar: 0 m

Juan sube: +50 m

Juan desciende: −25 m

Juan vuelve a subir: +80 m

Altura que escaló juan: 50 m − 25 m + 80 m = 105 m

Juan se encuentra a 105 metros sobre el nivel del mar.

  • Romina decide comprar un teléfono celular que cuesta 1.850 $, pero en su cuenta bancaria solo tiene 1.100 $. Decide decirle a su papá que le transfiera el dinero que le falta para comprar el teléfono y él le transfiere a su cuenta 1.350 $. ¿Cuánto dinero le quedó a Romina en su cuenta luego de comprar el teléfono?
Solución

Cuenta bancaria de Romina: +1.100 $

Transferencia del papá de Romina: +1.350 $

Compra del teléfono: −1.850 $

Total después de la compra: +1.100 $ + 1.350 $ − 1.850 $ = +600 $

A Romina le quedaron 600 $ en su cuenta luego de comprar el teléfono.

  • Felipe se encuentra parado en la posición +2 de una recta numérica, decide avanzar +6 posiciones y luego vuelve 11 posiciones atrás. ¿En qué posición quedó Felipe?
Solución

+2 + 6 − 11 = −3

Felipe quedó en la posición −3.

RECURSOS PARA DOCENTES

Artículo “La recta numérica”

Este artículo ayuda a complementar la información sobre la recta numérica.

VER

Artículo “La clasificación de los números”

Con este recurso se puede ampliar el conocimiento sobre la clasificación de los números.

VER

CAPÍTULO 3 / TEMA 4

Orden de Fracción

Las fracciones forman parte del conjunto de números racionales. Estos números pueden ser expresados como cociente de un número entero y un número natural. Todos los números siguen una secuencia, por lo tanto, es posible ordenarlos en la recta numérica y determinar cuál número es mayor, menor o igual a otro.

Ordenar fracciones en la recta numérica

La recta numérica es un recurso muy útil para comparar números. Consiste en un gráfico en forma de línea en el que se ordenan los números de menor a mayor en sentido de izquierda a derecha.

Las fracciones propias (las que tienen el numerador menor que el denominador) son las más fáciles de graficar porque solo tienes que dividir la unidad en tantos segmentos iguales como indique el denominador y luego, según el numerador, contar los segmentos y ubicar la fracción en la recta.

Por ejemplo, si queremos graficar la fracción \frac{5}{6}, tenemos que dividir la unidad en seis segmentos iguales:

Para ubicar la fracción contamos los segmentos que nos indique el numerador, como en este caso el numerador es cinco (5), se cuentan cinco segmentos a partir del cero:

Por medio del diagrama anterior también podemos graficar la fracción \frac{1}{6} , que es una fracción que comparte el mismo denominador con la fracción \frac{5}{6} ya ubicada en la gráfica. Al seguir los mismos pasos anteriores se obtiene:

Las fracciones con el mismo denominador se pueden comparar fácilmente, la que tenga el numerador mayor será también la mayor fracción. Es por eso que \frac{5}{6} es mayor que \frac{1}{6}.

¿Sabías qué?
En la recta numérica, un número es mayor a los números ubicados a su izquierda y menor a los ubicados a su derecha.

¿Qué hacer si tenemos dos fracciones con denominadores diferentes?

Cuando existan dos fracciones con denominadores diferentes multiplicamos el numerador y denominador de la primera fracción por el denominador de la segunda fracción, y así, tendremos una fracción equivalente. Luego se hace lo mismo con la segunda fracción pero se multiplica su numerador y denominador por el denominador de la primera fracción.

Las dos fracciones obtenidas tendrán el mismo denominador y de esta manera, solo queda ubicar la fracción en la recta tal como se explicó en el punto anterior.

Por ejemplo, si queremos ubicar las fracciones \frac{1}{2} y \frac{3}{4} en la recta numérica, no podemos dividir la recta en segmentos iguales porque no comparten el mismo denominador. Entonces determinamos fracciones equivalentes de cada una, es decir, calculamos fracciones que con diferente valor de numerador y denominador representan la misma cantidad.

Para calcular la fracción equivalente de \frac{1}{2} multiplicamos su numerador y denominador por el denominador de la segunda fracción que es cuatro (4):

\frac{1\times 4}{2\times 4}= \frac{4}{8}

En este sentido, la fracción \frac{4}{8} es equivalente a \frac{1}{2}.

Calculamos ahora la fracción equivalente de \frac{3}{4} que se obtiene al multiplicar su numerador y denominador por el denominador de la primera fracción que es dos (2).

\frac{3\times 2}{4\times 2}= \frac{6}{8}

De esta manera obtenemos la fracción \frac{6}{8} que es equivalente con \frac{3}{4}.

Las fracciones \frac{4}{8} y \frac{6}{8} son equivalentes con las fracciones anteriores. Observemos que tienen el mismo denominador y para poder ubicarlas en la recta numérica debemos dividir la unidad en 8 segmentos iguales, después escribimos cada fracción en el número de segmento que indique su respectivo numerador. El gráfico quedaría:

Como \frac{4}{8} representa la misma cantidad que \frac{1}{2}, y \frac{6}{8} representa la misma cantidad que \frac{3}{4}. Estas fracciones pueden ser sustituidas en la recta numérica anterior:

De la imagen anterior se puede que concluir que \frac{3}{4} es mayor que \frac{1}{2} por estar ubicado a su derecha.

La recta numérica es una herramienta muy usada para ordenar y observar de manera más sencilla los datos. Este simple gráfico, además de los números naturales, permite ubicar números negativos, números racionales y números irracionales. Hay disciplinas como la física que emplean este tipo de diagrama para resolver problemas de cuerpos en movimiento.

¿Qué hacer si la fracción es impropia?

Si la fracción es impropia (aquella que su numerador es mayor que el denominador) se debe transformar a un número mixto: un número formado por una parte entera y una fracción. En la gráfica, la fracción impropia estará ubicada entre el número entero del número mixto y el número siguiente de la recta. La ubicación exacta la proporciona la parte fraccionaria y la graficamos como se explicó en los casos anteriores.

Pasos para transformar una fracción impropia a un número mixto

1. Divide el numerador entre el denominador.

2. Escribe el cociente de la división anterior, el mismo será la parte entera del número mixto.

3. Escribe al lado de la parte entera la fracción del número mixto. En esta, el numerador será igual al resto de la división y el denominador será el mismo de la fracción original.

– Grafiquemos la fracción \frac{5}{3}

Lo primero es transformar la fracción a número mixto, para esto solo debes dividir el numerador entre el denominador:

El número mixto será 1\frac{2}{3}. Observa que:

  • La parte entera es el cociente de la división: 1.
  • El numerador de la parte fraccionaria es el resto: 2.
  • El denominador de la parte fraccionaria es el mismo de la fracción original: 3.

Ahora que tenemos nuestro número mixto sabemos que la fracción se encuentra ubicada entre el 1 y el 2 de la recta numérica, pero no sabemos en qué lugar. Para ello debemos hacer los mismos pasos que hicimos inicialmente para graficar fracciones, es decir, dividir el entero o unidad (que en este caso será el intervalo comprendido entre 1 y 2. Como el divisor es tres (3) entonces dividimos el intervalo en tres segmentos iguales:

Luego ubicamos la fracción de acuerdo a la cantidad de segmentos que indique el numerador. De esta manera, el número mixto que es igual a la fracción original se ubicaría así:

Relación de orden entre fracciones y naturales

Los números que se representan en la recta numérica cumplen el mismo criterio: los números de la izquierda de un número son menores a este y los de su derecha son mayores. Es por ello que representar las fracciones en la recta es de gran utilidad, pues permite relacionar los números de manera más fácil.
En el ejemplo anterior, la fracción \frac{5}{3} se ubica en la gráfica entre el número 1 y el número 2. De esta manera, la fracción es mayor a 1 por estar a su derecha pero es menor que 2 por estar a su izquierda.

Uso de los símbolos “>” y “<“

Hay números naturales o fraccionarios que representan una mayor cantidad que otros. Por ejemplo, no es lo mismo decir 3 computadoras que decir 1.500 computadoras. Esta relación entre los números se denomina orden y nos permite diferenciar números mayores o menores.

En la práctica se emplean los símbolos “>” y “<” para denotar el orden de los números:

Símbolo Significado
> Mayor que
< Menor que

Por ejemplo, el 5 es mayor que el 2, entonces, se puede expresar como 5> 2. Por otro lado, el número 3 es menor que el 9, en este caso se expresaría como 3<9.

La misma teoría es aplicada a las fracciones. De los ejemplos anteriores tenemos que:

a) \frac{3}{4}> \frac{1}{2}

b) \frac{5}{3}<2

¿Cómo reconocer cuando una fracción es menor o mayor que otra?

Si las fracciones tienen el mismo denominador, se comparan los numeradores, el numerador mayor corresponde a la fracción mayor. Por ejemplo:

a) \frac{5}{2}> \frac{3}{2}

b) \frac{2}{7}< \frac{6}{7}

Si las fracciones tienen denominadores diferentes, se convierten ambas en fracciones equivalentes con el mismo denominador. Por ejemplo, las fracciones \frac{3}{5} y \frac{5}{2}

\frac{3}{5}\rightarrow \frac{3\times 2}{5\times 2}= {\color{Red} \frac{6}{10}}

\frac{5}{2}\rightarrow \frac{5\times 5}{2\times 5}= {\color{Red} \frac{25}{10}}

En este ejemplo, como \frac{6}{10}< \frac{25}{10}, entonces \frac{3}{5}< \frac{5}{2}.

 

Las fracciones equivalentes son aquellas que aunque tengan diferente numerador y denominador, representan la misma cantidad. Son útiles para comparar fracciones y también para simplificar operaciones, como la suma de fracciones con diferentes denominadores. Existen varias formas de calcularlas, como el método del mínimo común múltiplo.
¡A practicar!

1. ¿Qué fracción representa la siguiente gráfica?

a) \frac{6}{2}

b) \frac{3}{1}

c) \frac{3}{6}

d) \frac{3}{2}

Solución
c) \frac{3}{6}

2. ¿Cuál de las siguientes imágenes representa la gráfica de la fracción \frac{5}{9}?
a)

b)

c)

d)

Solución
c)

3. ¿Cuál de las siguientes fracciones es mayor?

a) \frac{9}{10} y \frac{7}{10}

Solución
\frac{9}{10}

b) \frac{3}{2} y \frac{1}{4}

Solución
\frac{3}{2}

4. ¿Cuál de las siguientes fracciones es menor?

a) \frac{2}{5} y \frac{1}{2}

Solución
\frac{2}{5}

b) \frac{7}{4} y \frac{9}{6}

Solución
\frac{9}{6}

5. Completa la expresión con los símbolos “>” y “<“.

a) \frac{3}{2}\sqsubset \sqsupset \frac{1}{2}

Solución
>

b) \frac{5}{9}\sqsubset \sqsupset \frac{8}{9}

Solución
<

c) \frac{5}{2}\sqsubset \sqsupset \frac{7}{4}

Solución
>

d) \frac{1}{9}\sqsubset \sqsupset \frac{3}{8}

Solución
<

RECURSOS PARA DOCENTES

Artículo “La recta numérica”

En este artículo destacado se explica con mayor detalle qué es la recta numérica y cómo representar en ella varios tipos de números como los fraccionarios.

VER

Artículo “Comparar y ordenar números”

El presente artículo permite conocer los símbolos usados en la comparación de números y muestra una serie de ejemplos de acuerdo a la cantidad de dígitos o cifras.

VER